Merge tag 'mtd/fixes-for-5.2-final' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-2.6-arm.git] / virt / kvm / kvm_main.c
blob2f2d24a4dd5c2e2ef18d9bbc5f2468a627af6ced
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93 * Ordering of locks:
95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98 DEFINE_SPINLOCK(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #define KVM_COMPAT(c) .compat_ioctl = (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125 unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
138 static bool largepages_enabled = true;
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147 unsigned long start, unsigned long end, bool blockable)
149 return 0;
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
154 if (pfn_valid(pfn))
155 return PageReserved(pfn_to_page(pfn));
157 return true;
161 * Switches to specified vcpu, until a matching vcpu_put()
163 void vcpu_load(struct kvm_vcpu *vcpu)
165 int cpu = get_cpu();
166 preempt_notifier_register(&vcpu->preempt_notifier);
167 kvm_arch_vcpu_load(vcpu, cpu);
168 put_cpu();
170 EXPORT_SYMBOL_GPL(vcpu_load);
172 void vcpu_put(struct kvm_vcpu *vcpu)
174 preempt_disable();
175 kvm_arch_vcpu_put(vcpu);
176 preempt_notifier_unregister(&vcpu->preempt_notifier);
177 preempt_enable();
179 EXPORT_SYMBOL_GPL(vcpu_put);
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
184 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187 * We need to wait for the VCPU to reenable interrupts and get out of
188 * READING_SHADOW_PAGE_TABLES mode.
190 if (req & KVM_REQUEST_WAIT)
191 return mode != OUTSIDE_GUEST_MODE;
194 * Need to kick a running VCPU, but otherwise there is nothing to do.
196 return mode == IN_GUEST_MODE;
199 static void ack_flush(void *_completed)
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
205 if (unlikely(!cpus))
206 cpus = cpu_online_mask;
208 if (cpumask_empty(cpus))
209 return false;
211 smp_call_function_many(cpus, ack_flush, NULL, wait);
212 return true;
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
218 int i, cpu, me;
219 struct kvm_vcpu *vcpu;
220 bool called;
222 me = get_cpu();
224 kvm_for_each_vcpu(i, vcpu, kvm) {
225 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226 continue;
228 kvm_make_request(req, vcpu);
229 cpu = vcpu->cpu;
231 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232 continue;
234 if (tmp != NULL && cpu != -1 && cpu != me &&
235 kvm_request_needs_ipi(vcpu, req))
236 __cpumask_set_cpu(cpu, tmp);
239 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240 put_cpu();
242 return called;
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
247 cpumask_var_t cpus;
248 bool called;
250 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
252 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
254 free_cpumask_var(cpus);
255 return called;
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263 * kvm_make_all_cpus_request.
265 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268 * We want to publish modifications to the page tables before reading
269 * mode. Pairs with a memory barrier in arch-specific code.
270 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271 * and smp_mb in walk_shadow_page_lockless_begin/end.
272 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
274 * There is already an smp_mb__after_atomic() before
275 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276 * barrier here.
278 if (!kvm_arch_flush_remote_tlb(kvm)
279 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280 ++kvm->stat.remote_tlb_flush;
281 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
286 void kvm_reload_remote_mmus(struct kvm *kvm)
288 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
293 struct page *page;
294 int r;
296 mutex_init(&vcpu->mutex);
297 vcpu->cpu = -1;
298 vcpu->kvm = kvm;
299 vcpu->vcpu_id = id;
300 vcpu->pid = NULL;
301 init_swait_queue_head(&vcpu->wq);
302 kvm_async_pf_vcpu_init(vcpu);
304 vcpu->pre_pcpu = -1;
305 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
307 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308 if (!page) {
309 r = -ENOMEM;
310 goto fail;
312 vcpu->run = page_address(page);
314 kvm_vcpu_set_in_spin_loop(vcpu, false);
315 kvm_vcpu_set_dy_eligible(vcpu, false);
316 vcpu->preempted = false;
318 r = kvm_arch_vcpu_init(vcpu);
319 if (r < 0)
320 goto fail_free_run;
321 return 0;
323 fail_free_run:
324 free_page((unsigned long)vcpu->run);
325 fail:
326 return r;
328 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 * no need for rcu_read_lock as VCPU_RUN is the only place that
334 * will change the vcpu->pid pointer and on uninit all file
335 * descriptors are already gone.
337 put_pid(rcu_dereference_protected(vcpu->pid, 1));
338 kvm_arch_vcpu_uninit(vcpu);
339 free_page((unsigned long)vcpu->run);
341 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
344 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 return container_of(mn, struct kvm, mmu_notifier);
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long address,
352 pte_t pte)
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355 int idx;
357 idx = srcu_read_lock(&kvm->srcu);
358 spin_lock(&kvm->mmu_lock);
359 kvm->mmu_notifier_seq++;
361 if (kvm_set_spte_hva(kvm, address, pte))
362 kvm_flush_remote_tlbs(kvm);
364 spin_unlock(&kvm->mmu_lock);
365 srcu_read_unlock(&kvm->srcu, idx);
368 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
369 const struct mmu_notifier_range *range)
371 struct kvm *kvm = mmu_notifier_to_kvm(mn);
372 int need_tlb_flush = 0, idx;
373 int ret;
375 idx = srcu_read_lock(&kvm->srcu);
376 spin_lock(&kvm->mmu_lock);
378 * The count increase must become visible at unlock time as no
379 * spte can be established without taking the mmu_lock and
380 * count is also read inside the mmu_lock critical section.
382 kvm->mmu_notifier_count++;
383 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
384 need_tlb_flush |= kvm->tlbs_dirty;
385 /* we've to flush the tlb before the pages can be freed */
386 if (need_tlb_flush)
387 kvm_flush_remote_tlbs(kvm);
389 spin_unlock(&kvm->mmu_lock);
391 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
392 range->end,
393 mmu_notifier_range_blockable(range));
395 srcu_read_unlock(&kvm->srcu, idx);
397 return ret;
400 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
401 const struct mmu_notifier_range *range)
403 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 spin_lock(&kvm->mmu_lock);
407 * This sequence increase will notify the kvm page fault that
408 * the page that is going to be mapped in the spte could have
409 * been freed.
411 kvm->mmu_notifier_seq++;
412 smp_wmb();
414 * The above sequence increase must be visible before the
415 * below count decrease, which is ensured by the smp_wmb above
416 * in conjunction with the smp_rmb in mmu_notifier_retry().
418 kvm->mmu_notifier_count--;
419 spin_unlock(&kvm->mmu_lock);
421 BUG_ON(kvm->mmu_notifier_count < 0);
424 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
425 struct mm_struct *mm,
426 unsigned long start,
427 unsigned long end)
429 struct kvm *kvm = mmu_notifier_to_kvm(mn);
430 int young, idx;
432 idx = srcu_read_lock(&kvm->srcu);
433 spin_lock(&kvm->mmu_lock);
435 young = kvm_age_hva(kvm, start, end);
436 if (young)
437 kvm_flush_remote_tlbs(kvm);
439 spin_unlock(&kvm->mmu_lock);
440 srcu_read_unlock(&kvm->srcu, idx);
442 return young;
445 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
446 struct mm_struct *mm,
447 unsigned long start,
448 unsigned long end)
450 struct kvm *kvm = mmu_notifier_to_kvm(mn);
451 int young, idx;
453 idx = srcu_read_lock(&kvm->srcu);
454 spin_lock(&kvm->mmu_lock);
456 * Even though we do not flush TLB, this will still adversely
457 * affect performance on pre-Haswell Intel EPT, where there is
458 * no EPT Access Bit to clear so that we have to tear down EPT
459 * tables instead. If we find this unacceptable, we can always
460 * add a parameter to kvm_age_hva so that it effectively doesn't
461 * do anything on clear_young.
463 * Also note that currently we never issue secondary TLB flushes
464 * from clear_young, leaving this job up to the regular system
465 * cadence. If we find this inaccurate, we might come up with a
466 * more sophisticated heuristic later.
468 young = kvm_age_hva(kvm, start, end);
469 spin_unlock(&kvm->mmu_lock);
470 srcu_read_unlock(&kvm->srcu, idx);
472 return young;
475 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
476 struct mm_struct *mm,
477 unsigned long address)
479 struct kvm *kvm = mmu_notifier_to_kvm(mn);
480 int young, idx;
482 idx = srcu_read_lock(&kvm->srcu);
483 spin_lock(&kvm->mmu_lock);
484 young = kvm_test_age_hva(kvm, address);
485 spin_unlock(&kvm->mmu_lock);
486 srcu_read_unlock(&kvm->srcu, idx);
488 return young;
491 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
492 struct mm_struct *mm)
494 struct kvm *kvm = mmu_notifier_to_kvm(mn);
495 int idx;
497 idx = srcu_read_lock(&kvm->srcu);
498 kvm_arch_flush_shadow_all(kvm);
499 srcu_read_unlock(&kvm->srcu, idx);
502 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
503 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
504 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
505 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
506 .clear_young = kvm_mmu_notifier_clear_young,
507 .test_young = kvm_mmu_notifier_test_young,
508 .change_pte = kvm_mmu_notifier_change_pte,
509 .release = kvm_mmu_notifier_release,
512 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
515 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
518 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 return 0;
525 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 static struct kvm_memslots *kvm_alloc_memslots(void)
529 int i;
530 struct kvm_memslots *slots;
532 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
533 if (!slots)
534 return NULL;
536 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
537 slots->id_to_index[i] = slots->memslots[i].id = i;
539 return slots;
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 if (!memslot->dirty_bitmap)
545 return;
547 kvfree(memslot->dirty_bitmap);
548 memslot->dirty_bitmap = NULL;
552 * Free any memory in @free but not in @dont.
554 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
555 struct kvm_memory_slot *dont)
557 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 kvm_destroy_dirty_bitmap(free);
560 kvm_arch_free_memslot(kvm, free, dont);
562 free->npages = 0;
565 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 struct kvm_memory_slot *memslot;
569 if (!slots)
570 return;
572 kvm_for_each_memslot(memslot, slots)
573 kvm_free_memslot(kvm, memslot, NULL);
575 kvfree(slots);
578 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 int i;
582 if (!kvm->debugfs_dentry)
583 return;
585 debugfs_remove_recursive(kvm->debugfs_dentry);
587 if (kvm->debugfs_stat_data) {
588 for (i = 0; i < kvm_debugfs_num_entries; i++)
589 kfree(kvm->debugfs_stat_data[i]);
590 kfree(kvm->debugfs_stat_data);
594 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 char dir_name[ITOA_MAX_LEN * 2];
597 struct kvm_stat_data *stat_data;
598 struct kvm_stats_debugfs_item *p;
600 if (!debugfs_initialized())
601 return 0;
603 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
604 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
607 sizeof(*kvm->debugfs_stat_data),
608 GFP_KERNEL_ACCOUNT);
609 if (!kvm->debugfs_stat_data)
610 return -ENOMEM;
612 for (p = debugfs_entries; p->name; p++) {
613 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
614 if (!stat_data)
615 return -ENOMEM;
617 stat_data->kvm = kvm;
618 stat_data->offset = p->offset;
619 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
620 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
621 stat_data, stat_fops_per_vm[p->kind]);
623 return 0;
626 static struct kvm *kvm_create_vm(unsigned long type)
628 int r, i;
629 struct kvm *kvm = kvm_arch_alloc_vm();
631 if (!kvm)
632 return ERR_PTR(-ENOMEM);
634 spin_lock_init(&kvm->mmu_lock);
635 mmgrab(current->mm);
636 kvm->mm = current->mm;
637 kvm_eventfd_init(kvm);
638 mutex_init(&kvm->lock);
639 mutex_init(&kvm->irq_lock);
640 mutex_init(&kvm->slots_lock);
641 refcount_set(&kvm->users_count, 1);
642 INIT_LIST_HEAD(&kvm->devices);
644 r = kvm_arch_init_vm(kvm, type);
645 if (r)
646 goto out_err_no_disable;
648 r = hardware_enable_all();
649 if (r)
650 goto out_err_no_disable;
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658 r = -ENOMEM;
659 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 struct kvm_memslots *slots = kvm_alloc_memslots();
661 if (!slots)
662 goto out_err_no_srcu;
663 /* Generations must be different for each address space. */
664 slots->generation = i;
665 rcu_assign_pointer(kvm->memslots[i], slots);
668 if (init_srcu_struct(&kvm->srcu))
669 goto out_err_no_srcu;
670 if (init_srcu_struct(&kvm->irq_srcu))
671 goto out_err_no_irq_srcu;
672 for (i = 0; i < KVM_NR_BUSES; i++) {
673 rcu_assign_pointer(kvm->buses[i],
674 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
675 if (!kvm->buses[i])
676 goto out_err;
679 r = kvm_init_mmu_notifier(kvm);
680 if (r)
681 goto out_err;
683 spin_lock(&kvm_lock);
684 list_add(&kvm->vm_list, &vm_list);
685 spin_unlock(&kvm_lock);
687 preempt_notifier_inc();
689 return kvm;
691 out_err:
692 cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694 cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696 hardware_disable_all();
697 out_err_no_disable:
698 refcount_set(&kvm->users_count, 0);
699 for (i = 0; i < KVM_NR_BUSES; i++)
700 kfree(kvm_get_bus(kvm, i));
701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703 kvm_arch_free_vm(kvm);
704 mmdrop(current->mm);
705 return ERR_PTR(r);
708 static void kvm_destroy_devices(struct kvm *kvm)
710 struct kvm_device *dev, *tmp;
713 * We do not need to take the kvm->lock here, because nobody else
714 * has a reference to the struct kvm at this point and therefore
715 * cannot access the devices list anyhow.
717 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718 list_del(&dev->vm_node);
719 dev->ops->destroy(dev);
723 static void kvm_destroy_vm(struct kvm *kvm)
725 int i;
726 struct mm_struct *mm = kvm->mm;
728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729 kvm_destroy_vm_debugfs(kvm);
730 kvm_arch_sync_events(kvm);
731 spin_lock(&kvm_lock);
732 list_del(&kvm->vm_list);
733 spin_unlock(&kvm_lock);
734 kvm_free_irq_routing(kvm);
735 for (i = 0; i < KVM_NR_BUSES; i++) {
736 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738 if (bus)
739 kvm_io_bus_destroy(bus);
740 kvm->buses[i] = NULL;
742 kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 kvm_arch_flush_shadow_all(kvm);
747 #endif
748 kvm_arch_destroy_vm(kvm);
749 kvm_destroy_devices(kvm);
750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 cleanup_srcu_struct(&kvm->irq_srcu);
753 cleanup_srcu_struct(&kvm->srcu);
754 kvm_arch_free_vm(kvm);
755 preempt_notifier_dec();
756 hardware_disable_all();
757 mmdrop(mm);
760 void kvm_get_kvm(struct kvm *kvm)
762 refcount_inc(&kvm->users_count);
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766 void kvm_put_kvm(struct kvm *kvm)
768 if (refcount_dec_and_test(&kvm->users_count))
769 kvm_destroy_vm(kvm);
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 struct kvm *kvm = filp->private_data;
778 kvm_irqfd_release(kvm);
780 kvm_put_kvm(kvm);
781 return 0;
785 * Allocation size is twice as large as the actual dirty bitmap size.
786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
793 if (!memslot->dirty_bitmap)
794 return -ENOMEM;
796 return 0;
800 * Insert memslot and re-sort memslots based on their GFN,
801 * so binary search could be used to lookup GFN.
802 * Sorting algorithm takes advantage of having initially
803 * sorted array and known changed memslot position.
805 static void update_memslots(struct kvm_memslots *slots,
806 struct kvm_memory_slot *new,
807 enum kvm_mr_change change)
809 int id = new->id;
810 int i = slots->id_to_index[id];
811 struct kvm_memory_slot *mslots = slots->memslots;
813 WARN_ON(mslots[i].id != id);
814 switch (change) {
815 case KVM_MR_CREATE:
816 slots->used_slots++;
817 WARN_ON(mslots[i].npages || !new->npages);
818 break;
819 case KVM_MR_DELETE:
820 slots->used_slots--;
821 WARN_ON(new->npages || !mslots[i].npages);
822 break;
823 default:
824 break;
827 while (i < KVM_MEM_SLOTS_NUM - 1 &&
828 new->base_gfn <= mslots[i + 1].base_gfn) {
829 if (!mslots[i + 1].npages)
830 break;
831 mslots[i] = mslots[i + 1];
832 slots->id_to_index[mslots[i].id] = i;
833 i++;
837 * The ">=" is needed when creating a slot with base_gfn == 0,
838 * so that it moves before all those with base_gfn == npages == 0.
840 * On the other hand, if new->npages is zero, the above loop has
841 * already left i pointing to the beginning of the empty part of
842 * mslots, and the ">=" would move the hole backwards in this
843 * case---which is wrong. So skip the loop when deleting a slot.
845 if (new->npages) {
846 while (i > 0 &&
847 new->base_gfn >= mslots[i - 1].base_gfn) {
848 mslots[i] = mslots[i - 1];
849 slots->id_to_index[mslots[i].id] = i;
850 i--;
852 } else
853 WARN_ON_ONCE(i != slots->used_slots);
855 mslots[i] = *new;
856 slots->id_to_index[mslots[i].id] = i;
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863 #ifdef __KVM_HAVE_READONLY_MEM
864 valid_flags |= KVM_MEM_READONLY;
865 #endif
867 if (mem->flags & ~valid_flags)
868 return -EINVAL;
870 return 0;
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874 int as_id, struct kvm_memslots *slots)
876 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877 u64 gen = old_memslots->generation;
879 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
880 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
882 rcu_assign_pointer(kvm->memslots[as_id], slots);
883 synchronize_srcu_expedited(&kvm->srcu);
886 * Increment the new memslot generation a second time, dropping the
887 * update in-progress flag and incrementing then generation based on
888 * the number of address spaces. This provides a unique and easily
889 * identifiable generation number while the memslots are in flux.
891 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
894 * Generations must be unique even across address spaces. We do not need
895 * a global counter for that, instead the generation space is evenly split
896 * across address spaces. For example, with two address spaces, address
897 * space 0 will use generations 0, 2, 4, ... while address space 1 will
898 * use generations 1, 3, 5, ...
900 gen += KVM_ADDRESS_SPACE_NUM;
902 kvm_arch_memslots_updated(kvm, gen);
904 slots->generation = gen;
906 return old_memslots;
910 * Allocate some memory and give it an address in the guest physical address
911 * space.
913 * Discontiguous memory is allowed, mostly for framebuffers.
915 * Must be called holding kvm->slots_lock for write.
917 int __kvm_set_memory_region(struct kvm *kvm,
918 const struct kvm_userspace_memory_region *mem)
920 int r;
921 gfn_t base_gfn;
922 unsigned long npages;
923 struct kvm_memory_slot *slot;
924 struct kvm_memory_slot old, new;
925 struct kvm_memslots *slots = NULL, *old_memslots;
926 int as_id, id;
927 enum kvm_mr_change change;
929 r = check_memory_region_flags(mem);
930 if (r)
931 goto out;
933 r = -EINVAL;
934 as_id = mem->slot >> 16;
935 id = (u16)mem->slot;
937 /* General sanity checks */
938 if (mem->memory_size & (PAGE_SIZE - 1))
939 goto out;
940 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
941 goto out;
942 /* We can read the guest memory with __xxx_user() later on. */
943 if ((id < KVM_USER_MEM_SLOTS) &&
944 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
945 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
946 mem->memory_size)))
947 goto out;
948 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
949 goto out;
950 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
951 goto out;
953 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
954 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
955 npages = mem->memory_size >> PAGE_SHIFT;
957 if (npages > KVM_MEM_MAX_NR_PAGES)
958 goto out;
960 new = old = *slot;
962 new.id = id;
963 new.base_gfn = base_gfn;
964 new.npages = npages;
965 new.flags = mem->flags;
967 if (npages) {
968 if (!old.npages)
969 change = KVM_MR_CREATE;
970 else { /* Modify an existing slot. */
971 if ((mem->userspace_addr != old.userspace_addr) ||
972 (npages != old.npages) ||
973 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
974 goto out;
976 if (base_gfn != old.base_gfn)
977 change = KVM_MR_MOVE;
978 else if (new.flags != old.flags)
979 change = KVM_MR_FLAGS_ONLY;
980 else { /* Nothing to change. */
981 r = 0;
982 goto out;
985 } else {
986 if (!old.npages)
987 goto out;
989 change = KVM_MR_DELETE;
990 new.base_gfn = 0;
991 new.flags = 0;
994 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
995 /* Check for overlaps */
996 r = -EEXIST;
997 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
998 if (slot->id == id)
999 continue;
1000 if (!((base_gfn + npages <= slot->base_gfn) ||
1001 (base_gfn >= slot->base_gfn + slot->npages)))
1002 goto out;
1006 /* Free page dirty bitmap if unneeded */
1007 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1008 new.dirty_bitmap = NULL;
1010 r = -ENOMEM;
1011 if (change == KVM_MR_CREATE) {
1012 new.userspace_addr = mem->userspace_addr;
1014 if (kvm_arch_create_memslot(kvm, &new, npages))
1015 goto out_free;
1018 /* Allocate page dirty bitmap if needed */
1019 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1020 if (kvm_create_dirty_bitmap(&new) < 0)
1021 goto out_free;
1024 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1025 if (!slots)
1026 goto out_free;
1027 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1030 slot = id_to_memslot(slots, id);
1031 slot->flags |= KVM_MEMSLOT_INVALID;
1033 old_memslots = install_new_memslots(kvm, as_id, slots);
1035 /* From this point no new shadow pages pointing to a deleted,
1036 * or moved, memslot will be created.
1038 * validation of sp->gfn happens in:
1039 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1040 * - kvm_is_visible_gfn (mmu_check_roots)
1042 kvm_arch_flush_shadow_memslot(kvm, slot);
1045 * We can re-use the old_memslots from above, the only difference
1046 * from the currently installed memslots is the invalid flag. This
1047 * will get overwritten by update_memslots anyway.
1049 slots = old_memslots;
1052 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1053 if (r)
1054 goto out_slots;
1056 /* actual memory is freed via old in kvm_free_memslot below */
1057 if (change == KVM_MR_DELETE) {
1058 new.dirty_bitmap = NULL;
1059 memset(&new.arch, 0, sizeof(new.arch));
1062 update_memslots(slots, &new, change);
1063 old_memslots = install_new_memslots(kvm, as_id, slots);
1065 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067 kvm_free_memslot(kvm, &old, &new);
1068 kvfree(old_memslots);
1069 return 0;
1071 out_slots:
1072 kvfree(slots);
1073 out_free:
1074 kvm_free_memslot(kvm, &new, &old);
1075 out:
1076 return r;
1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080 int kvm_set_memory_region(struct kvm *kvm,
1081 const struct kvm_userspace_memory_region *mem)
1083 int r;
1085 mutex_lock(&kvm->slots_lock);
1086 r = __kvm_set_memory_region(kvm, mem);
1087 mutex_unlock(&kvm->slots_lock);
1088 return r;
1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1093 struct kvm_userspace_memory_region *mem)
1095 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1096 return -EINVAL;
1098 return kvm_set_memory_region(kvm, mem);
1101 int kvm_get_dirty_log(struct kvm *kvm,
1102 struct kvm_dirty_log *log, int *is_dirty)
1104 struct kvm_memslots *slots;
1105 struct kvm_memory_slot *memslot;
1106 int i, as_id, id;
1107 unsigned long n;
1108 unsigned long any = 0;
1110 as_id = log->slot >> 16;
1111 id = (u16)log->slot;
1112 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1113 return -EINVAL;
1115 slots = __kvm_memslots(kvm, as_id);
1116 memslot = id_to_memslot(slots, id);
1117 if (!memslot->dirty_bitmap)
1118 return -ENOENT;
1120 n = kvm_dirty_bitmap_bytes(memslot);
1122 for (i = 0; !any && i < n/sizeof(long); ++i)
1123 any = memslot->dirty_bitmap[i];
1125 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1126 return -EFAULT;
1128 if (any)
1129 *is_dirty = 1;
1130 return 0;
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1137 * and reenable dirty page tracking for the corresponding pages.
1138 * @kvm: pointer to kvm instance
1139 * @log: slot id and address to which we copy the log
1140 * @flush: true if TLB flush is needed by caller
1142 * We need to keep it in mind that VCPU threads can write to the bitmap
1143 * concurrently. So, to avoid losing track of dirty pages we keep the
1144 * following order:
1146 * 1. Take a snapshot of the bit and clear it if needed.
1147 * 2. Write protect the corresponding page.
1148 * 3. Copy the snapshot to the userspace.
1149 * 4. Upon return caller flushes TLB's if needed.
1151 * Between 2 and 4, the guest may write to the page using the remaining TLB
1152 * entry. This is not a problem because the page is reported dirty using
1153 * the snapshot taken before and step 4 ensures that writes done after
1154 * exiting to userspace will be logged for the next call.
1157 int kvm_get_dirty_log_protect(struct kvm *kvm,
1158 struct kvm_dirty_log *log, bool *flush)
1160 struct kvm_memslots *slots;
1161 struct kvm_memory_slot *memslot;
1162 int i, as_id, id;
1163 unsigned long n;
1164 unsigned long *dirty_bitmap;
1165 unsigned long *dirty_bitmap_buffer;
1167 as_id = log->slot >> 16;
1168 id = (u16)log->slot;
1169 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1170 return -EINVAL;
1172 slots = __kvm_memslots(kvm, as_id);
1173 memslot = id_to_memslot(slots, id);
1175 dirty_bitmap = memslot->dirty_bitmap;
1176 if (!dirty_bitmap)
1177 return -ENOENT;
1179 n = kvm_dirty_bitmap_bytes(memslot);
1180 *flush = false;
1181 if (kvm->manual_dirty_log_protect) {
1183 * Unlike kvm_get_dirty_log, we always return false in *flush,
1184 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1185 * is some code duplication between this function and
1186 * kvm_get_dirty_log, but hopefully all architecture
1187 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1188 * can be eliminated.
1190 dirty_bitmap_buffer = dirty_bitmap;
1191 } else {
1192 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1193 memset(dirty_bitmap_buffer, 0, n);
1195 spin_lock(&kvm->mmu_lock);
1196 for (i = 0; i < n / sizeof(long); i++) {
1197 unsigned long mask;
1198 gfn_t offset;
1200 if (!dirty_bitmap[i])
1201 continue;
1203 *flush = true;
1204 mask = xchg(&dirty_bitmap[i], 0);
1205 dirty_bitmap_buffer[i] = mask;
1207 offset = i * BITS_PER_LONG;
1208 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1209 offset, mask);
1211 spin_unlock(&kvm->mmu_lock);
1214 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1215 return -EFAULT;
1216 return 0;
1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1222 * and reenable dirty page tracking for the corresponding pages.
1223 * @kvm: pointer to kvm instance
1224 * @log: slot id and address from which to fetch the bitmap of dirty pages
1225 * @flush: true if TLB flush is needed by caller
1227 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1228 struct kvm_clear_dirty_log *log, bool *flush)
1230 struct kvm_memslots *slots;
1231 struct kvm_memory_slot *memslot;
1232 int as_id, id;
1233 gfn_t offset;
1234 unsigned long i, n;
1235 unsigned long *dirty_bitmap;
1236 unsigned long *dirty_bitmap_buffer;
1238 as_id = log->slot >> 16;
1239 id = (u16)log->slot;
1240 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241 return -EINVAL;
1243 if (log->first_page & 63)
1244 return -EINVAL;
1246 slots = __kvm_memslots(kvm, as_id);
1247 memslot = id_to_memslot(slots, id);
1249 dirty_bitmap = memslot->dirty_bitmap;
1250 if (!dirty_bitmap)
1251 return -ENOENT;
1253 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1255 if (log->first_page > memslot->npages ||
1256 log->num_pages > memslot->npages - log->first_page ||
1257 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1258 return -EINVAL;
1260 *flush = false;
1261 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1262 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1263 return -EFAULT;
1265 spin_lock(&kvm->mmu_lock);
1266 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1267 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1268 i++, offset += BITS_PER_LONG) {
1269 unsigned long mask = *dirty_bitmap_buffer++;
1270 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1271 if (!mask)
1272 continue;
1274 mask &= atomic_long_fetch_andnot(mask, p);
1277 * mask contains the bits that really have been cleared. This
1278 * never includes any bits beyond the length of the memslot (if
1279 * the length is not aligned to 64 pages), therefore it is not
1280 * a problem if userspace sets them in log->dirty_bitmap.
1282 if (mask) {
1283 *flush = true;
1284 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1285 offset, mask);
1288 spin_unlock(&kvm->mmu_lock);
1290 return 0;
1292 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1293 #endif
1295 bool kvm_largepages_enabled(void)
1297 return largepages_enabled;
1300 void kvm_disable_largepages(void)
1302 largepages_enabled = false;
1304 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1317 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1322 memslot->flags & KVM_MEMSLOT_INVALID)
1323 return false;
1325 return true;
1327 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331 struct vm_area_struct *vma;
1332 unsigned long addr, size;
1334 size = PAGE_SIZE;
1336 addr = gfn_to_hva(kvm, gfn);
1337 if (kvm_is_error_hva(addr))
1338 return PAGE_SIZE;
1340 down_read(&current->mm->mmap_sem);
1341 vma = find_vma(current->mm, addr);
1342 if (!vma)
1343 goto out;
1345 size = vma_kernel_pagesize(vma);
1347 out:
1348 up_read(&current->mm->mmap_sem);
1350 return size;
1353 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355 return slot->flags & KVM_MEM_READONLY;
1358 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1359 gfn_t *nr_pages, bool write)
1361 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1362 return KVM_HVA_ERR_BAD;
1364 if (memslot_is_readonly(slot) && write)
1365 return KVM_HVA_ERR_RO_BAD;
1367 if (nr_pages)
1368 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1370 return __gfn_to_hva_memslot(slot, gfn);
1373 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1374 gfn_t *nr_pages)
1376 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1379 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1380 gfn_t gfn)
1382 return gfn_to_hva_many(slot, gfn, NULL);
1384 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390 EXPORT_SYMBOL_GPL(gfn_to_hva);
1392 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1399 * Return the hva of a @gfn and the R/W attribute if possible.
1401 * @slot: the kvm_memory_slot which contains @gfn
1402 * @gfn: the gfn to be translated
1403 * @writable: used to return the read/write attribute of the @slot if the hva
1404 * is valid and @writable is not NULL
1406 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1407 gfn_t gfn, bool *writable)
1409 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411 if (!kvm_is_error_hva(hva) && writable)
1412 *writable = !memslot_is_readonly(slot);
1414 return hva;
1417 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1424 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1431 static inline int check_user_page_hwpoison(unsigned long addr)
1433 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1436 return rc == -EHWPOISON;
1440 * The fast path to get the writable pfn which will be stored in @pfn,
1441 * true indicates success, otherwise false is returned. It's also the
1442 * only part that runs if we can are in atomic context.
1444 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1445 bool *writable, kvm_pfn_t *pfn)
1447 struct page *page[1];
1448 int npages;
1451 * Fast pin a writable pfn only if it is a write fault request
1452 * or the caller allows to map a writable pfn for a read fault
1453 * request.
1455 if (!(write_fault || writable))
1456 return false;
1458 npages = __get_user_pages_fast(addr, 1, 1, page);
1459 if (npages == 1) {
1460 *pfn = page_to_pfn(page[0]);
1462 if (writable)
1463 *writable = true;
1464 return true;
1467 return false;
1471 * The slow path to get the pfn of the specified host virtual address,
1472 * 1 indicates success, -errno is returned if error is detected.
1474 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1475 bool *writable, kvm_pfn_t *pfn)
1477 unsigned int flags = FOLL_HWPOISON;
1478 struct page *page;
1479 int npages = 0;
1481 might_sleep();
1483 if (writable)
1484 *writable = write_fault;
1486 if (write_fault)
1487 flags |= FOLL_WRITE;
1488 if (async)
1489 flags |= FOLL_NOWAIT;
1491 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1492 if (npages != 1)
1493 return npages;
1495 /* map read fault as writable if possible */
1496 if (unlikely(!write_fault) && writable) {
1497 struct page *wpage;
1499 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1500 *writable = true;
1501 put_page(page);
1502 page = wpage;
1505 *pfn = page_to_pfn(page);
1506 return npages;
1509 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511 if (unlikely(!(vma->vm_flags & VM_READ)))
1512 return false;
1514 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1515 return false;
1517 return true;
1520 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1521 unsigned long addr, bool *async,
1522 bool write_fault, bool *writable,
1523 kvm_pfn_t *p_pfn)
1525 unsigned long pfn;
1526 int r;
1528 r = follow_pfn(vma, addr, &pfn);
1529 if (r) {
1531 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1532 * not call the fault handler, so do it here.
1534 bool unlocked = false;
1535 r = fixup_user_fault(current, current->mm, addr,
1536 (write_fault ? FAULT_FLAG_WRITE : 0),
1537 &unlocked);
1538 if (unlocked)
1539 return -EAGAIN;
1540 if (r)
1541 return r;
1543 r = follow_pfn(vma, addr, &pfn);
1544 if (r)
1545 return r;
1549 if (writable)
1550 *writable = true;
1553 * Get a reference here because callers of *hva_to_pfn* and
1554 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1555 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1556 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1557 * simply do nothing for reserved pfns.
1559 * Whoever called remap_pfn_range is also going to call e.g.
1560 * unmap_mapping_range before the underlying pages are freed,
1561 * causing a call to our MMU notifier.
1563 kvm_get_pfn(pfn);
1565 *p_pfn = pfn;
1566 return 0;
1570 * Pin guest page in memory and return its pfn.
1571 * @addr: host virtual address which maps memory to the guest
1572 * @atomic: whether this function can sleep
1573 * @async: whether this function need to wait IO complete if the
1574 * host page is not in the memory
1575 * @write_fault: whether we should get a writable host page
1576 * @writable: whether it allows to map a writable host page for !@write_fault
1578 * The function will map a writable host page for these two cases:
1579 * 1): @write_fault = true
1580 * 2): @write_fault = false && @writable, @writable will tell the caller
1581 * whether the mapping is writable.
1583 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1584 bool write_fault, bool *writable)
1586 struct vm_area_struct *vma;
1587 kvm_pfn_t pfn = 0;
1588 int npages, r;
1590 /* we can do it either atomically or asynchronously, not both */
1591 BUG_ON(atomic && async);
1593 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1594 return pfn;
1596 if (atomic)
1597 return KVM_PFN_ERR_FAULT;
1599 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1600 if (npages == 1)
1601 return pfn;
1603 down_read(&current->mm->mmap_sem);
1604 if (npages == -EHWPOISON ||
1605 (!async && check_user_page_hwpoison(addr))) {
1606 pfn = KVM_PFN_ERR_HWPOISON;
1607 goto exit;
1610 retry:
1611 vma = find_vma_intersection(current->mm, addr, addr + 1);
1613 if (vma == NULL)
1614 pfn = KVM_PFN_ERR_FAULT;
1615 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1616 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1617 if (r == -EAGAIN)
1618 goto retry;
1619 if (r < 0)
1620 pfn = KVM_PFN_ERR_FAULT;
1621 } else {
1622 if (async && vma_is_valid(vma, write_fault))
1623 *async = true;
1624 pfn = KVM_PFN_ERR_FAULT;
1626 exit:
1627 up_read(&current->mm->mmap_sem);
1628 return pfn;
1631 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1632 bool atomic, bool *async, bool write_fault,
1633 bool *writable)
1635 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637 if (addr == KVM_HVA_ERR_RO_BAD) {
1638 if (writable)
1639 *writable = false;
1640 return KVM_PFN_ERR_RO_FAULT;
1643 if (kvm_is_error_hva(addr)) {
1644 if (writable)
1645 *writable = false;
1646 return KVM_PFN_NOSLOT;
1649 /* Do not map writable pfn in the readonly memslot. */
1650 if (writable && memslot_is_readonly(slot)) {
1651 *writable = false;
1652 writable = NULL;
1655 return hva_to_pfn(addr, atomic, async, write_fault,
1656 writable);
1658 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1661 bool *writable)
1663 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1664 write_fault, writable);
1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1705 struct page **pages, int nr_pages)
1707 unsigned long addr;
1708 gfn_t entry = 0;
1710 addr = gfn_to_hva_many(slot, gfn, &entry);
1711 if (kvm_is_error_hva(addr))
1712 return -1;
1714 if (entry < nr_pages)
1715 return 0;
1717 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723 if (is_error_noslot_pfn(pfn))
1724 return KVM_ERR_PTR_BAD_PAGE;
1726 if (kvm_is_reserved_pfn(pfn)) {
1727 WARN_ON(1);
1728 return KVM_ERR_PTR_BAD_PAGE;
1731 return pfn_to_page(pfn);
1734 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736 kvm_pfn_t pfn;
1738 pfn = gfn_to_pfn(kvm, gfn);
1740 return kvm_pfn_to_page(pfn);
1742 EXPORT_SYMBOL_GPL(gfn_to_page);
1744 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1745 struct kvm_host_map *map)
1747 kvm_pfn_t pfn;
1748 void *hva = NULL;
1749 struct page *page = KVM_UNMAPPED_PAGE;
1751 if (!map)
1752 return -EINVAL;
1754 pfn = gfn_to_pfn_memslot(slot, gfn);
1755 if (is_error_noslot_pfn(pfn))
1756 return -EINVAL;
1758 if (pfn_valid(pfn)) {
1759 page = pfn_to_page(pfn);
1760 hva = kmap(page);
1761 #ifdef CONFIG_HAS_IOMEM
1762 } else {
1763 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1764 #endif
1767 if (!hva)
1768 return -EFAULT;
1770 map->page = page;
1771 map->hva = hva;
1772 map->pfn = pfn;
1773 map->gfn = gfn;
1775 return 0;
1778 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1780 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1785 bool dirty)
1787 if (!map)
1788 return;
1790 if (!map->hva)
1791 return;
1793 if (map->page)
1794 kunmap(map->page);
1795 #ifdef CONFIG_HAS_IOMEM
1796 else
1797 memunmap(map->hva);
1798 #endif
1800 if (dirty) {
1801 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1802 kvm_release_pfn_dirty(map->pfn);
1803 } else {
1804 kvm_release_pfn_clean(map->pfn);
1807 map->hva = NULL;
1808 map->page = NULL;
1810 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1812 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1814 kvm_pfn_t pfn;
1816 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1818 return kvm_pfn_to_page(pfn);
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1822 void kvm_release_page_clean(struct page *page)
1824 WARN_ON(is_error_page(page));
1826 kvm_release_pfn_clean(page_to_pfn(page));
1828 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1830 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1832 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1833 put_page(pfn_to_page(pfn));
1835 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1837 void kvm_release_page_dirty(struct page *page)
1839 WARN_ON(is_error_page(page));
1841 kvm_release_pfn_dirty(page_to_pfn(page));
1843 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1845 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1847 kvm_set_pfn_dirty(pfn);
1848 kvm_release_pfn_clean(pfn);
1850 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1852 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1854 if (!kvm_is_reserved_pfn(pfn)) {
1855 struct page *page = pfn_to_page(pfn);
1857 if (!PageReserved(page))
1858 SetPageDirty(page);
1861 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1863 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1865 if (!kvm_is_reserved_pfn(pfn))
1866 mark_page_accessed(pfn_to_page(pfn));
1868 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1870 void kvm_get_pfn(kvm_pfn_t pfn)
1872 if (!kvm_is_reserved_pfn(pfn))
1873 get_page(pfn_to_page(pfn));
1875 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1877 static int next_segment(unsigned long len, int offset)
1879 if (len > PAGE_SIZE - offset)
1880 return PAGE_SIZE - offset;
1881 else
1882 return len;
1885 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1886 void *data, int offset, int len)
1888 int r;
1889 unsigned long addr;
1891 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1892 if (kvm_is_error_hva(addr))
1893 return -EFAULT;
1894 r = __copy_from_user(data, (void __user *)addr + offset, len);
1895 if (r)
1896 return -EFAULT;
1897 return 0;
1900 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1901 int len)
1903 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1907 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1909 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1910 int offset, int len)
1912 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1914 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1916 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1918 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1920 gfn_t gfn = gpa >> PAGE_SHIFT;
1921 int seg;
1922 int offset = offset_in_page(gpa);
1923 int ret;
1925 while ((seg = next_segment(len, offset)) != 0) {
1926 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1927 if (ret < 0)
1928 return ret;
1929 offset = 0;
1930 len -= seg;
1931 data += seg;
1932 ++gfn;
1934 return 0;
1936 EXPORT_SYMBOL_GPL(kvm_read_guest);
1938 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1940 gfn_t gfn = gpa >> PAGE_SHIFT;
1941 int seg;
1942 int offset = offset_in_page(gpa);
1943 int ret;
1945 while ((seg = next_segment(len, offset)) != 0) {
1946 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1947 if (ret < 0)
1948 return ret;
1949 offset = 0;
1950 len -= seg;
1951 data += seg;
1952 ++gfn;
1954 return 0;
1956 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1958 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1959 void *data, int offset, unsigned long len)
1961 int r;
1962 unsigned long addr;
1964 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1965 if (kvm_is_error_hva(addr))
1966 return -EFAULT;
1967 pagefault_disable();
1968 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1969 pagefault_enable();
1970 if (r)
1971 return -EFAULT;
1972 return 0;
1975 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1976 unsigned long len)
1978 gfn_t gfn = gpa >> PAGE_SHIFT;
1979 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1980 int offset = offset_in_page(gpa);
1982 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1984 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1986 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1987 void *data, unsigned long len)
1989 gfn_t gfn = gpa >> PAGE_SHIFT;
1990 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1991 int offset = offset_in_page(gpa);
1993 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1997 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1998 const void *data, int offset, int len)
2000 int r;
2001 unsigned long addr;
2003 addr = gfn_to_hva_memslot(memslot, gfn);
2004 if (kvm_is_error_hva(addr))
2005 return -EFAULT;
2006 r = __copy_to_user((void __user *)addr + offset, data, len);
2007 if (r)
2008 return -EFAULT;
2009 mark_page_dirty_in_slot(memslot, gfn);
2010 return 0;
2013 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2014 const void *data, int offset, int len)
2016 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2018 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2020 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2022 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2023 const void *data, int offset, int len)
2025 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2027 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2029 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2031 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2032 unsigned long len)
2034 gfn_t gfn = gpa >> PAGE_SHIFT;
2035 int seg;
2036 int offset = offset_in_page(gpa);
2037 int ret;
2039 while ((seg = next_segment(len, offset)) != 0) {
2040 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2041 if (ret < 0)
2042 return ret;
2043 offset = 0;
2044 len -= seg;
2045 data += seg;
2046 ++gfn;
2048 return 0;
2050 EXPORT_SYMBOL_GPL(kvm_write_guest);
2052 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2053 unsigned long len)
2055 gfn_t gfn = gpa >> PAGE_SHIFT;
2056 int seg;
2057 int offset = offset_in_page(gpa);
2058 int ret;
2060 while ((seg = next_segment(len, offset)) != 0) {
2061 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2062 if (ret < 0)
2063 return ret;
2064 offset = 0;
2065 len -= seg;
2066 data += seg;
2067 ++gfn;
2069 return 0;
2071 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2073 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2074 struct gfn_to_hva_cache *ghc,
2075 gpa_t gpa, unsigned long len)
2077 int offset = offset_in_page(gpa);
2078 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2079 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2080 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2081 gfn_t nr_pages_avail;
2082 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2084 ghc->gpa = gpa;
2085 ghc->generation = slots->generation;
2086 ghc->len = len;
2087 ghc->hva = KVM_HVA_ERR_BAD;
2090 * If the requested region crosses two memslots, we still
2091 * verify that the entire region is valid here.
2093 while (!r && start_gfn <= end_gfn) {
2094 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2095 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2096 &nr_pages_avail);
2097 if (kvm_is_error_hva(ghc->hva))
2098 r = -EFAULT;
2099 start_gfn += nr_pages_avail;
2102 /* Use the slow path for cross page reads and writes. */
2103 if (!r && nr_pages_needed == 1)
2104 ghc->hva += offset;
2105 else
2106 ghc->memslot = NULL;
2108 return r;
2111 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2112 gpa_t gpa, unsigned long len)
2114 struct kvm_memslots *slots = kvm_memslots(kvm);
2115 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2117 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2119 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2120 void *data, unsigned int offset,
2121 unsigned long len)
2123 struct kvm_memslots *slots = kvm_memslots(kvm);
2124 int r;
2125 gpa_t gpa = ghc->gpa + offset;
2127 BUG_ON(len + offset > ghc->len);
2129 if (slots->generation != ghc->generation)
2130 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2132 if (unlikely(!ghc->memslot))
2133 return kvm_write_guest(kvm, gpa, data, len);
2135 if (kvm_is_error_hva(ghc->hva))
2136 return -EFAULT;
2138 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2139 if (r)
2140 return -EFAULT;
2141 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2143 return 0;
2145 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2147 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2148 void *data, unsigned long len)
2150 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2152 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2154 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2155 void *data, unsigned long len)
2157 struct kvm_memslots *slots = kvm_memslots(kvm);
2158 int r;
2160 BUG_ON(len > ghc->len);
2162 if (slots->generation != ghc->generation)
2163 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165 if (unlikely(!ghc->memslot))
2166 return kvm_read_guest(kvm, ghc->gpa, data, len);
2168 if (kvm_is_error_hva(ghc->hva))
2169 return -EFAULT;
2171 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2172 if (r)
2173 return -EFAULT;
2175 return 0;
2177 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2179 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2181 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2183 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2185 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2187 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2189 gfn_t gfn = gpa >> PAGE_SHIFT;
2190 int seg;
2191 int offset = offset_in_page(gpa);
2192 int ret;
2194 while ((seg = next_segment(len, offset)) != 0) {
2195 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2196 if (ret < 0)
2197 return ret;
2198 offset = 0;
2199 len -= seg;
2200 ++gfn;
2202 return 0;
2204 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2206 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2207 gfn_t gfn)
2209 if (memslot && memslot->dirty_bitmap) {
2210 unsigned long rel_gfn = gfn - memslot->base_gfn;
2212 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2216 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2218 struct kvm_memory_slot *memslot;
2220 memslot = gfn_to_memslot(kvm, gfn);
2221 mark_page_dirty_in_slot(memslot, gfn);
2223 EXPORT_SYMBOL_GPL(mark_page_dirty);
2225 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2227 struct kvm_memory_slot *memslot;
2229 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2230 mark_page_dirty_in_slot(memslot, gfn);
2232 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2234 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2236 if (!vcpu->sigset_active)
2237 return;
2240 * This does a lockless modification of ->real_blocked, which is fine
2241 * because, only current can change ->real_blocked and all readers of
2242 * ->real_blocked don't care as long ->real_blocked is always a subset
2243 * of ->blocked.
2245 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2248 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2250 if (!vcpu->sigset_active)
2251 return;
2253 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2254 sigemptyset(&current->real_blocked);
2257 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2259 unsigned int old, val, grow, grow_start;
2261 old = val = vcpu->halt_poll_ns;
2262 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2263 grow = READ_ONCE(halt_poll_ns_grow);
2264 if (!grow)
2265 goto out;
2267 val *= grow;
2268 if (val < grow_start)
2269 val = grow_start;
2271 if (val > halt_poll_ns)
2272 val = halt_poll_ns;
2274 vcpu->halt_poll_ns = val;
2275 out:
2276 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2279 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2281 unsigned int old, val, shrink;
2283 old = val = vcpu->halt_poll_ns;
2284 shrink = READ_ONCE(halt_poll_ns_shrink);
2285 if (shrink == 0)
2286 val = 0;
2287 else
2288 val /= shrink;
2290 vcpu->halt_poll_ns = val;
2291 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2294 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2296 int ret = -EINTR;
2297 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2299 if (kvm_arch_vcpu_runnable(vcpu)) {
2300 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2301 goto out;
2303 if (kvm_cpu_has_pending_timer(vcpu))
2304 goto out;
2305 if (signal_pending(current))
2306 goto out;
2308 ret = 0;
2309 out:
2310 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2311 return ret;
2315 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2317 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2319 ktime_t start, cur;
2320 DECLARE_SWAITQUEUE(wait);
2321 bool waited = false;
2322 u64 block_ns;
2324 start = cur = ktime_get();
2325 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2326 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2328 ++vcpu->stat.halt_attempted_poll;
2329 do {
2331 * This sets KVM_REQ_UNHALT if an interrupt
2332 * arrives.
2334 if (kvm_vcpu_check_block(vcpu) < 0) {
2335 ++vcpu->stat.halt_successful_poll;
2336 if (!vcpu_valid_wakeup(vcpu))
2337 ++vcpu->stat.halt_poll_invalid;
2338 goto out;
2340 cur = ktime_get();
2341 } while (single_task_running() && ktime_before(cur, stop));
2344 kvm_arch_vcpu_blocking(vcpu);
2346 for (;;) {
2347 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2349 if (kvm_vcpu_check_block(vcpu) < 0)
2350 break;
2352 waited = true;
2353 schedule();
2356 finish_swait(&vcpu->wq, &wait);
2357 cur = ktime_get();
2359 kvm_arch_vcpu_unblocking(vcpu);
2360 out:
2361 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2363 if (!vcpu_valid_wakeup(vcpu))
2364 shrink_halt_poll_ns(vcpu);
2365 else if (halt_poll_ns) {
2366 if (block_ns <= vcpu->halt_poll_ns)
2368 /* we had a long block, shrink polling */
2369 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2370 shrink_halt_poll_ns(vcpu);
2371 /* we had a short halt and our poll time is too small */
2372 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2373 block_ns < halt_poll_ns)
2374 grow_halt_poll_ns(vcpu);
2375 } else
2376 vcpu->halt_poll_ns = 0;
2378 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2379 kvm_arch_vcpu_block_finish(vcpu);
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2383 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2385 struct swait_queue_head *wqp;
2387 wqp = kvm_arch_vcpu_wq(vcpu);
2388 if (swq_has_sleeper(wqp)) {
2389 swake_up_one(wqp);
2390 ++vcpu->stat.halt_wakeup;
2391 return true;
2394 return false;
2396 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2398 #ifndef CONFIG_S390
2400 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2404 int me;
2405 int cpu = vcpu->cpu;
2407 if (kvm_vcpu_wake_up(vcpu))
2408 return;
2410 me = get_cpu();
2411 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2412 if (kvm_arch_vcpu_should_kick(vcpu))
2413 smp_send_reschedule(cpu);
2414 put_cpu();
2416 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2417 #endif /* !CONFIG_S390 */
2419 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2421 struct pid *pid;
2422 struct task_struct *task = NULL;
2423 int ret = 0;
2425 rcu_read_lock();
2426 pid = rcu_dereference(target->pid);
2427 if (pid)
2428 task = get_pid_task(pid, PIDTYPE_PID);
2429 rcu_read_unlock();
2430 if (!task)
2431 return ret;
2432 ret = yield_to(task, 1);
2433 put_task_struct(task);
2435 return ret;
2437 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2440 * Helper that checks whether a VCPU is eligible for directed yield.
2441 * Most eligible candidate to yield is decided by following heuristics:
2443 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2444 * (preempted lock holder), indicated by @in_spin_loop.
2445 * Set at the beiginning and cleared at the end of interception/PLE handler.
2447 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2448 * chance last time (mostly it has become eligible now since we have probably
2449 * yielded to lockholder in last iteration. This is done by toggling
2450 * @dy_eligible each time a VCPU checked for eligibility.)
2452 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2453 * to preempted lock-holder could result in wrong VCPU selection and CPU
2454 * burning. Giving priority for a potential lock-holder increases lock
2455 * progress.
2457 * Since algorithm is based on heuristics, accessing another VCPU data without
2458 * locking does not harm. It may result in trying to yield to same VCPU, fail
2459 * and continue with next VCPU and so on.
2461 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2463 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2464 bool eligible;
2466 eligible = !vcpu->spin_loop.in_spin_loop ||
2467 vcpu->spin_loop.dy_eligible;
2469 if (vcpu->spin_loop.in_spin_loop)
2470 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2472 return eligible;
2473 #else
2474 return true;
2475 #endif
2478 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2480 struct kvm *kvm = me->kvm;
2481 struct kvm_vcpu *vcpu;
2482 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2483 int yielded = 0;
2484 int try = 3;
2485 int pass;
2486 int i;
2488 kvm_vcpu_set_in_spin_loop(me, true);
2490 * We boost the priority of a VCPU that is runnable but not
2491 * currently running, because it got preempted by something
2492 * else and called schedule in __vcpu_run. Hopefully that
2493 * VCPU is holding the lock that we need and will release it.
2494 * We approximate round-robin by starting at the last boosted VCPU.
2496 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2497 kvm_for_each_vcpu(i, vcpu, kvm) {
2498 if (!pass && i <= last_boosted_vcpu) {
2499 i = last_boosted_vcpu;
2500 continue;
2501 } else if (pass && i > last_boosted_vcpu)
2502 break;
2503 if (!READ_ONCE(vcpu->preempted))
2504 continue;
2505 if (vcpu == me)
2506 continue;
2507 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2508 continue;
2509 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2510 continue;
2511 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2512 continue;
2514 yielded = kvm_vcpu_yield_to(vcpu);
2515 if (yielded > 0) {
2516 kvm->last_boosted_vcpu = i;
2517 break;
2518 } else if (yielded < 0) {
2519 try--;
2520 if (!try)
2521 break;
2525 kvm_vcpu_set_in_spin_loop(me, false);
2527 /* Ensure vcpu is not eligible during next spinloop */
2528 kvm_vcpu_set_dy_eligible(me, false);
2530 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2532 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2534 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2535 struct page *page;
2537 if (vmf->pgoff == 0)
2538 page = virt_to_page(vcpu->run);
2539 #ifdef CONFIG_X86
2540 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2541 page = virt_to_page(vcpu->arch.pio_data);
2542 #endif
2543 #ifdef CONFIG_KVM_MMIO
2544 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2545 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2546 #endif
2547 else
2548 return kvm_arch_vcpu_fault(vcpu, vmf);
2549 get_page(page);
2550 vmf->page = page;
2551 return 0;
2554 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2555 .fault = kvm_vcpu_fault,
2558 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2560 vma->vm_ops = &kvm_vcpu_vm_ops;
2561 return 0;
2564 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2566 struct kvm_vcpu *vcpu = filp->private_data;
2568 debugfs_remove_recursive(vcpu->debugfs_dentry);
2569 kvm_put_kvm(vcpu->kvm);
2570 return 0;
2573 static struct file_operations kvm_vcpu_fops = {
2574 .release = kvm_vcpu_release,
2575 .unlocked_ioctl = kvm_vcpu_ioctl,
2576 .mmap = kvm_vcpu_mmap,
2577 .llseek = noop_llseek,
2578 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2582 * Allocates an inode for the vcpu.
2584 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2586 char name[8 + 1 + ITOA_MAX_LEN + 1];
2588 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2589 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2592 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2594 char dir_name[ITOA_MAX_LEN * 2];
2595 int ret;
2597 if (!kvm_arch_has_vcpu_debugfs())
2598 return 0;
2600 if (!debugfs_initialized())
2601 return 0;
2603 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2604 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2605 vcpu->kvm->debugfs_dentry);
2606 if (!vcpu->debugfs_dentry)
2607 return -ENOMEM;
2609 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2610 if (ret < 0) {
2611 debugfs_remove_recursive(vcpu->debugfs_dentry);
2612 return ret;
2615 return 0;
2619 * Creates some virtual cpus. Good luck creating more than one.
2621 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2623 int r;
2624 struct kvm_vcpu *vcpu;
2626 if (id >= KVM_MAX_VCPU_ID)
2627 return -EINVAL;
2629 mutex_lock(&kvm->lock);
2630 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2631 mutex_unlock(&kvm->lock);
2632 return -EINVAL;
2635 kvm->created_vcpus++;
2636 mutex_unlock(&kvm->lock);
2638 vcpu = kvm_arch_vcpu_create(kvm, id);
2639 if (IS_ERR(vcpu)) {
2640 r = PTR_ERR(vcpu);
2641 goto vcpu_decrement;
2644 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2646 r = kvm_arch_vcpu_setup(vcpu);
2647 if (r)
2648 goto vcpu_destroy;
2650 r = kvm_create_vcpu_debugfs(vcpu);
2651 if (r)
2652 goto vcpu_destroy;
2654 mutex_lock(&kvm->lock);
2655 if (kvm_get_vcpu_by_id(kvm, id)) {
2656 r = -EEXIST;
2657 goto unlock_vcpu_destroy;
2660 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2662 /* Now it's all set up, let userspace reach it */
2663 kvm_get_kvm(kvm);
2664 r = create_vcpu_fd(vcpu);
2665 if (r < 0) {
2666 kvm_put_kvm(kvm);
2667 goto unlock_vcpu_destroy;
2670 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2673 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2674 * before kvm->online_vcpu's incremented value.
2676 smp_wmb();
2677 atomic_inc(&kvm->online_vcpus);
2679 mutex_unlock(&kvm->lock);
2680 kvm_arch_vcpu_postcreate(vcpu);
2681 return r;
2683 unlock_vcpu_destroy:
2684 mutex_unlock(&kvm->lock);
2685 debugfs_remove_recursive(vcpu->debugfs_dentry);
2686 vcpu_destroy:
2687 kvm_arch_vcpu_destroy(vcpu);
2688 vcpu_decrement:
2689 mutex_lock(&kvm->lock);
2690 kvm->created_vcpus--;
2691 mutex_unlock(&kvm->lock);
2692 return r;
2695 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2697 if (sigset) {
2698 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2699 vcpu->sigset_active = 1;
2700 vcpu->sigset = *sigset;
2701 } else
2702 vcpu->sigset_active = 0;
2703 return 0;
2706 static long kvm_vcpu_ioctl(struct file *filp,
2707 unsigned int ioctl, unsigned long arg)
2709 struct kvm_vcpu *vcpu = filp->private_data;
2710 void __user *argp = (void __user *)arg;
2711 int r;
2712 struct kvm_fpu *fpu = NULL;
2713 struct kvm_sregs *kvm_sregs = NULL;
2715 if (vcpu->kvm->mm != current->mm)
2716 return -EIO;
2718 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2719 return -EINVAL;
2722 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2723 * execution; mutex_lock() would break them.
2725 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2726 if (r != -ENOIOCTLCMD)
2727 return r;
2729 if (mutex_lock_killable(&vcpu->mutex))
2730 return -EINTR;
2731 switch (ioctl) {
2732 case KVM_RUN: {
2733 struct pid *oldpid;
2734 r = -EINVAL;
2735 if (arg)
2736 goto out;
2737 oldpid = rcu_access_pointer(vcpu->pid);
2738 if (unlikely(oldpid != task_pid(current))) {
2739 /* The thread running this VCPU changed. */
2740 struct pid *newpid;
2742 r = kvm_arch_vcpu_run_pid_change(vcpu);
2743 if (r)
2744 break;
2746 newpid = get_task_pid(current, PIDTYPE_PID);
2747 rcu_assign_pointer(vcpu->pid, newpid);
2748 if (oldpid)
2749 synchronize_rcu();
2750 put_pid(oldpid);
2752 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2753 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2754 break;
2756 case KVM_GET_REGS: {
2757 struct kvm_regs *kvm_regs;
2759 r = -ENOMEM;
2760 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2761 if (!kvm_regs)
2762 goto out;
2763 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2764 if (r)
2765 goto out_free1;
2766 r = -EFAULT;
2767 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2768 goto out_free1;
2769 r = 0;
2770 out_free1:
2771 kfree(kvm_regs);
2772 break;
2774 case KVM_SET_REGS: {
2775 struct kvm_regs *kvm_regs;
2777 r = -ENOMEM;
2778 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2779 if (IS_ERR(kvm_regs)) {
2780 r = PTR_ERR(kvm_regs);
2781 goto out;
2783 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2784 kfree(kvm_regs);
2785 break;
2787 case KVM_GET_SREGS: {
2788 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2789 GFP_KERNEL_ACCOUNT);
2790 r = -ENOMEM;
2791 if (!kvm_sregs)
2792 goto out;
2793 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2794 if (r)
2795 goto out;
2796 r = -EFAULT;
2797 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2798 goto out;
2799 r = 0;
2800 break;
2802 case KVM_SET_SREGS: {
2803 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2804 if (IS_ERR(kvm_sregs)) {
2805 r = PTR_ERR(kvm_sregs);
2806 kvm_sregs = NULL;
2807 goto out;
2809 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2810 break;
2812 case KVM_GET_MP_STATE: {
2813 struct kvm_mp_state mp_state;
2815 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2816 if (r)
2817 goto out;
2818 r = -EFAULT;
2819 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2820 goto out;
2821 r = 0;
2822 break;
2824 case KVM_SET_MP_STATE: {
2825 struct kvm_mp_state mp_state;
2827 r = -EFAULT;
2828 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2829 goto out;
2830 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2831 break;
2833 case KVM_TRANSLATE: {
2834 struct kvm_translation tr;
2836 r = -EFAULT;
2837 if (copy_from_user(&tr, argp, sizeof(tr)))
2838 goto out;
2839 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2840 if (r)
2841 goto out;
2842 r = -EFAULT;
2843 if (copy_to_user(argp, &tr, sizeof(tr)))
2844 goto out;
2845 r = 0;
2846 break;
2848 case KVM_SET_GUEST_DEBUG: {
2849 struct kvm_guest_debug dbg;
2851 r = -EFAULT;
2852 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2853 goto out;
2854 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2855 break;
2857 case KVM_SET_SIGNAL_MASK: {
2858 struct kvm_signal_mask __user *sigmask_arg = argp;
2859 struct kvm_signal_mask kvm_sigmask;
2860 sigset_t sigset, *p;
2862 p = NULL;
2863 if (argp) {
2864 r = -EFAULT;
2865 if (copy_from_user(&kvm_sigmask, argp,
2866 sizeof(kvm_sigmask)))
2867 goto out;
2868 r = -EINVAL;
2869 if (kvm_sigmask.len != sizeof(sigset))
2870 goto out;
2871 r = -EFAULT;
2872 if (copy_from_user(&sigset, sigmask_arg->sigset,
2873 sizeof(sigset)))
2874 goto out;
2875 p = &sigset;
2877 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2878 break;
2880 case KVM_GET_FPU: {
2881 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2882 r = -ENOMEM;
2883 if (!fpu)
2884 goto out;
2885 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2886 if (r)
2887 goto out;
2888 r = -EFAULT;
2889 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2890 goto out;
2891 r = 0;
2892 break;
2894 case KVM_SET_FPU: {
2895 fpu = memdup_user(argp, sizeof(*fpu));
2896 if (IS_ERR(fpu)) {
2897 r = PTR_ERR(fpu);
2898 fpu = NULL;
2899 goto out;
2901 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2902 break;
2904 default:
2905 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2907 out:
2908 mutex_unlock(&vcpu->mutex);
2909 kfree(fpu);
2910 kfree(kvm_sregs);
2911 return r;
2914 #ifdef CONFIG_KVM_COMPAT
2915 static long kvm_vcpu_compat_ioctl(struct file *filp,
2916 unsigned int ioctl, unsigned long arg)
2918 struct kvm_vcpu *vcpu = filp->private_data;
2919 void __user *argp = compat_ptr(arg);
2920 int r;
2922 if (vcpu->kvm->mm != current->mm)
2923 return -EIO;
2925 switch (ioctl) {
2926 case KVM_SET_SIGNAL_MASK: {
2927 struct kvm_signal_mask __user *sigmask_arg = argp;
2928 struct kvm_signal_mask kvm_sigmask;
2929 sigset_t sigset;
2931 if (argp) {
2932 r = -EFAULT;
2933 if (copy_from_user(&kvm_sigmask, argp,
2934 sizeof(kvm_sigmask)))
2935 goto out;
2936 r = -EINVAL;
2937 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2938 goto out;
2939 r = -EFAULT;
2940 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2941 goto out;
2942 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2943 } else
2944 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2945 break;
2947 default:
2948 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2951 out:
2952 return r;
2954 #endif
2956 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2958 struct kvm_device *dev = filp->private_data;
2960 if (dev->ops->mmap)
2961 return dev->ops->mmap(dev, vma);
2963 return -ENODEV;
2966 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2967 int (*accessor)(struct kvm_device *dev,
2968 struct kvm_device_attr *attr),
2969 unsigned long arg)
2971 struct kvm_device_attr attr;
2973 if (!accessor)
2974 return -EPERM;
2976 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2977 return -EFAULT;
2979 return accessor(dev, &attr);
2982 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2983 unsigned long arg)
2985 struct kvm_device *dev = filp->private_data;
2987 if (dev->kvm->mm != current->mm)
2988 return -EIO;
2990 switch (ioctl) {
2991 case KVM_SET_DEVICE_ATTR:
2992 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2993 case KVM_GET_DEVICE_ATTR:
2994 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2995 case KVM_HAS_DEVICE_ATTR:
2996 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2997 default:
2998 if (dev->ops->ioctl)
2999 return dev->ops->ioctl(dev, ioctl, arg);
3001 return -ENOTTY;
3005 static int kvm_device_release(struct inode *inode, struct file *filp)
3007 struct kvm_device *dev = filp->private_data;
3008 struct kvm *kvm = dev->kvm;
3010 if (dev->ops->release) {
3011 mutex_lock(&kvm->lock);
3012 list_del(&dev->vm_node);
3013 dev->ops->release(dev);
3014 mutex_unlock(&kvm->lock);
3017 kvm_put_kvm(kvm);
3018 return 0;
3021 static const struct file_operations kvm_device_fops = {
3022 .unlocked_ioctl = kvm_device_ioctl,
3023 .release = kvm_device_release,
3024 KVM_COMPAT(kvm_device_ioctl),
3025 .mmap = kvm_device_mmap,
3028 struct kvm_device *kvm_device_from_filp(struct file *filp)
3030 if (filp->f_op != &kvm_device_fops)
3031 return NULL;
3033 return filp->private_data;
3036 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3037 #ifdef CONFIG_KVM_MPIC
3038 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3039 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3040 #endif
3043 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3045 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3046 return -ENOSPC;
3048 if (kvm_device_ops_table[type] != NULL)
3049 return -EEXIST;
3051 kvm_device_ops_table[type] = ops;
3052 return 0;
3055 void kvm_unregister_device_ops(u32 type)
3057 if (kvm_device_ops_table[type] != NULL)
3058 kvm_device_ops_table[type] = NULL;
3061 static int kvm_ioctl_create_device(struct kvm *kvm,
3062 struct kvm_create_device *cd)
3064 struct kvm_device_ops *ops = NULL;
3065 struct kvm_device *dev;
3066 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3067 int type;
3068 int ret;
3070 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3071 return -ENODEV;
3073 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3074 ops = kvm_device_ops_table[type];
3075 if (ops == NULL)
3076 return -ENODEV;
3078 if (test)
3079 return 0;
3081 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3082 if (!dev)
3083 return -ENOMEM;
3085 dev->ops = ops;
3086 dev->kvm = kvm;
3088 mutex_lock(&kvm->lock);
3089 ret = ops->create(dev, type);
3090 if (ret < 0) {
3091 mutex_unlock(&kvm->lock);
3092 kfree(dev);
3093 return ret;
3095 list_add(&dev->vm_node, &kvm->devices);
3096 mutex_unlock(&kvm->lock);
3098 if (ops->init)
3099 ops->init(dev);
3101 kvm_get_kvm(kvm);
3102 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3103 if (ret < 0) {
3104 kvm_put_kvm(kvm);
3105 mutex_lock(&kvm->lock);
3106 list_del(&dev->vm_node);
3107 mutex_unlock(&kvm->lock);
3108 ops->destroy(dev);
3109 return ret;
3112 cd->fd = ret;
3113 return 0;
3116 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3118 switch (arg) {
3119 case KVM_CAP_USER_MEMORY:
3120 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3121 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3122 case KVM_CAP_INTERNAL_ERROR_DATA:
3123 #ifdef CONFIG_HAVE_KVM_MSI
3124 case KVM_CAP_SIGNAL_MSI:
3125 #endif
3126 #ifdef CONFIG_HAVE_KVM_IRQFD
3127 case KVM_CAP_IRQFD:
3128 case KVM_CAP_IRQFD_RESAMPLE:
3129 #endif
3130 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3131 case KVM_CAP_CHECK_EXTENSION_VM:
3132 case KVM_CAP_ENABLE_CAP_VM:
3133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3134 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3135 #endif
3136 return 1;
3137 #ifdef CONFIG_KVM_MMIO
3138 case KVM_CAP_COALESCED_MMIO:
3139 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3140 case KVM_CAP_COALESCED_PIO:
3141 return 1;
3142 #endif
3143 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3144 case KVM_CAP_IRQ_ROUTING:
3145 return KVM_MAX_IRQ_ROUTES;
3146 #endif
3147 #if KVM_ADDRESS_SPACE_NUM > 1
3148 case KVM_CAP_MULTI_ADDRESS_SPACE:
3149 return KVM_ADDRESS_SPACE_NUM;
3150 #endif
3151 case KVM_CAP_NR_MEMSLOTS:
3152 return KVM_USER_MEM_SLOTS;
3153 default:
3154 break;
3156 return kvm_vm_ioctl_check_extension(kvm, arg);
3159 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3160 struct kvm_enable_cap *cap)
3162 return -EINVAL;
3165 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3166 struct kvm_enable_cap *cap)
3168 switch (cap->cap) {
3169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3170 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3171 if (cap->flags || (cap->args[0] & ~1))
3172 return -EINVAL;
3173 kvm->manual_dirty_log_protect = cap->args[0];
3174 return 0;
3175 #endif
3176 default:
3177 return kvm_vm_ioctl_enable_cap(kvm, cap);
3181 static long kvm_vm_ioctl(struct file *filp,
3182 unsigned int ioctl, unsigned long arg)
3184 struct kvm *kvm = filp->private_data;
3185 void __user *argp = (void __user *)arg;
3186 int r;
3188 if (kvm->mm != current->mm)
3189 return -EIO;
3190 switch (ioctl) {
3191 case KVM_CREATE_VCPU:
3192 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3193 break;
3194 case KVM_ENABLE_CAP: {
3195 struct kvm_enable_cap cap;
3197 r = -EFAULT;
3198 if (copy_from_user(&cap, argp, sizeof(cap)))
3199 goto out;
3200 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3201 break;
3203 case KVM_SET_USER_MEMORY_REGION: {
3204 struct kvm_userspace_memory_region kvm_userspace_mem;
3206 r = -EFAULT;
3207 if (copy_from_user(&kvm_userspace_mem, argp,
3208 sizeof(kvm_userspace_mem)))
3209 goto out;
3211 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3212 break;
3214 case KVM_GET_DIRTY_LOG: {
3215 struct kvm_dirty_log log;
3217 r = -EFAULT;
3218 if (copy_from_user(&log, argp, sizeof(log)))
3219 goto out;
3220 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3221 break;
3223 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3224 case KVM_CLEAR_DIRTY_LOG: {
3225 struct kvm_clear_dirty_log log;
3227 r = -EFAULT;
3228 if (copy_from_user(&log, argp, sizeof(log)))
3229 goto out;
3230 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3231 break;
3233 #endif
3234 #ifdef CONFIG_KVM_MMIO
3235 case KVM_REGISTER_COALESCED_MMIO: {
3236 struct kvm_coalesced_mmio_zone zone;
3238 r = -EFAULT;
3239 if (copy_from_user(&zone, argp, sizeof(zone)))
3240 goto out;
3241 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3242 break;
3244 case KVM_UNREGISTER_COALESCED_MMIO: {
3245 struct kvm_coalesced_mmio_zone zone;
3247 r = -EFAULT;
3248 if (copy_from_user(&zone, argp, sizeof(zone)))
3249 goto out;
3250 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3251 break;
3253 #endif
3254 case KVM_IRQFD: {
3255 struct kvm_irqfd data;
3257 r = -EFAULT;
3258 if (copy_from_user(&data, argp, sizeof(data)))
3259 goto out;
3260 r = kvm_irqfd(kvm, &data);
3261 break;
3263 case KVM_IOEVENTFD: {
3264 struct kvm_ioeventfd data;
3266 r = -EFAULT;
3267 if (copy_from_user(&data, argp, sizeof(data)))
3268 goto out;
3269 r = kvm_ioeventfd(kvm, &data);
3270 break;
3272 #ifdef CONFIG_HAVE_KVM_MSI
3273 case KVM_SIGNAL_MSI: {
3274 struct kvm_msi msi;
3276 r = -EFAULT;
3277 if (copy_from_user(&msi, argp, sizeof(msi)))
3278 goto out;
3279 r = kvm_send_userspace_msi(kvm, &msi);
3280 break;
3282 #endif
3283 #ifdef __KVM_HAVE_IRQ_LINE
3284 case KVM_IRQ_LINE_STATUS:
3285 case KVM_IRQ_LINE: {
3286 struct kvm_irq_level irq_event;
3288 r = -EFAULT;
3289 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3290 goto out;
3292 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3293 ioctl == KVM_IRQ_LINE_STATUS);
3294 if (r)
3295 goto out;
3297 r = -EFAULT;
3298 if (ioctl == KVM_IRQ_LINE_STATUS) {
3299 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3300 goto out;
3303 r = 0;
3304 break;
3306 #endif
3307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3308 case KVM_SET_GSI_ROUTING: {
3309 struct kvm_irq_routing routing;
3310 struct kvm_irq_routing __user *urouting;
3311 struct kvm_irq_routing_entry *entries = NULL;
3313 r = -EFAULT;
3314 if (copy_from_user(&routing, argp, sizeof(routing)))
3315 goto out;
3316 r = -EINVAL;
3317 if (!kvm_arch_can_set_irq_routing(kvm))
3318 goto out;
3319 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3320 goto out;
3321 if (routing.flags)
3322 goto out;
3323 if (routing.nr) {
3324 r = -ENOMEM;
3325 entries = vmalloc(array_size(sizeof(*entries),
3326 routing.nr));
3327 if (!entries)
3328 goto out;
3329 r = -EFAULT;
3330 urouting = argp;
3331 if (copy_from_user(entries, urouting->entries,
3332 routing.nr * sizeof(*entries)))
3333 goto out_free_irq_routing;
3335 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3336 routing.flags);
3337 out_free_irq_routing:
3338 vfree(entries);
3339 break;
3341 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3342 case KVM_CREATE_DEVICE: {
3343 struct kvm_create_device cd;
3345 r = -EFAULT;
3346 if (copy_from_user(&cd, argp, sizeof(cd)))
3347 goto out;
3349 r = kvm_ioctl_create_device(kvm, &cd);
3350 if (r)
3351 goto out;
3353 r = -EFAULT;
3354 if (copy_to_user(argp, &cd, sizeof(cd)))
3355 goto out;
3357 r = 0;
3358 break;
3360 case KVM_CHECK_EXTENSION:
3361 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3362 break;
3363 default:
3364 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3366 out:
3367 return r;
3370 #ifdef CONFIG_KVM_COMPAT
3371 struct compat_kvm_dirty_log {
3372 __u32 slot;
3373 __u32 padding1;
3374 union {
3375 compat_uptr_t dirty_bitmap; /* one bit per page */
3376 __u64 padding2;
3380 static long kvm_vm_compat_ioctl(struct file *filp,
3381 unsigned int ioctl, unsigned long arg)
3383 struct kvm *kvm = filp->private_data;
3384 int r;
3386 if (kvm->mm != current->mm)
3387 return -EIO;
3388 switch (ioctl) {
3389 case KVM_GET_DIRTY_LOG: {
3390 struct compat_kvm_dirty_log compat_log;
3391 struct kvm_dirty_log log;
3393 if (copy_from_user(&compat_log, (void __user *)arg,
3394 sizeof(compat_log)))
3395 return -EFAULT;
3396 log.slot = compat_log.slot;
3397 log.padding1 = compat_log.padding1;
3398 log.padding2 = compat_log.padding2;
3399 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3401 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3402 break;
3404 default:
3405 r = kvm_vm_ioctl(filp, ioctl, arg);
3407 return r;
3409 #endif
3411 static struct file_operations kvm_vm_fops = {
3412 .release = kvm_vm_release,
3413 .unlocked_ioctl = kvm_vm_ioctl,
3414 .llseek = noop_llseek,
3415 KVM_COMPAT(kvm_vm_compat_ioctl),
3418 static int kvm_dev_ioctl_create_vm(unsigned long type)
3420 int r;
3421 struct kvm *kvm;
3422 struct file *file;
3424 kvm = kvm_create_vm(type);
3425 if (IS_ERR(kvm))
3426 return PTR_ERR(kvm);
3427 #ifdef CONFIG_KVM_MMIO
3428 r = kvm_coalesced_mmio_init(kvm);
3429 if (r < 0)
3430 goto put_kvm;
3431 #endif
3432 r = get_unused_fd_flags(O_CLOEXEC);
3433 if (r < 0)
3434 goto put_kvm;
3436 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3437 if (IS_ERR(file)) {
3438 put_unused_fd(r);
3439 r = PTR_ERR(file);
3440 goto put_kvm;
3444 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3445 * already set, with ->release() being kvm_vm_release(). In error
3446 * cases it will be called by the final fput(file) and will take
3447 * care of doing kvm_put_kvm(kvm).
3449 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3450 put_unused_fd(r);
3451 fput(file);
3452 return -ENOMEM;
3454 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3456 fd_install(r, file);
3457 return r;
3459 put_kvm:
3460 kvm_put_kvm(kvm);
3461 return r;
3464 static long kvm_dev_ioctl(struct file *filp,
3465 unsigned int ioctl, unsigned long arg)
3467 long r = -EINVAL;
3469 switch (ioctl) {
3470 case KVM_GET_API_VERSION:
3471 if (arg)
3472 goto out;
3473 r = KVM_API_VERSION;
3474 break;
3475 case KVM_CREATE_VM:
3476 r = kvm_dev_ioctl_create_vm(arg);
3477 break;
3478 case KVM_CHECK_EXTENSION:
3479 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3480 break;
3481 case KVM_GET_VCPU_MMAP_SIZE:
3482 if (arg)
3483 goto out;
3484 r = PAGE_SIZE; /* struct kvm_run */
3485 #ifdef CONFIG_X86
3486 r += PAGE_SIZE; /* pio data page */
3487 #endif
3488 #ifdef CONFIG_KVM_MMIO
3489 r += PAGE_SIZE; /* coalesced mmio ring page */
3490 #endif
3491 break;
3492 case KVM_TRACE_ENABLE:
3493 case KVM_TRACE_PAUSE:
3494 case KVM_TRACE_DISABLE:
3495 r = -EOPNOTSUPP;
3496 break;
3497 default:
3498 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3500 out:
3501 return r;
3504 static struct file_operations kvm_chardev_ops = {
3505 .unlocked_ioctl = kvm_dev_ioctl,
3506 .llseek = noop_llseek,
3507 KVM_COMPAT(kvm_dev_ioctl),
3510 static struct miscdevice kvm_dev = {
3511 KVM_MINOR,
3512 "kvm",
3513 &kvm_chardev_ops,
3516 static void hardware_enable_nolock(void *junk)
3518 int cpu = raw_smp_processor_id();
3519 int r;
3521 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3522 return;
3524 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3526 r = kvm_arch_hardware_enable();
3528 if (r) {
3529 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3530 atomic_inc(&hardware_enable_failed);
3531 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3535 static int kvm_starting_cpu(unsigned int cpu)
3537 raw_spin_lock(&kvm_count_lock);
3538 if (kvm_usage_count)
3539 hardware_enable_nolock(NULL);
3540 raw_spin_unlock(&kvm_count_lock);
3541 return 0;
3544 static void hardware_disable_nolock(void *junk)
3546 int cpu = raw_smp_processor_id();
3548 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3549 return;
3550 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3551 kvm_arch_hardware_disable();
3554 static int kvm_dying_cpu(unsigned int cpu)
3556 raw_spin_lock(&kvm_count_lock);
3557 if (kvm_usage_count)
3558 hardware_disable_nolock(NULL);
3559 raw_spin_unlock(&kvm_count_lock);
3560 return 0;
3563 static void hardware_disable_all_nolock(void)
3565 BUG_ON(!kvm_usage_count);
3567 kvm_usage_count--;
3568 if (!kvm_usage_count)
3569 on_each_cpu(hardware_disable_nolock, NULL, 1);
3572 static void hardware_disable_all(void)
3574 raw_spin_lock(&kvm_count_lock);
3575 hardware_disable_all_nolock();
3576 raw_spin_unlock(&kvm_count_lock);
3579 static int hardware_enable_all(void)
3581 int r = 0;
3583 raw_spin_lock(&kvm_count_lock);
3585 kvm_usage_count++;
3586 if (kvm_usage_count == 1) {
3587 atomic_set(&hardware_enable_failed, 0);
3588 on_each_cpu(hardware_enable_nolock, NULL, 1);
3590 if (atomic_read(&hardware_enable_failed)) {
3591 hardware_disable_all_nolock();
3592 r = -EBUSY;
3596 raw_spin_unlock(&kvm_count_lock);
3598 return r;
3601 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3602 void *v)
3605 * Some (well, at least mine) BIOSes hang on reboot if
3606 * in vmx root mode.
3608 * And Intel TXT required VMX off for all cpu when system shutdown.
3610 pr_info("kvm: exiting hardware virtualization\n");
3611 kvm_rebooting = true;
3612 on_each_cpu(hardware_disable_nolock, NULL, 1);
3613 return NOTIFY_OK;
3616 static struct notifier_block kvm_reboot_notifier = {
3617 .notifier_call = kvm_reboot,
3618 .priority = 0,
3621 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3623 int i;
3625 for (i = 0; i < bus->dev_count; i++) {
3626 struct kvm_io_device *pos = bus->range[i].dev;
3628 kvm_iodevice_destructor(pos);
3630 kfree(bus);
3633 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3634 const struct kvm_io_range *r2)
3636 gpa_t addr1 = r1->addr;
3637 gpa_t addr2 = r2->addr;
3639 if (addr1 < addr2)
3640 return -1;
3642 /* If r2->len == 0, match the exact address. If r2->len != 0,
3643 * accept any overlapping write. Any order is acceptable for
3644 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3645 * we process all of them.
3647 if (r2->len) {
3648 addr1 += r1->len;
3649 addr2 += r2->len;
3652 if (addr1 > addr2)
3653 return 1;
3655 return 0;
3658 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3660 return kvm_io_bus_cmp(p1, p2);
3663 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3664 gpa_t addr, int len)
3666 struct kvm_io_range *range, key;
3667 int off;
3669 key = (struct kvm_io_range) {
3670 .addr = addr,
3671 .len = len,
3674 range = bsearch(&key, bus->range, bus->dev_count,
3675 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3676 if (range == NULL)
3677 return -ENOENT;
3679 off = range - bus->range;
3681 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3682 off--;
3684 return off;
3687 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3688 struct kvm_io_range *range, const void *val)
3690 int idx;
3692 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3693 if (idx < 0)
3694 return -EOPNOTSUPP;
3696 while (idx < bus->dev_count &&
3697 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3698 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3699 range->len, val))
3700 return idx;
3701 idx++;
3704 return -EOPNOTSUPP;
3707 /* kvm_io_bus_write - called under kvm->slots_lock */
3708 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3709 int len, const void *val)
3711 struct kvm_io_bus *bus;
3712 struct kvm_io_range range;
3713 int r;
3715 range = (struct kvm_io_range) {
3716 .addr = addr,
3717 .len = len,
3720 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3721 if (!bus)
3722 return -ENOMEM;
3723 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3724 return r < 0 ? r : 0;
3726 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3728 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3729 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3730 gpa_t addr, int len, const void *val, long cookie)
3732 struct kvm_io_bus *bus;
3733 struct kvm_io_range range;
3735 range = (struct kvm_io_range) {
3736 .addr = addr,
3737 .len = len,
3740 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3741 if (!bus)
3742 return -ENOMEM;
3744 /* First try the device referenced by cookie. */
3745 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3746 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3747 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3748 val))
3749 return cookie;
3752 * cookie contained garbage; fall back to search and return the
3753 * correct cookie value.
3755 return __kvm_io_bus_write(vcpu, bus, &range, val);
3758 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3759 struct kvm_io_range *range, void *val)
3761 int idx;
3763 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3764 if (idx < 0)
3765 return -EOPNOTSUPP;
3767 while (idx < bus->dev_count &&
3768 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3769 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3770 range->len, val))
3771 return idx;
3772 idx++;
3775 return -EOPNOTSUPP;
3778 /* kvm_io_bus_read - called under kvm->slots_lock */
3779 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3780 int len, void *val)
3782 struct kvm_io_bus *bus;
3783 struct kvm_io_range range;
3784 int r;
3786 range = (struct kvm_io_range) {
3787 .addr = addr,
3788 .len = len,
3791 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3792 if (!bus)
3793 return -ENOMEM;
3794 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3795 return r < 0 ? r : 0;
3798 /* Caller must hold slots_lock. */
3799 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3800 int len, struct kvm_io_device *dev)
3802 int i;
3803 struct kvm_io_bus *new_bus, *bus;
3804 struct kvm_io_range range;
3806 bus = kvm_get_bus(kvm, bus_idx);
3807 if (!bus)
3808 return -ENOMEM;
3810 /* exclude ioeventfd which is limited by maximum fd */
3811 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3812 return -ENOSPC;
3814 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3815 GFP_KERNEL_ACCOUNT);
3816 if (!new_bus)
3817 return -ENOMEM;
3819 range = (struct kvm_io_range) {
3820 .addr = addr,
3821 .len = len,
3822 .dev = dev,
3825 for (i = 0; i < bus->dev_count; i++)
3826 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3827 break;
3829 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3830 new_bus->dev_count++;
3831 new_bus->range[i] = range;
3832 memcpy(new_bus->range + i + 1, bus->range + i,
3833 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3834 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3835 synchronize_srcu_expedited(&kvm->srcu);
3836 kfree(bus);
3838 return 0;
3841 /* Caller must hold slots_lock. */
3842 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3843 struct kvm_io_device *dev)
3845 int i;
3846 struct kvm_io_bus *new_bus, *bus;
3848 bus = kvm_get_bus(kvm, bus_idx);
3849 if (!bus)
3850 return;
3852 for (i = 0; i < bus->dev_count; i++)
3853 if (bus->range[i].dev == dev) {
3854 break;
3857 if (i == bus->dev_count)
3858 return;
3860 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3861 GFP_KERNEL_ACCOUNT);
3862 if (!new_bus) {
3863 pr_err("kvm: failed to shrink bus, removing it completely\n");
3864 goto broken;
3867 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3868 new_bus->dev_count--;
3869 memcpy(new_bus->range + i, bus->range + i + 1,
3870 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3872 broken:
3873 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3874 synchronize_srcu_expedited(&kvm->srcu);
3875 kfree(bus);
3876 return;
3879 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3880 gpa_t addr)
3882 struct kvm_io_bus *bus;
3883 int dev_idx, srcu_idx;
3884 struct kvm_io_device *iodev = NULL;
3886 srcu_idx = srcu_read_lock(&kvm->srcu);
3888 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3889 if (!bus)
3890 goto out_unlock;
3892 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3893 if (dev_idx < 0)
3894 goto out_unlock;
3896 iodev = bus->range[dev_idx].dev;
3898 out_unlock:
3899 srcu_read_unlock(&kvm->srcu, srcu_idx);
3901 return iodev;
3903 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3905 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3906 int (*get)(void *, u64 *), int (*set)(void *, u64),
3907 const char *fmt)
3909 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3910 inode->i_private;
3912 /* The debugfs files are a reference to the kvm struct which
3913 * is still valid when kvm_destroy_vm is called.
3914 * To avoid the race between open and the removal of the debugfs
3915 * directory we test against the users count.
3917 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3918 return -ENOENT;
3920 if (simple_attr_open(inode, file, get, set, fmt)) {
3921 kvm_put_kvm(stat_data->kvm);
3922 return -ENOMEM;
3925 return 0;
3928 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3930 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3931 inode->i_private;
3933 simple_attr_release(inode, file);
3934 kvm_put_kvm(stat_data->kvm);
3936 return 0;
3939 static int vm_stat_get_per_vm(void *data, u64 *val)
3941 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3943 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3945 return 0;
3948 static int vm_stat_clear_per_vm(void *data, u64 val)
3950 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3952 if (val)
3953 return -EINVAL;
3955 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3957 return 0;
3960 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3962 __simple_attr_check_format("%llu\n", 0ull);
3963 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3964 vm_stat_clear_per_vm, "%llu\n");
3967 static const struct file_operations vm_stat_get_per_vm_fops = {
3968 .owner = THIS_MODULE,
3969 .open = vm_stat_get_per_vm_open,
3970 .release = kvm_debugfs_release,
3971 .read = simple_attr_read,
3972 .write = simple_attr_write,
3973 .llseek = no_llseek,
3976 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3978 int i;
3979 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3980 struct kvm_vcpu *vcpu;
3982 *val = 0;
3984 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3985 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3987 return 0;
3990 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3992 int i;
3993 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3994 struct kvm_vcpu *vcpu;
3996 if (val)
3997 return -EINVAL;
3999 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4000 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4002 return 0;
4005 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4007 __simple_attr_check_format("%llu\n", 0ull);
4008 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4009 vcpu_stat_clear_per_vm, "%llu\n");
4012 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4013 .owner = THIS_MODULE,
4014 .open = vcpu_stat_get_per_vm_open,
4015 .release = kvm_debugfs_release,
4016 .read = simple_attr_read,
4017 .write = simple_attr_write,
4018 .llseek = no_llseek,
4021 static const struct file_operations *stat_fops_per_vm[] = {
4022 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4023 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4026 static int vm_stat_get(void *_offset, u64 *val)
4028 unsigned offset = (long)_offset;
4029 struct kvm *kvm;
4030 struct kvm_stat_data stat_tmp = {.offset = offset};
4031 u64 tmp_val;
4033 *val = 0;
4034 spin_lock(&kvm_lock);
4035 list_for_each_entry(kvm, &vm_list, vm_list) {
4036 stat_tmp.kvm = kvm;
4037 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4038 *val += tmp_val;
4040 spin_unlock(&kvm_lock);
4041 return 0;
4044 static int vm_stat_clear(void *_offset, u64 val)
4046 unsigned offset = (long)_offset;
4047 struct kvm *kvm;
4048 struct kvm_stat_data stat_tmp = {.offset = offset};
4050 if (val)
4051 return -EINVAL;
4053 spin_lock(&kvm_lock);
4054 list_for_each_entry(kvm, &vm_list, vm_list) {
4055 stat_tmp.kvm = kvm;
4056 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4058 spin_unlock(&kvm_lock);
4060 return 0;
4063 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4065 static int vcpu_stat_get(void *_offset, u64 *val)
4067 unsigned offset = (long)_offset;
4068 struct kvm *kvm;
4069 struct kvm_stat_data stat_tmp = {.offset = offset};
4070 u64 tmp_val;
4072 *val = 0;
4073 spin_lock(&kvm_lock);
4074 list_for_each_entry(kvm, &vm_list, vm_list) {
4075 stat_tmp.kvm = kvm;
4076 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4077 *val += tmp_val;
4079 spin_unlock(&kvm_lock);
4080 return 0;
4083 static int vcpu_stat_clear(void *_offset, u64 val)
4085 unsigned offset = (long)_offset;
4086 struct kvm *kvm;
4087 struct kvm_stat_data stat_tmp = {.offset = offset};
4089 if (val)
4090 return -EINVAL;
4092 spin_lock(&kvm_lock);
4093 list_for_each_entry(kvm, &vm_list, vm_list) {
4094 stat_tmp.kvm = kvm;
4095 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4097 spin_unlock(&kvm_lock);
4099 return 0;
4102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4103 "%llu\n");
4105 static const struct file_operations *stat_fops[] = {
4106 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4107 [KVM_STAT_VM] = &vm_stat_fops,
4110 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4112 struct kobj_uevent_env *env;
4113 unsigned long long created, active;
4115 if (!kvm_dev.this_device || !kvm)
4116 return;
4118 spin_lock(&kvm_lock);
4119 if (type == KVM_EVENT_CREATE_VM) {
4120 kvm_createvm_count++;
4121 kvm_active_vms++;
4122 } else if (type == KVM_EVENT_DESTROY_VM) {
4123 kvm_active_vms--;
4125 created = kvm_createvm_count;
4126 active = kvm_active_vms;
4127 spin_unlock(&kvm_lock);
4129 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4130 if (!env)
4131 return;
4133 add_uevent_var(env, "CREATED=%llu", created);
4134 add_uevent_var(env, "COUNT=%llu", active);
4136 if (type == KVM_EVENT_CREATE_VM) {
4137 add_uevent_var(env, "EVENT=create");
4138 kvm->userspace_pid = task_pid_nr(current);
4139 } else if (type == KVM_EVENT_DESTROY_VM) {
4140 add_uevent_var(env, "EVENT=destroy");
4142 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4144 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4145 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4147 if (p) {
4148 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4149 if (!IS_ERR(tmp))
4150 add_uevent_var(env, "STATS_PATH=%s", tmp);
4151 kfree(p);
4154 /* no need for checks, since we are adding at most only 5 keys */
4155 env->envp[env->envp_idx++] = NULL;
4156 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4157 kfree(env);
4160 static void kvm_init_debug(void)
4162 struct kvm_stats_debugfs_item *p;
4164 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4166 kvm_debugfs_num_entries = 0;
4167 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4168 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4169 (void *)(long)p->offset,
4170 stat_fops[p->kind]);
4174 static int kvm_suspend(void)
4176 if (kvm_usage_count)
4177 hardware_disable_nolock(NULL);
4178 return 0;
4181 static void kvm_resume(void)
4183 if (kvm_usage_count) {
4184 #ifdef CONFIG_LOCKDEP
4185 WARN_ON(lockdep_is_held(&kvm_count_lock));
4186 #endif
4187 hardware_enable_nolock(NULL);
4191 static struct syscore_ops kvm_syscore_ops = {
4192 .suspend = kvm_suspend,
4193 .resume = kvm_resume,
4196 static inline
4197 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4199 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4202 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4204 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4206 if (vcpu->preempted)
4207 vcpu->preempted = false;
4209 kvm_arch_sched_in(vcpu, cpu);
4211 kvm_arch_vcpu_load(vcpu, cpu);
4214 static void kvm_sched_out(struct preempt_notifier *pn,
4215 struct task_struct *next)
4217 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4219 if (current->state == TASK_RUNNING)
4220 vcpu->preempted = true;
4221 kvm_arch_vcpu_put(vcpu);
4224 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4225 struct module *module)
4227 int r;
4228 int cpu;
4230 r = kvm_arch_init(opaque);
4231 if (r)
4232 goto out_fail;
4235 * kvm_arch_init makes sure there's at most one caller
4236 * for architectures that support multiple implementations,
4237 * like intel and amd on x86.
4238 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4239 * conflicts in case kvm is already setup for another implementation.
4241 r = kvm_irqfd_init();
4242 if (r)
4243 goto out_irqfd;
4245 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4246 r = -ENOMEM;
4247 goto out_free_0;
4250 r = kvm_arch_hardware_setup();
4251 if (r < 0)
4252 goto out_free_0a;
4254 for_each_online_cpu(cpu) {
4255 smp_call_function_single(cpu,
4256 kvm_arch_check_processor_compat,
4257 &r, 1);
4258 if (r < 0)
4259 goto out_free_1;
4262 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4263 kvm_starting_cpu, kvm_dying_cpu);
4264 if (r)
4265 goto out_free_2;
4266 register_reboot_notifier(&kvm_reboot_notifier);
4268 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4269 if (!vcpu_align)
4270 vcpu_align = __alignof__(struct kvm_vcpu);
4271 kvm_vcpu_cache =
4272 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4273 SLAB_ACCOUNT,
4274 offsetof(struct kvm_vcpu, arch),
4275 sizeof_field(struct kvm_vcpu, arch),
4276 NULL);
4277 if (!kvm_vcpu_cache) {
4278 r = -ENOMEM;
4279 goto out_free_3;
4282 r = kvm_async_pf_init();
4283 if (r)
4284 goto out_free;
4286 kvm_chardev_ops.owner = module;
4287 kvm_vm_fops.owner = module;
4288 kvm_vcpu_fops.owner = module;
4290 r = misc_register(&kvm_dev);
4291 if (r) {
4292 pr_err("kvm: misc device register failed\n");
4293 goto out_unreg;
4296 register_syscore_ops(&kvm_syscore_ops);
4298 kvm_preempt_ops.sched_in = kvm_sched_in;
4299 kvm_preempt_ops.sched_out = kvm_sched_out;
4301 kvm_init_debug();
4303 r = kvm_vfio_ops_init();
4304 WARN_ON(r);
4306 return 0;
4308 out_unreg:
4309 kvm_async_pf_deinit();
4310 out_free:
4311 kmem_cache_destroy(kvm_vcpu_cache);
4312 out_free_3:
4313 unregister_reboot_notifier(&kvm_reboot_notifier);
4314 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4315 out_free_2:
4316 out_free_1:
4317 kvm_arch_hardware_unsetup();
4318 out_free_0a:
4319 free_cpumask_var(cpus_hardware_enabled);
4320 out_free_0:
4321 kvm_irqfd_exit();
4322 out_irqfd:
4323 kvm_arch_exit();
4324 out_fail:
4325 return r;
4327 EXPORT_SYMBOL_GPL(kvm_init);
4329 void kvm_exit(void)
4331 debugfs_remove_recursive(kvm_debugfs_dir);
4332 misc_deregister(&kvm_dev);
4333 kmem_cache_destroy(kvm_vcpu_cache);
4334 kvm_async_pf_deinit();
4335 unregister_syscore_ops(&kvm_syscore_ops);
4336 unregister_reboot_notifier(&kvm_reboot_notifier);
4337 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4338 on_each_cpu(hardware_disable_nolock, NULL, 1);
4339 kvm_arch_hardware_unsetup();
4340 kvm_arch_exit();
4341 kvm_irqfd_exit();
4342 free_cpumask_var(cpus_hardware_enabled);
4343 kvm_vfio_ops_exit();
4345 EXPORT_SYMBOL_GPL(kvm_exit);