1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
74 module_param(halt_poll_ns
, uint
, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns
);
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow
= 2;
79 module_param(halt_poll_ns_grow
, uint
, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow
);
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start
= 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start
, uint
, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start
);
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink
;
89 module_param(halt_poll_ns_shrink
, uint
, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink
);
95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98 DEFINE_SPINLOCK(kvm_lock
);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
102 static cpumask_var_t cpus_hardware_enabled
;
103 static int kvm_usage_count
;
104 static atomic_t hardware_enable_failed
;
106 struct kmem_cache
*kvm_vcpu_cache
;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
109 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
111 struct dentry
*kvm_debugfs_dir
;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
114 static int kvm_debugfs_num_entries
;
115 static const struct file_operations
*stat_fops_per_vm
[];
117 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
122 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 static long kvm_no_compat_ioctl(struct file
*file
, unsigned int ioctl
,
125 unsigned long arg
) { return -EINVAL
; }
126 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
131 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
135 __visible
bool kvm_rebooting
;
136 EXPORT_SYMBOL_GPL(kvm_rebooting
);
138 static bool largepages_enabled
= true;
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
);
143 static unsigned long long kvm_createvm_count
;
144 static unsigned long long kvm_active_vms
;
146 __weak
int kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
147 unsigned long start
, unsigned long end
, bool blockable
)
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
155 return PageReserved(pfn_to_page(pfn
));
161 * Switches to specified vcpu, until a matching vcpu_put()
163 void vcpu_load(struct kvm_vcpu
*vcpu
)
166 preempt_notifier_register(&vcpu
->preempt_notifier
);
167 kvm_arch_vcpu_load(vcpu
, cpu
);
170 EXPORT_SYMBOL_GPL(vcpu_load
);
172 void vcpu_put(struct kvm_vcpu
*vcpu
)
175 kvm_arch_vcpu_put(vcpu
);
176 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
179 EXPORT_SYMBOL_GPL(vcpu_put
);
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu
*vcpu
, unsigned req
)
184 int mode
= kvm_vcpu_exiting_guest_mode(vcpu
);
187 * We need to wait for the VCPU to reenable interrupts and get out of
188 * READING_SHADOW_PAGE_TABLES mode.
190 if (req
& KVM_REQUEST_WAIT
)
191 return mode
!= OUTSIDE_GUEST_MODE
;
194 * Need to kick a running VCPU, but otherwise there is nothing to do.
196 return mode
== IN_GUEST_MODE
;
199 static void ack_flush(void *_completed
)
203 static inline bool kvm_kick_many_cpus(const struct cpumask
*cpus
, bool wait
)
206 cpus
= cpu_online_mask
;
208 if (cpumask_empty(cpus
))
211 smp_call_function_many(cpus
, ack_flush
, NULL
, wait
);
215 bool kvm_make_vcpus_request_mask(struct kvm
*kvm
, unsigned int req
,
216 unsigned long *vcpu_bitmap
, cpumask_var_t tmp
)
219 struct kvm_vcpu
*vcpu
;
224 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
225 if (vcpu_bitmap
&& !test_bit(i
, vcpu_bitmap
))
228 kvm_make_request(req
, vcpu
);
231 if (!(req
& KVM_REQUEST_NO_WAKEUP
) && kvm_vcpu_wake_up(vcpu
))
234 if (tmp
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
235 kvm_request_needs_ipi(vcpu
, req
))
236 __cpumask_set_cpu(cpu
, tmp
);
239 called
= kvm_kick_many_cpus(tmp
, !!(req
& KVM_REQUEST_WAIT
));
245 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
250 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
252 called
= kvm_make_vcpus_request_mask(kvm
, req
, NULL
, cpus
);
254 free_cpumask_var(cpus
);
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
262 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263 * kvm_make_all_cpus_request.
265 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
268 * We want to publish modifications to the page tables before reading
269 * mode. Pairs with a memory barrier in arch-specific code.
270 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271 * and smp_mb in walk_shadow_page_lockless_begin/end.
272 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
274 * There is already an smp_mb__after_atomic() before
275 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278 if (!kvm_arch_flush_remote_tlb(kvm
)
279 || kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
280 ++kvm
->stat
.remote_tlb_flush
;
281 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
286 void kvm_reload_remote_mmus(struct kvm
*kvm
)
288 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
291 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
296 mutex_init(&vcpu
->mutex
);
301 init_swait_queue_head(&vcpu
->wq
);
302 kvm_async_pf_vcpu_init(vcpu
);
305 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
307 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
312 vcpu
->run
= page_address(page
);
314 kvm_vcpu_set_in_spin_loop(vcpu
, false);
315 kvm_vcpu_set_dy_eligible(vcpu
, false);
316 vcpu
->preempted
= false;
318 r
= kvm_arch_vcpu_init(vcpu
);
324 free_page((unsigned long)vcpu
->run
);
328 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
330 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
333 * no need for rcu_read_lock as VCPU_RUN is the only place that
334 * will change the vcpu->pid pointer and on uninit all file
335 * descriptors are already gone.
337 put_pid(rcu_dereference_protected(vcpu
->pid
, 1));
338 kvm_arch_vcpu_uninit(vcpu
);
339 free_page((unsigned long)vcpu
->run
);
341 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
343 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
344 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
346 return container_of(mn
, struct kvm
, mmu_notifier
);
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
350 struct mm_struct
*mm
,
351 unsigned long address
,
354 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
357 idx
= srcu_read_lock(&kvm
->srcu
);
358 spin_lock(&kvm
->mmu_lock
);
359 kvm
->mmu_notifier_seq
++;
361 if (kvm_set_spte_hva(kvm
, address
, pte
))
362 kvm_flush_remote_tlbs(kvm
);
364 spin_unlock(&kvm
->mmu_lock
);
365 srcu_read_unlock(&kvm
->srcu
, idx
);
368 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
369 const struct mmu_notifier_range
*range
)
371 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
372 int need_tlb_flush
= 0, idx
;
375 idx
= srcu_read_lock(&kvm
->srcu
);
376 spin_lock(&kvm
->mmu_lock
);
378 * The count increase must become visible at unlock time as no
379 * spte can be established without taking the mmu_lock and
380 * count is also read inside the mmu_lock critical section.
382 kvm
->mmu_notifier_count
++;
383 need_tlb_flush
= kvm_unmap_hva_range(kvm
, range
->start
, range
->end
);
384 need_tlb_flush
|= kvm
->tlbs_dirty
;
385 /* we've to flush the tlb before the pages can be freed */
387 kvm_flush_remote_tlbs(kvm
);
389 spin_unlock(&kvm
->mmu_lock
);
391 ret
= kvm_arch_mmu_notifier_invalidate_range(kvm
, range
->start
,
393 mmu_notifier_range_blockable(range
));
395 srcu_read_unlock(&kvm
->srcu
, idx
);
400 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
401 const struct mmu_notifier_range
*range
)
403 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
405 spin_lock(&kvm
->mmu_lock
);
407 * This sequence increase will notify the kvm page fault that
408 * the page that is going to be mapped in the spte could have
411 kvm
->mmu_notifier_seq
++;
414 * The above sequence increase must be visible before the
415 * below count decrease, which is ensured by the smp_wmb above
416 * in conjunction with the smp_rmb in mmu_notifier_retry().
418 kvm
->mmu_notifier_count
--;
419 spin_unlock(&kvm
->mmu_lock
);
421 BUG_ON(kvm
->mmu_notifier_count
< 0);
424 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
425 struct mm_struct
*mm
,
429 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
432 idx
= srcu_read_lock(&kvm
->srcu
);
433 spin_lock(&kvm
->mmu_lock
);
435 young
= kvm_age_hva(kvm
, start
, end
);
437 kvm_flush_remote_tlbs(kvm
);
439 spin_unlock(&kvm
->mmu_lock
);
440 srcu_read_unlock(&kvm
->srcu
, idx
);
445 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
446 struct mm_struct
*mm
,
450 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
453 idx
= srcu_read_lock(&kvm
->srcu
);
454 spin_lock(&kvm
->mmu_lock
);
456 * Even though we do not flush TLB, this will still adversely
457 * affect performance on pre-Haswell Intel EPT, where there is
458 * no EPT Access Bit to clear so that we have to tear down EPT
459 * tables instead. If we find this unacceptable, we can always
460 * add a parameter to kvm_age_hva so that it effectively doesn't
461 * do anything on clear_young.
463 * Also note that currently we never issue secondary TLB flushes
464 * from clear_young, leaving this job up to the regular system
465 * cadence. If we find this inaccurate, we might come up with a
466 * more sophisticated heuristic later.
468 young
= kvm_age_hva(kvm
, start
, end
);
469 spin_unlock(&kvm
->mmu_lock
);
470 srcu_read_unlock(&kvm
->srcu
, idx
);
475 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
476 struct mm_struct
*mm
,
477 unsigned long address
)
479 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
482 idx
= srcu_read_lock(&kvm
->srcu
);
483 spin_lock(&kvm
->mmu_lock
);
484 young
= kvm_test_age_hva(kvm
, address
);
485 spin_unlock(&kvm
->mmu_lock
);
486 srcu_read_unlock(&kvm
->srcu
, idx
);
491 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
492 struct mm_struct
*mm
)
494 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
497 idx
= srcu_read_lock(&kvm
->srcu
);
498 kvm_arch_flush_shadow_all(kvm
);
499 srcu_read_unlock(&kvm
->srcu
, idx
);
502 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
503 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
504 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
505 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
506 .clear_young
= kvm_mmu_notifier_clear_young
,
507 .test_young
= kvm_mmu_notifier_test_young
,
508 .change_pte
= kvm_mmu_notifier_change_pte
,
509 .release
= kvm_mmu_notifier_release
,
512 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
514 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
515 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
518 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
525 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 static struct kvm_memslots
*kvm_alloc_memslots(void)
530 struct kvm_memslots
*slots
;
532 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL_ACCOUNT
);
536 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
537 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
544 if (!memslot
->dirty_bitmap
)
547 kvfree(memslot
->dirty_bitmap
);
548 memslot
->dirty_bitmap
= NULL
;
552 * Free any memory in @free but not in @dont.
554 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
555 struct kvm_memory_slot
*dont
)
557 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
558 kvm_destroy_dirty_bitmap(free
);
560 kvm_arch_free_memslot(kvm
, free
, dont
);
565 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
567 struct kvm_memory_slot
*memslot
;
572 kvm_for_each_memslot(memslot
, slots
)
573 kvm_free_memslot(kvm
, memslot
, NULL
);
578 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
582 if (!kvm
->debugfs_dentry
)
585 debugfs_remove_recursive(kvm
->debugfs_dentry
);
587 if (kvm
->debugfs_stat_data
) {
588 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
589 kfree(kvm
->debugfs_stat_data
[i
]);
590 kfree(kvm
->debugfs_stat_data
);
594 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
596 char dir_name
[ITOA_MAX_LEN
* 2];
597 struct kvm_stat_data
*stat_data
;
598 struct kvm_stats_debugfs_item
*p
;
600 if (!debugfs_initialized())
603 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
604 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
, kvm_debugfs_dir
);
606 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
607 sizeof(*kvm
->debugfs_stat_data
),
609 if (!kvm
->debugfs_stat_data
)
612 for (p
= debugfs_entries
; p
->name
; p
++) {
613 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL_ACCOUNT
);
617 stat_data
->kvm
= kvm
;
618 stat_data
->offset
= p
->offset
;
619 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
620 debugfs_create_file(p
->name
, 0644, kvm
->debugfs_dentry
,
621 stat_data
, stat_fops_per_vm
[p
->kind
]);
626 static struct kvm
*kvm_create_vm(unsigned long type
)
629 struct kvm
*kvm
= kvm_arch_alloc_vm();
632 return ERR_PTR(-ENOMEM
);
634 spin_lock_init(&kvm
->mmu_lock
);
636 kvm
->mm
= current
->mm
;
637 kvm_eventfd_init(kvm
);
638 mutex_init(&kvm
->lock
);
639 mutex_init(&kvm
->irq_lock
);
640 mutex_init(&kvm
->slots_lock
);
641 refcount_set(&kvm
->users_count
, 1);
642 INIT_LIST_HEAD(&kvm
->devices
);
644 r
= kvm_arch_init_vm(kvm
, type
);
646 goto out_err_no_disable
;
648 r
= hardware_enable_all();
650 goto out_err_no_disable
;
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
659 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
660 struct kvm_memslots
*slots
= kvm_alloc_memslots();
662 goto out_err_no_srcu
;
663 /* Generations must be different for each address space. */
664 slots
->generation
= i
;
665 rcu_assign_pointer(kvm
->memslots
[i
], slots
);
668 if (init_srcu_struct(&kvm
->srcu
))
669 goto out_err_no_srcu
;
670 if (init_srcu_struct(&kvm
->irq_srcu
))
671 goto out_err_no_irq_srcu
;
672 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
673 rcu_assign_pointer(kvm
->buses
[i
],
674 kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL_ACCOUNT
));
679 r
= kvm_init_mmu_notifier(kvm
);
683 spin_lock(&kvm_lock
);
684 list_add(&kvm
->vm_list
, &vm_list
);
685 spin_unlock(&kvm_lock
);
687 preempt_notifier_inc();
692 cleanup_srcu_struct(&kvm
->irq_srcu
);
694 cleanup_srcu_struct(&kvm
->srcu
);
696 hardware_disable_all();
698 refcount_set(&kvm
->users_count
, 0);
699 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
700 kfree(kvm_get_bus(kvm
, i
));
701 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
702 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
703 kvm_arch_free_vm(kvm
);
708 static void kvm_destroy_devices(struct kvm
*kvm
)
710 struct kvm_device
*dev
, *tmp
;
713 * We do not need to take the kvm->lock here, because nobody else
714 * has a reference to the struct kvm at this point and therefore
715 * cannot access the devices list anyhow.
717 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
718 list_del(&dev
->vm_node
);
719 dev
->ops
->destroy(dev
);
723 static void kvm_destroy_vm(struct kvm
*kvm
)
726 struct mm_struct
*mm
= kvm
->mm
;
728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM
, kvm
);
729 kvm_destroy_vm_debugfs(kvm
);
730 kvm_arch_sync_events(kvm
);
731 spin_lock(&kvm_lock
);
732 list_del(&kvm
->vm_list
);
733 spin_unlock(&kvm_lock
);
734 kvm_free_irq_routing(kvm
);
735 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
736 struct kvm_io_bus
*bus
= kvm_get_bus(kvm
, i
);
739 kvm_io_bus_destroy(bus
);
740 kvm
->buses
[i
] = NULL
;
742 kvm_coalesced_mmio_free(kvm
);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
746 kvm_arch_flush_shadow_all(kvm
);
748 kvm_arch_destroy_vm(kvm
);
749 kvm_destroy_devices(kvm
);
750 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
751 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
752 cleanup_srcu_struct(&kvm
->irq_srcu
);
753 cleanup_srcu_struct(&kvm
->srcu
);
754 kvm_arch_free_vm(kvm
);
755 preempt_notifier_dec();
756 hardware_disable_all();
760 void kvm_get_kvm(struct kvm
*kvm
)
762 refcount_inc(&kvm
->users_count
);
764 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
766 void kvm_put_kvm(struct kvm
*kvm
)
768 if (refcount_dec_and_test(&kvm
->users_count
))
771 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
774 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
776 struct kvm
*kvm
= filp
->private_data
;
778 kvm_irqfd_release(kvm
);
785 * Allocation size is twice as large as the actual dirty bitmap size.
786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
790 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
792 memslot
->dirty_bitmap
= kvzalloc(dirty_bytes
, GFP_KERNEL_ACCOUNT
);
793 if (!memslot
->dirty_bitmap
)
800 * Insert memslot and re-sort memslots based on their GFN,
801 * so binary search could be used to lookup GFN.
802 * Sorting algorithm takes advantage of having initially
803 * sorted array and known changed memslot position.
805 static void update_memslots(struct kvm_memslots
*slots
,
806 struct kvm_memory_slot
*new,
807 enum kvm_mr_change change
)
810 int i
= slots
->id_to_index
[id
];
811 struct kvm_memory_slot
*mslots
= slots
->memslots
;
813 WARN_ON(mslots
[i
].id
!= id
);
817 WARN_ON(mslots
[i
].npages
|| !new->npages
);
821 WARN_ON(new->npages
|| !mslots
[i
].npages
);
827 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
828 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
829 if (!mslots
[i
+ 1].npages
)
831 mslots
[i
] = mslots
[i
+ 1];
832 slots
->id_to_index
[mslots
[i
].id
] = i
;
837 * The ">=" is needed when creating a slot with base_gfn == 0,
838 * so that it moves before all those with base_gfn == npages == 0.
840 * On the other hand, if new->npages is zero, the above loop has
841 * already left i pointing to the beginning of the empty part of
842 * mslots, and the ">=" would move the hole backwards in this
843 * case---which is wrong. So skip the loop when deleting a slot.
847 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
848 mslots
[i
] = mslots
[i
- 1];
849 slots
->id_to_index
[mslots
[i
].id
] = i
;
853 WARN_ON_ONCE(i
!= slots
->used_slots
);
856 slots
->id_to_index
[mslots
[i
].id
] = i
;
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
861 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
863 #ifdef __KVM_HAVE_READONLY_MEM
864 valid_flags
|= KVM_MEM_READONLY
;
867 if (mem
->flags
& ~valid_flags
)
873 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
874 int as_id
, struct kvm_memslots
*slots
)
876 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
877 u64 gen
= old_memslots
->generation
;
879 WARN_ON(gen
& KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS
);
880 slots
->generation
= gen
| KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS
;
882 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
883 synchronize_srcu_expedited(&kvm
->srcu
);
886 * Increment the new memslot generation a second time, dropping the
887 * update in-progress flag and incrementing then generation based on
888 * the number of address spaces. This provides a unique and easily
889 * identifiable generation number while the memslots are in flux.
891 gen
= slots
->generation
& ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS
;
894 * Generations must be unique even across address spaces. We do not need
895 * a global counter for that, instead the generation space is evenly split
896 * across address spaces. For example, with two address spaces, address
897 * space 0 will use generations 0, 2, 4, ... while address space 1 will
898 * use generations 1, 3, 5, ...
900 gen
+= KVM_ADDRESS_SPACE_NUM
;
902 kvm_arch_memslots_updated(kvm
, gen
);
904 slots
->generation
= gen
;
910 * Allocate some memory and give it an address in the guest physical address
913 * Discontiguous memory is allowed, mostly for framebuffers.
915 * Must be called holding kvm->slots_lock for write.
917 int __kvm_set_memory_region(struct kvm
*kvm
,
918 const struct kvm_userspace_memory_region
*mem
)
922 unsigned long npages
;
923 struct kvm_memory_slot
*slot
;
924 struct kvm_memory_slot old
, new;
925 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
927 enum kvm_mr_change change
;
929 r
= check_memory_region_flags(mem
);
934 as_id
= mem
->slot
>> 16;
937 /* General sanity checks */
938 if (mem
->memory_size
& (PAGE_SIZE
- 1))
940 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
942 /* We can read the guest memory with __xxx_user() later on. */
943 if ((id
< KVM_USER_MEM_SLOTS
) &&
944 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
945 !access_ok((void __user
*)(unsigned long)mem
->userspace_addr
,
948 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
950 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
953 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
954 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
955 npages
= mem
->memory_size
>> PAGE_SHIFT
;
957 if (npages
> KVM_MEM_MAX_NR_PAGES
)
963 new.base_gfn
= base_gfn
;
965 new.flags
= mem
->flags
;
969 change
= KVM_MR_CREATE
;
970 else { /* Modify an existing slot. */
971 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
972 (npages
!= old
.npages
) ||
973 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
976 if (base_gfn
!= old
.base_gfn
)
977 change
= KVM_MR_MOVE
;
978 else if (new.flags
!= old
.flags
)
979 change
= KVM_MR_FLAGS_ONLY
;
980 else { /* Nothing to change. */
989 change
= KVM_MR_DELETE
;
994 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
995 /* Check for overlaps */
997 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
1000 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
1001 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
1006 /* Free page dirty bitmap if unneeded */
1007 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
1008 new.dirty_bitmap
= NULL
;
1011 if (change
== KVM_MR_CREATE
) {
1012 new.userspace_addr
= mem
->userspace_addr
;
1014 if (kvm_arch_create_memslot(kvm
, &new, npages
))
1018 /* Allocate page dirty bitmap if needed */
1019 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
1020 if (kvm_create_dirty_bitmap(&new) < 0)
1024 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL_ACCOUNT
);
1027 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
1029 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
1030 slot
= id_to_memslot(slots
, id
);
1031 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1033 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1035 /* From this point no new shadow pages pointing to a deleted,
1036 * or moved, memslot will be created.
1038 * validation of sp->gfn happens in:
1039 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1040 * - kvm_is_visible_gfn (mmu_check_roots)
1042 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1045 * We can re-use the old_memslots from above, the only difference
1046 * from the currently installed memslots is the invalid flag. This
1047 * will get overwritten by update_memslots anyway.
1049 slots
= old_memslots
;
1052 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1056 /* actual memory is freed via old in kvm_free_memslot below */
1057 if (change
== KVM_MR_DELETE
) {
1058 new.dirty_bitmap
= NULL
;
1059 memset(&new.arch
, 0, sizeof(new.arch
));
1062 update_memslots(slots
, &new, change
);
1063 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1065 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1067 kvm_free_memslot(kvm
, &old
, &new);
1068 kvfree(old_memslots
);
1074 kvm_free_memslot(kvm
, &new, &old
);
1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1080 int kvm_set_memory_region(struct kvm
*kvm
,
1081 const struct kvm_userspace_memory_region
*mem
)
1085 mutex_lock(&kvm
->slots_lock
);
1086 r
= __kvm_set_memory_region(kvm
, mem
);
1087 mutex_unlock(&kvm
->slots_lock
);
1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1092 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1093 struct kvm_userspace_memory_region
*mem
)
1095 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1098 return kvm_set_memory_region(kvm
, mem
);
1101 int kvm_get_dirty_log(struct kvm
*kvm
,
1102 struct kvm_dirty_log
*log
, int *is_dirty
)
1104 struct kvm_memslots
*slots
;
1105 struct kvm_memory_slot
*memslot
;
1108 unsigned long any
= 0;
1110 as_id
= log
->slot
>> 16;
1111 id
= (u16
)log
->slot
;
1112 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1115 slots
= __kvm_memslots(kvm
, as_id
);
1116 memslot
= id_to_memslot(slots
, id
);
1117 if (!memslot
->dirty_bitmap
)
1120 n
= kvm_dirty_bitmap_bytes(memslot
);
1122 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1123 any
= memslot
->dirty_bitmap
[i
];
1125 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1137 * and reenable dirty page tracking for the corresponding pages.
1138 * @kvm: pointer to kvm instance
1139 * @log: slot id and address to which we copy the log
1140 * @flush: true if TLB flush is needed by caller
1142 * We need to keep it in mind that VCPU threads can write to the bitmap
1143 * concurrently. So, to avoid losing track of dirty pages we keep the
1146 * 1. Take a snapshot of the bit and clear it if needed.
1147 * 2. Write protect the corresponding page.
1148 * 3. Copy the snapshot to the userspace.
1149 * 4. Upon return caller flushes TLB's if needed.
1151 * Between 2 and 4, the guest may write to the page using the remaining TLB
1152 * entry. This is not a problem because the page is reported dirty using
1153 * the snapshot taken before and step 4 ensures that writes done after
1154 * exiting to userspace will be logged for the next call.
1157 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1158 struct kvm_dirty_log
*log
, bool *flush
)
1160 struct kvm_memslots
*slots
;
1161 struct kvm_memory_slot
*memslot
;
1164 unsigned long *dirty_bitmap
;
1165 unsigned long *dirty_bitmap_buffer
;
1167 as_id
= log
->slot
>> 16;
1168 id
= (u16
)log
->slot
;
1169 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1172 slots
= __kvm_memslots(kvm
, as_id
);
1173 memslot
= id_to_memslot(slots
, id
);
1175 dirty_bitmap
= memslot
->dirty_bitmap
;
1179 n
= kvm_dirty_bitmap_bytes(memslot
);
1181 if (kvm
->manual_dirty_log_protect
) {
1183 * Unlike kvm_get_dirty_log, we always return false in *flush,
1184 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1185 * is some code duplication between this function and
1186 * kvm_get_dirty_log, but hopefully all architecture
1187 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1188 * can be eliminated.
1190 dirty_bitmap_buffer
= dirty_bitmap
;
1192 dirty_bitmap_buffer
= kvm_second_dirty_bitmap(memslot
);
1193 memset(dirty_bitmap_buffer
, 0, n
);
1195 spin_lock(&kvm
->mmu_lock
);
1196 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1200 if (!dirty_bitmap
[i
])
1204 mask
= xchg(&dirty_bitmap
[i
], 0);
1205 dirty_bitmap_buffer
[i
] = mask
;
1207 offset
= i
* BITS_PER_LONG
;
1208 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1211 spin_unlock(&kvm
->mmu_lock
);
1214 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1222 * and reenable dirty page tracking for the corresponding pages.
1223 * @kvm: pointer to kvm instance
1224 * @log: slot id and address from which to fetch the bitmap of dirty pages
1225 * @flush: true if TLB flush is needed by caller
1227 int kvm_clear_dirty_log_protect(struct kvm
*kvm
,
1228 struct kvm_clear_dirty_log
*log
, bool *flush
)
1230 struct kvm_memslots
*slots
;
1231 struct kvm_memory_slot
*memslot
;
1235 unsigned long *dirty_bitmap
;
1236 unsigned long *dirty_bitmap_buffer
;
1238 as_id
= log
->slot
>> 16;
1239 id
= (u16
)log
->slot
;
1240 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1243 if (log
->first_page
& 63)
1246 slots
= __kvm_memslots(kvm
, as_id
);
1247 memslot
= id_to_memslot(slots
, id
);
1249 dirty_bitmap
= memslot
->dirty_bitmap
;
1253 n
= ALIGN(log
->num_pages
, BITS_PER_LONG
) / 8;
1255 if (log
->first_page
> memslot
->npages
||
1256 log
->num_pages
> memslot
->npages
- log
->first_page
||
1257 (log
->num_pages
< memslot
->npages
- log
->first_page
&& (log
->num_pages
& 63)))
1261 dirty_bitmap_buffer
= kvm_second_dirty_bitmap(memslot
);
1262 if (copy_from_user(dirty_bitmap_buffer
, log
->dirty_bitmap
, n
))
1265 spin_lock(&kvm
->mmu_lock
);
1266 for (offset
= log
->first_page
, i
= offset
/ BITS_PER_LONG
,
1267 n
= DIV_ROUND_UP(log
->num_pages
, BITS_PER_LONG
); n
--;
1268 i
++, offset
+= BITS_PER_LONG
) {
1269 unsigned long mask
= *dirty_bitmap_buffer
++;
1270 atomic_long_t
*p
= (atomic_long_t
*) &dirty_bitmap
[i
];
1274 mask
&= atomic_long_fetch_andnot(mask
, p
);
1277 * mask contains the bits that really have been cleared. This
1278 * never includes any bits beyond the length of the memslot (if
1279 * the length is not aligned to 64 pages), therefore it is not
1280 * a problem if userspace sets them in log->dirty_bitmap.
1284 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1288 spin_unlock(&kvm
->mmu_lock
);
1292 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect
);
1295 bool kvm_largepages_enabled(void)
1297 return largepages_enabled
;
1300 void kvm_disable_largepages(void)
1302 largepages_enabled
= false;
1304 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1306 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1308 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1310 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1312 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1314 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1317 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1319 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1321 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1322 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1327 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1329 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1331 struct vm_area_struct
*vma
;
1332 unsigned long addr
, size
;
1336 addr
= gfn_to_hva(kvm
, gfn
);
1337 if (kvm_is_error_hva(addr
))
1340 down_read(¤t
->mm
->mmap_sem
);
1341 vma
= find_vma(current
->mm
, addr
);
1345 size
= vma_kernel_pagesize(vma
);
1348 up_read(¤t
->mm
->mmap_sem
);
1353 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1355 return slot
->flags
& KVM_MEM_READONLY
;
1358 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1359 gfn_t
*nr_pages
, bool write
)
1361 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1362 return KVM_HVA_ERR_BAD
;
1364 if (memslot_is_readonly(slot
) && write
)
1365 return KVM_HVA_ERR_RO_BAD
;
1368 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1370 return __gfn_to_hva_memslot(slot
, gfn
);
1373 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1376 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1379 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1382 return gfn_to_hva_many(slot
, gfn
, NULL
);
1384 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1386 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1388 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1390 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1392 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1394 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1396 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1399 * Return the hva of a @gfn and the R/W attribute if possible.
1401 * @slot: the kvm_memory_slot which contains @gfn
1402 * @gfn: the gfn to be translated
1403 * @writable: used to return the read/write attribute of the @slot if the hva
1404 * is valid and @writable is not NULL
1406 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1407 gfn_t gfn
, bool *writable
)
1409 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1411 if (!kvm_is_error_hva(hva
) && writable
)
1412 *writable
= !memslot_is_readonly(slot
);
1417 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1419 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1421 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1424 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1426 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1428 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1431 static inline int check_user_page_hwpoison(unsigned long addr
)
1433 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1435 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1436 return rc
== -EHWPOISON
;
1440 * The fast path to get the writable pfn which will be stored in @pfn,
1441 * true indicates success, otherwise false is returned. It's also the
1442 * only part that runs if we can are in atomic context.
1444 static bool hva_to_pfn_fast(unsigned long addr
, bool write_fault
,
1445 bool *writable
, kvm_pfn_t
*pfn
)
1447 struct page
*page
[1];
1451 * Fast pin a writable pfn only if it is a write fault request
1452 * or the caller allows to map a writable pfn for a read fault
1455 if (!(write_fault
|| writable
))
1458 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1460 *pfn
= page_to_pfn(page
[0]);
1471 * The slow path to get the pfn of the specified host virtual address,
1472 * 1 indicates success, -errno is returned if error is detected.
1474 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1475 bool *writable
, kvm_pfn_t
*pfn
)
1477 unsigned int flags
= FOLL_HWPOISON
;
1484 *writable
= write_fault
;
1487 flags
|= FOLL_WRITE
;
1489 flags
|= FOLL_NOWAIT
;
1491 npages
= get_user_pages_unlocked(addr
, 1, &page
, flags
);
1495 /* map read fault as writable if possible */
1496 if (unlikely(!write_fault
) && writable
) {
1499 if (__get_user_pages_fast(addr
, 1, 1, &wpage
) == 1) {
1505 *pfn
= page_to_pfn(page
);
1509 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1511 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1514 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1520 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1521 unsigned long addr
, bool *async
,
1522 bool write_fault
, bool *writable
,
1528 r
= follow_pfn(vma
, addr
, &pfn
);
1531 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1532 * not call the fault handler, so do it here.
1534 bool unlocked
= false;
1535 r
= fixup_user_fault(current
, current
->mm
, addr
,
1536 (write_fault
? FAULT_FLAG_WRITE
: 0),
1543 r
= follow_pfn(vma
, addr
, &pfn
);
1553 * Get a reference here because callers of *hva_to_pfn* and
1554 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1555 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1556 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1557 * simply do nothing for reserved pfns.
1559 * Whoever called remap_pfn_range is also going to call e.g.
1560 * unmap_mapping_range before the underlying pages are freed,
1561 * causing a call to our MMU notifier.
1570 * Pin guest page in memory and return its pfn.
1571 * @addr: host virtual address which maps memory to the guest
1572 * @atomic: whether this function can sleep
1573 * @async: whether this function need to wait IO complete if the
1574 * host page is not in the memory
1575 * @write_fault: whether we should get a writable host page
1576 * @writable: whether it allows to map a writable host page for !@write_fault
1578 * The function will map a writable host page for these two cases:
1579 * 1): @write_fault = true
1580 * 2): @write_fault = false && @writable, @writable will tell the caller
1581 * whether the mapping is writable.
1583 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1584 bool write_fault
, bool *writable
)
1586 struct vm_area_struct
*vma
;
1590 /* we can do it either atomically or asynchronously, not both */
1591 BUG_ON(atomic
&& async
);
1593 if (hva_to_pfn_fast(addr
, write_fault
, writable
, &pfn
))
1597 return KVM_PFN_ERR_FAULT
;
1599 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1603 down_read(¤t
->mm
->mmap_sem
);
1604 if (npages
== -EHWPOISON
||
1605 (!async
&& check_user_page_hwpoison(addr
))) {
1606 pfn
= KVM_PFN_ERR_HWPOISON
;
1611 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1614 pfn
= KVM_PFN_ERR_FAULT
;
1615 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1616 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, writable
, &pfn
);
1620 pfn
= KVM_PFN_ERR_FAULT
;
1622 if (async
&& vma_is_valid(vma
, write_fault
))
1624 pfn
= KVM_PFN_ERR_FAULT
;
1627 up_read(¤t
->mm
->mmap_sem
);
1631 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1632 bool atomic
, bool *async
, bool write_fault
,
1635 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1637 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1640 return KVM_PFN_ERR_RO_FAULT
;
1643 if (kvm_is_error_hva(addr
)) {
1646 return KVM_PFN_NOSLOT
;
1649 /* Do not map writable pfn in the readonly memslot. */
1650 if (writable
&& memslot_is_readonly(slot
)) {
1655 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1658 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1660 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1663 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1664 write_fault
, writable
);
1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1668 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1670 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1674 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1676 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1680 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1682 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1686 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1688 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1692 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1694 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1696 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1698 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1700 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1704 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1705 struct page
**pages
, int nr_pages
)
1710 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1711 if (kvm_is_error_hva(addr
))
1714 if (entry
< nr_pages
)
1717 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1719 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1721 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1723 if (is_error_noslot_pfn(pfn
))
1724 return KVM_ERR_PTR_BAD_PAGE
;
1726 if (kvm_is_reserved_pfn(pfn
)) {
1728 return KVM_ERR_PTR_BAD_PAGE
;
1731 return pfn_to_page(pfn
);
1734 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1738 pfn
= gfn_to_pfn(kvm
, gfn
);
1740 return kvm_pfn_to_page(pfn
);
1742 EXPORT_SYMBOL_GPL(gfn_to_page
);
1744 static int __kvm_map_gfn(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1745 struct kvm_host_map
*map
)
1749 struct page
*page
= KVM_UNMAPPED_PAGE
;
1754 pfn
= gfn_to_pfn_memslot(slot
, gfn
);
1755 if (is_error_noslot_pfn(pfn
))
1758 if (pfn_valid(pfn
)) {
1759 page
= pfn_to_page(pfn
);
1761 #ifdef CONFIG_HAS_IOMEM
1763 hva
= memremap(pfn_to_hpa(pfn
), PAGE_SIZE
, MEMREMAP_WB
);
1778 int kvm_vcpu_map(struct kvm_vcpu
*vcpu
, gfn_t gfn
, struct kvm_host_map
*map
)
1780 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, map
);
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_map
);
1784 void kvm_vcpu_unmap(struct kvm_vcpu
*vcpu
, struct kvm_host_map
*map
,
1795 #ifdef CONFIG_HAS_IOMEM
1801 kvm_vcpu_mark_page_dirty(vcpu
, map
->gfn
);
1802 kvm_release_pfn_dirty(map
->pfn
);
1804 kvm_release_pfn_clean(map
->pfn
);
1810 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap
);
1812 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1816 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1818 return kvm_pfn_to_page(pfn
);
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1822 void kvm_release_page_clean(struct page
*page
)
1824 WARN_ON(is_error_page(page
));
1826 kvm_release_pfn_clean(page_to_pfn(page
));
1828 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1830 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1832 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1833 put_page(pfn_to_page(pfn
));
1835 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1837 void kvm_release_page_dirty(struct page
*page
)
1839 WARN_ON(is_error_page(page
));
1841 kvm_release_pfn_dirty(page_to_pfn(page
));
1843 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1845 void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1847 kvm_set_pfn_dirty(pfn
);
1848 kvm_release_pfn_clean(pfn
);
1850 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1852 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1854 if (!kvm_is_reserved_pfn(pfn
)) {
1855 struct page
*page
= pfn_to_page(pfn
);
1857 if (!PageReserved(page
))
1861 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1863 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1865 if (!kvm_is_reserved_pfn(pfn
))
1866 mark_page_accessed(pfn_to_page(pfn
));
1868 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1870 void kvm_get_pfn(kvm_pfn_t pfn
)
1872 if (!kvm_is_reserved_pfn(pfn
))
1873 get_page(pfn_to_page(pfn
));
1875 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1877 static int next_segment(unsigned long len
, int offset
)
1879 if (len
> PAGE_SIZE
- offset
)
1880 return PAGE_SIZE
- offset
;
1885 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1886 void *data
, int offset
, int len
)
1891 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1892 if (kvm_is_error_hva(addr
))
1894 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1900 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1903 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1905 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1907 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1909 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1910 int offset
, int len
)
1912 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1914 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1916 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1918 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1920 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1922 int offset
= offset_in_page(gpa
);
1925 while ((seg
= next_segment(len
, offset
)) != 0) {
1926 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1936 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1938 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1940 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1942 int offset
= offset_in_page(gpa
);
1945 while ((seg
= next_segment(len
, offset
)) != 0) {
1946 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1956 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1958 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1959 void *data
, int offset
, unsigned long len
)
1964 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1965 if (kvm_is_error_hva(addr
))
1967 pagefault_disable();
1968 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1975 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1978 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1979 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1980 int offset
= offset_in_page(gpa
);
1982 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1984 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1986 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1987 void *data
, unsigned long len
)
1989 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1990 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1991 int offset
= offset_in_page(gpa
);
1993 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1997 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1998 const void *data
, int offset
, int len
)
2003 addr
= gfn_to_hva_memslot(memslot
, gfn
);
2004 if (kvm_is_error_hva(addr
))
2006 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
2009 mark_page_dirty_in_slot(memslot
, gfn
);
2013 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
2014 const void *data
, int offset
, int len
)
2016 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
2018 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
2020 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
2022 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2023 const void *data
, int offset
, int len
)
2025 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2027 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
2029 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
2031 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
2034 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2036 int offset
= offset_in_page(gpa
);
2039 while ((seg
= next_segment(len
, offset
)) != 0) {
2040 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
2050 EXPORT_SYMBOL_GPL(kvm_write_guest
);
2052 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
2055 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2057 int offset
= offset_in_page(gpa
);
2060 while ((seg
= next_segment(len
, offset
)) != 0) {
2061 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
2071 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
2073 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots
*slots
,
2074 struct gfn_to_hva_cache
*ghc
,
2075 gpa_t gpa
, unsigned long len
)
2077 int offset
= offset_in_page(gpa
);
2078 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
2079 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
2080 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
2081 gfn_t nr_pages_avail
;
2082 int r
= start_gfn
<= end_gfn
? 0 : -EINVAL
;
2085 ghc
->generation
= slots
->generation
;
2087 ghc
->hva
= KVM_HVA_ERR_BAD
;
2090 * If the requested region crosses two memslots, we still
2091 * verify that the entire region is valid here.
2093 while (!r
&& start_gfn
<= end_gfn
) {
2094 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
2095 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
2097 if (kvm_is_error_hva(ghc
->hva
))
2099 start_gfn
+= nr_pages_avail
;
2102 /* Use the slow path for cross page reads and writes. */
2103 if (!r
&& nr_pages_needed
== 1)
2106 ghc
->memslot
= NULL
;
2111 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2112 gpa_t gpa
, unsigned long len
)
2114 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2115 return __kvm_gfn_to_hva_cache_init(slots
, ghc
, gpa
, len
);
2117 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
2119 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2120 void *data
, unsigned int offset
,
2123 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2125 gpa_t gpa
= ghc
->gpa
+ offset
;
2127 BUG_ON(len
+ offset
> ghc
->len
);
2129 if (slots
->generation
!= ghc
->generation
)
2130 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
2132 if (unlikely(!ghc
->memslot
))
2133 return kvm_write_guest(kvm
, gpa
, data
, len
);
2135 if (kvm_is_error_hva(ghc
->hva
))
2138 r
= __copy_to_user((void __user
*)ghc
->hva
+ offset
, data
, len
);
2141 mark_page_dirty_in_slot(ghc
->memslot
, gpa
>> PAGE_SHIFT
);
2145 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached
);
2147 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2148 void *data
, unsigned long len
)
2150 return kvm_write_guest_offset_cached(kvm
, ghc
, data
, 0, len
);
2152 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
2154 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2155 void *data
, unsigned long len
)
2157 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2160 BUG_ON(len
> ghc
->len
);
2162 if (slots
->generation
!= ghc
->generation
)
2163 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
2165 if (unlikely(!ghc
->memslot
))
2166 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
2168 if (kvm_is_error_hva(ghc
->hva
))
2171 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
2177 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2179 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2181 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2183 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2185 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2187 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2189 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2191 int offset
= offset_in_page(gpa
);
2194 while ((seg
= next_segment(len
, offset
)) != 0) {
2195 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2204 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2206 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2209 if (memslot
&& memslot
->dirty_bitmap
) {
2210 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2212 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2216 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2218 struct kvm_memory_slot
*memslot
;
2220 memslot
= gfn_to_memslot(kvm
, gfn
);
2221 mark_page_dirty_in_slot(memslot
, gfn
);
2223 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2225 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2227 struct kvm_memory_slot
*memslot
;
2229 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2230 mark_page_dirty_in_slot(memslot
, gfn
);
2232 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2234 void kvm_sigset_activate(struct kvm_vcpu
*vcpu
)
2236 if (!vcpu
->sigset_active
)
2240 * This does a lockless modification of ->real_blocked, which is fine
2241 * because, only current can change ->real_blocked and all readers of
2242 * ->real_blocked don't care as long ->real_blocked is always a subset
2245 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, ¤t
->real_blocked
);
2248 void kvm_sigset_deactivate(struct kvm_vcpu
*vcpu
)
2250 if (!vcpu
->sigset_active
)
2253 sigprocmask(SIG_SETMASK
, ¤t
->real_blocked
, NULL
);
2254 sigemptyset(¤t
->real_blocked
);
2257 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2259 unsigned int old
, val
, grow
, grow_start
;
2261 old
= val
= vcpu
->halt_poll_ns
;
2262 grow_start
= READ_ONCE(halt_poll_ns_grow_start
);
2263 grow
= READ_ONCE(halt_poll_ns_grow
);
2268 if (val
< grow_start
)
2271 if (val
> halt_poll_ns
)
2274 vcpu
->halt_poll_ns
= val
;
2276 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2279 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2281 unsigned int old
, val
, shrink
;
2283 old
= val
= vcpu
->halt_poll_ns
;
2284 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2290 vcpu
->halt_poll_ns
= val
;
2291 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2294 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2297 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2299 if (kvm_arch_vcpu_runnable(vcpu
)) {
2300 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2303 if (kvm_cpu_has_pending_timer(vcpu
))
2305 if (signal_pending(current
))
2310 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2315 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2317 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2320 DECLARE_SWAITQUEUE(wait
);
2321 bool waited
= false;
2324 start
= cur
= ktime_get();
2325 if (vcpu
->halt_poll_ns
&& !kvm_arch_no_poll(vcpu
)) {
2326 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2328 ++vcpu
->stat
.halt_attempted_poll
;
2331 * This sets KVM_REQ_UNHALT if an interrupt
2334 if (kvm_vcpu_check_block(vcpu
) < 0) {
2335 ++vcpu
->stat
.halt_successful_poll
;
2336 if (!vcpu_valid_wakeup(vcpu
))
2337 ++vcpu
->stat
.halt_poll_invalid
;
2341 } while (single_task_running() && ktime_before(cur
, stop
));
2344 kvm_arch_vcpu_blocking(vcpu
);
2347 prepare_to_swait_exclusive(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2349 if (kvm_vcpu_check_block(vcpu
) < 0)
2356 finish_swait(&vcpu
->wq
, &wait
);
2359 kvm_arch_vcpu_unblocking(vcpu
);
2361 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2363 if (!vcpu_valid_wakeup(vcpu
))
2364 shrink_halt_poll_ns(vcpu
);
2365 else if (halt_poll_ns
) {
2366 if (block_ns
<= vcpu
->halt_poll_ns
)
2368 /* we had a long block, shrink polling */
2369 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2370 shrink_halt_poll_ns(vcpu
);
2371 /* we had a short halt and our poll time is too small */
2372 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2373 block_ns
< halt_poll_ns
)
2374 grow_halt_poll_ns(vcpu
);
2376 vcpu
->halt_poll_ns
= 0;
2378 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2379 kvm_arch_vcpu_block_finish(vcpu
);
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2383 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2385 struct swait_queue_head
*wqp
;
2387 wqp
= kvm_arch_vcpu_wq(vcpu
);
2388 if (swq_has_sleeper(wqp
)) {
2390 ++vcpu
->stat
.halt_wakeup
;
2396 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2400 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2402 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2405 int cpu
= vcpu
->cpu
;
2407 if (kvm_vcpu_wake_up(vcpu
))
2411 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2412 if (kvm_arch_vcpu_should_kick(vcpu
))
2413 smp_send_reschedule(cpu
);
2416 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2417 #endif /* !CONFIG_S390 */
2419 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2422 struct task_struct
*task
= NULL
;
2426 pid
= rcu_dereference(target
->pid
);
2428 task
= get_pid_task(pid
, PIDTYPE_PID
);
2432 ret
= yield_to(task
, 1);
2433 put_task_struct(task
);
2437 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2440 * Helper that checks whether a VCPU is eligible for directed yield.
2441 * Most eligible candidate to yield is decided by following heuristics:
2443 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2444 * (preempted lock holder), indicated by @in_spin_loop.
2445 * Set at the beiginning and cleared at the end of interception/PLE handler.
2447 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2448 * chance last time (mostly it has become eligible now since we have probably
2449 * yielded to lockholder in last iteration. This is done by toggling
2450 * @dy_eligible each time a VCPU checked for eligibility.)
2452 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2453 * to preempted lock-holder could result in wrong VCPU selection and CPU
2454 * burning. Giving priority for a potential lock-holder increases lock
2457 * Since algorithm is based on heuristics, accessing another VCPU data without
2458 * locking does not harm. It may result in trying to yield to same VCPU, fail
2459 * and continue with next VCPU and so on.
2461 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2463 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2466 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2467 vcpu
->spin_loop
.dy_eligible
;
2469 if (vcpu
->spin_loop
.in_spin_loop
)
2470 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2478 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
, bool yield_to_kernel_mode
)
2480 struct kvm
*kvm
= me
->kvm
;
2481 struct kvm_vcpu
*vcpu
;
2482 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2488 kvm_vcpu_set_in_spin_loop(me
, true);
2490 * We boost the priority of a VCPU that is runnable but not
2491 * currently running, because it got preempted by something
2492 * else and called schedule in __vcpu_run. Hopefully that
2493 * VCPU is holding the lock that we need and will release it.
2494 * We approximate round-robin by starting at the last boosted VCPU.
2496 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2497 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2498 if (!pass
&& i
<= last_boosted_vcpu
) {
2499 i
= last_boosted_vcpu
;
2501 } else if (pass
&& i
> last_boosted_vcpu
)
2503 if (!READ_ONCE(vcpu
->preempted
))
2507 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2509 if (yield_to_kernel_mode
&& !kvm_arch_vcpu_in_kernel(vcpu
))
2511 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2514 yielded
= kvm_vcpu_yield_to(vcpu
);
2516 kvm
->last_boosted_vcpu
= i
;
2518 } else if (yielded
< 0) {
2525 kvm_vcpu_set_in_spin_loop(me
, false);
2527 /* Ensure vcpu is not eligible during next spinloop */
2528 kvm_vcpu_set_dy_eligible(me
, false);
2530 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2532 static vm_fault_t
kvm_vcpu_fault(struct vm_fault
*vmf
)
2534 struct kvm_vcpu
*vcpu
= vmf
->vma
->vm_file
->private_data
;
2537 if (vmf
->pgoff
== 0)
2538 page
= virt_to_page(vcpu
->run
);
2540 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2541 page
= virt_to_page(vcpu
->arch
.pio_data
);
2543 #ifdef CONFIG_KVM_MMIO
2544 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2545 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2548 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2554 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2555 .fault
= kvm_vcpu_fault
,
2558 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2560 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2564 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2566 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2568 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2569 kvm_put_kvm(vcpu
->kvm
);
2573 static struct file_operations kvm_vcpu_fops
= {
2574 .release
= kvm_vcpu_release
,
2575 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2576 .mmap
= kvm_vcpu_mmap
,
2577 .llseek
= noop_llseek
,
2578 KVM_COMPAT(kvm_vcpu_compat_ioctl
),
2582 * Allocates an inode for the vcpu.
2584 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2586 char name
[8 + 1 + ITOA_MAX_LEN
+ 1];
2588 snprintf(name
, sizeof(name
), "kvm-vcpu:%d", vcpu
->vcpu_id
);
2589 return anon_inode_getfd(name
, &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2592 static int kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2594 char dir_name
[ITOA_MAX_LEN
* 2];
2597 if (!kvm_arch_has_vcpu_debugfs())
2600 if (!debugfs_initialized())
2603 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2604 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2605 vcpu
->kvm
->debugfs_dentry
);
2606 if (!vcpu
->debugfs_dentry
)
2609 ret
= kvm_arch_create_vcpu_debugfs(vcpu
);
2611 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2619 * Creates some virtual cpus. Good luck creating more than one.
2621 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2624 struct kvm_vcpu
*vcpu
;
2626 if (id
>= KVM_MAX_VCPU_ID
)
2629 mutex_lock(&kvm
->lock
);
2630 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
2631 mutex_unlock(&kvm
->lock
);
2635 kvm
->created_vcpus
++;
2636 mutex_unlock(&kvm
->lock
);
2638 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2641 goto vcpu_decrement
;
2644 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2646 r
= kvm_arch_vcpu_setup(vcpu
);
2650 r
= kvm_create_vcpu_debugfs(vcpu
);
2654 mutex_lock(&kvm
->lock
);
2655 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2657 goto unlock_vcpu_destroy
;
2660 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2662 /* Now it's all set up, let userspace reach it */
2664 r
= create_vcpu_fd(vcpu
);
2667 goto unlock_vcpu_destroy
;
2670 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2673 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2674 * before kvm->online_vcpu's incremented value.
2677 atomic_inc(&kvm
->online_vcpus
);
2679 mutex_unlock(&kvm
->lock
);
2680 kvm_arch_vcpu_postcreate(vcpu
);
2683 unlock_vcpu_destroy
:
2684 mutex_unlock(&kvm
->lock
);
2685 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2687 kvm_arch_vcpu_destroy(vcpu
);
2689 mutex_lock(&kvm
->lock
);
2690 kvm
->created_vcpus
--;
2691 mutex_unlock(&kvm
->lock
);
2695 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2698 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2699 vcpu
->sigset_active
= 1;
2700 vcpu
->sigset
= *sigset
;
2702 vcpu
->sigset_active
= 0;
2706 static long kvm_vcpu_ioctl(struct file
*filp
,
2707 unsigned int ioctl
, unsigned long arg
)
2709 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2710 void __user
*argp
= (void __user
*)arg
;
2712 struct kvm_fpu
*fpu
= NULL
;
2713 struct kvm_sregs
*kvm_sregs
= NULL
;
2715 if (vcpu
->kvm
->mm
!= current
->mm
)
2718 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2722 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2723 * execution; mutex_lock() would break them.
2725 r
= kvm_arch_vcpu_async_ioctl(filp
, ioctl
, arg
);
2726 if (r
!= -ENOIOCTLCMD
)
2729 if (mutex_lock_killable(&vcpu
->mutex
))
2737 oldpid
= rcu_access_pointer(vcpu
->pid
);
2738 if (unlikely(oldpid
!= task_pid(current
))) {
2739 /* The thread running this VCPU changed. */
2742 r
= kvm_arch_vcpu_run_pid_change(vcpu
);
2746 newpid
= get_task_pid(current
, PIDTYPE_PID
);
2747 rcu_assign_pointer(vcpu
->pid
, newpid
);
2752 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2753 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2756 case KVM_GET_REGS
: {
2757 struct kvm_regs
*kvm_regs
;
2760 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL_ACCOUNT
);
2763 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2767 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2774 case KVM_SET_REGS
: {
2775 struct kvm_regs
*kvm_regs
;
2778 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2779 if (IS_ERR(kvm_regs
)) {
2780 r
= PTR_ERR(kvm_regs
);
2783 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2787 case KVM_GET_SREGS
: {
2788 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
),
2789 GFP_KERNEL_ACCOUNT
);
2793 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2797 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2802 case KVM_SET_SREGS
: {
2803 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2804 if (IS_ERR(kvm_sregs
)) {
2805 r
= PTR_ERR(kvm_sregs
);
2809 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2812 case KVM_GET_MP_STATE
: {
2813 struct kvm_mp_state mp_state
;
2815 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2819 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2824 case KVM_SET_MP_STATE
: {
2825 struct kvm_mp_state mp_state
;
2828 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2830 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2833 case KVM_TRANSLATE
: {
2834 struct kvm_translation tr
;
2837 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2839 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2843 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2848 case KVM_SET_GUEST_DEBUG
: {
2849 struct kvm_guest_debug dbg
;
2852 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2854 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2857 case KVM_SET_SIGNAL_MASK
: {
2858 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2859 struct kvm_signal_mask kvm_sigmask
;
2860 sigset_t sigset
, *p
;
2865 if (copy_from_user(&kvm_sigmask
, argp
,
2866 sizeof(kvm_sigmask
)))
2869 if (kvm_sigmask
.len
!= sizeof(sigset
))
2872 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2877 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2881 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL_ACCOUNT
);
2885 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2889 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2895 fpu
= memdup_user(argp
, sizeof(*fpu
));
2901 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2905 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2908 mutex_unlock(&vcpu
->mutex
);
2914 #ifdef CONFIG_KVM_COMPAT
2915 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2916 unsigned int ioctl
, unsigned long arg
)
2918 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2919 void __user
*argp
= compat_ptr(arg
);
2922 if (vcpu
->kvm
->mm
!= current
->mm
)
2926 case KVM_SET_SIGNAL_MASK
: {
2927 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2928 struct kvm_signal_mask kvm_sigmask
;
2933 if (copy_from_user(&kvm_sigmask
, argp
,
2934 sizeof(kvm_sigmask
)))
2937 if (kvm_sigmask
.len
!= sizeof(compat_sigset_t
))
2940 if (get_compat_sigset(&sigset
, (void *)sigmask_arg
->sigset
))
2942 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2944 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2948 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2956 static int kvm_device_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2958 struct kvm_device
*dev
= filp
->private_data
;
2961 return dev
->ops
->mmap(dev
, vma
);
2966 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2967 int (*accessor
)(struct kvm_device
*dev
,
2968 struct kvm_device_attr
*attr
),
2971 struct kvm_device_attr attr
;
2976 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2979 return accessor(dev
, &attr
);
2982 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2985 struct kvm_device
*dev
= filp
->private_data
;
2987 if (dev
->kvm
->mm
!= current
->mm
)
2991 case KVM_SET_DEVICE_ATTR
:
2992 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2993 case KVM_GET_DEVICE_ATTR
:
2994 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2995 case KVM_HAS_DEVICE_ATTR
:
2996 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2998 if (dev
->ops
->ioctl
)
2999 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
3005 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
3007 struct kvm_device
*dev
= filp
->private_data
;
3008 struct kvm
*kvm
= dev
->kvm
;
3010 if (dev
->ops
->release
) {
3011 mutex_lock(&kvm
->lock
);
3012 list_del(&dev
->vm_node
);
3013 dev
->ops
->release(dev
);
3014 mutex_unlock(&kvm
->lock
);
3021 static const struct file_operations kvm_device_fops
= {
3022 .unlocked_ioctl
= kvm_device_ioctl
,
3023 .release
= kvm_device_release
,
3024 KVM_COMPAT(kvm_device_ioctl
),
3025 .mmap
= kvm_device_mmap
,
3028 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
3030 if (filp
->f_op
!= &kvm_device_fops
)
3033 return filp
->private_data
;
3036 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
3037 #ifdef CONFIG_KVM_MPIC
3038 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
3039 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
3043 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
3045 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
3048 if (kvm_device_ops_table
[type
] != NULL
)
3051 kvm_device_ops_table
[type
] = ops
;
3055 void kvm_unregister_device_ops(u32 type
)
3057 if (kvm_device_ops_table
[type
] != NULL
)
3058 kvm_device_ops_table
[type
] = NULL
;
3061 static int kvm_ioctl_create_device(struct kvm
*kvm
,
3062 struct kvm_create_device
*cd
)
3064 struct kvm_device_ops
*ops
= NULL
;
3065 struct kvm_device
*dev
;
3066 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
3070 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
3073 type
= array_index_nospec(cd
->type
, ARRAY_SIZE(kvm_device_ops_table
));
3074 ops
= kvm_device_ops_table
[type
];
3081 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL_ACCOUNT
);
3088 mutex_lock(&kvm
->lock
);
3089 ret
= ops
->create(dev
, type
);
3091 mutex_unlock(&kvm
->lock
);
3095 list_add(&dev
->vm_node
, &kvm
->devices
);
3096 mutex_unlock(&kvm
->lock
);
3102 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
3105 mutex_lock(&kvm
->lock
);
3106 list_del(&dev
->vm_node
);
3107 mutex_unlock(&kvm
->lock
);
3116 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
3119 case KVM_CAP_USER_MEMORY
:
3120 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
3121 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
3122 case KVM_CAP_INTERNAL_ERROR_DATA
:
3123 #ifdef CONFIG_HAVE_KVM_MSI
3124 case KVM_CAP_SIGNAL_MSI
:
3126 #ifdef CONFIG_HAVE_KVM_IRQFD
3128 case KVM_CAP_IRQFD_RESAMPLE
:
3130 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
3131 case KVM_CAP_CHECK_EXTENSION_VM
:
3132 case KVM_CAP_ENABLE_CAP_VM
:
3133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3134 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
:
3137 #ifdef CONFIG_KVM_MMIO
3138 case KVM_CAP_COALESCED_MMIO
:
3139 return KVM_COALESCED_MMIO_PAGE_OFFSET
;
3140 case KVM_CAP_COALESCED_PIO
:
3143 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3144 case KVM_CAP_IRQ_ROUTING
:
3145 return KVM_MAX_IRQ_ROUTES
;
3147 #if KVM_ADDRESS_SPACE_NUM > 1
3148 case KVM_CAP_MULTI_ADDRESS_SPACE
:
3149 return KVM_ADDRESS_SPACE_NUM
;
3151 case KVM_CAP_NR_MEMSLOTS
:
3152 return KVM_USER_MEM_SLOTS
;
3156 return kvm_vm_ioctl_check_extension(kvm
, arg
);
3159 int __attribute__((weak
)) kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3160 struct kvm_enable_cap
*cap
)
3165 static int kvm_vm_ioctl_enable_cap_generic(struct kvm
*kvm
,
3166 struct kvm_enable_cap
*cap
)
3169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3170 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
:
3171 if (cap
->flags
|| (cap
->args
[0] & ~1))
3173 kvm
->manual_dirty_log_protect
= cap
->args
[0];
3177 return kvm_vm_ioctl_enable_cap(kvm
, cap
);
3181 static long kvm_vm_ioctl(struct file
*filp
,
3182 unsigned int ioctl
, unsigned long arg
)
3184 struct kvm
*kvm
= filp
->private_data
;
3185 void __user
*argp
= (void __user
*)arg
;
3188 if (kvm
->mm
!= current
->mm
)
3191 case KVM_CREATE_VCPU
:
3192 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
3194 case KVM_ENABLE_CAP
: {
3195 struct kvm_enable_cap cap
;
3198 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3200 r
= kvm_vm_ioctl_enable_cap_generic(kvm
, &cap
);
3203 case KVM_SET_USER_MEMORY_REGION
: {
3204 struct kvm_userspace_memory_region kvm_userspace_mem
;
3207 if (copy_from_user(&kvm_userspace_mem
, argp
,
3208 sizeof(kvm_userspace_mem
)))
3211 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
3214 case KVM_GET_DIRTY_LOG
: {
3215 struct kvm_dirty_log log
;
3218 if (copy_from_user(&log
, argp
, sizeof(log
)))
3220 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3223 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3224 case KVM_CLEAR_DIRTY_LOG
: {
3225 struct kvm_clear_dirty_log log
;
3228 if (copy_from_user(&log
, argp
, sizeof(log
)))
3230 r
= kvm_vm_ioctl_clear_dirty_log(kvm
, &log
);
3234 #ifdef CONFIG_KVM_MMIO
3235 case KVM_REGISTER_COALESCED_MMIO
: {
3236 struct kvm_coalesced_mmio_zone zone
;
3239 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3241 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
3244 case KVM_UNREGISTER_COALESCED_MMIO
: {
3245 struct kvm_coalesced_mmio_zone zone
;
3248 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3250 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
3255 struct kvm_irqfd data
;
3258 if (copy_from_user(&data
, argp
, sizeof(data
)))
3260 r
= kvm_irqfd(kvm
, &data
);
3263 case KVM_IOEVENTFD
: {
3264 struct kvm_ioeventfd data
;
3267 if (copy_from_user(&data
, argp
, sizeof(data
)))
3269 r
= kvm_ioeventfd(kvm
, &data
);
3272 #ifdef CONFIG_HAVE_KVM_MSI
3273 case KVM_SIGNAL_MSI
: {
3277 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3279 r
= kvm_send_userspace_msi(kvm
, &msi
);
3283 #ifdef __KVM_HAVE_IRQ_LINE
3284 case KVM_IRQ_LINE_STATUS
:
3285 case KVM_IRQ_LINE
: {
3286 struct kvm_irq_level irq_event
;
3289 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3292 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3293 ioctl
== KVM_IRQ_LINE_STATUS
);
3298 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3299 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3308 case KVM_SET_GSI_ROUTING
: {
3309 struct kvm_irq_routing routing
;
3310 struct kvm_irq_routing __user
*urouting
;
3311 struct kvm_irq_routing_entry
*entries
= NULL
;
3314 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3317 if (!kvm_arch_can_set_irq_routing(kvm
))
3319 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3325 entries
= vmalloc(array_size(sizeof(*entries
),
3331 if (copy_from_user(entries
, urouting
->entries
,
3332 routing
.nr
* sizeof(*entries
)))
3333 goto out_free_irq_routing
;
3335 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3337 out_free_irq_routing
:
3341 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3342 case KVM_CREATE_DEVICE
: {
3343 struct kvm_create_device cd
;
3346 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3349 r
= kvm_ioctl_create_device(kvm
, &cd
);
3354 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3360 case KVM_CHECK_EXTENSION
:
3361 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3364 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3370 #ifdef CONFIG_KVM_COMPAT
3371 struct compat_kvm_dirty_log
{
3375 compat_uptr_t dirty_bitmap
; /* one bit per page */
3380 static long kvm_vm_compat_ioctl(struct file
*filp
,
3381 unsigned int ioctl
, unsigned long arg
)
3383 struct kvm
*kvm
= filp
->private_data
;
3386 if (kvm
->mm
!= current
->mm
)
3389 case KVM_GET_DIRTY_LOG
: {
3390 struct compat_kvm_dirty_log compat_log
;
3391 struct kvm_dirty_log log
;
3393 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3394 sizeof(compat_log
)))
3396 log
.slot
= compat_log
.slot
;
3397 log
.padding1
= compat_log
.padding1
;
3398 log
.padding2
= compat_log
.padding2
;
3399 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3401 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3405 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3411 static struct file_operations kvm_vm_fops
= {
3412 .release
= kvm_vm_release
,
3413 .unlocked_ioctl
= kvm_vm_ioctl
,
3414 .llseek
= noop_llseek
,
3415 KVM_COMPAT(kvm_vm_compat_ioctl
),
3418 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3424 kvm
= kvm_create_vm(type
);
3426 return PTR_ERR(kvm
);
3427 #ifdef CONFIG_KVM_MMIO
3428 r
= kvm_coalesced_mmio_init(kvm
);
3432 r
= get_unused_fd_flags(O_CLOEXEC
);
3436 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3444 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3445 * already set, with ->release() being kvm_vm_release(). In error
3446 * cases it will be called by the final fput(file) and will take
3447 * care of doing kvm_put_kvm(kvm).
3449 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3454 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM
, kvm
);
3456 fd_install(r
, file
);
3464 static long kvm_dev_ioctl(struct file
*filp
,
3465 unsigned int ioctl
, unsigned long arg
)
3470 case KVM_GET_API_VERSION
:
3473 r
= KVM_API_VERSION
;
3476 r
= kvm_dev_ioctl_create_vm(arg
);
3478 case KVM_CHECK_EXTENSION
:
3479 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3481 case KVM_GET_VCPU_MMAP_SIZE
:
3484 r
= PAGE_SIZE
; /* struct kvm_run */
3486 r
+= PAGE_SIZE
; /* pio data page */
3488 #ifdef CONFIG_KVM_MMIO
3489 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3492 case KVM_TRACE_ENABLE
:
3493 case KVM_TRACE_PAUSE
:
3494 case KVM_TRACE_DISABLE
:
3498 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3504 static struct file_operations kvm_chardev_ops
= {
3505 .unlocked_ioctl
= kvm_dev_ioctl
,
3506 .llseek
= noop_llseek
,
3507 KVM_COMPAT(kvm_dev_ioctl
),
3510 static struct miscdevice kvm_dev
= {
3516 static void hardware_enable_nolock(void *junk
)
3518 int cpu
= raw_smp_processor_id();
3521 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3524 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3526 r
= kvm_arch_hardware_enable();
3529 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3530 atomic_inc(&hardware_enable_failed
);
3531 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3535 static int kvm_starting_cpu(unsigned int cpu
)
3537 raw_spin_lock(&kvm_count_lock
);
3538 if (kvm_usage_count
)
3539 hardware_enable_nolock(NULL
);
3540 raw_spin_unlock(&kvm_count_lock
);
3544 static void hardware_disable_nolock(void *junk
)
3546 int cpu
= raw_smp_processor_id();
3548 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3550 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3551 kvm_arch_hardware_disable();
3554 static int kvm_dying_cpu(unsigned int cpu
)
3556 raw_spin_lock(&kvm_count_lock
);
3557 if (kvm_usage_count
)
3558 hardware_disable_nolock(NULL
);
3559 raw_spin_unlock(&kvm_count_lock
);
3563 static void hardware_disable_all_nolock(void)
3565 BUG_ON(!kvm_usage_count
);
3568 if (!kvm_usage_count
)
3569 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3572 static void hardware_disable_all(void)
3574 raw_spin_lock(&kvm_count_lock
);
3575 hardware_disable_all_nolock();
3576 raw_spin_unlock(&kvm_count_lock
);
3579 static int hardware_enable_all(void)
3583 raw_spin_lock(&kvm_count_lock
);
3586 if (kvm_usage_count
== 1) {
3587 atomic_set(&hardware_enable_failed
, 0);
3588 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3590 if (atomic_read(&hardware_enable_failed
)) {
3591 hardware_disable_all_nolock();
3596 raw_spin_unlock(&kvm_count_lock
);
3601 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3605 * Some (well, at least mine) BIOSes hang on reboot if
3608 * And Intel TXT required VMX off for all cpu when system shutdown.
3610 pr_info("kvm: exiting hardware virtualization\n");
3611 kvm_rebooting
= true;
3612 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3616 static struct notifier_block kvm_reboot_notifier
= {
3617 .notifier_call
= kvm_reboot
,
3621 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3625 for (i
= 0; i
< bus
->dev_count
; i
++) {
3626 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3628 kvm_iodevice_destructor(pos
);
3633 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3634 const struct kvm_io_range
*r2
)
3636 gpa_t addr1
= r1
->addr
;
3637 gpa_t addr2
= r2
->addr
;
3642 /* If r2->len == 0, match the exact address. If r2->len != 0,
3643 * accept any overlapping write. Any order is acceptable for
3644 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3645 * we process all of them.
3658 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3660 return kvm_io_bus_cmp(p1
, p2
);
3663 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3664 gpa_t addr
, int len
)
3666 struct kvm_io_range
*range
, key
;
3669 key
= (struct kvm_io_range
) {
3674 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3675 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3679 off
= range
- bus
->range
;
3681 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3687 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3688 struct kvm_io_range
*range
, const void *val
)
3692 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3696 while (idx
< bus
->dev_count
&&
3697 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3698 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3707 /* kvm_io_bus_write - called under kvm->slots_lock */
3708 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3709 int len
, const void *val
)
3711 struct kvm_io_bus
*bus
;
3712 struct kvm_io_range range
;
3715 range
= (struct kvm_io_range
) {
3720 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3723 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3724 return r
< 0 ? r
: 0;
3726 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3728 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3729 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3730 gpa_t addr
, int len
, const void *val
, long cookie
)
3732 struct kvm_io_bus
*bus
;
3733 struct kvm_io_range range
;
3735 range
= (struct kvm_io_range
) {
3740 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3744 /* First try the device referenced by cookie. */
3745 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3746 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3747 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3752 * cookie contained garbage; fall back to search and return the
3753 * correct cookie value.
3755 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3758 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3759 struct kvm_io_range
*range
, void *val
)
3763 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3767 while (idx
< bus
->dev_count
&&
3768 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3769 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3778 /* kvm_io_bus_read - called under kvm->slots_lock */
3779 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3782 struct kvm_io_bus
*bus
;
3783 struct kvm_io_range range
;
3786 range
= (struct kvm_io_range
) {
3791 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3794 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3795 return r
< 0 ? r
: 0;
3798 /* Caller must hold slots_lock. */
3799 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3800 int len
, struct kvm_io_device
*dev
)
3803 struct kvm_io_bus
*new_bus
, *bus
;
3804 struct kvm_io_range range
;
3806 bus
= kvm_get_bus(kvm
, bus_idx
);
3810 /* exclude ioeventfd which is limited by maximum fd */
3811 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3814 new_bus
= kmalloc(struct_size(bus
, range
, bus
->dev_count
+ 1),
3815 GFP_KERNEL_ACCOUNT
);
3819 range
= (struct kvm_io_range
) {
3825 for (i
= 0; i
< bus
->dev_count
; i
++)
3826 if (kvm_io_bus_cmp(&bus
->range
[i
], &range
) > 0)
3829 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3830 new_bus
->dev_count
++;
3831 new_bus
->range
[i
] = range
;
3832 memcpy(new_bus
->range
+ i
+ 1, bus
->range
+ i
,
3833 (bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3834 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3835 synchronize_srcu_expedited(&kvm
->srcu
);
3841 /* Caller must hold slots_lock. */
3842 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3843 struct kvm_io_device
*dev
)
3846 struct kvm_io_bus
*new_bus
, *bus
;
3848 bus
= kvm_get_bus(kvm
, bus_idx
);
3852 for (i
= 0; i
< bus
->dev_count
; i
++)
3853 if (bus
->range
[i
].dev
== dev
) {
3857 if (i
== bus
->dev_count
)
3860 new_bus
= kmalloc(struct_size(bus
, range
, bus
->dev_count
- 1),
3861 GFP_KERNEL_ACCOUNT
);
3863 pr_err("kvm: failed to shrink bus, removing it completely\n");
3867 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3868 new_bus
->dev_count
--;
3869 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3870 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3873 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3874 synchronize_srcu_expedited(&kvm
->srcu
);
3879 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3882 struct kvm_io_bus
*bus
;
3883 int dev_idx
, srcu_idx
;
3884 struct kvm_io_device
*iodev
= NULL
;
3886 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
3888 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
3892 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
3896 iodev
= bus
->range
[dev_idx
].dev
;
3899 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
3903 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
3905 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3906 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3909 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3912 /* The debugfs files are a reference to the kvm struct which
3913 * is still valid when kvm_destroy_vm is called.
3914 * To avoid the race between open and the removal of the debugfs
3915 * directory we test against the users count.
3917 if (!refcount_inc_not_zero(&stat_data
->kvm
->users_count
))
3920 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3921 kvm_put_kvm(stat_data
->kvm
);
3928 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3930 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3933 simple_attr_release(inode
, file
);
3934 kvm_put_kvm(stat_data
->kvm
);
3939 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3941 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3943 *val
= *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3948 static int vm_stat_clear_per_vm(void *data
, u64 val
)
3950 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3955 *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
) = 0;
3960 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3962 __simple_attr_check_format("%llu\n", 0ull);
3963 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3964 vm_stat_clear_per_vm
, "%llu\n");
3967 static const struct file_operations vm_stat_get_per_vm_fops
= {
3968 .owner
= THIS_MODULE
,
3969 .open
= vm_stat_get_per_vm_open
,
3970 .release
= kvm_debugfs_release
,
3971 .read
= simple_attr_read
,
3972 .write
= simple_attr_write
,
3973 .llseek
= no_llseek
,
3976 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3979 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3980 struct kvm_vcpu
*vcpu
;
3984 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3985 *val
+= *(u64
*)((void *)vcpu
+ stat_data
->offset
);
3990 static int vcpu_stat_clear_per_vm(void *data
, u64 val
)
3993 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3994 struct kvm_vcpu
*vcpu
;
3999 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
4000 *(u64
*)((void *)vcpu
+ stat_data
->offset
) = 0;
4005 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
4007 __simple_attr_check_format("%llu\n", 0ull);
4008 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
4009 vcpu_stat_clear_per_vm
, "%llu\n");
4012 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
4013 .owner
= THIS_MODULE
,
4014 .open
= vcpu_stat_get_per_vm_open
,
4015 .release
= kvm_debugfs_release
,
4016 .read
= simple_attr_read
,
4017 .write
= simple_attr_write
,
4018 .llseek
= no_llseek
,
4021 static const struct file_operations
*stat_fops_per_vm
[] = {
4022 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
4023 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
4026 static int vm_stat_get(void *_offset
, u64
*val
)
4028 unsigned offset
= (long)_offset
;
4030 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
4034 spin_lock(&kvm_lock
);
4035 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4037 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
4040 spin_unlock(&kvm_lock
);
4044 static int vm_stat_clear(void *_offset
, u64 val
)
4046 unsigned offset
= (long)_offset
;
4048 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
4053 spin_lock(&kvm_lock
);
4054 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4056 vm_stat_clear_per_vm((void *)&stat_tmp
, 0);
4058 spin_unlock(&kvm_lock
);
4063 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, vm_stat_clear
, "%llu\n");
4065 static int vcpu_stat_get(void *_offset
, u64
*val
)
4067 unsigned offset
= (long)_offset
;
4069 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
4073 spin_lock(&kvm_lock
);
4074 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4076 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
4079 spin_unlock(&kvm_lock
);
4083 static int vcpu_stat_clear(void *_offset
, u64 val
)
4085 unsigned offset
= (long)_offset
;
4087 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
4092 spin_lock(&kvm_lock
);
4093 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4095 vcpu_stat_clear_per_vm((void *)&stat_tmp
, 0);
4097 spin_unlock(&kvm_lock
);
4102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, vcpu_stat_clear
,
4105 static const struct file_operations
*stat_fops
[] = {
4106 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
4107 [KVM_STAT_VM
] = &vm_stat_fops
,
4110 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
)
4112 struct kobj_uevent_env
*env
;
4113 unsigned long long created
, active
;
4115 if (!kvm_dev
.this_device
|| !kvm
)
4118 spin_lock(&kvm_lock
);
4119 if (type
== KVM_EVENT_CREATE_VM
) {
4120 kvm_createvm_count
++;
4122 } else if (type
== KVM_EVENT_DESTROY_VM
) {
4125 created
= kvm_createvm_count
;
4126 active
= kvm_active_vms
;
4127 spin_unlock(&kvm_lock
);
4129 env
= kzalloc(sizeof(*env
), GFP_KERNEL_ACCOUNT
);
4133 add_uevent_var(env
, "CREATED=%llu", created
);
4134 add_uevent_var(env
, "COUNT=%llu", active
);
4136 if (type
== KVM_EVENT_CREATE_VM
) {
4137 add_uevent_var(env
, "EVENT=create");
4138 kvm
->userspace_pid
= task_pid_nr(current
);
4139 } else if (type
== KVM_EVENT_DESTROY_VM
) {
4140 add_uevent_var(env
, "EVENT=destroy");
4142 add_uevent_var(env
, "PID=%d", kvm
->userspace_pid
);
4144 if (!IS_ERR_OR_NULL(kvm
->debugfs_dentry
)) {
4145 char *tmp
, *p
= kmalloc(PATH_MAX
, GFP_KERNEL_ACCOUNT
);
4148 tmp
= dentry_path_raw(kvm
->debugfs_dentry
, p
, PATH_MAX
);
4150 add_uevent_var(env
, "STATS_PATH=%s", tmp
);
4154 /* no need for checks, since we are adding at most only 5 keys */
4155 env
->envp
[env
->envp_idx
++] = NULL
;
4156 kobject_uevent_env(&kvm_dev
.this_device
->kobj
, KOBJ_CHANGE
, env
->envp
);
4160 static void kvm_init_debug(void)
4162 struct kvm_stats_debugfs_item
*p
;
4164 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
4166 kvm_debugfs_num_entries
= 0;
4167 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
4168 debugfs_create_file(p
->name
, 0644, kvm_debugfs_dir
,
4169 (void *)(long)p
->offset
,
4170 stat_fops
[p
->kind
]);
4174 static int kvm_suspend(void)
4176 if (kvm_usage_count
)
4177 hardware_disable_nolock(NULL
);
4181 static void kvm_resume(void)
4183 if (kvm_usage_count
) {
4184 #ifdef CONFIG_LOCKDEP
4185 WARN_ON(lockdep_is_held(&kvm_count_lock
));
4187 hardware_enable_nolock(NULL
);
4191 static struct syscore_ops kvm_syscore_ops
= {
4192 .suspend
= kvm_suspend
,
4193 .resume
= kvm_resume
,
4197 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
4199 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
4202 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
4204 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
4206 if (vcpu
->preempted
)
4207 vcpu
->preempted
= false;
4209 kvm_arch_sched_in(vcpu
, cpu
);
4211 kvm_arch_vcpu_load(vcpu
, cpu
);
4214 static void kvm_sched_out(struct preempt_notifier
*pn
,
4215 struct task_struct
*next
)
4217 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
4219 if (current
->state
== TASK_RUNNING
)
4220 vcpu
->preempted
= true;
4221 kvm_arch_vcpu_put(vcpu
);
4224 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
4225 struct module
*module
)
4230 r
= kvm_arch_init(opaque
);
4235 * kvm_arch_init makes sure there's at most one caller
4236 * for architectures that support multiple implementations,
4237 * like intel and amd on x86.
4238 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4239 * conflicts in case kvm is already setup for another implementation.
4241 r
= kvm_irqfd_init();
4245 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
4250 r
= kvm_arch_hardware_setup();
4254 for_each_online_cpu(cpu
) {
4255 smp_call_function_single(cpu
,
4256 kvm_arch_check_processor_compat
,
4262 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "kvm/cpu:starting",
4263 kvm_starting_cpu
, kvm_dying_cpu
);
4266 register_reboot_notifier(&kvm_reboot_notifier
);
4268 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4270 vcpu_align
= __alignof__(struct kvm_vcpu
);
4272 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size
, vcpu_align
,
4274 offsetof(struct kvm_vcpu
, arch
),
4275 sizeof_field(struct kvm_vcpu
, arch
),
4277 if (!kvm_vcpu_cache
) {
4282 r
= kvm_async_pf_init();
4286 kvm_chardev_ops
.owner
= module
;
4287 kvm_vm_fops
.owner
= module
;
4288 kvm_vcpu_fops
.owner
= module
;
4290 r
= misc_register(&kvm_dev
);
4292 pr_err("kvm: misc device register failed\n");
4296 register_syscore_ops(&kvm_syscore_ops
);
4298 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
4299 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
4303 r
= kvm_vfio_ops_init();
4309 kvm_async_pf_deinit();
4311 kmem_cache_destroy(kvm_vcpu_cache
);
4313 unregister_reboot_notifier(&kvm_reboot_notifier
);
4314 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4317 kvm_arch_hardware_unsetup();
4319 free_cpumask_var(cpus_hardware_enabled
);
4327 EXPORT_SYMBOL_GPL(kvm_init
);
4331 debugfs_remove_recursive(kvm_debugfs_dir
);
4332 misc_deregister(&kvm_dev
);
4333 kmem_cache_destroy(kvm_vcpu_cache
);
4334 kvm_async_pf_deinit();
4335 unregister_syscore_ops(&kvm_syscore_ops
);
4336 unregister_reboot_notifier(&kvm_reboot_notifier
);
4337 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4338 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4339 kvm_arch_hardware_unsetup();
4342 free_cpumask_var(cpus_hardware_enabled
);
4343 kvm_vfio_ops_exit();
4345 EXPORT_SYMBOL_GPL(kvm_exit
);