1 // SPDX-License-Identifier: GPL-2.0-only
3 * Basic general purpose allocator for managing special purpose
4 * memory, for example, memory that is not managed by the regular
5 * kmalloc/kfree interface. Uses for this includes on-device special
6 * memory, uncached memory etc.
8 * It is safe to use the allocator in NMI handlers and other special
9 * unblockable contexts that could otherwise deadlock on locks. This
10 * is implemented by using atomic operations and retries on any
11 * conflicts. The disadvantage is that there may be livelocks in
12 * extreme cases. For better scalability, one allocator can be used
15 * The lockless operation only works if there is enough memory
16 * available. If new memory is added to the pool a lock has to be
17 * still taken. So any user relying on locklessness has to ensure
18 * that sufficient memory is preallocated.
20 * The basic atomic operation of this allocator is cmpxchg on long.
21 * On architectures that don't have NMI-safe cmpxchg implementation,
22 * the allocator can NOT be used in NMI handler. So code uses the
23 * allocator in NMI handler should depend on
24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/bitmap.h>
32 #include <linux/rculist.h>
33 #include <linux/interrupt.h>
34 #include <linux/genalloc.h>
35 #include <linux/of_device.h>
36 #include <linux/vmalloc.h>
38 static inline size_t chunk_size(const struct gen_pool_chunk
*chunk
)
40 return chunk
->end_addr
- chunk
->start_addr
+ 1;
43 static int set_bits_ll(unsigned long *addr
, unsigned long mask_to_set
)
45 unsigned long val
, nval
;
50 if (val
& mask_to_set
)
53 } while ((nval
= cmpxchg(addr
, val
, val
| mask_to_set
)) != val
);
58 static int clear_bits_ll(unsigned long *addr
, unsigned long mask_to_clear
)
60 unsigned long val
, nval
;
65 if ((val
& mask_to_clear
) != mask_to_clear
)
68 } while ((nval
= cmpxchg(addr
, val
, val
& ~mask_to_clear
)) != val
);
74 * bitmap_set_ll - set the specified number of bits at the specified position
75 * @map: pointer to a bitmap
76 * @start: a bit position in @map
77 * @nr: number of bits to set
79 * Set @nr bits start from @start in @map lock-lessly. Several users
80 * can set/clear the same bitmap simultaneously without lock. If two
81 * users set the same bit, one user will return remain bits, otherwise
84 static int bitmap_set_ll(unsigned long *map
, int start
, int nr
)
86 unsigned long *p
= map
+ BIT_WORD(start
);
87 const int size
= start
+ nr
;
88 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
89 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
91 while (nr
- bits_to_set
>= 0) {
92 if (set_bits_ll(p
, mask_to_set
))
95 bits_to_set
= BITS_PER_LONG
;
100 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
101 if (set_bits_ll(p
, mask_to_set
))
109 * bitmap_clear_ll - clear the specified number of bits at the specified position
110 * @map: pointer to a bitmap
111 * @start: a bit position in @map
112 * @nr: number of bits to set
114 * Clear @nr bits start from @start in @map lock-lessly. Several users
115 * can set/clear the same bitmap simultaneously without lock. If two
116 * users clear the same bit, one user will return remain bits,
117 * otherwise return 0.
119 static int bitmap_clear_ll(unsigned long *map
, int start
, int nr
)
121 unsigned long *p
= map
+ BIT_WORD(start
);
122 const int size
= start
+ nr
;
123 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
124 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
126 while (nr
- bits_to_clear
>= 0) {
127 if (clear_bits_ll(p
, mask_to_clear
))
130 bits_to_clear
= BITS_PER_LONG
;
131 mask_to_clear
= ~0UL;
135 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
136 if (clear_bits_ll(p
, mask_to_clear
))
144 * gen_pool_create - create a new special memory pool
145 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
146 * @nid: node id of the node the pool structure should be allocated on, or -1
148 * Create a new special memory pool that can be used to manage special purpose
149 * memory not managed by the regular kmalloc/kfree interface.
151 struct gen_pool
*gen_pool_create(int min_alloc_order
, int nid
)
153 struct gen_pool
*pool
;
155 pool
= kmalloc_node(sizeof(struct gen_pool
), GFP_KERNEL
, nid
);
157 spin_lock_init(&pool
->lock
);
158 INIT_LIST_HEAD(&pool
->chunks
);
159 pool
->min_alloc_order
= min_alloc_order
;
160 pool
->algo
= gen_pool_first_fit
;
166 EXPORT_SYMBOL(gen_pool_create
);
169 * gen_pool_add_owner- add a new chunk of special memory to the pool
170 * @pool: pool to add new memory chunk to
171 * @virt: virtual starting address of memory chunk to add to pool
172 * @phys: physical starting address of memory chunk to add to pool
173 * @size: size in bytes of the memory chunk to add to pool
174 * @nid: node id of the node the chunk structure and bitmap should be
175 * allocated on, or -1
176 * @owner: private data the publisher would like to recall at alloc time
178 * Add a new chunk of special memory to the specified pool.
180 * Returns 0 on success or a -ve errno on failure.
182 int gen_pool_add_owner(struct gen_pool
*pool
, unsigned long virt
, phys_addr_t phys
,
183 size_t size
, int nid
, void *owner
)
185 struct gen_pool_chunk
*chunk
;
186 int nbits
= size
>> pool
->min_alloc_order
;
187 int nbytes
= sizeof(struct gen_pool_chunk
) +
188 BITS_TO_LONGS(nbits
) * sizeof(long);
190 chunk
= vzalloc_node(nbytes
, nid
);
191 if (unlikely(chunk
== NULL
))
194 chunk
->phys_addr
= phys
;
195 chunk
->start_addr
= virt
;
196 chunk
->end_addr
= virt
+ size
- 1;
197 chunk
->owner
= owner
;
198 atomic_long_set(&chunk
->avail
, size
);
200 spin_lock(&pool
->lock
);
201 list_add_rcu(&chunk
->next_chunk
, &pool
->chunks
);
202 spin_unlock(&pool
->lock
);
206 EXPORT_SYMBOL(gen_pool_add_owner
);
209 * gen_pool_virt_to_phys - return the physical address of memory
210 * @pool: pool to allocate from
211 * @addr: starting address of memory
213 * Returns the physical address on success, or -1 on error.
215 phys_addr_t
gen_pool_virt_to_phys(struct gen_pool
*pool
, unsigned long addr
)
217 struct gen_pool_chunk
*chunk
;
218 phys_addr_t paddr
= -1;
221 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
222 if (addr
>= chunk
->start_addr
&& addr
<= chunk
->end_addr
) {
223 paddr
= chunk
->phys_addr
+ (addr
- chunk
->start_addr
);
231 EXPORT_SYMBOL(gen_pool_virt_to_phys
);
234 * gen_pool_destroy - destroy a special memory pool
235 * @pool: pool to destroy
237 * Destroy the specified special memory pool. Verifies that there are no
238 * outstanding allocations.
240 void gen_pool_destroy(struct gen_pool
*pool
)
242 struct list_head
*_chunk
, *_next_chunk
;
243 struct gen_pool_chunk
*chunk
;
244 int order
= pool
->min_alloc_order
;
247 list_for_each_safe(_chunk
, _next_chunk
, &pool
->chunks
) {
248 chunk
= list_entry(_chunk
, struct gen_pool_chunk
, next_chunk
);
249 list_del(&chunk
->next_chunk
);
251 end_bit
= chunk_size(chunk
) >> order
;
252 bit
= find_next_bit(chunk
->bits
, end_bit
, 0);
253 BUG_ON(bit
< end_bit
);
257 kfree_const(pool
->name
);
260 EXPORT_SYMBOL(gen_pool_destroy
);
263 * gen_pool_alloc_algo_owner - allocate special memory from the pool
264 * @pool: pool to allocate from
265 * @size: number of bytes to allocate from the pool
266 * @algo: algorithm passed from caller
267 * @data: data passed to algorithm
268 * @owner: optionally retrieve the chunk owner
270 * Allocate the requested number of bytes from the specified pool.
271 * Uses the pool allocation function (with first-fit algorithm by default).
272 * Can not be used in NMI handler on architectures without
273 * NMI-safe cmpxchg implementation.
275 unsigned long gen_pool_alloc_algo_owner(struct gen_pool
*pool
, size_t size
,
276 genpool_algo_t algo
, void *data
, void **owner
)
278 struct gen_pool_chunk
*chunk
;
279 unsigned long addr
= 0;
280 int order
= pool
->min_alloc_order
;
281 int nbits
, start_bit
, end_bit
, remain
;
283 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
293 nbits
= (size
+ (1UL << order
) - 1) >> order
;
295 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
296 if (size
> atomic_long_read(&chunk
->avail
))
300 end_bit
= chunk_size(chunk
) >> order
;
302 start_bit
= algo(chunk
->bits
, end_bit
, start_bit
,
303 nbits
, data
, pool
, chunk
->start_addr
);
304 if (start_bit
>= end_bit
)
306 remain
= bitmap_set_ll(chunk
->bits
, start_bit
, nbits
);
308 remain
= bitmap_clear_ll(chunk
->bits
, start_bit
,
314 addr
= chunk
->start_addr
+ ((unsigned long)start_bit
<< order
);
315 size
= nbits
<< order
;
316 atomic_long_sub(size
, &chunk
->avail
);
318 *owner
= chunk
->owner
;
324 EXPORT_SYMBOL(gen_pool_alloc_algo_owner
);
327 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
328 * @pool: pool to allocate from
329 * @size: number of bytes to allocate from the pool
330 * @dma: dma-view physical address return value. Use NULL if unneeded.
332 * Allocate the requested number of bytes from the specified pool.
333 * Uses the pool allocation function (with first-fit algorithm by default).
334 * Can not be used in NMI handler on architectures without
335 * NMI-safe cmpxchg implementation.
337 void *gen_pool_dma_alloc(struct gen_pool
*pool
, size_t size
, dma_addr_t
*dma
)
344 vaddr
= gen_pool_alloc(pool
, size
);
349 *dma
= gen_pool_virt_to_phys(pool
, vaddr
);
351 return (void *)vaddr
;
353 EXPORT_SYMBOL(gen_pool_dma_alloc
);
356 * gen_pool_free - free allocated special memory back to the pool
357 * @pool: pool to free to
358 * @addr: starting address of memory to free back to pool
359 * @size: size in bytes of memory to free
360 * @owner: private data stashed at gen_pool_add() time
362 * Free previously allocated special memory back to the specified
363 * pool. Can not be used in NMI handler on architectures without
364 * NMI-safe cmpxchg implementation.
366 void gen_pool_free_owner(struct gen_pool
*pool
, unsigned long addr
, size_t size
,
369 struct gen_pool_chunk
*chunk
;
370 int order
= pool
->min_alloc_order
;
371 int start_bit
, nbits
, remain
;
373 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
380 nbits
= (size
+ (1UL << order
) - 1) >> order
;
382 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
383 if (addr
>= chunk
->start_addr
&& addr
<= chunk
->end_addr
) {
384 BUG_ON(addr
+ size
- 1 > chunk
->end_addr
);
385 start_bit
= (addr
- chunk
->start_addr
) >> order
;
386 remain
= bitmap_clear_ll(chunk
->bits
, start_bit
, nbits
);
388 size
= nbits
<< order
;
389 atomic_long_add(size
, &chunk
->avail
);
391 *owner
= chunk
->owner
;
399 EXPORT_SYMBOL(gen_pool_free_owner
);
402 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
403 * @pool: the generic memory pool
404 * @func: func to call
405 * @data: additional data used by @func
407 * Call @func for every chunk of generic memory pool. The @func is
408 * called with rcu_read_lock held.
410 void gen_pool_for_each_chunk(struct gen_pool
*pool
,
411 void (*func
)(struct gen_pool
*pool
, struct gen_pool_chunk
*chunk
, void *data
),
414 struct gen_pool_chunk
*chunk
;
417 list_for_each_entry_rcu(chunk
, &(pool
)->chunks
, next_chunk
)
418 func(pool
, chunk
, data
);
421 EXPORT_SYMBOL(gen_pool_for_each_chunk
);
424 * addr_in_gen_pool - checks if an address falls within the range of a pool
425 * @pool: the generic memory pool
426 * @start: start address
427 * @size: size of the region
429 * Check if the range of addresses falls within the specified pool. Returns
430 * true if the entire range is contained in the pool and false otherwise.
432 bool addr_in_gen_pool(struct gen_pool
*pool
, unsigned long start
,
436 unsigned long end
= start
+ size
- 1;
437 struct gen_pool_chunk
*chunk
;
440 list_for_each_entry_rcu(chunk
, &(pool
)->chunks
, next_chunk
) {
441 if (start
>= chunk
->start_addr
&& start
<= chunk
->end_addr
) {
442 if (end
<= chunk
->end_addr
) {
453 * gen_pool_avail - get available free space of the pool
454 * @pool: pool to get available free space
456 * Return available free space of the specified pool.
458 size_t gen_pool_avail(struct gen_pool
*pool
)
460 struct gen_pool_chunk
*chunk
;
464 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
)
465 avail
+= atomic_long_read(&chunk
->avail
);
469 EXPORT_SYMBOL_GPL(gen_pool_avail
);
472 * gen_pool_size - get size in bytes of memory managed by the pool
473 * @pool: pool to get size
475 * Return size in bytes of memory managed by the pool.
477 size_t gen_pool_size(struct gen_pool
*pool
)
479 struct gen_pool_chunk
*chunk
;
483 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
)
484 size
+= chunk_size(chunk
);
488 EXPORT_SYMBOL_GPL(gen_pool_size
);
491 * gen_pool_set_algo - set the allocation algorithm
492 * @pool: pool to change allocation algorithm
493 * @algo: custom algorithm function
494 * @data: additional data used by @algo
496 * Call @algo for each memory allocation in the pool.
497 * If @algo is NULL use gen_pool_first_fit as default
498 * memory allocation function.
500 void gen_pool_set_algo(struct gen_pool
*pool
, genpool_algo_t algo
, void *data
)
506 pool
->algo
= gen_pool_first_fit
;
512 EXPORT_SYMBOL(gen_pool_set_algo
);
515 * gen_pool_first_fit - find the first available region
516 * of memory matching the size requirement (no alignment constraint)
517 * @map: The address to base the search on
518 * @size: The bitmap size in bits
519 * @start: The bitnumber to start searching at
520 * @nr: The number of zeroed bits we're looking for
521 * @data: additional data - unused
522 * @pool: pool to find the fit region memory from
524 unsigned long gen_pool_first_fit(unsigned long *map
, unsigned long size
,
525 unsigned long start
, unsigned int nr
, void *data
,
526 struct gen_pool
*pool
, unsigned long start_addr
)
528 return bitmap_find_next_zero_area(map
, size
, start
, nr
, 0);
530 EXPORT_SYMBOL(gen_pool_first_fit
);
533 * gen_pool_first_fit_align - find the first available region
534 * of memory matching the size requirement (alignment constraint)
535 * @map: The address to base the search on
536 * @size: The bitmap size in bits
537 * @start: The bitnumber to start searching at
538 * @nr: The number of zeroed bits we're looking for
539 * @data: data for alignment
540 * @pool: pool to get order from
542 unsigned long gen_pool_first_fit_align(unsigned long *map
, unsigned long size
,
543 unsigned long start
, unsigned int nr
, void *data
,
544 struct gen_pool
*pool
, unsigned long start_addr
)
546 struct genpool_data_align
*alignment
;
547 unsigned long align_mask
, align_off
;
551 order
= pool
->min_alloc_order
;
552 align_mask
= ((alignment
->align
+ (1UL << order
) - 1) >> order
) - 1;
553 align_off
= (start_addr
& (alignment
->align
- 1)) >> order
;
555 return bitmap_find_next_zero_area_off(map
, size
, start
, nr
,
556 align_mask
, align_off
);
558 EXPORT_SYMBOL(gen_pool_first_fit_align
);
561 * gen_pool_fixed_alloc - reserve a specific region
562 * @map: The address to base the search on
563 * @size: The bitmap size in bits
564 * @start: The bitnumber to start searching at
565 * @nr: The number of zeroed bits we're looking for
566 * @data: data for alignment
567 * @pool: pool to get order from
569 unsigned long gen_pool_fixed_alloc(unsigned long *map
, unsigned long size
,
570 unsigned long start
, unsigned int nr
, void *data
,
571 struct gen_pool
*pool
, unsigned long start_addr
)
573 struct genpool_data_fixed
*fixed_data
;
575 unsigned long offset_bit
;
576 unsigned long start_bit
;
579 order
= pool
->min_alloc_order
;
580 offset_bit
= fixed_data
->offset
>> order
;
581 if (WARN_ON(fixed_data
->offset
& ((1UL << order
) - 1)))
584 start_bit
= bitmap_find_next_zero_area(map
, size
,
585 start
+ offset_bit
, nr
, 0);
586 if (start_bit
!= offset_bit
)
590 EXPORT_SYMBOL(gen_pool_fixed_alloc
);
593 * gen_pool_first_fit_order_align - find the first available region
594 * of memory matching the size requirement. The region will be aligned
595 * to the order of the size specified.
596 * @map: The address to base the search on
597 * @size: The bitmap size in bits
598 * @start: The bitnumber to start searching at
599 * @nr: The number of zeroed bits we're looking for
600 * @data: additional data - unused
601 * @pool: pool to find the fit region memory from
603 unsigned long gen_pool_first_fit_order_align(unsigned long *map
,
604 unsigned long size
, unsigned long start
,
605 unsigned int nr
, void *data
, struct gen_pool
*pool
,
606 unsigned long start_addr
)
608 unsigned long align_mask
= roundup_pow_of_two(nr
) - 1;
610 return bitmap_find_next_zero_area(map
, size
, start
, nr
, align_mask
);
612 EXPORT_SYMBOL(gen_pool_first_fit_order_align
);
615 * gen_pool_best_fit - find the best fitting region of memory
616 * macthing the size requirement (no alignment constraint)
617 * @map: The address to base the search on
618 * @size: The bitmap size in bits
619 * @start: The bitnumber to start searching at
620 * @nr: The number of zeroed bits we're looking for
621 * @data: additional data - unused
622 * @pool: pool to find the fit region memory from
624 * Iterate over the bitmap to find the smallest free region
625 * which we can allocate the memory.
627 unsigned long gen_pool_best_fit(unsigned long *map
, unsigned long size
,
628 unsigned long start
, unsigned int nr
, void *data
,
629 struct gen_pool
*pool
, unsigned long start_addr
)
631 unsigned long start_bit
= size
;
632 unsigned long len
= size
+ 1;
635 index
= bitmap_find_next_zero_area(map
, size
, start
, nr
, 0);
637 while (index
< size
) {
638 int next_bit
= find_next_bit(map
, size
, index
+ nr
);
639 if ((next_bit
- index
) < len
) {
640 len
= next_bit
- index
;
645 index
= bitmap_find_next_zero_area(map
, size
,
646 next_bit
+ 1, nr
, 0);
651 EXPORT_SYMBOL(gen_pool_best_fit
);
653 static void devm_gen_pool_release(struct device
*dev
, void *res
)
655 gen_pool_destroy(*(struct gen_pool
**)res
);
658 static int devm_gen_pool_match(struct device
*dev
, void *res
, void *data
)
660 struct gen_pool
**p
= res
;
662 /* NULL data matches only a pool without an assigned name */
663 if (!data
&& !(*p
)->name
)
666 if (!data
|| !(*p
)->name
)
669 return !strcmp((*p
)->name
, data
);
673 * gen_pool_get - Obtain the gen_pool (if any) for a device
674 * @dev: device to retrieve the gen_pool from
675 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
677 * Returns the gen_pool for the device if one is present, or NULL.
679 struct gen_pool
*gen_pool_get(struct device
*dev
, const char *name
)
683 p
= devres_find(dev
, devm_gen_pool_release
, devm_gen_pool_match
,
689 EXPORT_SYMBOL_GPL(gen_pool_get
);
692 * devm_gen_pool_create - managed gen_pool_create
693 * @dev: device that provides the gen_pool
694 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
695 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
696 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
698 * Create a new special memory pool that can be used to manage special purpose
699 * memory not managed by the regular kmalloc/kfree interface. The pool will be
700 * automatically destroyed by the device management code.
702 struct gen_pool
*devm_gen_pool_create(struct device
*dev
, int min_alloc_order
,
703 int nid
, const char *name
)
705 struct gen_pool
**ptr
, *pool
;
706 const char *pool_name
= NULL
;
708 /* Check that genpool to be created is uniquely addressed on device */
709 if (gen_pool_get(dev
, name
))
710 return ERR_PTR(-EINVAL
);
713 pool_name
= kstrdup_const(name
, GFP_KERNEL
);
715 return ERR_PTR(-ENOMEM
);
718 ptr
= devres_alloc(devm_gen_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
722 pool
= gen_pool_create(min_alloc_order
, nid
);
727 pool
->name
= pool_name
;
728 devres_add(dev
, ptr
);
735 kfree_const(pool_name
);
737 return ERR_PTR(-ENOMEM
);
739 EXPORT_SYMBOL(devm_gen_pool_create
);
743 * of_gen_pool_get - find a pool by phandle property
745 * @propname: property name containing phandle(s)
746 * @index: index into the phandle array
748 * Returns the pool that contains the chunk starting at the physical
749 * address of the device tree node pointed at by the phandle property,
750 * or NULL if not found.
752 struct gen_pool
*of_gen_pool_get(struct device_node
*np
,
753 const char *propname
, int index
)
755 struct platform_device
*pdev
;
756 struct device_node
*np_pool
, *parent
;
757 const char *name
= NULL
;
758 struct gen_pool
*pool
= NULL
;
760 np_pool
= of_parse_phandle(np
, propname
, index
);
764 pdev
= of_find_device_by_node(np_pool
);
766 /* Check if named gen_pool is created by parent node device */
767 parent
= of_get_parent(np_pool
);
768 pdev
= of_find_device_by_node(parent
);
771 of_property_read_string(np_pool
, "label", &name
);
773 name
= np_pool
->name
;
776 pool
= gen_pool_get(&pdev
->dev
, name
);
777 of_node_put(np_pool
);
781 EXPORT_SYMBOL_GPL(of_gen_pool_get
);
782 #endif /* CONFIG_OF */