1 // SPDX-License-Identifier: GPL-2.0-or-later
4 (C) 1999 Andrea Arcangeli <andrea@suse.de>
5 (C) 2002 David Woodhouse <dwmw2@infradead.org>
6 (C) 2012 Michel Lespinasse <walken@google.com>
12 #include <linux/rbtree_augmented.h>
13 #include <linux/export.h>
16 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
18 * 1) A node is either red or black
19 * 2) The root is black
20 * 3) All leaves (NULL) are black
21 * 4) Both children of every red node are black
22 * 5) Every simple path from root to leaves contains the same number
25 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
26 * consecutive red nodes in a path and every red node is therefore followed by
27 * a black. So if B is the number of black nodes on every simple path (as per
28 * 5), then the longest possible path due to 4 is 2B.
30 * We shall indicate color with case, where black nodes are uppercase and red
31 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
32 * parentheses and have some accompanying text comment.
36 * Notes on lockless lookups:
38 * All stores to the tree structure (rb_left and rb_right) must be done using
39 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
40 * tree structure as seen in program order.
42 * These two requirements will allow lockless iteration of the tree -- not
43 * correct iteration mind you, tree rotations are not atomic so a lookup might
44 * miss entire subtrees.
46 * But they do guarantee that any such traversal will only see valid elements
47 * and that it will indeed complete -- does not get stuck in a loop.
49 * It also guarantees that if the lookup returns an element it is the 'correct'
50 * one. But not returning an element does _NOT_ mean it's not present.
54 * Stores to __rb_parent_color are not important for simple lookups so those
55 * are left undone as of now. Nor did I check for loops involving parent
59 static inline void rb_set_black(struct rb_node
*rb
)
61 rb
->__rb_parent_color
|= RB_BLACK
;
64 static inline struct rb_node
*rb_red_parent(struct rb_node
*red
)
66 return (struct rb_node
*)red
->__rb_parent_color
;
70 * Helper function for rotations:
71 * - old's parent and color get assigned to new
72 * - old gets assigned new as a parent and 'color' as a color.
75 __rb_rotate_set_parents(struct rb_node
*old
, struct rb_node
*new,
76 struct rb_root
*root
, int color
)
78 struct rb_node
*parent
= rb_parent(old
);
79 new->__rb_parent_color
= old
->__rb_parent_color
;
80 rb_set_parent_color(old
, new, color
);
81 __rb_change_child(old
, new, parent
, root
);
84 static __always_inline
void
85 __rb_insert(struct rb_node
*node
, struct rb_root
*root
,
86 bool newleft
, struct rb_node
**leftmost
,
87 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
89 struct rb_node
*parent
= rb_red_parent(node
), *gparent
, *tmp
;
96 * Loop invariant: node is red.
98 if (unlikely(!parent
)) {
100 * The inserted node is root. Either this is the
101 * first node, or we recursed at Case 1 below and
102 * are no longer violating 4).
104 rb_set_parent_color(node
, NULL
, RB_BLACK
);
109 * If there is a black parent, we are done.
110 * Otherwise, take some corrective action as,
111 * per 4), we don't want a red root or two
112 * consecutive red nodes.
114 if(rb_is_black(parent
))
117 gparent
= rb_red_parent(parent
);
119 tmp
= gparent
->rb_right
;
120 if (parent
!= tmp
) { /* parent == gparent->rb_left */
121 if (tmp
&& rb_is_red(tmp
)) {
123 * Case 1 - node's uncle is red (color flips).
131 * However, since g's parent might be red, and
132 * 4) does not allow this, we need to recurse
135 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
136 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
138 parent
= rb_parent(node
);
139 rb_set_parent_color(node
, parent
, RB_RED
);
143 tmp
= parent
->rb_right
;
146 * Case 2 - node's uncle is black and node is
147 * the parent's right child (left rotate at parent).
155 * This still leaves us in violation of 4), the
156 * continuation into Case 3 will fix that.
159 WRITE_ONCE(parent
->rb_right
, tmp
);
160 WRITE_ONCE(node
->rb_left
, parent
);
162 rb_set_parent_color(tmp
, parent
,
164 rb_set_parent_color(parent
, node
, RB_RED
);
165 augment_rotate(parent
, node
);
167 tmp
= node
->rb_right
;
171 * Case 3 - node's uncle is black and node is
172 * the parent's left child (right rotate at gparent).
180 WRITE_ONCE(gparent
->rb_left
, tmp
); /* == parent->rb_right */
181 WRITE_ONCE(parent
->rb_right
, gparent
);
183 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
184 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
185 augment_rotate(gparent
, parent
);
188 tmp
= gparent
->rb_left
;
189 if (tmp
&& rb_is_red(tmp
)) {
190 /* Case 1 - color flips */
191 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
192 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
194 parent
= rb_parent(node
);
195 rb_set_parent_color(node
, parent
, RB_RED
);
199 tmp
= parent
->rb_left
;
201 /* Case 2 - right rotate at parent */
202 tmp
= node
->rb_right
;
203 WRITE_ONCE(parent
->rb_left
, tmp
);
204 WRITE_ONCE(node
->rb_right
, parent
);
206 rb_set_parent_color(tmp
, parent
,
208 rb_set_parent_color(parent
, node
, RB_RED
);
209 augment_rotate(parent
, node
);
214 /* Case 3 - left rotate at gparent */
215 WRITE_ONCE(gparent
->rb_right
, tmp
); /* == parent->rb_left */
216 WRITE_ONCE(parent
->rb_left
, gparent
);
218 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
219 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
220 augment_rotate(gparent
, parent
);
227 * Inline version for rb_erase() use - we want to be able to inline
228 * and eliminate the dummy_rotate callback there
230 static __always_inline
void
231 ____rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
232 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
234 struct rb_node
*node
= NULL
, *sibling
, *tmp1
, *tmp2
;
239 * - node is black (or NULL on first iteration)
240 * - node is not the root (parent is not NULL)
241 * - All leaf paths going through parent and node have a
242 * black node count that is 1 lower than other leaf paths.
244 sibling
= parent
->rb_right
;
245 if (node
!= sibling
) { /* node == parent->rb_left */
246 if (rb_is_red(sibling
)) {
248 * Case 1 - left rotate at parent
256 tmp1
= sibling
->rb_left
;
257 WRITE_ONCE(parent
->rb_right
, tmp1
);
258 WRITE_ONCE(sibling
->rb_left
, parent
);
259 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
260 __rb_rotate_set_parents(parent
, sibling
, root
,
262 augment_rotate(parent
, sibling
);
265 tmp1
= sibling
->rb_right
;
266 if (!tmp1
|| rb_is_black(tmp1
)) {
267 tmp2
= sibling
->rb_left
;
268 if (!tmp2
|| rb_is_black(tmp2
)) {
270 * Case 2 - sibling color flip
271 * (p could be either color here)
279 * This leaves us violating 5) which
280 * can be fixed by flipping p to black
281 * if it was red, or by recursing at p.
282 * p is red when coming from Case 1.
284 rb_set_parent_color(sibling
, parent
,
286 if (rb_is_red(parent
))
287 rb_set_black(parent
);
290 parent
= rb_parent(node
);
297 * Case 3 - right rotate at sibling
298 * (p could be either color here)
308 * Note: p might be red, and then both
309 * p and sl are red after rotation(which
310 * breaks property 4). This is fixed in
311 * Case 4 (in __rb_rotate_set_parents()
312 * which set sl the color of p
313 * and set p RB_BLACK)
323 tmp1
= tmp2
->rb_right
;
324 WRITE_ONCE(sibling
->rb_left
, tmp1
);
325 WRITE_ONCE(tmp2
->rb_right
, sibling
);
326 WRITE_ONCE(parent
->rb_right
, tmp2
);
328 rb_set_parent_color(tmp1
, sibling
,
330 augment_rotate(sibling
, tmp2
);
335 * Case 4 - left rotate at parent + color flips
336 * (p and sl could be either color here.
337 * After rotation, p becomes black, s acquires
338 * p's color, and sl keeps its color)
346 tmp2
= sibling
->rb_left
;
347 WRITE_ONCE(parent
->rb_right
, tmp2
);
348 WRITE_ONCE(sibling
->rb_left
, parent
);
349 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
351 rb_set_parent(tmp2
, parent
);
352 __rb_rotate_set_parents(parent
, sibling
, root
,
354 augment_rotate(parent
, sibling
);
357 sibling
= parent
->rb_left
;
358 if (rb_is_red(sibling
)) {
359 /* Case 1 - right rotate at parent */
360 tmp1
= sibling
->rb_right
;
361 WRITE_ONCE(parent
->rb_left
, tmp1
);
362 WRITE_ONCE(sibling
->rb_right
, parent
);
363 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
364 __rb_rotate_set_parents(parent
, sibling
, root
,
366 augment_rotate(parent
, sibling
);
369 tmp1
= sibling
->rb_left
;
370 if (!tmp1
|| rb_is_black(tmp1
)) {
371 tmp2
= sibling
->rb_right
;
372 if (!tmp2
|| rb_is_black(tmp2
)) {
373 /* Case 2 - sibling color flip */
374 rb_set_parent_color(sibling
, parent
,
376 if (rb_is_red(parent
))
377 rb_set_black(parent
);
380 parent
= rb_parent(node
);
386 /* Case 3 - left rotate at sibling */
387 tmp1
= tmp2
->rb_left
;
388 WRITE_ONCE(sibling
->rb_right
, tmp1
);
389 WRITE_ONCE(tmp2
->rb_left
, sibling
);
390 WRITE_ONCE(parent
->rb_left
, tmp2
);
392 rb_set_parent_color(tmp1
, sibling
,
394 augment_rotate(sibling
, tmp2
);
398 /* Case 4 - right rotate at parent + color flips */
399 tmp2
= sibling
->rb_right
;
400 WRITE_ONCE(parent
->rb_left
, tmp2
);
401 WRITE_ONCE(sibling
->rb_right
, parent
);
402 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
404 rb_set_parent(tmp2
, parent
);
405 __rb_rotate_set_parents(parent
, sibling
, root
,
407 augment_rotate(parent
, sibling
);
413 /* Non-inline version for rb_erase_augmented() use */
414 void __rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
415 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
417 ____rb_erase_color(parent
, root
, augment_rotate
);
419 EXPORT_SYMBOL(__rb_erase_color
);
422 * Non-augmented rbtree manipulation functions.
424 * We use dummy augmented callbacks here, and have the compiler optimize them
425 * out of the rb_insert_color() and rb_erase() function definitions.
428 static inline void dummy_propagate(struct rb_node
*node
, struct rb_node
*stop
) {}
429 static inline void dummy_copy(struct rb_node
*old
, struct rb_node
*new) {}
430 static inline void dummy_rotate(struct rb_node
*old
, struct rb_node
*new) {}
432 static const struct rb_augment_callbacks dummy_callbacks
= {
433 .propagate
= dummy_propagate
,
435 .rotate
= dummy_rotate
438 void rb_insert_color(struct rb_node
*node
, struct rb_root
*root
)
440 __rb_insert(node
, root
, false, NULL
, dummy_rotate
);
442 EXPORT_SYMBOL(rb_insert_color
);
444 void rb_erase(struct rb_node
*node
, struct rb_root
*root
)
446 struct rb_node
*rebalance
;
447 rebalance
= __rb_erase_augmented(node
, root
,
448 NULL
, &dummy_callbacks
);
450 ____rb_erase_color(rebalance
, root
, dummy_rotate
);
452 EXPORT_SYMBOL(rb_erase
);
454 void rb_insert_color_cached(struct rb_node
*node
,
455 struct rb_root_cached
*root
, bool leftmost
)
457 __rb_insert(node
, &root
->rb_root
, leftmost
,
458 &root
->rb_leftmost
, dummy_rotate
);
460 EXPORT_SYMBOL(rb_insert_color_cached
);
462 void rb_erase_cached(struct rb_node
*node
, struct rb_root_cached
*root
)
464 struct rb_node
*rebalance
;
465 rebalance
= __rb_erase_augmented(node
, &root
->rb_root
,
466 &root
->rb_leftmost
, &dummy_callbacks
);
468 ____rb_erase_color(rebalance
, &root
->rb_root
, dummy_rotate
);
470 EXPORT_SYMBOL(rb_erase_cached
);
473 * Augmented rbtree manipulation functions.
475 * This instantiates the same __always_inline functions as in the non-augmented
476 * case, but this time with user-defined callbacks.
479 void __rb_insert_augmented(struct rb_node
*node
, struct rb_root
*root
,
480 bool newleft
, struct rb_node
**leftmost
,
481 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
483 __rb_insert(node
, root
, newleft
, leftmost
, augment_rotate
);
485 EXPORT_SYMBOL(__rb_insert_augmented
);
488 * This function returns the first node (in sort order) of the tree.
490 struct rb_node
*rb_first(const struct rb_root
*root
)
501 EXPORT_SYMBOL(rb_first
);
503 struct rb_node
*rb_last(const struct rb_root
*root
)
514 EXPORT_SYMBOL(rb_last
);
516 struct rb_node
*rb_next(const struct rb_node
*node
)
518 struct rb_node
*parent
;
520 if (RB_EMPTY_NODE(node
))
524 * If we have a right-hand child, go down and then left as far
527 if (node
->rb_right
) {
528 node
= node
->rb_right
;
529 while (node
->rb_left
)
531 return (struct rb_node
*)node
;
535 * No right-hand children. Everything down and left is smaller than us,
536 * so any 'next' node must be in the general direction of our parent.
537 * Go up the tree; any time the ancestor is a right-hand child of its
538 * parent, keep going up. First time it's a left-hand child of its
539 * parent, said parent is our 'next' node.
541 while ((parent
= rb_parent(node
)) && node
== parent
->rb_right
)
546 EXPORT_SYMBOL(rb_next
);
548 struct rb_node
*rb_prev(const struct rb_node
*node
)
550 struct rb_node
*parent
;
552 if (RB_EMPTY_NODE(node
))
556 * If we have a left-hand child, go down and then right as far
560 node
= node
->rb_left
;
561 while (node
->rb_right
)
563 return (struct rb_node
*)node
;
567 * No left-hand children. Go up till we find an ancestor which
568 * is a right-hand child of its parent.
570 while ((parent
= rb_parent(node
)) && node
== parent
->rb_left
)
575 EXPORT_SYMBOL(rb_prev
);
577 void rb_replace_node(struct rb_node
*victim
, struct rb_node
*new,
578 struct rb_root
*root
)
580 struct rb_node
*parent
= rb_parent(victim
);
582 /* Copy the pointers/colour from the victim to the replacement */
585 /* Set the surrounding nodes to point to the replacement */
587 rb_set_parent(victim
->rb_left
, new);
588 if (victim
->rb_right
)
589 rb_set_parent(victim
->rb_right
, new);
590 __rb_change_child(victim
, new, parent
, root
);
592 EXPORT_SYMBOL(rb_replace_node
);
594 void rb_replace_node_cached(struct rb_node
*victim
, struct rb_node
*new,
595 struct rb_root_cached
*root
)
597 rb_replace_node(victim
, new, &root
->rb_root
);
599 if (root
->rb_leftmost
== victim
)
600 root
->rb_leftmost
= new;
602 EXPORT_SYMBOL(rb_replace_node_cached
);
604 void rb_replace_node_rcu(struct rb_node
*victim
, struct rb_node
*new,
605 struct rb_root
*root
)
607 struct rb_node
*parent
= rb_parent(victim
);
609 /* Copy the pointers/colour from the victim to the replacement */
612 /* Set the surrounding nodes to point to the replacement */
614 rb_set_parent(victim
->rb_left
, new);
615 if (victim
->rb_right
)
616 rb_set_parent(victim
->rb_right
, new);
618 /* Set the parent's pointer to the new node last after an RCU barrier
619 * so that the pointers onwards are seen to be set correctly when doing
620 * an RCU walk over the tree.
622 __rb_change_child_rcu(victim
, new, parent
, root
);
624 EXPORT_SYMBOL(rb_replace_node_rcu
);
626 static struct rb_node
*rb_left_deepest_node(const struct rb_node
*node
)
630 node
= node
->rb_left
;
631 else if (node
->rb_right
)
632 node
= node
->rb_right
;
634 return (struct rb_node
*)node
;
638 struct rb_node
*rb_next_postorder(const struct rb_node
*node
)
640 const struct rb_node
*parent
;
643 parent
= rb_parent(node
);
645 /* If we're sitting on node, we've already seen our children */
646 if (parent
&& node
== parent
->rb_left
&& parent
->rb_right
) {
647 /* If we are the parent's left node, go to the parent's right
648 * node then all the way down to the left */
649 return rb_left_deepest_node(parent
->rb_right
);
651 /* Otherwise we are the parent's right node, and the parent
653 return (struct rb_node
*)parent
;
655 EXPORT_SYMBOL(rb_next_postorder
);
657 struct rb_node
*rb_first_postorder(const struct rb_root
*root
)
662 return rb_left_deepest_node(root
->rb_node
);
664 EXPORT_SYMBOL(rb_first_postorder
);