Merge tag 'dmaengine-fix-5.2' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6/linux-2.6-arm.git] / net / sunrpc / cache.c
blob66fbb9d2fba7d155d298be5a5769ac79ef892fa9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sunrpc/cache.c
5 * Generic code for various authentication-related caches
6 * used by sunrpc clients and servers.
8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 */
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include "netns.h"
37 #define RPCDBG_FACILITY RPCDBG_CACHE
39 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
41 static bool cache_listeners_exist(struct cache_detail *detail);
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 time_t now = seconds_since_boot();
46 INIT_HLIST_NODE(&h->cache_list);
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 if (now <= detail->flush_time)
51 /* ensure it isn't already expired */
52 now = detail->flush_time + 1;
53 h->last_refresh = now;
56 static inline int cache_is_valid(struct cache_head *h);
57 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
58 struct cache_detail *detail);
59 static void cache_fresh_unlocked(struct cache_head *head,
60 struct cache_detail *detail);
62 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
63 struct cache_head *key,
64 int hash)
66 struct hlist_head *head = &detail->hash_table[hash];
67 struct cache_head *tmp;
69 rcu_read_lock();
70 hlist_for_each_entry_rcu(tmp, head, cache_list) {
71 if (detail->match(tmp, key)) {
72 if (cache_is_expired(detail, tmp))
73 continue;
74 tmp = cache_get_rcu(tmp);
75 rcu_read_unlock();
76 return tmp;
79 rcu_read_unlock();
80 return NULL;
83 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
84 struct cache_head *key,
85 int hash)
87 struct cache_head *new, *tmp, *freeme = NULL;
88 struct hlist_head *head = &detail->hash_table[hash];
90 new = detail->alloc();
91 if (!new)
92 return NULL;
93 /* must fully initialise 'new', else
94 * we might get lose if we need to
95 * cache_put it soon.
97 cache_init(new, detail);
98 detail->init(new, key);
100 spin_lock(&detail->hash_lock);
102 /* check if entry appeared while we slept */
103 hlist_for_each_entry_rcu(tmp, head, cache_list) {
104 if (detail->match(tmp, key)) {
105 if (cache_is_expired(detail, tmp)) {
106 hlist_del_init_rcu(&tmp->cache_list);
107 detail->entries --;
108 if (cache_is_valid(tmp) == -EAGAIN)
109 set_bit(CACHE_NEGATIVE, &tmp->flags);
110 cache_fresh_locked(tmp, 0, detail);
111 freeme = tmp;
112 break;
114 cache_get(tmp);
115 spin_unlock(&detail->hash_lock);
116 cache_put(new, detail);
117 return tmp;
121 hlist_add_head_rcu(&new->cache_list, head);
122 detail->entries++;
123 cache_get(new);
124 spin_unlock(&detail->hash_lock);
126 if (freeme) {
127 cache_fresh_unlocked(freeme, detail);
128 cache_put(freeme, detail);
130 return new;
133 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
134 struct cache_head *key, int hash)
136 struct cache_head *ret;
138 ret = sunrpc_cache_find_rcu(detail, key, hash);
139 if (ret)
140 return ret;
141 /* Didn't find anything, insert an empty entry */
142 return sunrpc_cache_add_entry(detail, key, hash);
144 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
146 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
148 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
149 struct cache_detail *detail)
151 time_t now = seconds_since_boot();
152 if (now <= detail->flush_time)
153 /* ensure it isn't immediately treated as expired */
154 now = detail->flush_time + 1;
155 head->expiry_time = expiry;
156 head->last_refresh = now;
157 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
158 set_bit(CACHE_VALID, &head->flags);
161 static void cache_fresh_unlocked(struct cache_head *head,
162 struct cache_detail *detail)
164 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
165 cache_revisit_request(head);
166 cache_dequeue(detail, head);
170 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
171 struct cache_head *new, struct cache_head *old, int hash)
173 /* The 'old' entry is to be replaced by 'new'.
174 * If 'old' is not VALID, we update it directly,
175 * otherwise we need to replace it
177 struct cache_head *tmp;
179 if (!test_bit(CACHE_VALID, &old->flags)) {
180 spin_lock(&detail->hash_lock);
181 if (!test_bit(CACHE_VALID, &old->flags)) {
182 if (test_bit(CACHE_NEGATIVE, &new->flags))
183 set_bit(CACHE_NEGATIVE, &old->flags);
184 else
185 detail->update(old, new);
186 cache_fresh_locked(old, new->expiry_time, detail);
187 spin_unlock(&detail->hash_lock);
188 cache_fresh_unlocked(old, detail);
189 return old;
191 spin_unlock(&detail->hash_lock);
193 /* We need to insert a new entry */
194 tmp = detail->alloc();
195 if (!tmp) {
196 cache_put(old, detail);
197 return NULL;
199 cache_init(tmp, detail);
200 detail->init(tmp, old);
202 spin_lock(&detail->hash_lock);
203 if (test_bit(CACHE_NEGATIVE, &new->flags))
204 set_bit(CACHE_NEGATIVE, &tmp->flags);
205 else
206 detail->update(tmp, new);
207 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
208 detail->entries++;
209 cache_get(tmp);
210 cache_fresh_locked(tmp, new->expiry_time, detail);
211 cache_fresh_locked(old, 0, detail);
212 spin_unlock(&detail->hash_lock);
213 cache_fresh_unlocked(tmp, detail);
214 cache_fresh_unlocked(old, detail);
215 cache_put(old, detail);
216 return tmp;
218 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
220 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
222 if (cd->cache_upcall)
223 return cd->cache_upcall(cd, h);
224 return sunrpc_cache_pipe_upcall(cd, h);
227 static inline int cache_is_valid(struct cache_head *h)
229 if (!test_bit(CACHE_VALID, &h->flags))
230 return -EAGAIN;
231 else {
232 /* entry is valid */
233 if (test_bit(CACHE_NEGATIVE, &h->flags))
234 return -ENOENT;
235 else {
237 * In combination with write barrier in
238 * sunrpc_cache_update, ensures that anyone
239 * using the cache entry after this sees the
240 * updated contents:
242 smp_rmb();
243 return 0;
248 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
250 int rv;
252 spin_lock(&detail->hash_lock);
253 rv = cache_is_valid(h);
254 if (rv == -EAGAIN) {
255 set_bit(CACHE_NEGATIVE, &h->flags);
256 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
257 detail);
258 rv = -ENOENT;
260 spin_unlock(&detail->hash_lock);
261 cache_fresh_unlocked(h, detail);
262 return rv;
266 * This is the generic cache management routine for all
267 * the authentication caches.
268 * It checks the currency of a cache item and will (later)
269 * initiate an upcall to fill it if needed.
272 * Returns 0 if the cache_head can be used, or cache_puts it and returns
273 * -EAGAIN if upcall is pending and request has been queued
274 * -ETIMEDOUT if upcall failed or request could not be queue or
275 * upcall completed but item is still invalid (implying that
276 * the cache item has been replaced with a newer one).
277 * -ENOENT if cache entry was negative
279 int cache_check(struct cache_detail *detail,
280 struct cache_head *h, struct cache_req *rqstp)
282 int rv;
283 long refresh_age, age;
285 /* First decide return status as best we can */
286 rv = cache_is_valid(h);
288 /* now see if we want to start an upcall */
289 refresh_age = (h->expiry_time - h->last_refresh);
290 age = seconds_since_boot() - h->last_refresh;
292 if (rqstp == NULL) {
293 if (rv == -EAGAIN)
294 rv = -ENOENT;
295 } else if (rv == -EAGAIN ||
296 (h->expiry_time != 0 && age > refresh_age/2)) {
297 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
298 refresh_age, age);
299 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
300 switch (cache_make_upcall(detail, h)) {
301 case -EINVAL:
302 rv = try_to_negate_entry(detail, h);
303 break;
304 case -EAGAIN:
305 cache_fresh_unlocked(h, detail);
306 break;
308 } else if (!cache_listeners_exist(detail))
309 rv = try_to_negate_entry(detail, h);
312 if (rv == -EAGAIN) {
313 if (!cache_defer_req(rqstp, h)) {
315 * Request was not deferred; handle it as best
316 * we can ourselves:
318 rv = cache_is_valid(h);
319 if (rv == -EAGAIN)
320 rv = -ETIMEDOUT;
323 if (rv)
324 cache_put(h, detail);
325 return rv;
327 EXPORT_SYMBOL_GPL(cache_check);
330 * caches need to be periodically cleaned.
331 * For this we maintain a list of cache_detail and
332 * a current pointer into that list and into the table
333 * for that entry.
335 * Each time cache_clean is called it finds the next non-empty entry
336 * in the current table and walks the list in that entry
337 * looking for entries that can be removed.
339 * An entry gets removed if:
340 * - The expiry is before current time
341 * - The last_refresh time is before the flush_time for that cache
343 * later we might drop old entries with non-NEVER expiry if that table
344 * is getting 'full' for some definition of 'full'
346 * The question of "how often to scan a table" is an interesting one
347 * and is answered in part by the use of the "nextcheck" field in the
348 * cache_detail.
349 * When a scan of a table begins, the nextcheck field is set to a time
350 * that is well into the future.
351 * While scanning, if an expiry time is found that is earlier than the
352 * current nextcheck time, nextcheck is set to that expiry time.
353 * If the flush_time is ever set to a time earlier than the nextcheck
354 * time, the nextcheck time is then set to that flush_time.
356 * A table is then only scanned if the current time is at least
357 * the nextcheck time.
361 static LIST_HEAD(cache_list);
362 static DEFINE_SPINLOCK(cache_list_lock);
363 static struct cache_detail *current_detail;
364 static int current_index;
366 static void do_cache_clean(struct work_struct *work);
367 static struct delayed_work cache_cleaner;
369 void sunrpc_init_cache_detail(struct cache_detail *cd)
371 spin_lock_init(&cd->hash_lock);
372 INIT_LIST_HEAD(&cd->queue);
373 spin_lock(&cache_list_lock);
374 cd->nextcheck = 0;
375 cd->entries = 0;
376 atomic_set(&cd->readers, 0);
377 cd->last_close = 0;
378 cd->last_warn = -1;
379 list_add(&cd->others, &cache_list);
380 spin_unlock(&cache_list_lock);
382 /* start the cleaning process */
383 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
385 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
387 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
389 cache_purge(cd);
390 spin_lock(&cache_list_lock);
391 spin_lock(&cd->hash_lock);
392 if (current_detail == cd)
393 current_detail = NULL;
394 list_del_init(&cd->others);
395 spin_unlock(&cd->hash_lock);
396 spin_unlock(&cache_list_lock);
397 if (list_empty(&cache_list)) {
398 /* module must be being unloaded so its safe to kill the worker */
399 cancel_delayed_work_sync(&cache_cleaner);
402 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
404 /* clean cache tries to find something to clean
405 * and cleans it.
406 * It returns 1 if it cleaned something,
407 * 0 if it didn't find anything this time
408 * -1 if it fell off the end of the list.
410 static int cache_clean(void)
412 int rv = 0;
413 struct list_head *next;
415 spin_lock(&cache_list_lock);
417 /* find a suitable table if we don't already have one */
418 while (current_detail == NULL ||
419 current_index >= current_detail->hash_size) {
420 if (current_detail)
421 next = current_detail->others.next;
422 else
423 next = cache_list.next;
424 if (next == &cache_list) {
425 current_detail = NULL;
426 spin_unlock(&cache_list_lock);
427 return -1;
429 current_detail = list_entry(next, struct cache_detail, others);
430 if (current_detail->nextcheck > seconds_since_boot())
431 current_index = current_detail->hash_size;
432 else {
433 current_index = 0;
434 current_detail->nextcheck = seconds_since_boot()+30*60;
438 /* find a non-empty bucket in the table */
439 while (current_detail &&
440 current_index < current_detail->hash_size &&
441 hlist_empty(&current_detail->hash_table[current_index]))
442 current_index++;
444 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
446 if (current_detail && current_index < current_detail->hash_size) {
447 struct cache_head *ch = NULL;
448 struct cache_detail *d;
449 struct hlist_head *head;
450 struct hlist_node *tmp;
452 spin_lock(&current_detail->hash_lock);
454 /* Ok, now to clean this strand */
456 head = &current_detail->hash_table[current_index];
457 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
458 if (current_detail->nextcheck > ch->expiry_time)
459 current_detail->nextcheck = ch->expiry_time+1;
460 if (!cache_is_expired(current_detail, ch))
461 continue;
463 hlist_del_init_rcu(&ch->cache_list);
464 current_detail->entries--;
465 rv = 1;
466 break;
469 spin_unlock(&current_detail->hash_lock);
470 d = current_detail;
471 if (!ch)
472 current_index ++;
473 spin_unlock(&cache_list_lock);
474 if (ch) {
475 set_bit(CACHE_CLEANED, &ch->flags);
476 cache_fresh_unlocked(ch, d);
477 cache_put(ch, d);
479 } else
480 spin_unlock(&cache_list_lock);
482 return rv;
486 * We want to regularly clean the cache, so we need to schedule some work ...
488 static void do_cache_clean(struct work_struct *work)
490 int delay = 5;
491 if (cache_clean() == -1)
492 delay = round_jiffies_relative(30*HZ);
494 if (list_empty(&cache_list))
495 delay = 0;
497 if (delay)
498 queue_delayed_work(system_power_efficient_wq,
499 &cache_cleaner, delay);
504 * Clean all caches promptly. This just calls cache_clean
505 * repeatedly until we are sure that every cache has had a chance to
506 * be fully cleaned
508 void cache_flush(void)
510 while (cache_clean() != -1)
511 cond_resched();
512 while (cache_clean() != -1)
513 cond_resched();
515 EXPORT_SYMBOL_GPL(cache_flush);
517 void cache_purge(struct cache_detail *detail)
519 struct cache_head *ch = NULL;
520 struct hlist_head *head = NULL;
521 struct hlist_node *tmp = NULL;
522 int i = 0;
524 spin_lock(&detail->hash_lock);
525 if (!detail->entries) {
526 spin_unlock(&detail->hash_lock);
527 return;
530 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
531 for (i = 0; i < detail->hash_size; i++) {
532 head = &detail->hash_table[i];
533 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
534 hlist_del_init_rcu(&ch->cache_list);
535 detail->entries--;
537 set_bit(CACHE_CLEANED, &ch->flags);
538 spin_unlock(&detail->hash_lock);
539 cache_fresh_unlocked(ch, detail);
540 cache_put(ch, detail);
541 spin_lock(&detail->hash_lock);
544 spin_unlock(&detail->hash_lock);
546 EXPORT_SYMBOL_GPL(cache_purge);
550 * Deferral and Revisiting of Requests.
552 * If a cache lookup finds a pending entry, we
553 * need to defer the request and revisit it later.
554 * All deferred requests are stored in a hash table,
555 * indexed by "struct cache_head *".
556 * As it may be wasteful to store a whole request
557 * structure, we allow the request to provide a
558 * deferred form, which must contain a
559 * 'struct cache_deferred_req'
560 * This cache_deferred_req contains a method to allow
561 * it to be revisited when cache info is available
564 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
565 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
567 #define DFR_MAX 300 /* ??? */
569 static DEFINE_SPINLOCK(cache_defer_lock);
570 static LIST_HEAD(cache_defer_list);
571 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
572 static int cache_defer_cnt;
574 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
576 hlist_del_init(&dreq->hash);
577 if (!list_empty(&dreq->recent)) {
578 list_del_init(&dreq->recent);
579 cache_defer_cnt--;
583 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
585 int hash = DFR_HASH(item);
587 INIT_LIST_HEAD(&dreq->recent);
588 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
591 static void setup_deferral(struct cache_deferred_req *dreq,
592 struct cache_head *item,
593 int count_me)
596 dreq->item = item;
598 spin_lock(&cache_defer_lock);
600 __hash_deferred_req(dreq, item);
602 if (count_me) {
603 cache_defer_cnt++;
604 list_add(&dreq->recent, &cache_defer_list);
607 spin_unlock(&cache_defer_lock);
611 struct thread_deferred_req {
612 struct cache_deferred_req handle;
613 struct completion completion;
616 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
618 struct thread_deferred_req *dr =
619 container_of(dreq, struct thread_deferred_req, handle);
620 complete(&dr->completion);
623 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
625 struct thread_deferred_req sleeper;
626 struct cache_deferred_req *dreq = &sleeper.handle;
628 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
629 dreq->revisit = cache_restart_thread;
631 setup_deferral(dreq, item, 0);
633 if (!test_bit(CACHE_PENDING, &item->flags) ||
634 wait_for_completion_interruptible_timeout(
635 &sleeper.completion, req->thread_wait) <= 0) {
636 /* The completion wasn't completed, so we need
637 * to clean up
639 spin_lock(&cache_defer_lock);
640 if (!hlist_unhashed(&sleeper.handle.hash)) {
641 __unhash_deferred_req(&sleeper.handle);
642 spin_unlock(&cache_defer_lock);
643 } else {
644 /* cache_revisit_request already removed
645 * this from the hash table, but hasn't
646 * called ->revisit yet. It will very soon
647 * and we need to wait for it.
649 spin_unlock(&cache_defer_lock);
650 wait_for_completion(&sleeper.completion);
655 static void cache_limit_defers(void)
657 /* Make sure we haven't exceed the limit of allowed deferred
658 * requests.
660 struct cache_deferred_req *discard = NULL;
662 if (cache_defer_cnt <= DFR_MAX)
663 return;
665 spin_lock(&cache_defer_lock);
667 /* Consider removing either the first or the last */
668 if (cache_defer_cnt > DFR_MAX) {
669 if (prandom_u32() & 1)
670 discard = list_entry(cache_defer_list.next,
671 struct cache_deferred_req, recent);
672 else
673 discard = list_entry(cache_defer_list.prev,
674 struct cache_deferred_req, recent);
675 __unhash_deferred_req(discard);
677 spin_unlock(&cache_defer_lock);
678 if (discard)
679 discard->revisit(discard, 1);
682 /* Return true if and only if a deferred request is queued. */
683 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
685 struct cache_deferred_req *dreq;
687 if (req->thread_wait) {
688 cache_wait_req(req, item);
689 if (!test_bit(CACHE_PENDING, &item->flags))
690 return false;
692 dreq = req->defer(req);
693 if (dreq == NULL)
694 return false;
695 setup_deferral(dreq, item, 1);
696 if (!test_bit(CACHE_PENDING, &item->flags))
697 /* Bit could have been cleared before we managed to
698 * set up the deferral, so need to revisit just in case
700 cache_revisit_request(item);
702 cache_limit_defers();
703 return true;
706 static void cache_revisit_request(struct cache_head *item)
708 struct cache_deferred_req *dreq;
709 struct list_head pending;
710 struct hlist_node *tmp;
711 int hash = DFR_HASH(item);
713 INIT_LIST_HEAD(&pending);
714 spin_lock(&cache_defer_lock);
716 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
717 if (dreq->item == item) {
718 __unhash_deferred_req(dreq);
719 list_add(&dreq->recent, &pending);
722 spin_unlock(&cache_defer_lock);
724 while (!list_empty(&pending)) {
725 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
726 list_del_init(&dreq->recent);
727 dreq->revisit(dreq, 0);
731 void cache_clean_deferred(void *owner)
733 struct cache_deferred_req *dreq, *tmp;
734 struct list_head pending;
737 INIT_LIST_HEAD(&pending);
738 spin_lock(&cache_defer_lock);
740 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
741 if (dreq->owner == owner) {
742 __unhash_deferred_req(dreq);
743 list_add(&dreq->recent, &pending);
746 spin_unlock(&cache_defer_lock);
748 while (!list_empty(&pending)) {
749 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
750 list_del_init(&dreq->recent);
751 dreq->revisit(dreq, 1);
756 * communicate with user-space
758 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
759 * On read, you get a full request, or block.
760 * On write, an update request is processed.
761 * Poll works if anything to read, and always allows write.
763 * Implemented by linked list of requests. Each open file has
764 * a ->private that also exists in this list. New requests are added
765 * to the end and may wakeup and preceding readers.
766 * New readers are added to the head. If, on read, an item is found with
767 * CACHE_UPCALLING clear, we free it from the list.
771 static DEFINE_SPINLOCK(queue_lock);
772 static DEFINE_MUTEX(queue_io_mutex);
774 struct cache_queue {
775 struct list_head list;
776 int reader; /* if 0, then request */
778 struct cache_request {
779 struct cache_queue q;
780 struct cache_head *item;
781 char * buf;
782 int len;
783 int readers;
785 struct cache_reader {
786 struct cache_queue q;
787 int offset; /* if non-0, we have a refcnt on next request */
790 static int cache_request(struct cache_detail *detail,
791 struct cache_request *crq)
793 char *bp = crq->buf;
794 int len = PAGE_SIZE;
796 detail->cache_request(detail, crq->item, &bp, &len);
797 if (len < 0)
798 return -EAGAIN;
799 return PAGE_SIZE - len;
802 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
803 loff_t *ppos, struct cache_detail *cd)
805 struct cache_reader *rp = filp->private_data;
806 struct cache_request *rq;
807 struct inode *inode = file_inode(filp);
808 int err;
810 if (count == 0)
811 return 0;
813 inode_lock(inode); /* protect against multiple concurrent
814 * readers on this file */
815 again:
816 spin_lock(&queue_lock);
817 /* need to find next request */
818 while (rp->q.list.next != &cd->queue &&
819 list_entry(rp->q.list.next, struct cache_queue, list)
820 ->reader) {
821 struct list_head *next = rp->q.list.next;
822 list_move(&rp->q.list, next);
824 if (rp->q.list.next == &cd->queue) {
825 spin_unlock(&queue_lock);
826 inode_unlock(inode);
827 WARN_ON_ONCE(rp->offset);
828 return 0;
830 rq = container_of(rp->q.list.next, struct cache_request, q.list);
831 WARN_ON_ONCE(rq->q.reader);
832 if (rp->offset == 0)
833 rq->readers++;
834 spin_unlock(&queue_lock);
836 if (rq->len == 0) {
837 err = cache_request(cd, rq);
838 if (err < 0)
839 goto out;
840 rq->len = err;
843 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
844 err = -EAGAIN;
845 spin_lock(&queue_lock);
846 list_move(&rp->q.list, &rq->q.list);
847 spin_unlock(&queue_lock);
848 } else {
849 if (rp->offset + count > rq->len)
850 count = rq->len - rp->offset;
851 err = -EFAULT;
852 if (copy_to_user(buf, rq->buf + rp->offset, count))
853 goto out;
854 rp->offset += count;
855 if (rp->offset >= rq->len) {
856 rp->offset = 0;
857 spin_lock(&queue_lock);
858 list_move(&rp->q.list, &rq->q.list);
859 spin_unlock(&queue_lock);
861 err = 0;
863 out:
864 if (rp->offset == 0) {
865 /* need to release rq */
866 spin_lock(&queue_lock);
867 rq->readers--;
868 if (rq->readers == 0 &&
869 !test_bit(CACHE_PENDING, &rq->item->flags)) {
870 list_del(&rq->q.list);
871 spin_unlock(&queue_lock);
872 cache_put(rq->item, cd);
873 kfree(rq->buf);
874 kfree(rq);
875 } else
876 spin_unlock(&queue_lock);
878 if (err == -EAGAIN)
879 goto again;
880 inode_unlock(inode);
881 return err ? err : count;
884 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
885 size_t count, struct cache_detail *cd)
887 ssize_t ret;
889 if (count == 0)
890 return -EINVAL;
891 if (copy_from_user(kaddr, buf, count))
892 return -EFAULT;
893 kaddr[count] = '\0';
894 ret = cd->cache_parse(cd, kaddr, count);
895 if (!ret)
896 ret = count;
897 return ret;
900 static ssize_t cache_slow_downcall(const char __user *buf,
901 size_t count, struct cache_detail *cd)
903 static char write_buf[8192]; /* protected by queue_io_mutex */
904 ssize_t ret = -EINVAL;
906 if (count >= sizeof(write_buf))
907 goto out;
908 mutex_lock(&queue_io_mutex);
909 ret = cache_do_downcall(write_buf, buf, count, cd);
910 mutex_unlock(&queue_io_mutex);
911 out:
912 return ret;
915 static ssize_t cache_downcall(struct address_space *mapping,
916 const char __user *buf,
917 size_t count, struct cache_detail *cd)
919 struct page *page;
920 char *kaddr;
921 ssize_t ret = -ENOMEM;
923 if (count >= PAGE_SIZE)
924 goto out_slow;
926 page = find_or_create_page(mapping, 0, GFP_KERNEL);
927 if (!page)
928 goto out_slow;
930 kaddr = kmap(page);
931 ret = cache_do_downcall(kaddr, buf, count, cd);
932 kunmap(page);
933 unlock_page(page);
934 put_page(page);
935 return ret;
936 out_slow:
937 return cache_slow_downcall(buf, count, cd);
940 static ssize_t cache_write(struct file *filp, const char __user *buf,
941 size_t count, loff_t *ppos,
942 struct cache_detail *cd)
944 struct address_space *mapping = filp->f_mapping;
945 struct inode *inode = file_inode(filp);
946 ssize_t ret = -EINVAL;
948 if (!cd->cache_parse)
949 goto out;
951 inode_lock(inode);
952 ret = cache_downcall(mapping, buf, count, cd);
953 inode_unlock(inode);
954 out:
955 return ret;
958 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
960 static __poll_t cache_poll(struct file *filp, poll_table *wait,
961 struct cache_detail *cd)
963 __poll_t mask;
964 struct cache_reader *rp = filp->private_data;
965 struct cache_queue *cq;
967 poll_wait(filp, &queue_wait, wait);
969 /* alway allow write */
970 mask = EPOLLOUT | EPOLLWRNORM;
972 if (!rp)
973 return mask;
975 spin_lock(&queue_lock);
977 for (cq= &rp->q; &cq->list != &cd->queue;
978 cq = list_entry(cq->list.next, struct cache_queue, list))
979 if (!cq->reader) {
980 mask |= EPOLLIN | EPOLLRDNORM;
981 break;
983 spin_unlock(&queue_lock);
984 return mask;
987 static int cache_ioctl(struct inode *ino, struct file *filp,
988 unsigned int cmd, unsigned long arg,
989 struct cache_detail *cd)
991 int len = 0;
992 struct cache_reader *rp = filp->private_data;
993 struct cache_queue *cq;
995 if (cmd != FIONREAD || !rp)
996 return -EINVAL;
998 spin_lock(&queue_lock);
1000 /* only find the length remaining in current request,
1001 * or the length of the next request
1003 for (cq= &rp->q; &cq->list != &cd->queue;
1004 cq = list_entry(cq->list.next, struct cache_queue, list))
1005 if (!cq->reader) {
1006 struct cache_request *cr =
1007 container_of(cq, struct cache_request, q);
1008 len = cr->len - rp->offset;
1009 break;
1011 spin_unlock(&queue_lock);
1013 return put_user(len, (int __user *)arg);
1016 static int cache_open(struct inode *inode, struct file *filp,
1017 struct cache_detail *cd)
1019 struct cache_reader *rp = NULL;
1021 if (!cd || !try_module_get(cd->owner))
1022 return -EACCES;
1023 nonseekable_open(inode, filp);
1024 if (filp->f_mode & FMODE_READ) {
1025 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1026 if (!rp) {
1027 module_put(cd->owner);
1028 return -ENOMEM;
1030 rp->offset = 0;
1031 rp->q.reader = 1;
1032 atomic_inc(&cd->readers);
1033 spin_lock(&queue_lock);
1034 list_add(&rp->q.list, &cd->queue);
1035 spin_unlock(&queue_lock);
1037 filp->private_data = rp;
1038 return 0;
1041 static int cache_release(struct inode *inode, struct file *filp,
1042 struct cache_detail *cd)
1044 struct cache_reader *rp = filp->private_data;
1046 if (rp) {
1047 spin_lock(&queue_lock);
1048 if (rp->offset) {
1049 struct cache_queue *cq;
1050 for (cq= &rp->q; &cq->list != &cd->queue;
1051 cq = list_entry(cq->list.next, struct cache_queue, list))
1052 if (!cq->reader) {
1053 container_of(cq, struct cache_request, q)
1054 ->readers--;
1055 break;
1057 rp->offset = 0;
1059 list_del(&rp->q.list);
1060 spin_unlock(&queue_lock);
1062 filp->private_data = NULL;
1063 kfree(rp);
1065 cd->last_close = seconds_since_boot();
1066 atomic_dec(&cd->readers);
1068 module_put(cd->owner);
1069 return 0;
1074 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1076 struct cache_queue *cq, *tmp;
1077 struct cache_request *cr;
1078 struct list_head dequeued;
1080 INIT_LIST_HEAD(&dequeued);
1081 spin_lock(&queue_lock);
1082 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1083 if (!cq->reader) {
1084 cr = container_of(cq, struct cache_request, q);
1085 if (cr->item != ch)
1086 continue;
1087 if (test_bit(CACHE_PENDING, &ch->flags))
1088 /* Lost a race and it is pending again */
1089 break;
1090 if (cr->readers != 0)
1091 continue;
1092 list_move(&cr->q.list, &dequeued);
1094 spin_unlock(&queue_lock);
1095 while (!list_empty(&dequeued)) {
1096 cr = list_entry(dequeued.next, struct cache_request, q.list);
1097 list_del(&cr->q.list);
1098 cache_put(cr->item, detail);
1099 kfree(cr->buf);
1100 kfree(cr);
1105 * Support routines for text-based upcalls.
1106 * Fields are separated by spaces.
1107 * Fields are either mangled to quote space tab newline slosh with slosh
1108 * or a hexified with a leading \x
1109 * Record is terminated with newline.
1113 void qword_add(char **bpp, int *lp, char *str)
1115 char *bp = *bpp;
1116 int len = *lp;
1117 int ret;
1119 if (len < 0) return;
1121 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1122 if (ret >= len) {
1123 bp += len;
1124 len = -1;
1125 } else {
1126 bp += ret;
1127 len -= ret;
1128 *bp++ = ' ';
1129 len--;
1131 *bpp = bp;
1132 *lp = len;
1134 EXPORT_SYMBOL_GPL(qword_add);
1136 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1138 char *bp = *bpp;
1139 int len = *lp;
1141 if (len < 0) return;
1143 if (len > 2) {
1144 *bp++ = '\\';
1145 *bp++ = 'x';
1146 len -= 2;
1147 while (blen && len >= 2) {
1148 bp = hex_byte_pack(bp, *buf++);
1149 len -= 2;
1150 blen--;
1153 if (blen || len<1) len = -1;
1154 else {
1155 *bp++ = ' ';
1156 len--;
1158 *bpp = bp;
1159 *lp = len;
1161 EXPORT_SYMBOL_GPL(qword_addhex);
1163 static void warn_no_listener(struct cache_detail *detail)
1165 if (detail->last_warn != detail->last_close) {
1166 detail->last_warn = detail->last_close;
1167 if (detail->warn_no_listener)
1168 detail->warn_no_listener(detail, detail->last_close != 0);
1172 static bool cache_listeners_exist(struct cache_detail *detail)
1174 if (atomic_read(&detail->readers))
1175 return true;
1176 if (detail->last_close == 0)
1177 /* This cache was never opened */
1178 return false;
1179 if (detail->last_close < seconds_since_boot() - 30)
1181 * We allow for the possibility that someone might
1182 * restart a userspace daemon without restarting the
1183 * server; but after 30 seconds, we give up.
1185 return false;
1186 return true;
1190 * register an upcall request to user-space and queue it up for read() by the
1191 * upcall daemon.
1193 * Each request is at most one page long.
1195 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1198 char *buf;
1199 struct cache_request *crq;
1200 int ret = 0;
1202 if (!detail->cache_request)
1203 return -EINVAL;
1205 if (!cache_listeners_exist(detail)) {
1206 warn_no_listener(detail);
1207 return -EINVAL;
1209 if (test_bit(CACHE_CLEANED, &h->flags))
1210 /* Too late to make an upcall */
1211 return -EAGAIN;
1213 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1214 if (!buf)
1215 return -EAGAIN;
1217 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1218 if (!crq) {
1219 kfree(buf);
1220 return -EAGAIN;
1223 crq->q.reader = 0;
1224 crq->buf = buf;
1225 crq->len = 0;
1226 crq->readers = 0;
1227 spin_lock(&queue_lock);
1228 if (test_bit(CACHE_PENDING, &h->flags)) {
1229 crq->item = cache_get(h);
1230 list_add_tail(&crq->q.list, &detail->queue);
1231 } else
1232 /* Lost a race, no longer PENDING, so don't enqueue */
1233 ret = -EAGAIN;
1234 spin_unlock(&queue_lock);
1235 wake_up(&queue_wait);
1236 if (ret == -EAGAIN) {
1237 kfree(buf);
1238 kfree(crq);
1240 return ret;
1242 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1245 * parse a message from user-space and pass it
1246 * to an appropriate cache
1247 * Messages are, like requests, separated into fields by
1248 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1250 * Message is
1251 * reply cachename expiry key ... content....
1253 * key and content are both parsed by cache
1256 int qword_get(char **bpp, char *dest, int bufsize)
1258 /* return bytes copied, or -1 on error */
1259 char *bp = *bpp;
1260 int len = 0;
1262 while (*bp == ' ') bp++;
1264 if (bp[0] == '\\' && bp[1] == 'x') {
1265 /* HEX STRING */
1266 bp += 2;
1267 while (len < bufsize - 1) {
1268 int h, l;
1270 h = hex_to_bin(bp[0]);
1271 if (h < 0)
1272 break;
1274 l = hex_to_bin(bp[1]);
1275 if (l < 0)
1276 break;
1278 *dest++ = (h << 4) | l;
1279 bp += 2;
1280 len++;
1282 } else {
1283 /* text with \nnn octal quoting */
1284 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1285 if (*bp == '\\' &&
1286 isodigit(bp[1]) && (bp[1] <= '3') &&
1287 isodigit(bp[2]) &&
1288 isodigit(bp[3])) {
1289 int byte = (*++bp -'0');
1290 bp++;
1291 byte = (byte << 3) | (*bp++ - '0');
1292 byte = (byte << 3) | (*bp++ - '0');
1293 *dest++ = byte;
1294 len++;
1295 } else {
1296 *dest++ = *bp++;
1297 len++;
1302 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1303 return -1;
1304 while (*bp == ' ') bp++;
1305 *bpp = bp;
1306 *dest = '\0';
1307 return len;
1309 EXPORT_SYMBOL_GPL(qword_get);
1313 * support /proc/net/rpc/$CACHENAME/content
1314 * as a seqfile.
1315 * We call ->cache_show passing NULL for the item to
1316 * get a header, then pass each real item in the cache
1319 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1321 loff_t n = *pos;
1322 unsigned int hash, entry;
1323 struct cache_head *ch;
1324 struct cache_detail *cd = m->private;
1326 if (!n--)
1327 return SEQ_START_TOKEN;
1328 hash = n >> 32;
1329 entry = n & ((1LL<<32) - 1);
1331 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1332 if (!entry--)
1333 return ch;
1334 n &= ~((1LL<<32) - 1);
1335 do {
1336 hash++;
1337 n += 1LL<<32;
1338 } while(hash < cd->hash_size &&
1339 hlist_empty(&cd->hash_table[hash]));
1340 if (hash >= cd->hash_size)
1341 return NULL;
1342 *pos = n+1;
1343 return hlist_entry_safe(rcu_dereference_raw(
1344 hlist_first_rcu(&cd->hash_table[hash])),
1345 struct cache_head, cache_list);
1348 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1350 struct cache_head *ch = p;
1351 int hash = (*pos >> 32);
1352 struct cache_detail *cd = m->private;
1354 if (p == SEQ_START_TOKEN)
1355 hash = 0;
1356 else if (ch->cache_list.next == NULL) {
1357 hash++;
1358 *pos += 1LL<<32;
1359 } else {
1360 ++*pos;
1361 return hlist_entry_safe(rcu_dereference_raw(
1362 hlist_next_rcu(&ch->cache_list)),
1363 struct cache_head, cache_list);
1365 *pos &= ~((1LL<<32) - 1);
1366 while (hash < cd->hash_size &&
1367 hlist_empty(&cd->hash_table[hash])) {
1368 hash++;
1369 *pos += 1LL<<32;
1371 if (hash >= cd->hash_size)
1372 return NULL;
1373 ++*pos;
1374 return hlist_entry_safe(rcu_dereference_raw(
1375 hlist_first_rcu(&cd->hash_table[hash])),
1376 struct cache_head, cache_list);
1378 EXPORT_SYMBOL_GPL(cache_seq_next);
1380 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1381 __acquires(RCU)
1383 rcu_read_lock();
1384 return __cache_seq_start(m, pos);
1386 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1388 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1390 return cache_seq_next(file, p, pos);
1392 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1394 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1395 __releases(RCU)
1397 rcu_read_unlock();
1399 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1401 static int c_show(struct seq_file *m, void *p)
1403 struct cache_head *cp = p;
1404 struct cache_detail *cd = m->private;
1406 if (p == SEQ_START_TOKEN)
1407 return cd->cache_show(m, cd, NULL);
1409 ifdebug(CACHE)
1410 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1411 convert_to_wallclock(cp->expiry_time),
1412 kref_read(&cp->ref), cp->flags);
1413 cache_get(cp);
1414 if (cache_check(cd, cp, NULL))
1415 /* cache_check does a cache_put on failure */
1416 seq_printf(m, "# ");
1417 else {
1418 if (cache_is_expired(cd, cp))
1419 seq_printf(m, "# ");
1420 cache_put(cp, cd);
1423 return cd->cache_show(m, cd, cp);
1426 static const struct seq_operations cache_content_op = {
1427 .start = cache_seq_start_rcu,
1428 .next = cache_seq_next_rcu,
1429 .stop = cache_seq_stop_rcu,
1430 .show = c_show,
1433 static int content_open(struct inode *inode, struct file *file,
1434 struct cache_detail *cd)
1436 struct seq_file *seq;
1437 int err;
1439 if (!cd || !try_module_get(cd->owner))
1440 return -EACCES;
1442 err = seq_open(file, &cache_content_op);
1443 if (err) {
1444 module_put(cd->owner);
1445 return err;
1448 seq = file->private_data;
1449 seq->private = cd;
1450 return 0;
1453 static int content_release(struct inode *inode, struct file *file,
1454 struct cache_detail *cd)
1456 int ret = seq_release(inode, file);
1457 module_put(cd->owner);
1458 return ret;
1461 static int open_flush(struct inode *inode, struct file *file,
1462 struct cache_detail *cd)
1464 if (!cd || !try_module_get(cd->owner))
1465 return -EACCES;
1466 return nonseekable_open(inode, file);
1469 static int release_flush(struct inode *inode, struct file *file,
1470 struct cache_detail *cd)
1472 module_put(cd->owner);
1473 return 0;
1476 static ssize_t read_flush(struct file *file, char __user *buf,
1477 size_t count, loff_t *ppos,
1478 struct cache_detail *cd)
1480 char tbuf[22];
1481 size_t len;
1483 len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1484 convert_to_wallclock(cd->flush_time));
1485 return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1488 static ssize_t write_flush(struct file *file, const char __user *buf,
1489 size_t count, loff_t *ppos,
1490 struct cache_detail *cd)
1492 char tbuf[20];
1493 char *ep;
1494 time_t now;
1496 if (*ppos || count > sizeof(tbuf)-1)
1497 return -EINVAL;
1498 if (copy_from_user(tbuf, buf, count))
1499 return -EFAULT;
1500 tbuf[count] = 0;
1501 simple_strtoul(tbuf, &ep, 0);
1502 if (*ep && *ep != '\n')
1503 return -EINVAL;
1504 /* Note that while we check that 'buf' holds a valid number,
1505 * we always ignore the value and just flush everything.
1506 * Making use of the number leads to races.
1509 now = seconds_since_boot();
1510 /* Always flush everything, so behave like cache_purge()
1511 * Do this by advancing flush_time to the current time,
1512 * or by one second if it has already reached the current time.
1513 * Newly added cache entries will always have ->last_refresh greater
1514 * that ->flush_time, so they don't get flushed prematurely.
1517 if (cd->flush_time >= now)
1518 now = cd->flush_time + 1;
1520 cd->flush_time = now;
1521 cd->nextcheck = now;
1522 cache_flush();
1524 *ppos += count;
1525 return count;
1528 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1529 size_t count, loff_t *ppos)
1531 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1533 return cache_read(filp, buf, count, ppos, cd);
1536 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1537 size_t count, loff_t *ppos)
1539 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1541 return cache_write(filp, buf, count, ppos, cd);
1544 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1546 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1548 return cache_poll(filp, wait, cd);
1551 static long cache_ioctl_procfs(struct file *filp,
1552 unsigned int cmd, unsigned long arg)
1554 struct inode *inode = file_inode(filp);
1555 struct cache_detail *cd = PDE_DATA(inode);
1557 return cache_ioctl(inode, filp, cmd, arg, cd);
1560 static int cache_open_procfs(struct inode *inode, struct file *filp)
1562 struct cache_detail *cd = PDE_DATA(inode);
1564 return cache_open(inode, filp, cd);
1567 static int cache_release_procfs(struct inode *inode, struct file *filp)
1569 struct cache_detail *cd = PDE_DATA(inode);
1571 return cache_release(inode, filp, cd);
1574 static const struct file_operations cache_file_operations_procfs = {
1575 .owner = THIS_MODULE,
1576 .llseek = no_llseek,
1577 .read = cache_read_procfs,
1578 .write = cache_write_procfs,
1579 .poll = cache_poll_procfs,
1580 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1581 .open = cache_open_procfs,
1582 .release = cache_release_procfs,
1585 static int content_open_procfs(struct inode *inode, struct file *filp)
1587 struct cache_detail *cd = PDE_DATA(inode);
1589 return content_open(inode, filp, cd);
1592 static int content_release_procfs(struct inode *inode, struct file *filp)
1594 struct cache_detail *cd = PDE_DATA(inode);
1596 return content_release(inode, filp, cd);
1599 static const struct file_operations content_file_operations_procfs = {
1600 .open = content_open_procfs,
1601 .read = seq_read,
1602 .llseek = seq_lseek,
1603 .release = content_release_procfs,
1606 static int open_flush_procfs(struct inode *inode, struct file *filp)
1608 struct cache_detail *cd = PDE_DATA(inode);
1610 return open_flush(inode, filp, cd);
1613 static int release_flush_procfs(struct inode *inode, struct file *filp)
1615 struct cache_detail *cd = PDE_DATA(inode);
1617 return release_flush(inode, filp, cd);
1620 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1621 size_t count, loff_t *ppos)
1623 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1625 return read_flush(filp, buf, count, ppos, cd);
1628 static ssize_t write_flush_procfs(struct file *filp,
1629 const char __user *buf,
1630 size_t count, loff_t *ppos)
1632 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1634 return write_flush(filp, buf, count, ppos, cd);
1637 static const struct file_operations cache_flush_operations_procfs = {
1638 .open = open_flush_procfs,
1639 .read = read_flush_procfs,
1640 .write = write_flush_procfs,
1641 .release = release_flush_procfs,
1642 .llseek = no_llseek,
1645 static void remove_cache_proc_entries(struct cache_detail *cd)
1647 if (cd->procfs) {
1648 proc_remove(cd->procfs);
1649 cd->procfs = NULL;
1653 #ifdef CONFIG_PROC_FS
1654 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1656 struct proc_dir_entry *p;
1657 struct sunrpc_net *sn;
1659 sn = net_generic(net, sunrpc_net_id);
1660 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1661 if (cd->procfs == NULL)
1662 goto out_nomem;
1664 p = proc_create_data("flush", S_IFREG | 0600,
1665 cd->procfs, &cache_flush_operations_procfs, cd);
1666 if (p == NULL)
1667 goto out_nomem;
1669 if (cd->cache_request || cd->cache_parse) {
1670 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1671 &cache_file_operations_procfs, cd);
1672 if (p == NULL)
1673 goto out_nomem;
1675 if (cd->cache_show) {
1676 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1677 &content_file_operations_procfs, cd);
1678 if (p == NULL)
1679 goto out_nomem;
1681 return 0;
1682 out_nomem:
1683 remove_cache_proc_entries(cd);
1684 return -ENOMEM;
1686 #else /* CONFIG_PROC_FS */
1687 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1689 return 0;
1691 #endif
1693 void __init cache_initialize(void)
1695 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1698 int cache_register_net(struct cache_detail *cd, struct net *net)
1700 int ret;
1702 sunrpc_init_cache_detail(cd);
1703 ret = create_cache_proc_entries(cd, net);
1704 if (ret)
1705 sunrpc_destroy_cache_detail(cd);
1706 return ret;
1708 EXPORT_SYMBOL_GPL(cache_register_net);
1710 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1712 remove_cache_proc_entries(cd);
1713 sunrpc_destroy_cache_detail(cd);
1715 EXPORT_SYMBOL_GPL(cache_unregister_net);
1717 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1719 struct cache_detail *cd;
1720 int i;
1722 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1723 if (cd == NULL)
1724 return ERR_PTR(-ENOMEM);
1726 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1727 GFP_KERNEL);
1728 if (cd->hash_table == NULL) {
1729 kfree(cd);
1730 return ERR_PTR(-ENOMEM);
1733 for (i = 0; i < cd->hash_size; i++)
1734 INIT_HLIST_HEAD(&cd->hash_table[i]);
1735 cd->net = net;
1736 return cd;
1738 EXPORT_SYMBOL_GPL(cache_create_net);
1740 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1742 kfree(cd->hash_table);
1743 kfree(cd);
1745 EXPORT_SYMBOL_GPL(cache_destroy_net);
1747 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1748 size_t count, loff_t *ppos)
1750 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1752 return cache_read(filp, buf, count, ppos, cd);
1755 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1756 size_t count, loff_t *ppos)
1758 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1760 return cache_write(filp, buf, count, ppos, cd);
1763 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1765 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1767 return cache_poll(filp, wait, cd);
1770 static long cache_ioctl_pipefs(struct file *filp,
1771 unsigned int cmd, unsigned long arg)
1773 struct inode *inode = file_inode(filp);
1774 struct cache_detail *cd = RPC_I(inode)->private;
1776 return cache_ioctl(inode, filp, cmd, arg, cd);
1779 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1781 struct cache_detail *cd = RPC_I(inode)->private;
1783 return cache_open(inode, filp, cd);
1786 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1788 struct cache_detail *cd = RPC_I(inode)->private;
1790 return cache_release(inode, filp, cd);
1793 const struct file_operations cache_file_operations_pipefs = {
1794 .owner = THIS_MODULE,
1795 .llseek = no_llseek,
1796 .read = cache_read_pipefs,
1797 .write = cache_write_pipefs,
1798 .poll = cache_poll_pipefs,
1799 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1800 .open = cache_open_pipefs,
1801 .release = cache_release_pipefs,
1804 static int content_open_pipefs(struct inode *inode, struct file *filp)
1806 struct cache_detail *cd = RPC_I(inode)->private;
1808 return content_open(inode, filp, cd);
1811 static int content_release_pipefs(struct inode *inode, struct file *filp)
1813 struct cache_detail *cd = RPC_I(inode)->private;
1815 return content_release(inode, filp, cd);
1818 const struct file_operations content_file_operations_pipefs = {
1819 .open = content_open_pipefs,
1820 .read = seq_read,
1821 .llseek = seq_lseek,
1822 .release = content_release_pipefs,
1825 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1827 struct cache_detail *cd = RPC_I(inode)->private;
1829 return open_flush(inode, filp, cd);
1832 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1834 struct cache_detail *cd = RPC_I(inode)->private;
1836 return release_flush(inode, filp, cd);
1839 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1840 size_t count, loff_t *ppos)
1842 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1844 return read_flush(filp, buf, count, ppos, cd);
1847 static ssize_t write_flush_pipefs(struct file *filp,
1848 const char __user *buf,
1849 size_t count, loff_t *ppos)
1851 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1853 return write_flush(filp, buf, count, ppos, cd);
1856 const struct file_operations cache_flush_operations_pipefs = {
1857 .open = open_flush_pipefs,
1858 .read = read_flush_pipefs,
1859 .write = write_flush_pipefs,
1860 .release = release_flush_pipefs,
1861 .llseek = no_llseek,
1864 int sunrpc_cache_register_pipefs(struct dentry *parent,
1865 const char *name, umode_t umode,
1866 struct cache_detail *cd)
1868 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1869 if (IS_ERR(dir))
1870 return PTR_ERR(dir);
1871 cd->pipefs = dir;
1872 return 0;
1874 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1876 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1878 if (cd->pipefs) {
1879 rpc_remove_cache_dir(cd->pipefs);
1880 cd->pipefs = NULL;
1883 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1885 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1887 spin_lock(&cd->hash_lock);
1888 if (!hlist_unhashed(&h->cache_list)){
1889 hlist_del_init_rcu(&h->cache_list);
1890 cd->entries--;
1891 spin_unlock(&cd->hash_lock);
1892 cache_put(h, cd);
1893 } else
1894 spin_unlock(&cd->hash_lock);
1896 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);