4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
10 #include <linux/nospec.h>
12 #include <linux/kcov.h>
14 #include <asm/switch_to.h>
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
29 * Debugging: various feature bits
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug
unsigned int sysctl_sched_features
=
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
47 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
50 * period over which we measure -rt task CPU usage in us.
53 unsigned int sysctl_sched_rt_period
= 1000000;
55 __read_mostly
int scheduler_running
;
58 * part of the period that we allow rt tasks to run in us.
61 int sysctl_sched_rt_runtime
= 950000;
64 * __task_rq_lock - lock the rq @p resides on.
66 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
71 lockdep_assert_held(&p
->pi_lock
);
75 raw_spin_lock(&rq
->lock
);
76 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
80 raw_spin_unlock(&rq
->lock
);
82 while (unlikely(task_on_rq_migrating(p
)))
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
91 __acquires(p
->pi_lock
)
97 raw_spin_lock_irqsave(&p
->pi_lock
, rf
->flags
);
99 raw_spin_lock(&rq
->lock
);
101 * move_queued_task() task_rq_lock()
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
110 * If we observe the old CPU in task_rq_lock(), the acquire of
111 * the old rq->lock will fully serialize against the stores.
113 * If we observe the new CPU in task_rq_lock(), the address
114 * dependency headed by '[L] rq = task_rq()' and the acquire
115 * will pair with the WMB to ensure we then also see migrating.
117 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
121 raw_spin_unlock(&rq
->lock
);
122 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
124 while (unlikely(task_on_rq_migrating(p
)))
130 * RQ-clock updating methods:
133 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
136 * In theory, the compile should just see 0 here, and optimize out the call
137 * to sched_rt_avg_update. But I don't trust it...
139 s64 __maybe_unused steal
= 0, irq_delta
= 0;
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
145 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 * this case when a previous update_rq_clock() happened inside a
149 * When this happens, we stop ->clock_task and only update the
150 * prev_irq_time stamp to account for the part that fit, so that a next
151 * update will consume the rest. This ensures ->clock_task is
154 * It does however cause some slight miss-attribution of {soft,}irq
155 * time, a more accurate solution would be to update the irq_time using
156 * the current rq->clock timestamp, except that would require using
159 if (irq_delta
> delta
)
162 rq
->prev_irq_time
+= irq_delta
;
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 if (static_key_false((¶virt_steal_rq_enabled
))) {
167 steal
= paravirt_steal_clock(cpu_of(rq
));
168 steal
-= rq
->prev_steal_time_rq
;
170 if (unlikely(steal
> delta
))
173 rq
->prev_steal_time_rq
+= steal
;
178 rq
->clock_task
+= delta
;
180 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
181 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
182 update_irq_load_avg(rq
, irq_delta
+ steal
);
184 update_rq_clock_pelt(rq
, delta
);
187 void update_rq_clock(struct rq
*rq
)
191 lockdep_assert_held(&rq
->lock
);
193 if (rq
->clock_update_flags
& RQCF_ACT_SKIP
)
196 #ifdef CONFIG_SCHED_DEBUG
197 if (sched_feat(WARN_DOUBLE_CLOCK
))
198 SCHED_WARN_ON(rq
->clock_update_flags
& RQCF_UPDATED
);
199 rq
->clock_update_flags
|= RQCF_UPDATED
;
202 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
206 update_rq_clock_task(rq
, delta
);
210 #ifdef CONFIG_SCHED_HRTICK
212 * Use HR-timers to deliver accurate preemption points.
215 static void hrtick_clear(struct rq
*rq
)
217 if (hrtimer_active(&rq
->hrtick_timer
))
218 hrtimer_cancel(&rq
->hrtick_timer
);
222 * High-resolution timer tick.
223 * Runs from hardirq context with interrupts disabled.
225 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
227 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
230 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
234 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
237 return HRTIMER_NORESTART
;
242 static void __hrtick_restart(struct rq
*rq
)
244 struct hrtimer
*timer
= &rq
->hrtick_timer
;
246 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
250 * called from hardirq (IPI) context
252 static void __hrtick_start(void *arg
)
258 __hrtick_restart(rq
);
259 rq
->hrtick_csd_pending
= 0;
264 * Called to set the hrtick timer state.
266 * called with rq->lock held and irqs disabled
268 void hrtick_start(struct rq
*rq
, u64 delay
)
270 struct hrtimer
*timer
= &rq
->hrtick_timer
;
275 * Don't schedule slices shorter than 10000ns, that just
276 * doesn't make sense and can cause timer DoS.
278 delta
= max_t(s64
, delay
, 10000LL);
279 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
281 hrtimer_set_expires(timer
, time
);
283 if (rq
== this_rq()) {
284 __hrtick_restart(rq
);
285 } else if (!rq
->hrtick_csd_pending
) {
286 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
287 rq
->hrtick_csd_pending
= 1;
293 * Called to set the hrtick timer state.
295 * called with rq->lock held and irqs disabled
297 void hrtick_start(struct rq
*rq
, u64 delay
)
300 * Don't schedule slices shorter than 10000ns, that just
301 * doesn't make sense. Rely on vruntime for fairness.
303 delay
= max_t(u64
, delay
, 10000LL);
304 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
305 HRTIMER_MODE_REL_PINNED
);
307 #endif /* CONFIG_SMP */
309 static void hrtick_rq_init(struct rq
*rq
)
312 rq
->hrtick_csd_pending
= 0;
314 rq
->hrtick_csd
.flags
= 0;
315 rq
->hrtick_csd
.func
= __hrtick_start
;
316 rq
->hrtick_csd
.info
= rq
;
319 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
320 rq
->hrtick_timer
.function
= hrtick
;
322 #else /* CONFIG_SCHED_HRTICK */
323 static inline void hrtick_clear(struct rq
*rq
)
327 static inline void hrtick_rq_init(struct rq
*rq
)
330 #endif /* CONFIG_SCHED_HRTICK */
333 * cmpxchg based fetch_or, macro so it works for different integer types
335 #define fetch_or(ptr, mask) \
337 typeof(ptr) _ptr = (ptr); \
338 typeof(mask) _mask = (mask); \
339 typeof(*_ptr) _old, _val = *_ptr; \
342 _old = cmpxchg(_ptr, _val, _val | _mask); \
350 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
352 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
353 * this avoids any races wrt polling state changes and thereby avoids
356 static bool set_nr_and_not_polling(struct task_struct
*p
)
358 struct thread_info
*ti
= task_thread_info(p
);
359 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
363 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
365 * If this returns true, then the idle task promises to call
366 * sched_ttwu_pending() and reschedule soon.
368 static bool set_nr_if_polling(struct task_struct
*p
)
370 struct thread_info
*ti
= task_thread_info(p
);
371 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
374 if (!(val
& _TIF_POLLING_NRFLAG
))
376 if (val
& _TIF_NEED_RESCHED
)
378 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
387 static bool set_nr_and_not_polling(struct task_struct
*p
)
389 set_tsk_need_resched(p
);
394 static bool set_nr_if_polling(struct task_struct
*p
)
401 static bool __wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
403 struct wake_q_node
*node
= &task
->wake_q
;
406 * Atomically grab the task, if ->wake_q is !nil already it means
407 * its already queued (either by us or someone else) and will get the
408 * wakeup due to that.
410 * In order to ensure that a pending wakeup will observe our pending
411 * state, even in the failed case, an explicit smp_mb() must be used.
413 smp_mb__before_atomic();
414 if (unlikely(cmpxchg_relaxed(&node
->next
, NULL
, WAKE_Q_TAIL
)))
418 * The head is context local, there can be no concurrency.
421 head
->lastp
= &node
->next
;
426 * wake_q_add() - queue a wakeup for 'later' waking.
427 * @head: the wake_q_head to add @task to
428 * @task: the task to queue for 'later' wakeup
430 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
431 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
434 * This function must be used as-if it were wake_up_process(); IOW the task
435 * must be ready to be woken at this location.
437 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
439 if (__wake_q_add(head
, task
))
440 get_task_struct(task
);
444 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
445 * @head: the wake_q_head to add @task to
446 * @task: the task to queue for 'later' wakeup
448 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
449 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
452 * This function must be used as-if it were wake_up_process(); IOW the task
453 * must be ready to be woken at this location.
455 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
456 * that already hold reference to @task can call the 'safe' version and trust
457 * wake_q to do the right thing depending whether or not the @task is already
460 void wake_q_add_safe(struct wake_q_head
*head
, struct task_struct
*task
)
462 if (!__wake_q_add(head
, task
))
463 put_task_struct(task
);
466 void wake_up_q(struct wake_q_head
*head
)
468 struct wake_q_node
*node
= head
->first
;
470 while (node
!= WAKE_Q_TAIL
) {
471 struct task_struct
*task
;
473 task
= container_of(node
, struct task_struct
, wake_q
);
475 /* Task can safely be re-inserted now: */
477 task
->wake_q
.next
= NULL
;
480 * wake_up_process() executes a full barrier, which pairs with
481 * the queueing in wake_q_add() so as not to miss wakeups.
483 wake_up_process(task
);
484 put_task_struct(task
);
489 * resched_curr - mark rq's current task 'to be rescheduled now'.
491 * On UP this means the setting of the need_resched flag, on SMP it
492 * might also involve a cross-CPU call to trigger the scheduler on
495 void resched_curr(struct rq
*rq
)
497 struct task_struct
*curr
= rq
->curr
;
500 lockdep_assert_held(&rq
->lock
);
502 if (test_tsk_need_resched(curr
))
507 if (cpu
== smp_processor_id()) {
508 set_tsk_need_resched(curr
);
509 set_preempt_need_resched();
513 if (set_nr_and_not_polling(curr
))
514 smp_send_reschedule(cpu
);
516 trace_sched_wake_idle_without_ipi(cpu
);
519 void resched_cpu(int cpu
)
521 struct rq
*rq
= cpu_rq(cpu
);
524 raw_spin_lock_irqsave(&rq
->lock
, flags
);
525 if (cpu_online(cpu
) || cpu
== smp_processor_id())
527 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
531 #ifdef CONFIG_NO_HZ_COMMON
533 * In the semi idle case, use the nearest busy CPU for migrating timers
534 * from an idle CPU. This is good for power-savings.
536 * We don't do similar optimization for completely idle system, as
537 * selecting an idle CPU will add more delays to the timers than intended
538 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
540 int get_nohz_timer_target(void)
542 int i
, cpu
= smp_processor_id();
543 struct sched_domain
*sd
;
545 if (!idle_cpu(cpu
) && housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
549 for_each_domain(cpu
, sd
) {
550 for_each_cpu(i
, sched_domain_span(sd
)) {
554 if (!idle_cpu(i
) && housekeeping_cpu(i
, HK_FLAG_TIMER
)) {
561 if (!housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
562 cpu
= housekeeping_any_cpu(HK_FLAG_TIMER
);
569 * When add_timer_on() enqueues a timer into the timer wheel of an
570 * idle CPU then this timer might expire before the next timer event
571 * which is scheduled to wake up that CPU. In case of a completely
572 * idle system the next event might even be infinite time into the
573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574 * leaves the inner idle loop so the newly added timer is taken into
575 * account when the CPU goes back to idle and evaluates the timer
576 * wheel for the next timer event.
578 static void wake_up_idle_cpu(int cpu
)
580 struct rq
*rq
= cpu_rq(cpu
);
582 if (cpu
== smp_processor_id())
585 if (set_nr_and_not_polling(rq
->idle
))
586 smp_send_reschedule(cpu
);
588 trace_sched_wake_idle_without_ipi(cpu
);
591 static bool wake_up_full_nohz_cpu(int cpu
)
594 * We just need the target to call irq_exit() and re-evaluate
595 * the next tick. The nohz full kick at least implies that.
596 * If needed we can still optimize that later with an
599 if (cpu_is_offline(cpu
))
600 return true; /* Don't try to wake offline CPUs. */
601 if (tick_nohz_full_cpu(cpu
)) {
602 if (cpu
!= smp_processor_id() ||
603 tick_nohz_tick_stopped())
604 tick_nohz_full_kick_cpu(cpu
);
612 * Wake up the specified CPU. If the CPU is going offline, it is the
613 * caller's responsibility to deal with the lost wakeup, for example,
614 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
616 void wake_up_nohz_cpu(int cpu
)
618 if (!wake_up_full_nohz_cpu(cpu
))
619 wake_up_idle_cpu(cpu
);
622 static inline bool got_nohz_idle_kick(void)
624 int cpu
= smp_processor_id();
626 if (!(atomic_read(nohz_flags(cpu
)) & NOHZ_KICK_MASK
))
629 if (idle_cpu(cpu
) && !need_resched())
633 * We can't run Idle Load Balance on this CPU for this time so we
634 * cancel it and clear NOHZ_BALANCE_KICK
636 atomic_andnot(NOHZ_KICK_MASK
, nohz_flags(cpu
));
640 #else /* CONFIG_NO_HZ_COMMON */
642 static inline bool got_nohz_idle_kick(void)
647 #endif /* CONFIG_NO_HZ_COMMON */
649 #ifdef CONFIG_NO_HZ_FULL
650 bool sched_can_stop_tick(struct rq
*rq
)
654 /* Deadline tasks, even if single, need the tick */
655 if (rq
->dl
.dl_nr_running
)
659 * If there are more than one RR tasks, we need the tick to effect the
660 * actual RR behaviour.
662 if (rq
->rt
.rr_nr_running
) {
663 if (rq
->rt
.rr_nr_running
== 1)
670 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
671 * forced preemption between FIFO tasks.
673 fifo_nr_running
= rq
->rt
.rt_nr_running
- rq
->rt
.rr_nr_running
;
678 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
679 * if there's more than one we need the tick for involuntary
682 if (rq
->nr_running
> 1)
687 #endif /* CONFIG_NO_HZ_FULL */
688 #endif /* CONFIG_SMP */
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
696 * Caller must hold rcu_lock or sufficient equivalent.
698 int walk_tg_tree_from(struct task_group
*from
,
699 tg_visitor down
, tg_visitor up
, void *data
)
701 struct task_group
*parent
, *child
;
707 ret
= (*down
)(parent
, data
);
710 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
717 ret
= (*up
)(parent
, data
);
718 if (ret
|| parent
== from
)
722 parent
= parent
->parent
;
729 int tg_nop(struct task_group
*tg
, void *data
)
735 static void set_load_weight(struct task_struct
*p
, bool update_load
)
737 int prio
= p
->static_prio
- MAX_RT_PRIO
;
738 struct load_weight
*load
= &p
->se
.load
;
741 * SCHED_IDLE tasks get minimal weight:
743 if (task_has_idle_policy(p
)) {
744 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
745 load
->inv_weight
= WMULT_IDLEPRIO
;
746 p
->se
.runnable_weight
= load
->weight
;
751 * SCHED_OTHER tasks have to update their load when changing their
754 if (update_load
&& p
->sched_class
== &fair_sched_class
) {
755 reweight_task(p
, prio
);
757 load
->weight
= scale_load(sched_prio_to_weight
[prio
]);
758 load
->inv_weight
= sched_prio_to_wmult
[prio
];
759 p
->se
.runnable_weight
= load
->weight
;
763 static inline void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
765 if (!(flags
& ENQUEUE_NOCLOCK
))
768 if (!(flags
& ENQUEUE_RESTORE
)) {
769 sched_info_queued(rq
, p
);
770 psi_enqueue(p
, flags
& ENQUEUE_WAKEUP
);
773 p
->sched_class
->enqueue_task(rq
, p
, flags
);
776 static inline void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
778 if (!(flags
& DEQUEUE_NOCLOCK
))
781 if (!(flags
& DEQUEUE_SAVE
)) {
782 sched_info_dequeued(rq
, p
);
783 psi_dequeue(p
, flags
& DEQUEUE_SLEEP
);
786 p
->sched_class
->dequeue_task(rq
, p
, flags
);
789 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
791 if (task_contributes_to_load(p
))
792 rq
->nr_uninterruptible
--;
794 enqueue_task(rq
, p
, flags
);
797 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
799 if (task_contributes_to_load(p
))
800 rq
->nr_uninterruptible
++;
802 dequeue_task(rq
, p
, flags
);
806 * __normal_prio - return the priority that is based on the static prio
808 static inline int __normal_prio(struct task_struct
*p
)
810 return p
->static_prio
;
814 * Calculate the expected normal priority: i.e. priority
815 * without taking RT-inheritance into account. Might be
816 * boosted by interactivity modifiers. Changes upon fork,
817 * setprio syscalls, and whenever the interactivity
818 * estimator recalculates.
820 static inline int normal_prio(struct task_struct
*p
)
824 if (task_has_dl_policy(p
))
825 prio
= MAX_DL_PRIO
-1;
826 else if (task_has_rt_policy(p
))
827 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
829 prio
= __normal_prio(p
);
834 * Calculate the current priority, i.e. the priority
835 * taken into account by the scheduler. This value might
836 * be boosted by RT tasks, or might be boosted by
837 * interactivity modifiers. Will be RT if the task got
838 * RT-boosted. If not then it returns p->normal_prio.
840 static int effective_prio(struct task_struct
*p
)
842 p
->normal_prio
= normal_prio(p
);
844 * If we are RT tasks or we were boosted to RT priority,
845 * keep the priority unchanged. Otherwise, update priority
846 * to the normal priority:
848 if (!rt_prio(p
->prio
))
849 return p
->normal_prio
;
854 * task_curr - is this task currently executing on a CPU?
855 * @p: the task in question.
857 * Return: 1 if the task is currently executing. 0 otherwise.
859 inline int task_curr(const struct task_struct
*p
)
861 return cpu_curr(task_cpu(p
)) == p
;
865 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
866 * use the balance_callback list if you want balancing.
868 * this means any call to check_class_changed() must be followed by a call to
869 * balance_callback().
871 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
872 const struct sched_class
*prev_class
,
875 if (prev_class
!= p
->sched_class
) {
876 if (prev_class
->switched_from
)
877 prev_class
->switched_from(rq
, p
);
879 p
->sched_class
->switched_to(rq
, p
);
880 } else if (oldprio
!= p
->prio
|| dl_task(p
))
881 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
884 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
886 const struct sched_class
*class;
888 if (p
->sched_class
== rq
->curr
->sched_class
) {
889 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
891 for_each_class(class) {
892 if (class == rq
->curr
->sched_class
)
894 if (class == p
->sched_class
) {
902 * A queue event has occurred, and we're going to schedule. In
903 * this case, we can save a useless back to back clock update.
905 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
906 rq_clock_skip_update(rq
);
911 static inline bool is_per_cpu_kthread(struct task_struct
*p
)
913 if (!(p
->flags
& PF_KTHREAD
))
916 if (p
->nr_cpus_allowed
!= 1)
923 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
924 * __set_cpus_allowed_ptr() and select_fallback_rq().
926 static inline bool is_cpu_allowed(struct task_struct
*p
, int cpu
)
928 if (!cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
931 if (is_per_cpu_kthread(p
))
932 return cpu_online(cpu
);
934 return cpu_active(cpu
);
938 * This is how migration works:
940 * 1) we invoke migration_cpu_stop() on the target CPU using
942 * 2) stopper starts to run (implicitly forcing the migrated thread
944 * 3) it checks whether the migrated task is still in the wrong runqueue.
945 * 4) if it's in the wrong runqueue then the migration thread removes
946 * it and puts it into the right queue.
947 * 5) stopper completes and stop_one_cpu() returns and the migration
952 * move_queued_task - move a queued task to new rq.
954 * Returns (locked) new rq. Old rq's lock is released.
956 static struct rq
*move_queued_task(struct rq
*rq
, struct rq_flags
*rf
,
957 struct task_struct
*p
, int new_cpu
)
959 lockdep_assert_held(&rq
->lock
);
961 WRITE_ONCE(p
->on_rq
, TASK_ON_RQ_MIGRATING
);
962 dequeue_task(rq
, p
, DEQUEUE_NOCLOCK
);
963 set_task_cpu(p
, new_cpu
);
966 rq
= cpu_rq(new_cpu
);
969 BUG_ON(task_cpu(p
) != new_cpu
);
970 enqueue_task(rq
, p
, 0);
971 p
->on_rq
= TASK_ON_RQ_QUEUED
;
972 check_preempt_curr(rq
, p
, 0);
977 struct migration_arg
{
978 struct task_struct
*task
;
983 * Move (not current) task off this CPU, onto the destination CPU. We're doing
984 * this because either it can't run here any more (set_cpus_allowed()
985 * away from this CPU, or CPU going down), or because we're
986 * attempting to rebalance this task on exec (sched_exec).
988 * So we race with normal scheduler movements, but that's OK, as long
989 * as the task is no longer on this CPU.
991 static struct rq
*__migrate_task(struct rq
*rq
, struct rq_flags
*rf
,
992 struct task_struct
*p
, int dest_cpu
)
994 /* Affinity changed (again). */
995 if (!is_cpu_allowed(p
, dest_cpu
))
999 rq
= move_queued_task(rq
, rf
, p
, dest_cpu
);
1005 * migration_cpu_stop - this will be executed by a highprio stopper thread
1006 * and performs thread migration by bumping thread off CPU then
1007 * 'pushing' onto another runqueue.
1009 static int migration_cpu_stop(void *data
)
1011 struct migration_arg
*arg
= data
;
1012 struct task_struct
*p
= arg
->task
;
1013 struct rq
*rq
= this_rq();
1017 * The original target CPU might have gone down and we might
1018 * be on another CPU but it doesn't matter.
1020 local_irq_disable();
1022 * We need to explicitly wake pending tasks before running
1023 * __migrate_task() such that we will not miss enforcing cpus_allowed
1024 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1026 sched_ttwu_pending();
1028 raw_spin_lock(&p
->pi_lock
);
1031 * If task_rq(p) != rq, it cannot be migrated here, because we're
1032 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1033 * we're holding p->pi_lock.
1035 if (task_rq(p
) == rq
) {
1036 if (task_on_rq_queued(p
))
1037 rq
= __migrate_task(rq
, &rf
, p
, arg
->dest_cpu
);
1039 p
->wake_cpu
= arg
->dest_cpu
;
1042 raw_spin_unlock(&p
->pi_lock
);
1049 * sched_class::set_cpus_allowed must do the below, but is not required to
1050 * actually call this function.
1052 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1054 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1055 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1058 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1060 struct rq
*rq
= task_rq(p
);
1061 bool queued
, running
;
1063 lockdep_assert_held(&p
->pi_lock
);
1065 queued
= task_on_rq_queued(p
);
1066 running
= task_current(rq
, p
);
1070 * Because __kthread_bind() calls this on blocked tasks without
1073 lockdep_assert_held(&rq
->lock
);
1074 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
1077 put_prev_task(rq
, p
);
1079 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1082 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
1084 set_curr_task(rq
, p
);
1088 * Change a given task's CPU affinity. Migrate the thread to a
1089 * proper CPU and schedule it away if the CPU it's executing on
1090 * is removed from the allowed bitmask.
1092 * NOTE: the caller must have a valid reference to the task, the
1093 * task must not exit() & deallocate itself prematurely. The
1094 * call is not atomic; no spinlocks may be held.
1096 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1097 const struct cpumask
*new_mask
, bool check
)
1099 const struct cpumask
*cpu_valid_mask
= cpu_active_mask
;
1100 unsigned int dest_cpu
;
1105 rq
= task_rq_lock(p
, &rf
);
1106 update_rq_clock(rq
);
1108 if (p
->flags
& PF_KTHREAD
) {
1110 * Kernel threads are allowed on online && !active CPUs
1112 cpu_valid_mask
= cpu_online_mask
;
1116 * Must re-check here, to close a race against __kthread_bind(),
1117 * sched_setaffinity() is not guaranteed to observe the flag.
1119 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1124 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
1127 if (!cpumask_intersects(new_mask
, cpu_valid_mask
)) {
1132 do_set_cpus_allowed(p
, new_mask
);
1134 if (p
->flags
& PF_KTHREAD
) {
1136 * For kernel threads that do indeed end up on online &&
1137 * !active we want to ensure they are strict per-CPU threads.
1139 WARN_ON(cpumask_intersects(new_mask
, cpu_online_mask
) &&
1140 !cpumask_intersects(new_mask
, cpu_active_mask
) &&
1141 p
->nr_cpus_allowed
!= 1);
1144 /* Can the task run on the task's current CPU? If so, we're done */
1145 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1148 dest_cpu
= cpumask_any_and(cpu_valid_mask
, new_mask
);
1149 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1150 struct migration_arg arg
= { p
, dest_cpu
};
1151 /* Need help from migration thread: drop lock and wait. */
1152 task_rq_unlock(rq
, p
, &rf
);
1153 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1154 tlb_migrate_finish(p
->mm
);
1156 } else if (task_on_rq_queued(p
)) {
1158 * OK, since we're going to drop the lock immediately
1159 * afterwards anyway.
1161 rq
= move_queued_task(rq
, &rf
, p
, dest_cpu
);
1164 task_rq_unlock(rq
, p
, &rf
);
1169 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1171 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1173 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1175 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1177 #ifdef CONFIG_SCHED_DEBUG
1179 * We should never call set_task_cpu() on a blocked task,
1180 * ttwu() will sort out the placement.
1182 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1186 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1187 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1188 * time relying on p->on_rq.
1190 WARN_ON_ONCE(p
->state
== TASK_RUNNING
&&
1191 p
->sched_class
== &fair_sched_class
&&
1192 (p
->on_rq
&& !task_on_rq_migrating(p
)));
1194 #ifdef CONFIG_LOCKDEP
1196 * The caller should hold either p->pi_lock or rq->lock, when changing
1197 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1199 * sched_move_task() holds both and thus holding either pins the cgroup,
1202 * Furthermore, all task_rq users should acquire both locks, see
1205 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1206 lockdep_is_held(&task_rq(p
)->lock
)));
1209 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1211 WARN_ON_ONCE(!cpu_online(new_cpu
));
1214 trace_sched_migrate_task(p
, new_cpu
);
1216 if (task_cpu(p
) != new_cpu
) {
1217 if (p
->sched_class
->migrate_task_rq
)
1218 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1219 p
->se
.nr_migrations
++;
1221 perf_event_task_migrate(p
);
1224 __set_task_cpu(p
, new_cpu
);
1227 #ifdef CONFIG_NUMA_BALANCING
1228 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1230 if (task_on_rq_queued(p
)) {
1231 struct rq
*src_rq
, *dst_rq
;
1232 struct rq_flags srf
, drf
;
1234 src_rq
= task_rq(p
);
1235 dst_rq
= cpu_rq(cpu
);
1237 rq_pin_lock(src_rq
, &srf
);
1238 rq_pin_lock(dst_rq
, &drf
);
1240 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
1241 deactivate_task(src_rq
, p
, 0);
1242 set_task_cpu(p
, cpu
);
1243 activate_task(dst_rq
, p
, 0);
1244 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1245 check_preempt_curr(dst_rq
, p
, 0);
1247 rq_unpin_lock(dst_rq
, &drf
);
1248 rq_unpin_lock(src_rq
, &srf
);
1252 * Task isn't running anymore; make it appear like we migrated
1253 * it before it went to sleep. This means on wakeup we make the
1254 * previous CPU our target instead of where it really is.
1260 struct migration_swap_arg
{
1261 struct task_struct
*src_task
, *dst_task
;
1262 int src_cpu
, dst_cpu
;
1265 static int migrate_swap_stop(void *data
)
1267 struct migration_swap_arg
*arg
= data
;
1268 struct rq
*src_rq
, *dst_rq
;
1271 if (!cpu_active(arg
->src_cpu
) || !cpu_active(arg
->dst_cpu
))
1274 src_rq
= cpu_rq(arg
->src_cpu
);
1275 dst_rq
= cpu_rq(arg
->dst_cpu
);
1277 double_raw_lock(&arg
->src_task
->pi_lock
,
1278 &arg
->dst_task
->pi_lock
);
1279 double_rq_lock(src_rq
, dst_rq
);
1281 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1284 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1287 if (!cpumask_test_cpu(arg
->dst_cpu
, &arg
->src_task
->cpus_allowed
))
1290 if (!cpumask_test_cpu(arg
->src_cpu
, &arg
->dst_task
->cpus_allowed
))
1293 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1294 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1299 double_rq_unlock(src_rq
, dst_rq
);
1300 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1301 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1307 * Cross migrate two tasks
1309 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
,
1310 int target_cpu
, int curr_cpu
)
1312 struct migration_swap_arg arg
;
1315 arg
= (struct migration_swap_arg
){
1317 .src_cpu
= curr_cpu
,
1319 .dst_cpu
= target_cpu
,
1322 if (arg
.src_cpu
== arg
.dst_cpu
)
1326 * These three tests are all lockless; this is OK since all of them
1327 * will be re-checked with proper locks held further down the line.
1329 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1332 if (!cpumask_test_cpu(arg
.dst_cpu
, &arg
.src_task
->cpus_allowed
))
1335 if (!cpumask_test_cpu(arg
.src_cpu
, &arg
.dst_task
->cpus_allowed
))
1338 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1339 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1344 #endif /* CONFIG_NUMA_BALANCING */
1347 * wait_task_inactive - wait for a thread to unschedule.
1349 * If @match_state is nonzero, it's the @p->state value just checked and
1350 * not expected to change. If it changes, i.e. @p might have woken up,
1351 * then return zero. When we succeed in waiting for @p to be off its CPU,
1352 * we return a positive number (its total switch count). If a second call
1353 * a short while later returns the same number, the caller can be sure that
1354 * @p has remained unscheduled the whole time.
1356 * The caller must ensure that the task *will* unschedule sometime soon,
1357 * else this function might spin for a *long* time. This function can't
1358 * be called with interrupts off, or it may introduce deadlock with
1359 * smp_call_function() if an IPI is sent by the same process we are
1360 * waiting to become inactive.
1362 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1364 int running
, queued
;
1371 * We do the initial early heuristics without holding
1372 * any task-queue locks at all. We'll only try to get
1373 * the runqueue lock when things look like they will
1379 * If the task is actively running on another CPU
1380 * still, just relax and busy-wait without holding
1383 * NOTE! Since we don't hold any locks, it's not
1384 * even sure that "rq" stays as the right runqueue!
1385 * But we don't care, since "task_running()" will
1386 * return false if the runqueue has changed and p
1387 * is actually now running somewhere else!
1389 while (task_running(rq
, p
)) {
1390 if (match_state
&& unlikely(p
->state
!= match_state
))
1396 * Ok, time to look more closely! We need the rq
1397 * lock now, to be *sure*. If we're wrong, we'll
1398 * just go back and repeat.
1400 rq
= task_rq_lock(p
, &rf
);
1401 trace_sched_wait_task(p
);
1402 running
= task_running(rq
, p
);
1403 queued
= task_on_rq_queued(p
);
1405 if (!match_state
|| p
->state
== match_state
)
1406 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1407 task_rq_unlock(rq
, p
, &rf
);
1410 * If it changed from the expected state, bail out now.
1412 if (unlikely(!ncsw
))
1416 * Was it really running after all now that we
1417 * checked with the proper locks actually held?
1419 * Oops. Go back and try again..
1421 if (unlikely(running
)) {
1427 * It's not enough that it's not actively running,
1428 * it must be off the runqueue _entirely_, and not
1431 * So if it was still runnable (but just not actively
1432 * running right now), it's preempted, and we should
1433 * yield - it could be a while.
1435 if (unlikely(queued
)) {
1436 ktime_t to
= NSEC_PER_SEC
/ HZ
;
1438 set_current_state(TASK_UNINTERRUPTIBLE
);
1439 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1444 * Ahh, all good. It wasn't running, and it wasn't
1445 * runnable, which means that it will never become
1446 * running in the future either. We're all done!
1455 * kick_process - kick a running thread to enter/exit the kernel
1456 * @p: the to-be-kicked thread
1458 * Cause a process which is running on another CPU to enter
1459 * kernel-mode, without any delay. (to get signals handled.)
1461 * NOTE: this function doesn't have to take the runqueue lock,
1462 * because all it wants to ensure is that the remote task enters
1463 * the kernel. If the IPI races and the task has been migrated
1464 * to another CPU then no harm is done and the purpose has been
1467 void kick_process(struct task_struct
*p
)
1473 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1474 smp_send_reschedule(cpu
);
1477 EXPORT_SYMBOL_GPL(kick_process
);
1480 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1482 * A few notes on cpu_active vs cpu_online:
1484 * - cpu_active must be a subset of cpu_online
1486 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1487 * see __set_cpus_allowed_ptr(). At this point the newly online
1488 * CPU isn't yet part of the sched domains, and balancing will not
1491 * - on CPU-down we clear cpu_active() to mask the sched domains and
1492 * avoid the load balancer to place new tasks on the to be removed
1493 * CPU. Existing tasks will remain running there and will be taken
1496 * This means that fallback selection must not select !active CPUs.
1497 * And can assume that any active CPU must be online. Conversely
1498 * select_task_rq() below may allow selection of !active CPUs in order
1499 * to satisfy the above rules.
1501 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1503 int nid
= cpu_to_node(cpu
);
1504 const struct cpumask
*nodemask
= NULL
;
1505 enum { cpuset
, possible
, fail
} state
= cpuset
;
1509 * If the node that the CPU is on has been offlined, cpu_to_node()
1510 * will return -1. There is no CPU on the node, and we should
1511 * select the CPU on the other node.
1514 nodemask
= cpumask_of_node(nid
);
1516 /* Look for allowed, online CPU in same node. */
1517 for_each_cpu(dest_cpu
, nodemask
) {
1518 if (!cpu_active(dest_cpu
))
1520 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
1526 /* Any allowed, online CPU? */
1527 for_each_cpu(dest_cpu
, &p
->cpus_allowed
) {
1528 if (!is_cpu_allowed(p
, dest_cpu
))
1534 /* No more Mr. Nice Guy. */
1537 if (IS_ENABLED(CONFIG_CPUSETS
)) {
1538 cpuset_cpus_allowed_fallback(p
);
1544 do_set_cpus_allowed(p
, cpu_possible_mask
);
1555 if (state
!= cpuset
) {
1557 * Don't tell them about moving exiting tasks or
1558 * kernel threads (both mm NULL), since they never
1561 if (p
->mm
&& printk_ratelimit()) {
1562 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1563 task_pid_nr(p
), p
->comm
, cpu
);
1571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1574 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1576 lockdep_assert_held(&p
->pi_lock
);
1578 if (p
->nr_cpus_allowed
> 1)
1579 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1581 cpu
= cpumask_any(&p
->cpus_allowed
);
1584 * In order not to call set_task_cpu() on a blocking task we need
1585 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1588 * Since this is common to all placement strategies, this lives here.
1590 * [ this allows ->select_task() to simply return task_cpu(p) and
1591 * not worry about this generic constraint ]
1593 if (unlikely(!is_cpu_allowed(p
, cpu
)))
1594 cpu
= select_fallback_rq(task_cpu(p
), p
);
1599 static void update_avg(u64
*avg
, u64 sample
)
1601 s64 diff
= sample
- *avg
;
1605 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
1607 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1608 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
1612 * Make it appear like a SCHED_FIFO task, its something
1613 * userspace knows about and won't get confused about.
1615 * Also, it will make PI more or less work without too
1616 * much confusion -- but then, stop work should not
1617 * rely on PI working anyway.
1619 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
1621 stop
->sched_class
= &stop_sched_class
;
1624 cpu_rq(cpu
)->stop
= stop
;
1628 * Reset it back to a normal scheduling class so that
1629 * it can die in pieces.
1631 old_stop
->sched_class
= &rt_sched_class
;
1637 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
1638 const struct cpumask
*new_mask
, bool check
)
1640 return set_cpus_allowed_ptr(p
, new_mask
);
1643 #endif /* CONFIG_SMP */
1646 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1650 if (!schedstat_enabled())
1656 if (cpu
== rq
->cpu
) {
1657 __schedstat_inc(rq
->ttwu_local
);
1658 __schedstat_inc(p
->se
.statistics
.nr_wakeups_local
);
1660 struct sched_domain
*sd
;
1662 __schedstat_inc(p
->se
.statistics
.nr_wakeups_remote
);
1664 for_each_domain(rq
->cpu
, sd
) {
1665 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1666 __schedstat_inc(sd
->ttwu_wake_remote
);
1673 if (wake_flags
& WF_MIGRATED
)
1674 __schedstat_inc(p
->se
.statistics
.nr_wakeups_migrate
);
1675 #endif /* CONFIG_SMP */
1677 __schedstat_inc(rq
->ttwu_count
);
1678 __schedstat_inc(p
->se
.statistics
.nr_wakeups
);
1680 if (wake_flags
& WF_SYNC
)
1681 __schedstat_inc(p
->se
.statistics
.nr_wakeups_sync
);
1684 static inline void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1686 activate_task(rq
, p
, en_flags
);
1687 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1689 /* If a worker is waking up, notify the workqueue: */
1690 if (p
->flags
& PF_WQ_WORKER
)
1691 wq_worker_waking_up(p
, cpu_of(rq
));
1695 * Mark the task runnable and perform wakeup-preemption.
1697 static void ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1698 struct rq_flags
*rf
)
1700 check_preempt_curr(rq
, p
, wake_flags
);
1701 p
->state
= TASK_RUNNING
;
1702 trace_sched_wakeup(p
);
1705 if (p
->sched_class
->task_woken
) {
1707 * Our task @p is fully woken up and running; so its safe to
1708 * drop the rq->lock, hereafter rq is only used for statistics.
1710 rq_unpin_lock(rq
, rf
);
1711 p
->sched_class
->task_woken(rq
, p
);
1712 rq_repin_lock(rq
, rf
);
1715 if (rq
->idle_stamp
) {
1716 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1717 u64 max
= 2*rq
->max_idle_balance_cost
;
1719 update_avg(&rq
->avg_idle
, delta
);
1721 if (rq
->avg_idle
> max
)
1730 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1731 struct rq_flags
*rf
)
1733 int en_flags
= ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
;
1735 lockdep_assert_held(&rq
->lock
);
1738 if (p
->sched_contributes_to_load
)
1739 rq
->nr_uninterruptible
--;
1741 if (wake_flags
& WF_MIGRATED
)
1742 en_flags
|= ENQUEUE_MIGRATED
;
1745 ttwu_activate(rq
, p
, en_flags
);
1746 ttwu_do_wakeup(rq
, p
, wake_flags
, rf
);
1750 * Called in case the task @p isn't fully descheduled from its runqueue,
1751 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1752 * since all we need to do is flip p->state to TASK_RUNNING, since
1753 * the task is still ->on_rq.
1755 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1761 rq
= __task_rq_lock(p
, &rf
);
1762 if (task_on_rq_queued(p
)) {
1763 /* check_preempt_curr() may use rq clock */
1764 update_rq_clock(rq
);
1765 ttwu_do_wakeup(rq
, p
, wake_flags
, &rf
);
1768 __task_rq_unlock(rq
, &rf
);
1774 void sched_ttwu_pending(void)
1776 struct rq
*rq
= this_rq();
1777 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1778 struct task_struct
*p
, *t
;
1784 rq_lock_irqsave(rq
, &rf
);
1785 update_rq_clock(rq
);
1787 llist_for_each_entry_safe(p
, t
, llist
, wake_entry
)
1788 ttwu_do_activate(rq
, p
, p
->sched_remote_wakeup
? WF_MIGRATED
: 0, &rf
);
1790 rq_unlock_irqrestore(rq
, &rf
);
1793 void scheduler_ipi(void)
1796 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1797 * TIF_NEED_RESCHED remotely (for the first time) will also send
1800 preempt_fold_need_resched();
1802 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1806 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1807 * traditionally all their work was done from the interrupt return
1808 * path. Now that we actually do some work, we need to make sure
1811 * Some archs already do call them, luckily irq_enter/exit nest
1814 * Arguably we should visit all archs and update all handlers,
1815 * however a fair share of IPIs are still resched only so this would
1816 * somewhat pessimize the simple resched case.
1819 sched_ttwu_pending();
1822 * Check if someone kicked us for doing the nohz idle load balance.
1824 if (unlikely(got_nohz_idle_kick())) {
1825 this_rq()->idle_balance
= 1;
1826 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1831 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
, int wake_flags
)
1833 struct rq
*rq
= cpu_rq(cpu
);
1835 p
->sched_remote_wakeup
= !!(wake_flags
& WF_MIGRATED
);
1837 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1838 if (!set_nr_if_polling(rq
->idle
))
1839 smp_send_reschedule(cpu
);
1841 trace_sched_wake_idle_without_ipi(cpu
);
1845 void wake_up_if_idle(int cpu
)
1847 struct rq
*rq
= cpu_rq(cpu
);
1852 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1855 if (set_nr_if_polling(rq
->idle
)) {
1856 trace_sched_wake_idle_without_ipi(cpu
);
1858 rq_lock_irqsave(rq
, &rf
);
1859 if (is_idle_task(rq
->curr
))
1860 smp_send_reschedule(cpu
);
1861 /* Else CPU is not idle, do nothing here: */
1862 rq_unlock_irqrestore(rq
, &rf
);
1869 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1871 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1873 #endif /* CONFIG_SMP */
1875 static void ttwu_queue(struct task_struct
*p
, int cpu
, int wake_flags
)
1877 struct rq
*rq
= cpu_rq(cpu
);
1880 #if defined(CONFIG_SMP)
1881 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1882 sched_clock_cpu(cpu
); /* Sync clocks across CPUs */
1883 ttwu_queue_remote(p
, cpu
, wake_flags
);
1889 update_rq_clock(rq
);
1890 ttwu_do_activate(rq
, p
, wake_flags
, &rf
);
1895 * Notes on Program-Order guarantees on SMP systems.
1899 * The basic program-order guarantee on SMP systems is that when a task [t]
1900 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1901 * execution on its new CPU [c1].
1903 * For migration (of runnable tasks) this is provided by the following means:
1905 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1906 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1907 * rq(c1)->lock (if not at the same time, then in that order).
1908 * C) LOCK of the rq(c1)->lock scheduling in task
1910 * Release/acquire chaining guarantees that B happens after A and C after B.
1911 * Note: the CPU doing B need not be c0 or c1
1920 * UNLOCK rq(0)->lock
1922 * LOCK rq(0)->lock // orders against CPU0
1924 * UNLOCK rq(0)->lock
1928 * UNLOCK rq(1)->lock
1930 * LOCK rq(1)->lock // orders against CPU2
1933 * UNLOCK rq(1)->lock
1936 * BLOCKING -- aka. SLEEP + WAKEUP
1938 * For blocking we (obviously) need to provide the same guarantee as for
1939 * migration. However the means are completely different as there is no lock
1940 * chain to provide order. Instead we do:
1942 * 1) smp_store_release(X->on_cpu, 0)
1943 * 2) smp_cond_load_acquire(!X->on_cpu)
1947 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1949 * LOCK rq(0)->lock LOCK X->pi_lock
1952 * smp_store_release(X->on_cpu, 0);
1954 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1960 * X->state = RUNNING
1961 * UNLOCK rq(2)->lock
1963 * LOCK rq(2)->lock // orders against CPU1
1966 * UNLOCK rq(2)->lock
1969 * UNLOCK rq(0)->lock
1972 * However, for wakeups there is a second guarantee we must provide, namely we
1973 * must ensure that CONDITION=1 done by the caller can not be reordered with
1974 * accesses to the task state; see try_to_wake_up() and set_current_state().
1978 * try_to_wake_up - wake up a thread
1979 * @p: the thread to be awakened
1980 * @state: the mask of task states that can be woken
1981 * @wake_flags: wake modifier flags (WF_*)
1983 * If (@state & @p->state) @p->state = TASK_RUNNING.
1985 * If the task was not queued/runnable, also place it back on a runqueue.
1987 * Atomic against schedule() which would dequeue a task, also see
1988 * set_current_state().
1990 * This function executes a full memory barrier before accessing the task
1991 * state; see set_current_state().
1993 * Return: %true if @p->state changes (an actual wakeup was done),
1997 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1999 unsigned long flags
;
2000 int cpu
, success
= 0;
2003 * If we are going to wake up a thread waiting for CONDITION we
2004 * need to ensure that CONDITION=1 done by the caller can not be
2005 * reordered with p->state check below. This pairs with mb() in
2006 * set_current_state() the waiting thread does.
2008 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2009 smp_mb__after_spinlock();
2010 if (!(p
->state
& state
))
2013 trace_sched_waking(p
);
2015 /* We're going to change ->state: */
2020 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 * in smp_cond_load_acquire() below.
2024 * sched_ttwu_pending() try_to_wake_up()
2025 * STORE p->on_rq = 1 LOAD p->state
2028 * __schedule() (switch to task 'p')
2029 * LOCK rq->lock smp_rmb();
2030 * smp_mb__after_spinlock();
2034 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2036 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2037 * __schedule(). See the comment for smp_mb__after_spinlock().
2040 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2045 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2046 * possible to, falsely, observe p->on_cpu == 0.
2048 * One must be running (->on_cpu == 1) in order to remove oneself
2049 * from the runqueue.
2051 * __schedule() (switch to task 'p') try_to_wake_up()
2052 * STORE p->on_cpu = 1 LOAD p->on_rq
2055 * __schedule() (put 'p' to sleep)
2056 * LOCK rq->lock smp_rmb();
2057 * smp_mb__after_spinlock();
2058 * STORE p->on_rq = 0 LOAD p->on_cpu
2060 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2061 * __schedule(). See the comment for smp_mb__after_spinlock().
2066 * If the owning (remote) CPU is still in the middle of schedule() with
2067 * this task as prev, wait until its done referencing the task.
2069 * Pairs with the smp_store_release() in finish_task().
2071 * This ensures that tasks getting woken will be fully ordered against
2072 * their previous state and preserve Program Order.
2074 smp_cond_load_acquire(&p
->on_cpu
, !VAL
);
2076 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2077 p
->state
= TASK_WAKING
;
2080 delayacct_blkio_end(p
);
2081 atomic_dec(&task_rq(p
)->nr_iowait
);
2084 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
2085 if (task_cpu(p
) != cpu
) {
2086 wake_flags
|= WF_MIGRATED
;
2087 psi_ttwu_dequeue(p
);
2088 set_task_cpu(p
, cpu
);
2091 #else /* CONFIG_SMP */
2094 delayacct_blkio_end(p
);
2095 atomic_dec(&task_rq(p
)->nr_iowait
);
2098 #endif /* CONFIG_SMP */
2100 ttwu_queue(p
, cpu
, wake_flags
);
2102 ttwu_stat(p
, cpu
, wake_flags
);
2104 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2110 * try_to_wake_up_local - try to wake up a local task with rq lock held
2111 * @p: the thread to be awakened
2112 * @rf: request-queue flags for pinning
2114 * Put @p on the run-queue if it's not already there. The caller must
2115 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2118 static void try_to_wake_up_local(struct task_struct
*p
, struct rq_flags
*rf
)
2120 struct rq
*rq
= task_rq(p
);
2122 if (WARN_ON_ONCE(rq
!= this_rq()) ||
2123 WARN_ON_ONCE(p
== current
))
2126 lockdep_assert_held(&rq
->lock
);
2128 if (!raw_spin_trylock(&p
->pi_lock
)) {
2130 * This is OK, because current is on_cpu, which avoids it being
2131 * picked for load-balance and preemption/IRQs are still
2132 * disabled avoiding further scheduler activity on it and we've
2133 * not yet picked a replacement task.
2136 raw_spin_lock(&p
->pi_lock
);
2140 if (!(p
->state
& TASK_NORMAL
))
2143 trace_sched_waking(p
);
2145 if (!task_on_rq_queued(p
)) {
2147 delayacct_blkio_end(p
);
2148 atomic_dec(&rq
->nr_iowait
);
2150 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
);
2153 ttwu_do_wakeup(rq
, p
, 0, rf
);
2154 ttwu_stat(p
, smp_processor_id(), 0);
2156 raw_spin_unlock(&p
->pi_lock
);
2160 * wake_up_process - Wake up a specific process
2161 * @p: The process to be woken up.
2163 * Attempt to wake up the nominated process and move it to the set of runnable
2166 * Return: 1 if the process was woken up, 0 if it was already running.
2168 * This function executes a full memory barrier before accessing the task state.
2170 int wake_up_process(struct task_struct
*p
)
2172 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2174 EXPORT_SYMBOL(wake_up_process
);
2176 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2178 return try_to_wake_up(p
, state
, 0);
2182 * Perform scheduler related setup for a newly forked process p.
2183 * p is forked by current.
2185 * __sched_fork() is basic setup used by init_idle() too:
2187 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2192 p
->se
.exec_start
= 0;
2193 p
->se
.sum_exec_runtime
= 0;
2194 p
->se
.prev_sum_exec_runtime
= 0;
2195 p
->se
.nr_migrations
= 0;
2197 INIT_LIST_HEAD(&p
->se
.group_node
);
2199 #ifdef CONFIG_FAIR_GROUP_SCHED
2200 p
->se
.cfs_rq
= NULL
;
2203 #ifdef CONFIG_SCHEDSTATS
2204 /* Even if schedstat is disabled, there should not be garbage */
2205 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2208 RB_CLEAR_NODE(&p
->dl
.rb_node
);
2209 init_dl_task_timer(&p
->dl
);
2210 init_dl_inactive_task_timer(&p
->dl
);
2211 __dl_clear_params(p
);
2213 INIT_LIST_HEAD(&p
->rt
.run_list
);
2215 p
->rt
.time_slice
= sched_rr_timeslice
;
2219 #ifdef CONFIG_PREEMPT_NOTIFIERS
2220 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2223 #ifdef CONFIG_COMPACTION
2224 p
->capture_control
= NULL
;
2226 init_numa_balancing(clone_flags
, p
);
2229 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing
);
2231 #ifdef CONFIG_NUMA_BALANCING
2233 void set_numabalancing_state(bool enabled
)
2236 static_branch_enable(&sched_numa_balancing
);
2238 static_branch_disable(&sched_numa_balancing
);
2241 #ifdef CONFIG_PROC_SYSCTL
2242 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
2243 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2247 int state
= static_branch_likely(&sched_numa_balancing
);
2249 if (write
&& !capable(CAP_SYS_ADMIN
))
2254 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2258 set_numabalancing_state(state
);
2264 #ifdef CONFIG_SCHEDSTATS
2266 DEFINE_STATIC_KEY_FALSE(sched_schedstats
);
2267 static bool __initdata __sched_schedstats
= false;
2269 static void set_schedstats(bool enabled
)
2272 static_branch_enable(&sched_schedstats
);
2274 static_branch_disable(&sched_schedstats
);
2277 void force_schedstat_enabled(void)
2279 if (!schedstat_enabled()) {
2280 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2281 static_branch_enable(&sched_schedstats
);
2285 static int __init
setup_schedstats(char *str
)
2292 * This code is called before jump labels have been set up, so we can't
2293 * change the static branch directly just yet. Instead set a temporary
2294 * variable so init_schedstats() can do it later.
2296 if (!strcmp(str
, "enable")) {
2297 __sched_schedstats
= true;
2299 } else if (!strcmp(str
, "disable")) {
2300 __sched_schedstats
= false;
2305 pr_warn("Unable to parse schedstats=\n");
2309 __setup("schedstats=", setup_schedstats
);
2311 static void __init
init_schedstats(void)
2313 set_schedstats(__sched_schedstats
);
2316 #ifdef CONFIG_PROC_SYSCTL
2317 int sysctl_schedstats(struct ctl_table
*table
, int write
,
2318 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2322 int state
= static_branch_likely(&sched_schedstats
);
2324 if (write
&& !capable(CAP_SYS_ADMIN
))
2329 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2333 set_schedstats(state
);
2336 #endif /* CONFIG_PROC_SYSCTL */
2337 #else /* !CONFIG_SCHEDSTATS */
2338 static inline void init_schedstats(void) {}
2339 #endif /* CONFIG_SCHEDSTATS */
2342 * fork()/clone()-time setup:
2344 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2346 unsigned long flags
;
2348 __sched_fork(clone_flags
, p
);
2350 * We mark the process as NEW here. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2354 p
->state
= TASK_NEW
;
2357 * Make sure we do not leak PI boosting priority to the child.
2359 p
->prio
= current
->normal_prio
;
2362 * Revert to default priority/policy on fork if requested.
2364 if (unlikely(p
->sched_reset_on_fork
)) {
2365 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
2366 p
->policy
= SCHED_NORMAL
;
2367 p
->static_prio
= NICE_TO_PRIO(0);
2369 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2370 p
->static_prio
= NICE_TO_PRIO(0);
2372 p
->prio
= p
->normal_prio
= __normal_prio(p
);
2373 set_load_weight(p
, false);
2376 * We don't need the reset flag anymore after the fork. It has
2377 * fulfilled its duty:
2379 p
->sched_reset_on_fork
= 0;
2382 if (dl_prio(p
->prio
))
2384 else if (rt_prio(p
->prio
))
2385 p
->sched_class
= &rt_sched_class
;
2387 p
->sched_class
= &fair_sched_class
;
2389 init_entity_runnable_average(&p
->se
);
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2396 * Silence PROVE_RCU.
2398 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2400 * We're setting the CPU for the first time, we don't migrate,
2401 * so use __set_task_cpu().
2403 __set_task_cpu(p
, smp_processor_id());
2404 if (p
->sched_class
->task_fork
)
2405 p
->sched_class
->task_fork(p
);
2406 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2408 #ifdef CONFIG_SCHED_INFO
2409 if (likely(sched_info_on()))
2410 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2412 #if defined(CONFIG_SMP)
2415 init_task_preempt_count(p
);
2417 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2418 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
2423 unsigned long to_ratio(u64 period
, u64 runtime
)
2425 if (runtime
== RUNTIME_INF
)
2429 * Doing this here saves a lot of checks in all
2430 * the calling paths, and returning zero seems
2431 * safe for them anyway.
2436 return div64_u64(runtime
<< BW_SHIFT
, period
);
2440 * wake_up_new_task - wake up a newly created task for the first time.
2442 * This function will do some initial scheduler statistics housekeeping
2443 * that must be done for every newly created context, then puts the task
2444 * on the runqueue and wakes it.
2446 void wake_up_new_task(struct task_struct
*p
)
2451 raw_spin_lock_irqsave(&p
->pi_lock
, rf
.flags
);
2452 p
->state
= TASK_RUNNING
;
2455 * Fork balancing, do it here and not earlier because:
2456 * - cpus_allowed can change in the fork path
2457 * - any previously selected CPU might disappear through hotplug
2459 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2460 * as we're not fully set-up yet.
2462 p
->recent_used_cpu
= task_cpu(p
);
2463 __set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2465 rq
= __task_rq_lock(p
, &rf
);
2466 update_rq_clock(rq
);
2467 post_init_entity_util_avg(p
);
2469 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
2470 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2471 trace_sched_wakeup_new(p
);
2472 check_preempt_curr(rq
, p
, WF_FORK
);
2474 if (p
->sched_class
->task_woken
) {
2476 * Nothing relies on rq->lock after this, so its fine to
2479 rq_unpin_lock(rq
, &rf
);
2480 p
->sched_class
->task_woken(rq
, p
);
2481 rq_repin_lock(rq
, &rf
);
2484 task_rq_unlock(rq
, p
, &rf
);
2487 #ifdef CONFIG_PREEMPT_NOTIFIERS
2489 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key
);
2491 void preempt_notifier_inc(void)
2493 static_branch_inc(&preempt_notifier_key
);
2495 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
2497 void preempt_notifier_dec(void)
2499 static_branch_dec(&preempt_notifier_key
);
2501 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
2504 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2505 * @notifier: notifier struct to register
2507 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2509 if (!static_branch_unlikely(&preempt_notifier_key
))
2510 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2512 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2514 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2517 * preempt_notifier_unregister - no longer interested in preemption notifications
2518 * @notifier: notifier struct to unregister
2520 * This is *not* safe to call from within a preemption notifier.
2522 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2524 hlist_del(¬ifier
->link
);
2526 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2528 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2530 struct preempt_notifier
*notifier
;
2532 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2533 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2536 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2538 if (static_branch_unlikely(&preempt_notifier_key
))
2539 __fire_sched_in_preempt_notifiers(curr
);
2543 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2544 struct task_struct
*next
)
2546 struct preempt_notifier
*notifier
;
2548 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2549 notifier
->ops
->sched_out(notifier
, next
);
2552 static __always_inline
void
2553 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2554 struct task_struct
*next
)
2556 if (static_branch_unlikely(&preempt_notifier_key
))
2557 __fire_sched_out_preempt_notifiers(curr
, next
);
2560 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2562 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2567 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2568 struct task_struct
*next
)
2572 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2574 static inline void prepare_task(struct task_struct
*next
)
2578 * Claim the task as running, we do this before switching to it
2579 * such that any running task will have this set.
2585 static inline void finish_task(struct task_struct
*prev
)
2589 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2590 * We must ensure this doesn't happen until the switch is completely
2593 * In particular, the load of prev->state in finish_task_switch() must
2594 * happen before this.
2596 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2598 smp_store_release(&prev
->on_cpu
, 0);
2603 prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
, struct rq_flags
*rf
)
2606 * Since the runqueue lock will be released by the next
2607 * task (which is an invalid locking op but in the case
2608 * of the scheduler it's an obvious special-case), so we
2609 * do an early lockdep release here:
2611 rq_unpin_lock(rq
, rf
);
2612 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2613 #ifdef CONFIG_DEBUG_SPINLOCK
2614 /* this is a valid case when another task releases the spinlock */
2615 rq
->lock
.owner
= next
;
2619 static inline void finish_lock_switch(struct rq
*rq
)
2622 * If we are tracking spinlock dependencies then we have to
2623 * fix up the runqueue lock - which gets 'carried over' from
2624 * prev into current:
2626 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
2627 raw_spin_unlock_irq(&rq
->lock
);
2631 * NOP if the arch has not defined these:
2634 #ifndef prepare_arch_switch
2635 # define prepare_arch_switch(next) do { } while (0)
2638 #ifndef finish_arch_post_lock_switch
2639 # define finish_arch_post_lock_switch() do { } while (0)
2643 * prepare_task_switch - prepare to switch tasks
2644 * @rq: the runqueue preparing to switch
2645 * @prev: the current task that is being switched out
2646 * @next: the task we are going to switch to.
2648 * This is called with the rq lock held and interrupts off. It must
2649 * be paired with a subsequent finish_task_switch after the context
2652 * prepare_task_switch sets up locking and calls architecture specific
2656 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2657 struct task_struct
*next
)
2659 kcov_prepare_switch(prev
);
2660 sched_info_switch(rq
, prev
, next
);
2661 perf_event_task_sched_out(prev
, next
);
2663 fire_sched_out_preempt_notifiers(prev
, next
);
2665 prepare_arch_switch(next
);
2669 * finish_task_switch - clean up after a task-switch
2670 * @prev: the thread we just switched away from.
2672 * finish_task_switch must be called after the context switch, paired
2673 * with a prepare_task_switch call before the context switch.
2674 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2675 * and do any other architecture-specific cleanup actions.
2677 * Note that we may have delayed dropping an mm in context_switch(). If
2678 * so, we finish that here outside of the runqueue lock. (Doing it
2679 * with the lock held can cause deadlocks; see schedule() for
2682 * The context switch have flipped the stack from under us and restored the
2683 * local variables which were saved when this task called schedule() in the
2684 * past. prev == current is still correct but we need to recalculate this_rq
2685 * because prev may have moved to another CPU.
2687 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2688 __releases(rq
->lock
)
2690 struct rq
*rq
= this_rq();
2691 struct mm_struct
*mm
= rq
->prev_mm
;
2695 * The previous task will have left us with a preempt_count of 2
2696 * because it left us after:
2699 * preempt_disable(); // 1
2701 * raw_spin_lock_irq(&rq->lock) // 2
2703 * Also, see FORK_PREEMPT_COUNT.
2705 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET
,
2706 "corrupted preempt_count: %s/%d/0x%x\n",
2707 current
->comm
, current
->pid
, preempt_count()))
2708 preempt_count_set(FORK_PREEMPT_COUNT
);
2713 * A task struct has one reference for the use as "current".
2714 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2715 * schedule one last time. The schedule call will never return, and
2716 * the scheduled task must drop that reference.
2718 * We must observe prev->state before clearing prev->on_cpu (in
2719 * finish_task), otherwise a concurrent wakeup can get prev
2720 * running on another CPU and we could rave with its RUNNING -> DEAD
2721 * transition, resulting in a double drop.
2723 prev_state
= prev
->state
;
2724 vtime_task_switch(prev
);
2725 perf_event_task_sched_in(prev
, current
);
2727 finish_lock_switch(rq
);
2728 finish_arch_post_lock_switch();
2729 kcov_finish_switch(current
);
2731 fire_sched_in_preempt_notifiers(current
);
2733 * When switching through a kernel thread, the loop in
2734 * membarrier_{private,global}_expedited() may have observed that
2735 * kernel thread and not issued an IPI. It is therefore possible to
2736 * schedule between user->kernel->user threads without passing though
2737 * switch_mm(). Membarrier requires a barrier after storing to
2738 * rq->curr, before returning to userspace, so provide them here:
2740 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2741 * provided by mmdrop(),
2742 * - a sync_core for SYNC_CORE.
2745 membarrier_mm_sync_core_before_usermode(mm
);
2748 if (unlikely(prev_state
== TASK_DEAD
)) {
2749 if (prev
->sched_class
->task_dead
)
2750 prev
->sched_class
->task_dead(prev
);
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
2756 kprobe_flush_task(prev
);
2758 /* Task is done with its stack. */
2759 put_task_stack(prev
);
2761 put_task_struct(prev
);
2764 tick_nohz_task_switch();
2770 /* rq->lock is NOT held, but preemption is disabled */
2771 static void __balance_callback(struct rq
*rq
)
2773 struct callback_head
*head
, *next
;
2774 void (*func
)(struct rq
*rq
);
2775 unsigned long flags
;
2777 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2778 head
= rq
->balance_callback
;
2779 rq
->balance_callback
= NULL
;
2781 func
= (void (*)(struct rq
*))head
->func
;
2788 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2791 static inline void balance_callback(struct rq
*rq
)
2793 if (unlikely(rq
->balance_callback
))
2794 __balance_callback(rq
);
2799 static inline void balance_callback(struct rq
*rq
)
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2809 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2810 __releases(rq
->lock
)
2815 * New tasks start with FORK_PREEMPT_COUNT, see there and
2816 * finish_task_switch() for details.
2818 * finish_task_switch() will drop rq->lock() and lower preempt_count
2819 * and the preempt_enable() will end up enabling preemption (on
2820 * PREEMPT_COUNT kernels).
2823 rq
= finish_task_switch(prev
);
2824 balance_callback(rq
);
2827 if (current
->set_child_tid
)
2828 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2830 calculate_sigpending();
2834 * context_switch - switch to the new MM and the new thread's register state.
2836 static __always_inline
struct rq
*
2837 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2838 struct task_struct
*next
, struct rq_flags
*rf
)
2840 struct mm_struct
*mm
, *oldmm
;
2842 prepare_task_switch(rq
, prev
, next
);
2845 oldmm
= prev
->active_mm
;
2847 * For paravirt, this is coupled with an exit in switch_to to
2848 * combine the page table reload and the switch backend into
2851 arch_start_context_switch(prev
);
2854 * If mm is non-NULL, we pass through switch_mm(). If mm is
2855 * NULL, we will pass through mmdrop() in finish_task_switch().
2856 * Both of these contain the full memory barrier required by
2857 * membarrier after storing to rq->curr, before returning to
2861 next
->active_mm
= oldmm
;
2863 enter_lazy_tlb(oldmm
, next
);
2865 switch_mm_irqs_off(oldmm
, mm
, next
);
2868 prev
->active_mm
= NULL
;
2869 rq
->prev_mm
= oldmm
;
2872 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
2874 prepare_lock_switch(rq
, next
, rf
);
2876 /* Here we just switch the register state and the stack. */
2877 switch_to(prev
, next
, prev
);
2880 return finish_task_switch(prev
);
2884 * nr_running and nr_context_switches:
2886 * externally visible scheduler statistics: current number of runnable
2887 * threads, total number of context switches performed since bootup.
2889 unsigned long nr_running(void)
2891 unsigned long i
, sum
= 0;
2893 for_each_online_cpu(i
)
2894 sum
+= cpu_rq(i
)->nr_running
;
2900 * Check if only the current task is running on the CPU.
2902 * Caution: this function does not check that the caller has disabled
2903 * preemption, thus the result might have a time-of-check-to-time-of-use
2904 * race. The caller is responsible to use it correctly, for example:
2906 * - from a non-preemptible section (of course)
2908 * - from a thread that is bound to a single CPU
2910 * - in a loop with very short iterations (e.g. a polling loop)
2912 bool single_task_running(void)
2914 return raw_rq()->nr_running
== 1;
2916 EXPORT_SYMBOL(single_task_running
);
2918 unsigned long long nr_context_switches(void)
2921 unsigned long long sum
= 0;
2923 for_each_possible_cpu(i
)
2924 sum
+= cpu_rq(i
)->nr_switches
;
2930 * Consumers of these two interfaces, like for example the cpuidle menu
2931 * governor, are using nonsensical data. Preferring shallow idle state selection
2932 * for a CPU that has IO-wait which might not even end up running the task when
2933 * it does become runnable.
2936 unsigned long nr_iowait_cpu(int cpu
)
2938 return atomic_read(&cpu_rq(cpu
)->nr_iowait
);
2942 * IO-wait accounting, and how its mostly bollocks (on SMP).
2944 * The idea behind IO-wait account is to account the idle time that we could
2945 * have spend running if it were not for IO. That is, if we were to improve the
2946 * storage performance, we'd have a proportional reduction in IO-wait time.
2948 * This all works nicely on UP, where, when a task blocks on IO, we account
2949 * idle time as IO-wait, because if the storage were faster, it could've been
2950 * running and we'd not be idle.
2952 * This has been extended to SMP, by doing the same for each CPU. This however
2955 * Imagine for instance the case where two tasks block on one CPU, only the one
2956 * CPU will have IO-wait accounted, while the other has regular idle. Even
2957 * though, if the storage were faster, both could've ran at the same time,
2958 * utilising both CPUs.
2960 * This means, that when looking globally, the current IO-wait accounting on
2961 * SMP is a lower bound, by reason of under accounting.
2963 * Worse, since the numbers are provided per CPU, they are sometimes
2964 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2965 * associated with any one particular CPU, it can wake to another CPU than it
2966 * blocked on. This means the per CPU IO-wait number is meaningless.
2968 * Task CPU affinities can make all that even more 'interesting'.
2971 unsigned long nr_iowait(void)
2973 unsigned long i
, sum
= 0;
2975 for_each_possible_cpu(i
)
2976 sum
+= nr_iowait_cpu(i
);
2984 * sched_exec - execve() is a valuable balancing opportunity, because at
2985 * this point the task has the smallest effective memory and cache footprint.
2987 void sched_exec(void)
2989 struct task_struct
*p
= current
;
2990 unsigned long flags
;
2993 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2994 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2995 if (dest_cpu
== smp_processor_id())
2998 if (likely(cpu_active(dest_cpu
))) {
2999 struct migration_arg arg
= { p
, dest_cpu
};
3001 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3002 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3006 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3011 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3012 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
3014 EXPORT_PER_CPU_SYMBOL(kstat
);
3015 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
3018 * The function fair_sched_class.update_curr accesses the struct curr
3019 * and its field curr->exec_start; when called from task_sched_runtime(),
3020 * we observe a high rate of cache misses in practice.
3021 * Prefetching this data results in improved performance.
3023 static inline void prefetch_curr_exec_start(struct task_struct
*p
)
3025 #ifdef CONFIG_FAIR_GROUP_SCHED
3026 struct sched_entity
*curr
= (&p
->se
)->cfs_rq
->curr
;
3028 struct sched_entity
*curr
= (&task_rq(p
)->cfs
)->curr
;
3031 prefetch(&curr
->exec_start
);
3035 * Return accounted runtime for the task.
3036 * In case the task is currently running, return the runtime plus current's
3037 * pending runtime that have not been accounted yet.
3039 unsigned long long task_sched_runtime(struct task_struct
*p
)
3045 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3047 * 64-bit doesn't need locks to atomically read a 64-bit value.
3048 * So we have a optimization chance when the task's delta_exec is 0.
3049 * Reading ->on_cpu is racy, but this is ok.
3051 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3052 * If we race with it entering CPU, unaccounted time is 0. This is
3053 * indistinguishable from the read occurring a few cycles earlier.
3054 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3055 * been accounted, so we're correct here as well.
3057 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
3058 return p
->se
.sum_exec_runtime
;
3061 rq
= task_rq_lock(p
, &rf
);
3063 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3064 * project cycles that may never be accounted to this
3065 * thread, breaking clock_gettime().
3067 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
3068 prefetch_curr_exec_start(p
);
3069 update_rq_clock(rq
);
3070 p
->sched_class
->update_curr(rq
);
3072 ns
= p
->se
.sum_exec_runtime
;
3073 task_rq_unlock(rq
, p
, &rf
);
3079 * This function gets called by the timer code, with HZ frequency.
3080 * We call it with interrupts disabled.
3082 void scheduler_tick(void)
3084 int cpu
= smp_processor_id();
3085 struct rq
*rq
= cpu_rq(cpu
);
3086 struct task_struct
*curr
= rq
->curr
;
3093 update_rq_clock(rq
);
3094 curr
->sched_class
->task_tick(rq
, curr
, 0);
3095 cpu_load_update_active(rq
);
3096 calc_global_load_tick(rq
);
3101 perf_event_task_tick();
3104 rq
->idle_balance
= idle_cpu(cpu
);
3105 trigger_load_balance(rq
);
3109 #ifdef CONFIG_NO_HZ_FULL
3113 struct delayed_work work
;
3116 static struct tick_work __percpu
*tick_work_cpu
;
3118 static void sched_tick_remote(struct work_struct
*work
)
3120 struct delayed_work
*dwork
= to_delayed_work(work
);
3121 struct tick_work
*twork
= container_of(dwork
, struct tick_work
, work
);
3122 int cpu
= twork
->cpu
;
3123 struct rq
*rq
= cpu_rq(cpu
);
3124 struct task_struct
*curr
;
3129 * Handle the tick only if it appears the remote CPU is running in full
3130 * dynticks mode. The check is racy by nature, but missing a tick or
3131 * having one too much is no big deal because the scheduler tick updates
3132 * statistics and checks timeslices in a time-independent way, regardless
3133 * of when exactly it is running.
3135 if (idle_cpu(cpu
) || !tick_nohz_tick_stopped_cpu(cpu
))
3138 rq_lock_irq(rq
, &rf
);
3140 if (is_idle_task(curr
))
3143 update_rq_clock(rq
);
3144 delta
= rq_clock_task(rq
) - curr
->se
.exec_start
;
3147 * Make sure the next tick runs within a reasonable
3150 WARN_ON_ONCE(delta
> (u64
)NSEC_PER_SEC
* 3);
3151 curr
->sched_class
->task_tick(rq
, curr
, 0);
3154 rq_unlock_irq(rq
, &rf
);
3158 * Run the remote tick once per second (1Hz). This arbitrary
3159 * frequency is large enough to avoid overload but short enough
3160 * to keep scheduler internal stats reasonably up to date.
3162 queue_delayed_work(system_unbound_wq
, dwork
, HZ
);
3165 static void sched_tick_start(int cpu
)
3167 struct tick_work
*twork
;
3169 if (housekeeping_cpu(cpu
, HK_FLAG_TICK
))
3172 WARN_ON_ONCE(!tick_work_cpu
);
3174 twork
= per_cpu_ptr(tick_work_cpu
, cpu
);
3176 INIT_DELAYED_WORK(&twork
->work
, sched_tick_remote
);
3177 queue_delayed_work(system_unbound_wq
, &twork
->work
, HZ
);
3180 #ifdef CONFIG_HOTPLUG_CPU
3181 static void sched_tick_stop(int cpu
)
3183 struct tick_work
*twork
;
3185 if (housekeeping_cpu(cpu
, HK_FLAG_TICK
))
3188 WARN_ON_ONCE(!tick_work_cpu
);
3190 twork
= per_cpu_ptr(tick_work_cpu
, cpu
);
3191 cancel_delayed_work_sync(&twork
->work
);
3193 #endif /* CONFIG_HOTPLUG_CPU */
3195 int __init
sched_tick_offload_init(void)
3197 tick_work_cpu
= alloc_percpu(struct tick_work
);
3198 BUG_ON(!tick_work_cpu
);
3203 #else /* !CONFIG_NO_HZ_FULL */
3204 static inline void sched_tick_start(int cpu
) { }
3205 static inline void sched_tick_stop(int cpu
) { }
3208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3211 * If the value passed in is equal to the current preempt count
3212 * then we just disabled preemption. Start timing the latency.
3214 static inline void preempt_latency_start(int val
)
3216 if (preempt_count() == val
) {
3217 unsigned long ip
= get_lock_parent_ip();
3218 #ifdef CONFIG_DEBUG_PREEMPT
3219 current
->preempt_disable_ip
= ip
;
3221 trace_preempt_off(CALLER_ADDR0
, ip
);
3225 void preempt_count_add(int val
)
3227 #ifdef CONFIG_DEBUG_PREEMPT
3231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3234 __preempt_count_add(val
);
3235 #ifdef CONFIG_DEBUG_PREEMPT
3237 * Spinlock count overflowing soon?
3239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3242 preempt_latency_start(val
);
3244 EXPORT_SYMBOL(preempt_count_add
);
3245 NOKPROBE_SYMBOL(preempt_count_add
);
3248 * If the value passed in equals to the current preempt count
3249 * then we just enabled preemption. Stop timing the latency.
3251 static inline void preempt_latency_stop(int val
)
3253 if (preempt_count() == val
)
3254 trace_preempt_on(CALLER_ADDR0
, get_lock_parent_ip());
3257 void preempt_count_sub(int val
)
3259 #ifdef CONFIG_DEBUG_PREEMPT
3263 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3266 * Is the spinlock portion underflowing?
3268 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3269 !(preempt_count() & PREEMPT_MASK
)))
3273 preempt_latency_stop(val
);
3274 __preempt_count_sub(val
);
3276 EXPORT_SYMBOL(preempt_count_sub
);
3277 NOKPROBE_SYMBOL(preempt_count_sub
);
3280 static inline void preempt_latency_start(int val
) { }
3281 static inline void preempt_latency_stop(int val
) { }
3284 static inline unsigned long get_preempt_disable_ip(struct task_struct
*p
)
3286 #ifdef CONFIG_DEBUG_PREEMPT
3287 return p
->preempt_disable_ip
;
3294 * Print scheduling while atomic bug:
3296 static noinline
void __schedule_bug(struct task_struct
*prev
)
3298 /* Save this before calling printk(), since that will clobber it */
3299 unsigned long preempt_disable_ip
= get_preempt_disable_ip(current
);
3301 if (oops_in_progress
)
3304 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 prev
->comm
, prev
->pid
, preempt_count());
3307 debug_show_held_locks(prev
);
3309 if (irqs_disabled())
3310 print_irqtrace_events(prev
);
3311 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
3312 && in_atomic_preempt_off()) {
3313 pr_err("Preemption disabled at:");
3314 print_ip_sym(preempt_disable_ip
);
3318 panic("scheduling while atomic\n");
3321 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
3325 * Various schedule()-time debugging checks and statistics:
3327 static inline void schedule_debug(struct task_struct
*prev
)
3329 #ifdef CONFIG_SCHED_STACK_END_CHECK
3330 if (task_stack_end_corrupted(prev
))
3331 panic("corrupted stack end detected inside scheduler\n");
3334 if (unlikely(in_atomic_preempt_off())) {
3335 __schedule_bug(prev
);
3336 preempt_count_set(PREEMPT_DISABLED
);
3340 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3342 schedstat_inc(this_rq()->sched_count
);
3346 * Pick up the highest-prio task:
3348 static inline struct task_struct
*
3349 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
3351 const struct sched_class
*class;
3352 struct task_struct
*p
;
3355 * Optimization: we know that if all tasks are in the fair class we can
3356 * call that function directly, but only if the @prev task wasn't of a
3357 * higher scheduling class, because otherwise those loose the
3358 * opportunity to pull in more work from other CPUs.
3360 if (likely((prev
->sched_class
== &idle_sched_class
||
3361 prev
->sched_class
== &fair_sched_class
) &&
3362 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3364 p
= fair_sched_class
.pick_next_task(rq
, prev
, rf
);
3365 if (unlikely(p
== RETRY_TASK
))
3368 /* Assumes fair_sched_class->next == idle_sched_class */
3370 p
= idle_sched_class
.pick_next_task(rq
, prev
, rf
);
3376 for_each_class(class) {
3377 p
= class->pick_next_task(rq
, prev
, rf
);
3379 if (unlikely(p
== RETRY_TASK
))
3385 /* The idle class should always have a runnable task: */
3390 * __schedule() is the main scheduler function.
3392 * The main means of driving the scheduler and thus entering this function are:
3394 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3396 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397 * paths. For example, see arch/x86/entry_64.S.
3399 * To drive preemption between tasks, the scheduler sets the flag in timer
3400 * interrupt handler scheduler_tick().
3402 * 3. Wakeups don't really cause entry into schedule(). They add a
3403 * task to the run-queue and that's it.
3405 * Now, if the new task added to the run-queue preempts the current
3406 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407 * called on the nearest possible occasion:
3409 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3411 * - in syscall or exception context, at the next outmost
3412 * preempt_enable(). (this might be as soon as the wake_up()'s
3415 * - in IRQ context, return from interrupt-handler to
3416 * preemptible context
3418 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3421 * - cond_resched() call
3422 * - explicit schedule() call
3423 * - return from syscall or exception to user-space
3424 * - return from interrupt-handler to user-space
3426 * WARNING: must be called with preemption disabled!
3428 static void __sched notrace
__schedule(bool preempt
)
3430 struct task_struct
*prev
, *next
;
3431 unsigned long *switch_count
;
3436 cpu
= smp_processor_id();
3440 schedule_debug(prev
);
3442 if (sched_feat(HRTICK
))
3445 local_irq_disable();
3446 rcu_note_context_switch(preempt
);
3449 * Make sure that signal_pending_state()->signal_pending() below
3450 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451 * done by the caller to avoid the race with signal_wake_up().
3453 * The membarrier system call requires a full memory barrier
3454 * after coming from user-space, before storing to rq->curr.
3457 smp_mb__after_spinlock();
3459 /* Promote REQ to ACT */
3460 rq
->clock_update_flags
<<= 1;
3461 update_rq_clock(rq
);
3463 switch_count
= &prev
->nivcsw
;
3464 if (!preempt
&& prev
->state
) {
3465 if (signal_pending_state(prev
->state
, prev
)) {
3466 prev
->state
= TASK_RUNNING
;
3468 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
| DEQUEUE_NOCLOCK
);
3471 if (prev
->in_iowait
) {
3472 atomic_inc(&rq
->nr_iowait
);
3473 delayacct_blkio_start();
3477 * If a worker went to sleep, notify and ask workqueue
3478 * whether it wants to wake up a task to maintain
3481 if (prev
->flags
& PF_WQ_WORKER
) {
3482 struct task_struct
*to_wakeup
;
3484 to_wakeup
= wq_worker_sleeping(prev
);
3486 try_to_wake_up_local(to_wakeup
, &rf
);
3489 switch_count
= &prev
->nvcsw
;
3492 next
= pick_next_task(rq
, prev
, &rf
);
3493 clear_tsk_need_resched(prev
);
3494 clear_preempt_need_resched();
3496 if (likely(prev
!= next
)) {
3500 * The membarrier system call requires each architecture
3501 * to have a full memory barrier after updating
3502 * rq->curr, before returning to user-space.
3504 * Here are the schemes providing that barrier on the
3505 * various architectures:
3506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508 * - finish_lock_switch() for weakly-ordered
3509 * architectures where spin_unlock is a full barrier,
3510 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511 * is a RELEASE barrier),
3515 trace_sched_switch(preempt
, prev
, next
);
3517 /* Also unlocks the rq: */
3518 rq
= context_switch(rq
, prev
, next
, &rf
);
3520 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
3521 rq_unlock_irq(rq
, &rf
);
3524 balance_callback(rq
);
3527 void __noreturn
do_task_dead(void)
3529 /* Causes final put_task_struct in finish_task_switch(): */
3530 set_special_state(TASK_DEAD
);
3532 /* Tell freezer to ignore us: */
3533 current
->flags
|= PF_NOFREEZE
;
3538 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3543 static inline void sched_submit_work(struct task_struct
*tsk
)
3545 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3548 * If we are going to sleep and we have plugged IO queued,
3549 * make sure to submit it to avoid deadlocks.
3551 if (blk_needs_flush_plug(tsk
))
3552 blk_schedule_flush_plug(tsk
);
3555 asmlinkage __visible
void __sched
schedule(void)
3557 struct task_struct
*tsk
= current
;
3559 sched_submit_work(tsk
);
3563 sched_preempt_enable_no_resched();
3564 } while (need_resched());
3566 EXPORT_SYMBOL(schedule
);
3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570 * state (have scheduled out non-voluntarily) by making sure that all
3571 * tasks have either left the run queue or have gone into user space.
3572 * As idle tasks do not do either, they must not ever be preempted
3573 * (schedule out non-voluntarily).
3575 * schedule_idle() is similar to schedule_preempt_disable() except that it
3576 * never enables preemption because it does not call sched_submit_work().
3578 void __sched
schedule_idle(void)
3581 * As this skips calling sched_submit_work(), which the idle task does
3582 * regardless because that function is a nop when the task is in a
3583 * TASK_RUNNING state, make sure this isn't used someplace that the
3584 * current task can be in any other state. Note, idle is always in the
3585 * TASK_RUNNING state.
3587 WARN_ON_ONCE(current
->state
);
3590 } while (need_resched());
3593 #ifdef CONFIG_CONTEXT_TRACKING
3594 asmlinkage __visible
void __sched
schedule_user(void)
3597 * If we come here after a random call to set_need_resched(),
3598 * or we have been woken up remotely but the IPI has not yet arrived,
3599 * we haven't yet exited the RCU idle mode. Do it here manually until
3600 * we find a better solution.
3602 * NB: There are buggy callers of this function. Ideally we
3603 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604 * too frequently to make sense yet.
3606 enum ctx_state prev_state
= exception_enter();
3608 exception_exit(prev_state
);
3613 * schedule_preempt_disabled - called with preemption disabled
3615 * Returns with preemption disabled. Note: preempt_count must be 1
3617 void __sched
schedule_preempt_disabled(void)
3619 sched_preempt_enable_no_resched();
3624 static void __sched notrace
preempt_schedule_common(void)
3628 * Because the function tracer can trace preempt_count_sub()
3629 * and it also uses preempt_enable/disable_notrace(), if
3630 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 * by the function tracer will call this function again and
3632 * cause infinite recursion.
3634 * Preemption must be disabled here before the function
3635 * tracer can trace. Break up preempt_disable() into two
3636 * calls. One to disable preemption without fear of being
3637 * traced. The other to still record the preemption latency,
3638 * which can also be traced by the function tracer.
3640 preempt_disable_notrace();
3641 preempt_latency_start(1);
3643 preempt_latency_stop(1);
3644 preempt_enable_no_resched_notrace();
3647 * Check again in case we missed a preemption opportunity
3648 * between schedule and now.
3650 } while (need_resched());
3653 #ifdef CONFIG_PREEMPT
3655 * this is the entry point to schedule() from in-kernel preemption
3656 * off of preempt_enable. Kernel preemptions off return from interrupt
3657 * occur there and call schedule directly.
3659 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
3662 * If there is a non-zero preempt_count or interrupts are disabled,
3663 * we do not want to preempt the current task. Just return..
3665 if (likely(!preemptible()))
3668 preempt_schedule_common();
3670 NOKPROBE_SYMBOL(preempt_schedule
);
3671 EXPORT_SYMBOL(preempt_schedule
);
3674 * preempt_schedule_notrace - preempt_schedule called by tracing
3676 * The tracing infrastructure uses preempt_enable_notrace to prevent
3677 * recursion and tracing preempt enabling caused by the tracing
3678 * infrastructure itself. But as tracing can happen in areas coming
3679 * from userspace or just about to enter userspace, a preempt enable
3680 * can occur before user_exit() is called. This will cause the scheduler
3681 * to be called when the system is still in usermode.
3683 * To prevent this, the preempt_enable_notrace will use this function
3684 * instead of preempt_schedule() to exit user context if needed before
3685 * calling the scheduler.
3687 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
3689 enum ctx_state prev_ctx
;
3691 if (likely(!preemptible()))
3696 * Because the function tracer can trace preempt_count_sub()
3697 * and it also uses preempt_enable/disable_notrace(), if
3698 * NEED_RESCHED is set, the preempt_enable_notrace() called
3699 * by the function tracer will call this function again and
3700 * cause infinite recursion.
3702 * Preemption must be disabled here before the function
3703 * tracer can trace. Break up preempt_disable() into two
3704 * calls. One to disable preemption without fear of being
3705 * traced. The other to still record the preemption latency,
3706 * which can also be traced by the function tracer.
3708 preempt_disable_notrace();
3709 preempt_latency_start(1);
3711 * Needs preempt disabled in case user_exit() is traced
3712 * and the tracer calls preempt_enable_notrace() causing
3713 * an infinite recursion.
3715 prev_ctx
= exception_enter();
3717 exception_exit(prev_ctx
);
3719 preempt_latency_stop(1);
3720 preempt_enable_no_resched_notrace();
3721 } while (need_resched());
3723 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
3725 #endif /* CONFIG_PREEMPT */
3728 * this is the entry point to schedule() from kernel preemption
3729 * off of irq context.
3730 * Note, that this is called and return with irqs disabled. This will
3731 * protect us against recursive calling from irq.
3733 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3735 enum ctx_state prev_state
;
3737 /* Catch callers which need to be fixed */
3738 BUG_ON(preempt_count() || !irqs_disabled());
3740 prev_state
= exception_enter();
3746 local_irq_disable();
3747 sched_preempt_enable_no_resched();
3748 } while (need_resched());
3750 exception_exit(prev_state
);
3753 int default_wake_function(wait_queue_entry_t
*curr
, unsigned mode
, int wake_flags
,
3756 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3758 EXPORT_SYMBOL(default_wake_function
);
3760 #ifdef CONFIG_RT_MUTEXES
3762 static inline int __rt_effective_prio(struct task_struct
*pi_task
, int prio
)
3765 prio
= min(prio
, pi_task
->prio
);
3770 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3772 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3774 return __rt_effective_prio(pi_task
, prio
);
3778 * rt_mutex_setprio - set the current priority of a task
3780 * @pi_task: donor task
3782 * This function changes the 'effective' priority of a task. It does
3783 * not touch ->normal_prio like __setscheduler().
3785 * Used by the rt_mutex code to implement priority inheritance
3786 * logic. Call site only calls if the priority of the task changed.
3788 void rt_mutex_setprio(struct task_struct
*p
, struct task_struct
*pi_task
)
3790 int prio
, oldprio
, queued
, running
, queue_flag
=
3791 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
3792 const struct sched_class
*prev_class
;
3796 /* XXX used to be waiter->prio, not waiter->task->prio */
3797 prio
= __rt_effective_prio(pi_task
, p
->normal_prio
);
3800 * If nothing changed; bail early.
3802 if (p
->pi_top_task
== pi_task
&& prio
== p
->prio
&& !dl_prio(prio
))
3805 rq
= __task_rq_lock(p
, &rf
);
3806 update_rq_clock(rq
);
3808 * Set under pi_lock && rq->lock, such that the value can be used under
3811 * Note that there is loads of tricky to make this pointer cache work
3812 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3813 * ensure a task is de-boosted (pi_task is set to NULL) before the
3814 * task is allowed to run again (and can exit). This ensures the pointer
3815 * points to a blocked task -- which guaratees the task is present.
3817 p
->pi_top_task
= pi_task
;
3820 * For FIFO/RR we only need to set prio, if that matches we're done.
3822 if (prio
== p
->prio
&& !dl_prio(prio
))
3826 * Idle task boosting is a nono in general. There is one
3827 * exception, when PREEMPT_RT and NOHZ is active:
3829 * The idle task calls get_next_timer_interrupt() and holds
3830 * the timer wheel base->lock on the CPU and another CPU wants
3831 * to access the timer (probably to cancel it). We can safely
3832 * ignore the boosting request, as the idle CPU runs this code
3833 * with interrupts disabled and will complete the lock
3834 * protected section without being interrupted. So there is no
3835 * real need to boost.
3837 if (unlikely(p
== rq
->idle
)) {
3838 WARN_ON(p
!= rq
->curr
);
3839 WARN_ON(p
->pi_blocked_on
);
3843 trace_sched_pi_setprio(p
, pi_task
);
3846 if (oldprio
== prio
)
3847 queue_flag
&= ~DEQUEUE_MOVE
;
3849 prev_class
= p
->sched_class
;
3850 queued
= task_on_rq_queued(p
);
3851 running
= task_current(rq
, p
);
3853 dequeue_task(rq
, p
, queue_flag
);
3855 put_prev_task(rq
, p
);
3858 * Boosting condition are:
3859 * 1. -rt task is running and holds mutex A
3860 * --> -dl task blocks on mutex A
3862 * 2. -dl task is running and holds mutex A
3863 * --> -dl task blocks on mutex A and could preempt the
3866 if (dl_prio(prio
)) {
3867 if (!dl_prio(p
->normal_prio
) ||
3868 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3869 p
->dl
.dl_boosted
= 1;
3870 queue_flag
|= ENQUEUE_REPLENISH
;
3872 p
->dl
.dl_boosted
= 0;
3873 p
->sched_class
= &dl_sched_class
;
3874 } else if (rt_prio(prio
)) {
3875 if (dl_prio(oldprio
))
3876 p
->dl
.dl_boosted
= 0;
3878 queue_flag
|= ENQUEUE_HEAD
;
3879 p
->sched_class
= &rt_sched_class
;
3881 if (dl_prio(oldprio
))
3882 p
->dl
.dl_boosted
= 0;
3883 if (rt_prio(oldprio
))
3885 p
->sched_class
= &fair_sched_class
;
3891 enqueue_task(rq
, p
, queue_flag
);
3893 set_curr_task(rq
, p
);
3895 check_class_changed(rq
, p
, prev_class
, oldprio
);
3897 /* Avoid rq from going away on us: */
3899 __task_rq_unlock(rq
, &rf
);
3901 balance_callback(rq
);
3905 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3911 void set_user_nice(struct task_struct
*p
, long nice
)
3913 bool queued
, running
;
3914 int old_prio
, delta
;
3918 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3921 * We have to be careful, if called from sys_setpriority(),
3922 * the task might be in the middle of scheduling on another CPU.
3924 rq
= task_rq_lock(p
, &rf
);
3925 update_rq_clock(rq
);
3928 * The RT priorities are set via sched_setscheduler(), but we still
3929 * allow the 'normal' nice value to be set - but as expected
3930 * it wont have any effect on scheduling until the task is
3931 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3933 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3934 p
->static_prio
= NICE_TO_PRIO(nice
);
3937 queued
= task_on_rq_queued(p
);
3938 running
= task_current(rq
, p
);
3940 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
3942 put_prev_task(rq
, p
);
3944 p
->static_prio
= NICE_TO_PRIO(nice
);
3945 set_load_weight(p
, true);
3947 p
->prio
= effective_prio(p
);
3948 delta
= p
->prio
- old_prio
;
3951 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
3953 * If the task increased its priority or is running and
3954 * lowered its priority, then reschedule its CPU:
3956 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3960 set_curr_task(rq
, p
);
3962 task_rq_unlock(rq
, p
, &rf
);
3964 EXPORT_SYMBOL(set_user_nice
);
3967 * can_nice - check if a task can reduce its nice value
3971 int can_nice(const struct task_struct
*p
, const int nice
)
3973 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3974 int nice_rlim
= nice_to_rlimit(nice
);
3976 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3977 capable(CAP_SYS_NICE
));
3980 #ifdef __ARCH_WANT_SYS_NICE
3983 * sys_nice - change the priority of the current process.
3984 * @increment: priority increment
3986 * sys_setpriority is a more generic, but much slower function that
3987 * does similar things.
3989 SYSCALL_DEFINE1(nice
, int, increment
)
3994 * Setpriority might change our priority at the same moment.
3995 * We don't have to worry. Conceptually one call occurs first
3996 * and we have a single winner.
3998 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3999 nice
= task_nice(current
) + increment
;
4001 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
4002 if (increment
< 0 && !can_nice(current
, nice
))
4005 retval
= security_task_setnice(current
, nice
);
4009 set_user_nice(current
, nice
);
4016 * task_prio - return the priority value of a given task.
4017 * @p: the task in question.
4019 * Return: The priority value as seen by users in /proc.
4020 * RT tasks are offset by -200. Normal tasks are centered
4021 * around 0, value goes from -16 to +15.
4023 int task_prio(const struct task_struct
*p
)
4025 return p
->prio
- MAX_RT_PRIO
;
4029 * idle_cpu - is a given CPU idle currently?
4030 * @cpu: the processor in question.
4032 * Return: 1 if the CPU is currently idle. 0 otherwise.
4034 int idle_cpu(int cpu
)
4036 struct rq
*rq
= cpu_rq(cpu
);
4038 if (rq
->curr
!= rq
->idle
)
4045 if (!llist_empty(&rq
->wake_list
))
4053 * available_idle_cpu - is a given CPU idle for enqueuing work.
4054 * @cpu: the CPU in question.
4056 * Return: 1 if the CPU is currently idle. 0 otherwise.
4058 int available_idle_cpu(int cpu
)
4063 if (vcpu_is_preempted(cpu
))
4070 * idle_task - return the idle task for a given CPU.
4071 * @cpu: the processor in question.
4073 * Return: The idle task for the CPU @cpu.
4075 struct task_struct
*idle_task(int cpu
)
4077 return cpu_rq(cpu
)->idle
;
4081 * find_process_by_pid - find a process with a matching PID value.
4082 * @pid: the pid in question.
4084 * The task of @pid, if found. %NULL otherwise.
4086 static struct task_struct
*find_process_by_pid(pid_t pid
)
4088 return pid
? find_task_by_vpid(pid
) : current
;
4092 * sched_setparam() passes in -1 for its policy, to let the functions
4093 * it calls know not to change it.
4095 #define SETPARAM_POLICY -1
4097 static void __setscheduler_params(struct task_struct
*p
,
4098 const struct sched_attr
*attr
)
4100 int policy
= attr
->sched_policy
;
4102 if (policy
== SETPARAM_POLICY
)
4107 if (dl_policy(policy
))
4108 __setparam_dl(p
, attr
);
4109 else if (fair_policy(policy
))
4110 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
4113 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4114 * !rt_policy. Always setting this ensures that things like
4115 * getparam()/getattr() don't report silly values for !rt tasks.
4117 p
->rt_priority
= attr
->sched_priority
;
4118 p
->normal_prio
= normal_prio(p
);
4119 set_load_weight(p
, true);
4122 /* Actually do priority change: must hold pi & rq lock. */
4123 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
4124 const struct sched_attr
*attr
, bool keep_boost
)
4126 __setscheduler_params(p
, attr
);
4129 * Keep a potential priority boosting if called from
4130 * sched_setscheduler().
4132 p
->prio
= normal_prio(p
);
4134 p
->prio
= rt_effective_prio(p
, p
->prio
);
4136 if (dl_prio(p
->prio
))
4137 p
->sched_class
= &dl_sched_class
;
4138 else if (rt_prio(p
->prio
))
4139 p
->sched_class
= &rt_sched_class
;
4141 p
->sched_class
= &fair_sched_class
;
4145 * Check the target process has a UID that matches the current process's:
4147 static bool check_same_owner(struct task_struct
*p
)
4149 const struct cred
*cred
= current_cred(), *pcred
;
4153 pcred
= __task_cred(p
);
4154 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
4155 uid_eq(cred
->euid
, pcred
->uid
));
4160 static int __sched_setscheduler(struct task_struct
*p
,
4161 const struct sched_attr
*attr
,
4164 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
4165 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
4166 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
4167 int new_effective_prio
, policy
= attr
->sched_policy
;
4168 const struct sched_class
*prev_class
;
4171 int queue_flags
= DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
4174 /* The pi code expects interrupts enabled */
4175 BUG_ON(pi
&& in_interrupt());
4177 /* Double check policy once rq lock held: */
4179 reset_on_fork
= p
->sched_reset_on_fork
;
4180 policy
= oldpolicy
= p
->policy
;
4182 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
4184 if (!valid_policy(policy
))
4188 if (attr
->sched_flags
& ~(SCHED_FLAG_ALL
| SCHED_FLAG_SUGOV
))
4192 * Valid priorities for SCHED_FIFO and SCHED_RR are
4193 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4194 * SCHED_BATCH and SCHED_IDLE is 0.
4196 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4197 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
4199 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
4200 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
4204 * Allow unprivileged RT tasks to decrease priority:
4206 if (user
&& !capable(CAP_SYS_NICE
)) {
4207 if (fair_policy(policy
)) {
4208 if (attr
->sched_nice
< task_nice(p
) &&
4209 !can_nice(p
, attr
->sched_nice
))
4213 if (rt_policy(policy
)) {
4214 unsigned long rlim_rtprio
=
4215 task_rlimit(p
, RLIMIT_RTPRIO
);
4217 /* Can't set/change the rt policy: */
4218 if (policy
!= p
->policy
&& !rlim_rtprio
)
4221 /* Can't increase priority: */
4222 if (attr
->sched_priority
> p
->rt_priority
&&
4223 attr
->sched_priority
> rlim_rtprio
)
4228 * Can't set/change SCHED_DEADLINE policy at all for now
4229 * (safest behavior); in the future we would like to allow
4230 * unprivileged DL tasks to increase their relative deadline
4231 * or reduce their runtime (both ways reducing utilization)
4233 if (dl_policy(policy
))
4237 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4238 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4240 if (task_has_idle_policy(p
) && !idle_policy(policy
)) {
4241 if (!can_nice(p
, task_nice(p
)))
4245 /* Can't change other user's priorities: */
4246 if (!check_same_owner(p
))
4249 /* Normal users shall not reset the sched_reset_on_fork flag: */
4250 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4255 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
4258 retval
= security_task_setscheduler(p
);
4264 * Make sure no PI-waiters arrive (or leave) while we are
4265 * changing the priority of the task:
4267 * To be able to change p->policy safely, the appropriate
4268 * runqueue lock must be held.
4270 rq
= task_rq_lock(p
, &rf
);
4271 update_rq_clock(rq
);
4274 * Changing the policy of the stop threads its a very bad idea:
4276 if (p
== rq
->stop
) {
4277 task_rq_unlock(rq
, p
, &rf
);
4282 * If not changing anything there's no need to proceed further,
4283 * but store a possible modification of reset_on_fork.
4285 if (unlikely(policy
== p
->policy
)) {
4286 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
4288 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
4290 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
4293 p
->sched_reset_on_fork
= reset_on_fork
;
4294 task_rq_unlock(rq
, p
, &rf
);
4300 #ifdef CONFIG_RT_GROUP_SCHED
4302 * Do not allow realtime tasks into groups that have no runtime
4305 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4306 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4307 !task_group_is_autogroup(task_group(p
))) {
4308 task_rq_unlock(rq
, p
, &rf
);
4313 if (dl_bandwidth_enabled() && dl_policy(policy
) &&
4314 !(attr
->sched_flags
& SCHED_FLAG_SUGOV
)) {
4315 cpumask_t
*span
= rq
->rd
->span
;
4318 * Don't allow tasks with an affinity mask smaller than
4319 * the entire root_domain to become SCHED_DEADLINE. We
4320 * will also fail if there's no bandwidth available.
4322 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
4323 rq
->rd
->dl_bw
.bw
== 0) {
4324 task_rq_unlock(rq
, p
, &rf
);
4331 /* Re-check policy now with rq lock held: */
4332 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4333 policy
= oldpolicy
= -1;
4334 task_rq_unlock(rq
, p
, &rf
);
4339 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4340 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4343 if ((dl_policy(policy
) || dl_task(p
)) && sched_dl_overflow(p
, policy
, attr
)) {
4344 task_rq_unlock(rq
, p
, &rf
);
4348 p
->sched_reset_on_fork
= reset_on_fork
;
4353 * Take priority boosted tasks into account. If the new
4354 * effective priority is unchanged, we just store the new
4355 * normal parameters and do not touch the scheduler class and
4356 * the runqueue. This will be done when the task deboost
4359 new_effective_prio
= rt_effective_prio(p
, newprio
);
4360 if (new_effective_prio
== oldprio
)
4361 queue_flags
&= ~DEQUEUE_MOVE
;
4364 queued
= task_on_rq_queued(p
);
4365 running
= task_current(rq
, p
);
4367 dequeue_task(rq
, p
, queue_flags
);
4369 put_prev_task(rq
, p
);
4371 prev_class
= p
->sched_class
;
4372 __setscheduler(rq
, p
, attr
, pi
);
4376 * We enqueue to tail when the priority of a task is
4377 * increased (user space view).
4379 if (oldprio
< p
->prio
)
4380 queue_flags
|= ENQUEUE_HEAD
;
4382 enqueue_task(rq
, p
, queue_flags
);
4385 set_curr_task(rq
, p
);
4387 check_class_changed(rq
, p
, prev_class
, oldprio
);
4389 /* Avoid rq from going away on us: */
4391 task_rq_unlock(rq
, p
, &rf
);
4394 rt_mutex_adjust_pi(p
);
4396 /* Run balance callbacks after we've adjusted the PI chain: */
4397 balance_callback(rq
);
4403 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
4404 const struct sched_param
*param
, bool check
)
4406 struct sched_attr attr
= {
4407 .sched_policy
= policy
,
4408 .sched_priority
= param
->sched_priority
,
4409 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
4412 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4413 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
4414 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4415 policy
&= ~SCHED_RESET_ON_FORK
;
4416 attr
.sched_policy
= policy
;
4419 return __sched_setscheduler(p
, &attr
, check
, true);
4422 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4423 * @p: the task in question.
4424 * @policy: new policy.
4425 * @param: structure containing the new RT priority.
4427 * Return: 0 on success. An error code otherwise.
4429 * NOTE that the task may be already dead.
4431 int sched_setscheduler(struct task_struct
*p
, int policy
,
4432 const struct sched_param
*param
)
4434 return _sched_setscheduler(p
, policy
, param
, true);
4436 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4438 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
4440 return __sched_setscheduler(p
, attr
, true, true);
4442 EXPORT_SYMBOL_GPL(sched_setattr
);
4444 int sched_setattr_nocheck(struct task_struct
*p
, const struct sched_attr
*attr
)
4446 return __sched_setscheduler(p
, attr
, false, true);
4450 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4451 * @p: the task in question.
4452 * @policy: new policy.
4453 * @param: structure containing the new RT priority.
4455 * Just like sched_setscheduler, only don't bother checking if the
4456 * current context has permission. For example, this is needed in
4457 * stop_machine(): we create temporary high priority worker threads,
4458 * but our caller might not have that capability.
4460 * Return: 0 on success. An error code otherwise.
4462 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4463 const struct sched_param
*param
)
4465 return _sched_setscheduler(p
, policy
, param
, false);
4467 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck
);
4470 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4472 struct sched_param lparam
;
4473 struct task_struct
*p
;
4476 if (!param
|| pid
< 0)
4478 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4483 p
= find_process_by_pid(pid
);
4485 retval
= sched_setscheduler(p
, policy
, &lparam
);
4492 * Mimics kernel/events/core.c perf_copy_attr().
4494 static int sched_copy_attr(struct sched_attr __user
*uattr
, struct sched_attr
*attr
)
4499 if (!access_ok(uattr
, SCHED_ATTR_SIZE_VER0
))
4502 /* Zero the full structure, so that a short copy will be nice: */
4503 memset(attr
, 0, sizeof(*attr
));
4505 ret
= get_user(size
, &uattr
->size
);
4509 /* Bail out on silly large: */
4510 if (size
> PAGE_SIZE
)
4513 /* ABI compatibility quirk: */
4515 size
= SCHED_ATTR_SIZE_VER0
;
4517 if (size
< SCHED_ATTR_SIZE_VER0
)
4521 * If we're handed a bigger struct than we know of,
4522 * ensure all the unknown bits are 0 - i.e. new
4523 * user-space does not rely on any kernel feature
4524 * extensions we dont know about yet.
4526 if (size
> sizeof(*attr
)) {
4527 unsigned char __user
*addr
;
4528 unsigned char __user
*end
;
4531 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4532 end
= (void __user
*)uattr
+ size
;
4534 for (; addr
< end
; addr
++) {
4535 ret
= get_user(val
, addr
);
4541 size
= sizeof(*attr
);
4544 ret
= copy_from_user(attr
, uattr
, size
);
4549 * XXX: Do we want to be lenient like existing syscalls; or do we want
4550 * to be strict and return an error on out-of-bounds values?
4552 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
4557 put_user(sizeof(*attr
), &uattr
->size
);
4562 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4563 * @pid: the pid in question.
4564 * @policy: new policy.
4565 * @param: structure containing the new RT priority.
4567 * Return: 0 on success. An error code otherwise.
4569 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
, struct sched_param __user
*, param
)
4574 return do_sched_setscheduler(pid
, policy
, param
);
4578 * sys_sched_setparam - set/change the RT priority of a thread
4579 * @pid: the pid in question.
4580 * @param: structure containing the new RT priority.
4582 * Return: 0 on success. An error code otherwise.
4584 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4586 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
4590 * sys_sched_setattr - same as above, but with extended sched_attr
4591 * @pid: the pid in question.
4592 * @uattr: structure containing the extended parameters.
4593 * @flags: for future extension.
4595 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4596 unsigned int, flags
)
4598 struct sched_attr attr
;
4599 struct task_struct
*p
;
4602 if (!uattr
|| pid
< 0 || flags
)
4605 retval
= sched_copy_attr(uattr
, &attr
);
4609 if ((int)attr
.sched_policy
< 0)
4614 p
= find_process_by_pid(pid
);
4616 retval
= sched_setattr(p
, &attr
);
4623 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4624 * @pid: the pid in question.
4626 * Return: On success, the policy of the thread. Otherwise, a negative error
4629 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4631 struct task_struct
*p
;
4639 p
= find_process_by_pid(pid
);
4641 retval
= security_task_getscheduler(p
);
4644 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4651 * sys_sched_getparam - get the RT priority of a thread
4652 * @pid: the pid in question.
4653 * @param: structure containing the RT priority.
4655 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4658 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4660 struct sched_param lp
= { .sched_priority
= 0 };
4661 struct task_struct
*p
;
4664 if (!param
|| pid
< 0)
4668 p
= find_process_by_pid(pid
);
4673 retval
= security_task_getscheduler(p
);
4677 if (task_has_rt_policy(p
))
4678 lp
.sched_priority
= p
->rt_priority
;
4682 * This one might sleep, we cannot do it with a spinlock held ...
4684 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4693 static int sched_read_attr(struct sched_attr __user
*uattr
,
4694 struct sched_attr
*attr
,
4699 if (!access_ok(uattr
, usize
))
4703 * If we're handed a smaller struct than we know of,
4704 * ensure all the unknown bits are 0 - i.e. old
4705 * user-space does not get uncomplete information.
4707 if (usize
< sizeof(*attr
)) {
4708 unsigned char *addr
;
4711 addr
= (void *)attr
+ usize
;
4712 end
= (void *)attr
+ sizeof(*attr
);
4714 for (; addr
< end
; addr
++) {
4722 ret
= copy_to_user(uattr
, attr
, attr
->size
);
4730 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4731 * @pid: the pid in question.
4732 * @uattr: structure containing the extended parameters.
4733 * @size: sizeof(attr) for fwd/bwd comp.
4734 * @flags: for future extension.
4736 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4737 unsigned int, size
, unsigned int, flags
)
4739 struct sched_attr attr
= {
4740 .size
= sizeof(struct sched_attr
),
4742 struct task_struct
*p
;
4745 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4746 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4750 p
= find_process_by_pid(pid
);
4755 retval
= security_task_getscheduler(p
);
4759 attr
.sched_policy
= p
->policy
;
4760 if (p
->sched_reset_on_fork
)
4761 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4762 if (task_has_dl_policy(p
))
4763 __getparam_dl(p
, &attr
);
4764 else if (task_has_rt_policy(p
))
4765 attr
.sched_priority
= p
->rt_priority
;
4767 attr
.sched_nice
= task_nice(p
);
4771 retval
= sched_read_attr(uattr
, &attr
, size
);
4779 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4781 cpumask_var_t cpus_allowed
, new_mask
;
4782 struct task_struct
*p
;
4787 p
= find_process_by_pid(pid
);
4793 /* Prevent p going away */
4797 if (p
->flags
& PF_NO_SETAFFINITY
) {
4801 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4805 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4807 goto out_free_cpus_allowed
;
4810 if (!check_same_owner(p
)) {
4812 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4814 goto out_free_new_mask
;
4819 retval
= security_task_setscheduler(p
);
4821 goto out_free_new_mask
;
4824 cpuset_cpus_allowed(p
, cpus_allowed
);
4825 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4828 * Since bandwidth control happens on root_domain basis,
4829 * if admission test is enabled, we only admit -deadline
4830 * tasks allowed to run on all the CPUs in the task's
4834 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4836 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4839 goto out_free_new_mask
;
4845 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
4848 cpuset_cpus_allowed(p
, cpus_allowed
);
4849 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4851 * We must have raced with a concurrent cpuset
4852 * update. Just reset the cpus_allowed to the
4853 * cpuset's cpus_allowed
4855 cpumask_copy(new_mask
, cpus_allowed
);
4860 free_cpumask_var(new_mask
);
4861 out_free_cpus_allowed
:
4862 free_cpumask_var(cpus_allowed
);
4868 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4869 struct cpumask
*new_mask
)
4871 if (len
< cpumask_size())
4872 cpumask_clear(new_mask
);
4873 else if (len
> cpumask_size())
4874 len
= cpumask_size();
4876 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4880 * sys_sched_setaffinity - set the CPU affinity of a process
4881 * @pid: pid of the process
4882 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4883 * @user_mask_ptr: user-space pointer to the new CPU mask
4885 * Return: 0 on success. An error code otherwise.
4887 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4888 unsigned long __user
*, user_mask_ptr
)
4890 cpumask_var_t new_mask
;
4893 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4896 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4898 retval
= sched_setaffinity(pid
, new_mask
);
4899 free_cpumask_var(new_mask
);
4903 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4905 struct task_struct
*p
;
4906 unsigned long flags
;
4912 p
= find_process_by_pid(pid
);
4916 retval
= security_task_getscheduler(p
);
4920 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4921 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4922 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4931 * sys_sched_getaffinity - get the CPU affinity of a process
4932 * @pid: pid of the process
4933 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4934 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4936 * Return: size of CPU mask copied to user_mask_ptr on success. An
4937 * error code otherwise.
4939 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4940 unsigned long __user
*, user_mask_ptr
)
4945 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4947 if (len
& (sizeof(unsigned long)-1))
4950 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4953 ret
= sched_getaffinity(pid
, mask
);
4955 unsigned int retlen
= min(len
, cpumask_size());
4957 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4962 free_cpumask_var(mask
);
4968 * sys_sched_yield - yield the current processor to other threads.
4970 * This function yields the current CPU to other tasks. If there are no
4971 * other threads running on this CPU then this function will return.
4975 static void do_sched_yield(void)
4980 rq
= this_rq_lock_irq(&rf
);
4982 schedstat_inc(rq
->yld_count
);
4983 current
->sched_class
->yield_task(rq
);
4986 * Since we are going to call schedule() anyway, there's
4987 * no need to preempt or enable interrupts:
4991 sched_preempt_enable_no_resched();
4996 SYSCALL_DEFINE0(sched_yield
)
5002 #ifndef CONFIG_PREEMPT
5003 int __sched
_cond_resched(void)
5005 if (should_resched(0)) {
5006 preempt_schedule_common();
5012 EXPORT_SYMBOL(_cond_resched
);
5016 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5017 * call schedule, and on return reacquire the lock.
5019 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5020 * operations here to prevent schedule() from being called twice (once via
5021 * spin_unlock(), once by hand).
5023 int __cond_resched_lock(spinlock_t
*lock
)
5025 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
5028 lockdep_assert_held(lock
);
5030 if (spin_needbreak(lock
) || resched
) {
5033 preempt_schedule_common();
5041 EXPORT_SYMBOL(__cond_resched_lock
);
5044 * yield - yield the current processor to other threads.
5046 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5048 * The scheduler is at all times free to pick the calling task as the most
5049 * eligible task to run, if removing the yield() call from your code breaks
5050 * it, its already broken.
5052 * Typical broken usage is:
5057 * where one assumes that yield() will let 'the other' process run that will
5058 * make event true. If the current task is a SCHED_FIFO task that will never
5059 * happen. Never use yield() as a progress guarantee!!
5061 * If you want to use yield() to wait for something, use wait_event().
5062 * If you want to use yield() to be 'nice' for others, use cond_resched().
5063 * If you still want to use yield(), do not!
5065 void __sched
yield(void)
5067 set_current_state(TASK_RUNNING
);
5070 EXPORT_SYMBOL(yield
);
5073 * yield_to - yield the current processor to another thread in
5074 * your thread group, or accelerate that thread toward the
5075 * processor it's on.
5077 * @preempt: whether task preemption is allowed or not
5079 * It's the caller's job to ensure that the target task struct
5080 * can't go away on us before we can do any checks.
5083 * true (>0) if we indeed boosted the target task.
5084 * false (0) if we failed to boost the target.
5085 * -ESRCH if there's no task to yield to.
5087 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
5089 struct task_struct
*curr
= current
;
5090 struct rq
*rq
, *p_rq
;
5091 unsigned long flags
;
5094 local_irq_save(flags
);
5100 * If we're the only runnable task on the rq and target rq also
5101 * has only one task, there's absolutely no point in yielding.
5103 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
5108 double_rq_lock(rq
, p_rq
);
5109 if (task_rq(p
) != p_rq
) {
5110 double_rq_unlock(rq
, p_rq
);
5114 if (!curr
->sched_class
->yield_to_task
)
5117 if (curr
->sched_class
!= p
->sched_class
)
5120 if (task_running(p_rq
, p
) || p
->state
)
5123 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5125 schedstat_inc(rq
->yld_count
);
5127 * Make p's CPU reschedule; pick_next_entity takes care of
5130 if (preempt
&& rq
!= p_rq
)
5135 double_rq_unlock(rq
, p_rq
);
5137 local_irq_restore(flags
);
5144 EXPORT_SYMBOL_GPL(yield_to
);
5146 int io_schedule_prepare(void)
5148 int old_iowait
= current
->in_iowait
;
5150 current
->in_iowait
= 1;
5151 blk_schedule_flush_plug(current
);
5156 void io_schedule_finish(int token
)
5158 current
->in_iowait
= token
;
5162 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5163 * that process accounting knows that this is a task in IO wait state.
5165 long __sched
io_schedule_timeout(long timeout
)
5170 token
= io_schedule_prepare();
5171 ret
= schedule_timeout(timeout
);
5172 io_schedule_finish(token
);
5176 EXPORT_SYMBOL(io_schedule_timeout
);
5178 void io_schedule(void)
5182 token
= io_schedule_prepare();
5184 io_schedule_finish(token
);
5186 EXPORT_SYMBOL(io_schedule
);
5189 * sys_sched_get_priority_max - return maximum RT priority.
5190 * @policy: scheduling class.
5192 * Return: On success, this syscall returns the maximum
5193 * rt_priority that can be used by a given scheduling class.
5194 * On failure, a negative error code is returned.
5196 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5203 ret
= MAX_USER_RT_PRIO
-1;
5205 case SCHED_DEADLINE
:
5216 * sys_sched_get_priority_min - return minimum RT priority.
5217 * @policy: scheduling class.
5219 * Return: On success, this syscall returns the minimum
5220 * rt_priority that can be used by a given scheduling class.
5221 * On failure, a negative error code is returned.
5223 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5232 case SCHED_DEADLINE
:
5241 static int sched_rr_get_interval(pid_t pid
, struct timespec64
*t
)
5243 struct task_struct
*p
;
5244 unsigned int time_slice
;
5254 p
= find_process_by_pid(pid
);
5258 retval
= security_task_getscheduler(p
);
5262 rq
= task_rq_lock(p
, &rf
);
5264 if (p
->sched_class
->get_rr_interval
)
5265 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5266 task_rq_unlock(rq
, p
, &rf
);
5269 jiffies_to_timespec64(time_slice
, t
);
5278 * sys_sched_rr_get_interval - return the default timeslice of a process.
5279 * @pid: pid of the process.
5280 * @interval: userspace pointer to the timeslice value.
5282 * this syscall writes the default timeslice value of a given process
5283 * into the user-space timespec buffer. A value of '0' means infinity.
5285 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5288 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5289 struct __kernel_timespec __user
*, interval
)
5291 struct timespec64 t
;
5292 int retval
= sched_rr_get_interval(pid
, &t
);
5295 retval
= put_timespec64(&t
, interval
);
5300 #ifdef CONFIG_COMPAT_32BIT_TIME
5301 SYSCALL_DEFINE2(sched_rr_get_interval_time32
, pid_t
, pid
,
5302 struct old_timespec32 __user
*, interval
)
5304 struct timespec64 t
;
5305 int retval
= sched_rr_get_interval(pid
, &t
);
5308 retval
= put_old_timespec32(&t
, interval
);
5313 void sched_show_task(struct task_struct
*p
)
5315 unsigned long free
= 0;
5318 if (!try_get_task_stack(p
))
5321 printk(KERN_INFO
"%-15.15s %c", p
->comm
, task_state_to_char(p
));
5323 if (p
->state
== TASK_RUNNING
)
5324 printk(KERN_CONT
" running task ");
5325 #ifdef CONFIG_DEBUG_STACK_USAGE
5326 free
= stack_not_used(p
);
5331 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
5333 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5334 task_pid_nr(p
), ppid
,
5335 (unsigned long)task_thread_info(p
)->flags
);
5337 print_worker_info(KERN_INFO
, p
);
5338 show_stack(p
, NULL
);
5341 EXPORT_SYMBOL_GPL(sched_show_task
);
5344 state_filter_match(unsigned long state_filter
, struct task_struct
*p
)
5346 /* no filter, everything matches */
5350 /* filter, but doesn't match */
5351 if (!(p
->state
& state_filter
))
5355 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5358 if (state_filter
== TASK_UNINTERRUPTIBLE
&& p
->state
== TASK_IDLE
)
5365 void show_state_filter(unsigned long state_filter
)
5367 struct task_struct
*g
, *p
;
5369 #if BITS_PER_LONG == 32
5371 " task PC stack pid father\n");
5374 " task PC stack pid father\n");
5377 for_each_process_thread(g
, p
) {
5379 * reset the NMI-timeout, listing all files on a slow
5380 * console might take a lot of time:
5381 * Also, reset softlockup watchdogs on all CPUs, because
5382 * another CPU might be blocked waiting for us to process
5385 touch_nmi_watchdog();
5386 touch_all_softlockup_watchdogs();
5387 if (state_filter_match(state_filter
, p
))
5391 #ifdef CONFIG_SCHED_DEBUG
5393 sysrq_sched_debug_show();
5397 * Only show locks if all tasks are dumped:
5400 debug_show_all_locks();
5404 * init_idle - set up an idle thread for a given CPU
5405 * @idle: task in question
5406 * @cpu: CPU the idle task belongs to
5408 * NOTE: this function does not set the idle thread's NEED_RESCHED
5409 * flag, to make booting more robust.
5411 void init_idle(struct task_struct
*idle
, int cpu
)
5413 struct rq
*rq
= cpu_rq(cpu
);
5414 unsigned long flags
;
5416 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
5417 raw_spin_lock(&rq
->lock
);
5419 __sched_fork(0, idle
);
5420 idle
->state
= TASK_RUNNING
;
5421 idle
->se
.exec_start
= sched_clock();
5422 idle
->flags
|= PF_IDLE
;
5424 kasan_unpoison_task_stack(idle
);
5428 * Its possible that init_idle() gets called multiple times on a task,
5429 * in that case do_set_cpus_allowed() will not do the right thing.
5431 * And since this is boot we can forgo the serialization.
5433 set_cpus_allowed_common(idle
, cpumask_of(cpu
));
5436 * We're having a chicken and egg problem, even though we are
5437 * holding rq->lock, the CPU isn't yet set to this CPU so the
5438 * lockdep check in task_group() will fail.
5440 * Similar case to sched_fork(). / Alternatively we could
5441 * use task_rq_lock() here and obtain the other rq->lock.
5446 __set_task_cpu(idle
, cpu
);
5449 rq
->curr
= rq
->idle
= idle
;
5450 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
5454 raw_spin_unlock(&rq
->lock
);
5455 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
5457 /* Set the preempt count _outside_ the spinlocks! */
5458 init_idle_preempt_count(idle
, cpu
);
5461 * The idle tasks have their own, simple scheduling class:
5463 idle
->sched_class
= &idle_sched_class
;
5464 ftrace_graph_init_idle_task(idle
, cpu
);
5465 vtime_init_idle(idle
, cpu
);
5467 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
5473 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
5474 const struct cpumask
*trial
)
5478 if (!cpumask_weight(cur
))
5481 ret
= dl_cpuset_cpumask_can_shrink(cur
, trial
);
5486 int task_can_attach(struct task_struct
*p
,
5487 const struct cpumask
*cs_cpus_allowed
)
5492 * Kthreads which disallow setaffinity shouldn't be moved
5493 * to a new cpuset; we don't want to change their CPU
5494 * affinity and isolating such threads by their set of
5495 * allowed nodes is unnecessary. Thus, cpusets are not
5496 * applicable for such threads. This prevents checking for
5497 * success of set_cpus_allowed_ptr() on all attached tasks
5498 * before cpus_allowed may be changed.
5500 if (p
->flags
& PF_NO_SETAFFINITY
) {
5505 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
5507 ret
= dl_task_can_attach(p
, cs_cpus_allowed
);
5513 bool sched_smp_initialized __read_mostly
;
5515 #ifdef CONFIG_NUMA_BALANCING
5516 /* Migrate current task p to target_cpu */
5517 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
5519 struct migration_arg arg
= { p
, target_cpu
};
5520 int curr_cpu
= task_cpu(p
);
5522 if (curr_cpu
== target_cpu
)
5525 if (!cpumask_test_cpu(target_cpu
, &p
->cpus_allowed
))
5528 /* TODO: This is not properly updating schedstats */
5530 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
5531 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
5535 * Requeue a task on a given node and accurately track the number of NUMA
5536 * tasks on the runqueues
5538 void sched_setnuma(struct task_struct
*p
, int nid
)
5540 bool queued
, running
;
5544 rq
= task_rq_lock(p
, &rf
);
5545 queued
= task_on_rq_queued(p
);
5546 running
= task_current(rq
, p
);
5549 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
5551 put_prev_task(rq
, p
);
5553 p
->numa_preferred_nid
= nid
;
5556 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
5558 set_curr_task(rq
, p
);
5559 task_rq_unlock(rq
, p
, &rf
);
5561 #endif /* CONFIG_NUMA_BALANCING */
5563 #ifdef CONFIG_HOTPLUG_CPU
5565 * Ensure that the idle task is using init_mm right before its CPU goes
5568 void idle_task_exit(void)
5570 struct mm_struct
*mm
= current
->active_mm
;
5572 BUG_ON(cpu_online(smp_processor_id()));
5574 if (mm
!= &init_mm
) {
5575 switch_mm(mm
, &init_mm
, current
);
5576 current
->active_mm
= &init_mm
;
5577 finish_arch_post_lock_switch();
5583 * Since this CPU is going 'away' for a while, fold any nr_active delta
5584 * we might have. Assumes we're called after migrate_tasks() so that the
5585 * nr_active count is stable. We need to take the teardown thread which
5586 * is calling this into account, so we hand in adjust = 1 to the load
5589 * Also see the comment "Global load-average calculations".
5591 static void calc_load_migrate(struct rq
*rq
)
5593 long delta
= calc_load_fold_active(rq
, 1);
5595 atomic_long_add(delta
, &calc_load_tasks
);
5598 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
5602 static const struct sched_class fake_sched_class
= {
5603 .put_prev_task
= put_prev_task_fake
,
5606 static struct task_struct fake_task
= {
5608 * Avoid pull_{rt,dl}_task()
5610 .prio
= MAX_PRIO
+ 1,
5611 .sched_class
= &fake_sched_class
,
5615 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5616 * try_to_wake_up()->select_task_rq().
5618 * Called with rq->lock held even though we'er in stop_machine() and
5619 * there's no concurrency possible, we hold the required locks anyway
5620 * because of lock validation efforts.
5622 static void migrate_tasks(struct rq
*dead_rq
, struct rq_flags
*rf
)
5624 struct rq
*rq
= dead_rq
;
5625 struct task_struct
*next
, *stop
= rq
->stop
;
5626 struct rq_flags orf
= *rf
;
5630 * Fudge the rq selection such that the below task selection loop
5631 * doesn't get stuck on the currently eligible stop task.
5633 * We're currently inside stop_machine() and the rq is either stuck
5634 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5635 * either way we should never end up calling schedule() until we're
5641 * put_prev_task() and pick_next_task() sched
5642 * class method both need to have an up-to-date
5643 * value of rq->clock[_task]
5645 update_rq_clock(rq
);
5649 * There's this thread running, bail when that's the only
5652 if (rq
->nr_running
== 1)
5656 * pick_next_task() assumes pinned rq->lock:
5658 next
= pick_next_task(rq
, &fake_task
, rf
);
5660 put_prev_task(rq
, next
);
5663 * Rules for changing task_struct::cpus_allowed are holding
5664 * both pi_lock and rq->lock, such that holding either
5665 * stabilizes the mask.
5667 * Drop rq->lock is not quite as disastrous as it usually is
5668 * because !cpu_active at this point, which means load-balance
5669 * will not interfere. Also, stop-machine.
5672 raw_spin_lock(&next
->pi_lock
);
5676 * Since we're inside stop-machine, _nothing_ should have
5677 * changed the task, WARN if weird stuff happened, because in
5678 * that case the above rq->lock drop is a fail too.
5680 if (WARN_ON(task_rq(next
) != rq
|| !task_on_rq_queued(next
))) {
5681 raw_spin_unlock(&next
->pi_lock
);
5685 /* Find suitable destination for @next, with force if needed. */
5686 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
5687 rq
= __migrate_task(rq
, rf
, next
, dest_cpu
);
5688 if (rq
!= dead_rq
) {
5694 raw_spin_unlock(&next
->pi_lock
);
5699 #endif /* CONFIG_HOTPLUG_CPU */
5701 void set_rq_online(struct rq
*rq
)
5704 const struct sched_class
*class;
5706 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5709 for_each_class(class) {
5710 if (class->rq_online
)
5711 class->rq_online(rq
);
5716 void set_rq_offline(struct rq
*rq
)
5719 const struct sched_class
*class;
5721 for_each_class(class) {
5722 if (class->rq_offline
)
5723 class->rq_offline(rq
);
5726 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5732 * used to mark begin/end of suspend/resume:
5734 static int num_cpus_frozen
;
5737 * Update cpusets according to cpu_active mask. If cpusets are
5738 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5739 * around partition_sched_domains().
5741 * If we come here as part of a suspend/resume, don't touch cpusets because we
5742 * want to restore it back to its original state upon resume anyway.
5744 static void cpuset_cpu_active(void)
5746 if (cpuhp_tasks_frozen
) {
5748 * num_cpus_frozen tracks how many CPUs are involved in suspend
5749 * resume sequence. As long as this is not the last online
5750 * operation in the resume sequence, just build a single sched
5751 * domain, ignoring cpusets.
5753 partition_sched_domains(1, NULL
, NULL
);
5754 if (--num_cpus_frozen
)
5757 * This is the last CPU online operation. So fall through and
5758 * restore the original sched domains by considering the
5759 * cpuset configurations.
5761 cpuset_force_rebuild();
5763 cpuset_update_active_cpus();
5766 static int cpuset_cpu_inactive(unsigned int cpu
)
5768 if (!cpuhp_tasks_frozen
) {
5769 if (dl_cpu_busy(cpu
))
5771 cpuset_update_active_cpus();
5774 partition_sched_domains(1, NULL
, NULL
);
5779 int sched_cpu_activate(unsigned int cpu
)
5781 struct rq
*rq
= cpu_rq(cpu
);
5784 #ifdef CONFIG_SCHED_SMT
5786 * When going up, increment the number of cores with SMT present.
5788 if (cpumask_weight(cpu_smt_mask(cpu
)) == 2)
5789 static_branch_inc_cpuslocked(&sched_smt_present
);
5791 set_cpu_active(cpu
, true);
5793 if (sched_smp_initialized
) {
5794 sched_domains_numa_masks_set(cpu
);
5795 cpuset_cpu_active();
5799 * Put the rq online, if not already. This happens:
5801 * 1) In the early boot process, because we build the real domains
5802 * after all CPUs have been brought up.
5804 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5807 rq_lock_irqsave(rq
, &rf
);
5809 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5812 rq_unlock_irqrestore(rq
, &rf
);
5814 update_max_interval();
5819 int sched_cpu_deactivate(unsigned int cpu
)
5823 set_cpu_active(cpu
, false);
5825 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5826 * users of this state to go away such that all new such users will
5829 * Do sync before park smpboot threads to take care the rcu boost case.
5833 #ifdef CONFIG_SCHED_SMT
5835 * When going down, decrement the number of cores with SMT present.
5837 if (cpumask_weight(cpu_smt_mask(cpu
)) == 2)
5838 static_branch_dec_cpuslocked(&sched_smt_present
);
5841 if (!sched_smp_initialized
)
5844 ret
= cpuset_cpu_inactive(cpu
);
5846 set_cpu_active(cpu
, true);
5849 sched_domains_numa_masks_clear(cpu
);
5853 static void sched_rq_cpu_starting(unsigned int cpu
)
5855 struct rq
*rq
= cpu_rq(cpu
);
5857 rq
->calc_load_update
= calc_load_update
;
5858 update_max_interval();
5861 int sched_cpu_starting(unsigned int cpu
)
5863 sched_rq_cpu_starting(cpu
);
5864 sched_tick_start(cpu
);
5868 #ifdef CONFIG_HOTPLUG_CPU
5869 int sched_cpu_dying(unsigned int cpu
)
5871 struct rq
*rq
= cpu_rq(cpu
);
5874 /* Handle pending wakeups and then migrate everything off */
5875 sched_ttwu_pending();
5876 sched_tick_stop(cpu
);
5878 rq_lock_irqsave(rq
, &rf
);
5880 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5883 migrate_tasks(rq
, &rf
);
5884 BUG_ON(rq
->nr_running
!= 1);
5885 rq_unlock_irqrestore(rq
, &rf
);
5887 calc_load_migrate(rq
);
5888 update_max_interval();
5889 nohz_balance_exit_idle(rq
);
5895 void __init
sched_init_smp(void)
5900 * There's no userspace yet to cause hotplug operations; hence all the
5901 * CPU masks are stable and all blatant races in the below code cannot
5904 mutex_lock(&sched_domains_mutex
);
5905 sched_init_domains(cpu_active_mask
);
5906 mutex_unlock(&sched_domains_mutex
);
5908 /* Move init over to a non-isolated CPU */
5909 if (set_cpus_allowed_ptr(current
, housekeeping_cpumask(HK_FLAG_DOMAIN
)) < 0)
5911 sched_init_granularity();
5913 init_sched_rt_class();
5914 init_sched_dl_class();
5916 sched_smp_initialized
= true;
5919 static int __init
migration_init(void)
5921 sched_rq_cpu_starting(smp_processor_id());
5924 early_initcall(migration_init
);
5927 void __init
sched_init_smp(void)
5929 sched_init_granularity();
5931 #endif /* CONFIG_SMP */
5933 int in_sched_functions(unsigned long addr
)
5935 return in_lock_functions(addr
) ||
5936 (addr
>= (unsigned long)__sched_text_start
5937 && addr
< (unsigned long)__sched_text_end
);
5940 #ifdef CONFIG_CGROUP_SCHED
5942 * Default task group.
5943 * Every task in system belongs to this group at bootup.
5945 struct task_group root_task_group
;
5946 LIST_HEAD(task_groups
);
5948 /* Cacheline aligned slab cache for task_group */
5949 static struct kmem_cache
*task_group_cache __read_mostly
;
5952 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5953 DECLARE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5955 void __init
sched_init(void)
5958 unsigned long alloc_size
= 0, ptr
;
5962 #ifdef CONFIG_FAIR_GROUP_SCHED
5963 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5965 #ifdef CONFIG_RT_GROUP_SCHED
5966 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5969 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
5971 #ifdef CONFIG_FAIR_GROUP_SCHED
5972 root_task_group
.se
= (struct sched_entity
**)ptr
;
5973 ptr
+= nr_cpu_ids
* sizeof(void **);
5975 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
5976 ptr
+= nr_cpu_ids
* sizeof(void **);
5978 #endif /* CONFIG_FAIR_GROUP_SCHED */
5979 #ifdef CONFIG_RT_GROUP_SCHED
5980 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
5981 ptr
+= nr_cpu_ids
* sizeof(void **);
5983 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
5984 ptr
+= nr_cpu_ids
* sizeof(void **);
5986 #endif /* CONFIG_RT_GROUP_SCHED */
5988 #ifdef CONFIG_CPUMASK_OFFSTACK
5989 for_each_possible_cpu(i
) {
5990 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5991 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5992 per_cpu(select_idle_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5993 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5995 #endif /* CONFIG_CPUMASK_OFFSTACK */
5997 init_rt_bandwidth(&def_rt_bandwidth
, global_rt_period(), global_rt_runtime());
5998 init_dl_bandwidth(&def_dl_bandwidth
, global_rt_period(), global_rt_runtime());
6001 init_defrootdomain();
6004 #ifdef CONFIG_RT_GROUP_SCHED
6005 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
6006 global_rt_period(), global_rt_runtime());
6007 #endif /* CONFIG_RT_GROUP_SCHED */
6009 #ifdef CONFIG_CGROUP_SCHED
6010 task_group_cache
= KMEM_CACHE(task_group
, 0);
6012 list_add(&root_task_group
.list
, &task_groups
);
6013 INIT_LIST_HEAD(&root_task_group
.children
);
6014 INIT_LIST_HEAD(&root_task_group
.siblings
);
6015 autogroup_init(&init_task
);
6016 #endif /* CONFIG_CGROUP_SCHED */
6018 for_each_possible_cpu(i
) {
6022 raw_spin_lock_init(&rq
->lock
);
6024 rq
->calc_load_active
= 0;
6025 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
6026 init_cfs_rq(&rq
->cfs
);
6027 init_rt_rq(&rq
->rt
);
6028 init_dl_rq(&rq
->dl
);
6029 #ifdef CONFIG_FAIR_GROUP_SCHED
6030 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
6031 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6032 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
6034 * How much CPU bandwidth does root_task_group get?
6036 * In case of task-groups formed thr' the cgroup filesystem, it
6037 * gets 100% of the CPU resources in the system. This overall
6038 * system CPU resource is divided among the tasks of
6039 * root_task_group and its child task-groups in a fair manner,
6040 * based on each entity's (task or task-group's) weight
6041 * (se->load.weight).
6043 * In other words, if root_task_group has 10 tasks of weight
6044 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6045 * then A0's share of the CPU resource is:
6047 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6049 * We achieve this by letting root_task_group's tasks sit
6050 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6052 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
6053 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
6054 #endif /* CONFIG_FAIR_GROUP_SCHED */
6056 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
6057 #ifdef CONFIG_RT_GROUP_SCHED
6058 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
6061 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6062 rq
->cpu_load
[j
] = 0;
6067 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
6068 rq
->balance_callback
= NULL
;
6069 rq
->active_balance
= 0;
6070 rq
->next_balance
= jiffies
;
6075 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
6076 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
6078 INIT_LIST_HEAD(&rq
->cfs_tasks
);
6080 rq_attach_root(rq
, &def_root_domain
);
6081 #ifdef CONFIG_NO_HZ_COMMON
6082 rq
->last_load_update_tick
= jiffies
;
6083 rq
->last_blocked_load_update_tick
= jiffies
;
6084 atomic_set(&rq
->nohz_flags
, 0);
6086 #endif /* CONFIG_SMP */
6088 atomic_set(&rq
->nr_iowait
, 0);
6091 set_load_weight(&init_task
, false);
6094 * The boot idle thread does lazy MMU switching as well:
6097 enter_lazy_tlb(&init_mm
, current
);
6100 * Make us the idle thread. Technically, schedule() should not be
6101 * called from this thread, however somewhere below it might be,
6102 * but because we are the idle thread, we just pick up running again
6103 * when this runqueue becomes "idle".
6105 init_idle(current
, smp_processor_id());
6107 calc_load_update
= jiffies
+ LOAD_FREQ
;
6110 idle_thread_set_boot_cpu();
6112 init_sched_fair_class();
6118 scheduler_running
= 1;
6121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6122 static inline int preempt_count_equals(int preempt_offset
)
6124 int nested
= preempt_count() + rcu_preempt_depth();
6126 return (nested
== preempt_offset
);
6129 void __might_sleep(const char *file
, int line
, int preempt_offset
)
6132 * Blocking primitives will set (and therefore destroy) current->state,
6133 * since we will exit with TASK_RUNNING make sure we enter with it,
6134 * otherwise we will destroy state.
6136 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
6137 "do not call blocking ops when !TASK_RUNNING; "
6138 "state=%lx set at [<%p>] %pS\n",
6140 (void *)current
->task_state_change
,
6141 (void *)current
->task_state_change
);
6143 ___might_sleep(file
, line
, preempt_offset
);
6145 EXPORT_SYMBOL(__might_sleep
);
6147 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
6149 /* Ratelimiting timestamp: */
6150 static unsigned long prev_jiffy
;
6152 unsigned long preempt_disable_ip
;
6154 /* WARN_ON_ONCE() by default, no rate limit required: */
6157 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
6158 !is_idle_task(current
)) ||
6159 system_state
== SYSTEM_BOOTING
|| system_state
> SYSTEM_RUNNING
||
6163 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6165 prev_jiffy
= jiffies
;
6167 /* Save this before calling printk(), since that will clobber it: */
6168 preempt_disable_ip
= get_preempt_disable_ip(current
);
6171 "BUG: sleeping function called from invalid context at %s:%d\n",
6174 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6175 in_atomic(), irqs_disabled(),
6176 current
->pid
, current
->comm
);
6178 if (task_stack_end_corrupted(current
))
6179 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
6181 debug_show_held_locks(current
);
6182 if (irqs_disabled())
6183 print_irqtrace_events(current
);
6184 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
6185 && !preempt_count_equals(preempt_offset
)) {
6186 pr_err("Preemption disabled at:");
6187 print_ip_sym(preempt_disable_ip
);
6191 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
6193 EXPORT_SYMBOL(___might_sleep
);
6195 void __cant_sleep(const char *file
, int line
, int preempt_offset
)
6197 static unsigned long prev_jiffy
;
6199 if (irqs_disabled())
6202 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT
))
6205 if (preempt_count() > preempt_offset
)
6208 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6210 prev_jiffy
= jiffies
;
6212 printk(KERN_ERR
"BUG: assuming atomic context at %s:%d\n", file
, line
);
6213 printk(KERN_ERR
"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6214 in_atomic(), irqs_disabled(),
6215 current
->pid
, current
->comm
);
6217 debug_show_held_locks(current
);
6219 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
6221 EXPORT_SYMBOL_GPL(__cant_sleep
);
6224 #ifdef CONFIG_MAGIC_SYSRQ
6225 void normalize_rt_tasks(void)
6227 struct task_struct
*g
, *p
;
6228 struct sched_attr attr
= {
6229 .sched_policy
= SCHED_NORMAL
,
6232 read_lock(&tasklist_lock
);
6233 for_each_process_thread(g
, p
) {
6235 * Only normalize user tasks:
6237 if (p
->flags
& PF_KTHREAD
)
6240 p
->se
.exec_start
= 0;
6241 schedstat_set(p
->se
.statistics
.wait_start
, 0);
6242 schedstat_set(p
->se
.statistics
.sleep_start
, 0);
6243 schedstat_set(p
->se
.statistics
.block_start
, 0);
6245 if (!dl_task(p
) && !rt_task(p
)) {
6247 * Renice negative nice level userspace
6250 if (task_nice(p
) < 0)
6251 set_user_nice(p
, 0);
6255 __sched_setscheduler(p
, &attr
, false, false);
6257 read_unlock(&tasklist_lock
);
6260 #endif /* CONFIG_MAGIC_SYSRQ */
6262 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6264 * These functions are only useful for the IA64 MCA handling, or kdb.
6266 * They can only be called when the whole system has been
6267 * stopped - every CPU needs to be quiescent, and no scheduling
6268 * activity can take place. Using them for anything else would
6269 * be a serious bug, and as a result, they aren't even visible
6270 * under any other configuration.
6274 * curr_task - return the current task for a given CPU.
6275 * @cpu: the processor in question.
6277 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6279 * Return: The current task for @cpu.
6281 struct task_struct
*curr_task(int cpu
)
6283 return cpu_curr(cpu
);
6286 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6290 * set_curr_task - set the current task for a given CPU.
6291 * @cpu: the processor in question.
6292 * @p: the task pointer to set.
6294 * Description: This function must only be used when non-maskable interrupts
6295 * are serviced on a separate stack. It allows the architecture to switch the
6296 * notion of the current task on a CPU in a non-blocking manner. This function
6297 * must be called with all CPU's synchronized, and interrupts disabled, the
6298 * and caller must save the original value of the current task (see
6299 * curr_task() above) and restore that value before reenabling interrupts and
6300 * re-starting the system.
6302 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6304 void ia64_set_curr_task(int cpu
, struct task_struct
*p
)
6311 #ifdef CONFIG_CGROUP_SCHED
6312 /* task_group_lock serializes the addition/removal of task groups */
6313 static DEFINE_SPINLOCK(task_group_lock
);
6315 static void sched_free_group(struct task_group
*tg
)
6317 free_fair_sched_group(tg
);
6318 free_rt_sched_group(tg
);
6320 kmem_cache_free(task_group_cache
, tg
);
6323 /* allocate runqueue etc for a new task group */
6324 struct task_group
*sched_create_group(struct task_group
*parent
)
6326 struct task_group
*tg
;
6328 tg
= kmem_cache_alloc(task_group_cache
, GFP_KERNEL
| __GFP_ZERO
);
6330 return ERR_PTR(-ENOMEM
);
6332 if (!alloc_fair_sched_group(tg
, parent
))
6335 if (!alloc_rt_sched_group(tg
, parent
))
6341 sched_free_group(tg
);
6342 return ERR_PTR(-ENOMEM
);
6345 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
6347 unsigned long flags
;
6349 spin_lock_irqsave(&task_group_lock
, flags
);
6350 list_add_rcu(&tg
->list
, &task_groups
);
6352 /* Root should already exist: */
6355 tg
->parent
= parent
;
6356 INIT_LIST_HEAD(&tg
->children
);
6357 list_add_rcu(&tg
->siblings
, &parent
->children
);
6358 spin_unlock_irqrestore(&task_group_lock
, flags
);
6360 online_fair_sched_group(tg
);
6363 /* rcu callback to free various structures associated with a task group */
6364 static void sched_free_group_rcu(struct rcu_head
*rhp
)
6366 /* Now it should be safe to free those cfs_rqs: */
6367 sched_free_group(container_of(rhp
, struct task_group
, rcu
));
6370 void sched_destroy_group(struct task_group
*tg
)
6372 /* Wait for possible concurrent references to cfs_rqs complete: */
6373 call_rcu(&tg
->rcu
, sched_free_group_rcu
);
6376 void sched_offline_group(struct task_group
*tg
)
6378 unsigned long flags
;
6380 /* End participation in shares distribution: */
6381 unregister_fair_sched_group(tg
);
6383 spin_lock_irqsave(&task_group_lock
, flags
);
6384 list_del_rcu(&tg
->list
);
6385 list_del_rcu(&tg
->siblings
);
6386 spin_unlock_irqrestore(&task_group_lock
, flags
);
6389 static void sched_change_group(struct task_struct
*tsk
, int type
)
6391 struct task_group
*tg
;
6394 * All callers are synchronized by task_rq_lock(); we do not use RCU
6395 * which is pointless here. Thus, we pass "true" to task_css_check()
6396 * to prevent lockdep warnings.
6398 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
6399 struct task_group
, css
);
6400 tg
= autogroup_task_group(tsk
, tg
);
6401 tsk
->sched_task_group
= tg
;
6403 #ifdef CONFIG_FAIR_GROUP_SCHED
6404 if (tsk
->sched_class
->task_change_group
)
6405 tsk
->sched_class
->task_change_group(tsk
, type
);
6408 set_task_rq(tsk
, task_cpu(tsk
));
6412 * Change task's runqueue when it moves between groups.
6414 * The caller of this function should have put the task in its new group by
6415 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6418 void sched_move_task(struct task_struct
*tsk
)
6420 int queued
, running
, queue_flags
=
6421 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
6425 rq
= task_rq_lock(tsk
, &rf
);
6426 update_rq_clock(rq
);
6428 running
= task_current(rq
, tsk
);
6429 queued
= task_on_rq_queued(tsk
);
6432 dequeue_task(rq
, tsk
, queue_flags
);
6434 put_prev_task(rq
, tsk
);
6436 sched_change_group(tsk
, TASK_MOVE_GROUP
);
6439 enqueue_task(rq
, tsk
, queue_flags
);
6441 set_curr_task(rq
, tsk
);
6443 task_rq_unlock(rq
, tsk
, &rf
);
6446 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
6448 return css
? container_of(css
, struct task_group
, css
) : NULL
;
6451 static struct cgroup_subsys_state
*
6452 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6454 struct task_group
*parent
= css_tg(parent_css
);
6455 struct task_group
*tg
;
6458 /* This is early initialization for the top cgroup */
6459 return &root_task_group
.css
;
6462 tg
= sched_create_group(parent
);
6464 return ERR_PTR(-ENOMEM
);
6469 /* Expose task group only after completing cgroup initialization */
6470 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
6472 struct task_group
*tg
= css_tg(css
);
6473 struct task_group
*parent
= css_tg(css
->parent
);
6476 sched_online_group(tg
, parent
);
6480 static void cpu_cgroup_css_released(struct cgroup_subsys_state
*css
)
6482 struct task_group
*tg
= css_tg(css
);
6484 sched_offline_group(tg
);
6487 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
6489 struct task_group
*tg
= css_tg(css
);
6492 * Relies on the RCU grace period between css_released() and this.
6494 sched_free_group(tg
);
6498 * This is called before wake_up_new_task(), therefore we really only
6499 * have to set its group bits, all the other stuff does not apply.
6501 static void cpu_cgroup_fork(struct task_struct
*task
)
6506 rq
= task_rq_lock(task
, &rf
);
6508 update_rq_clock(rq
);
6509 sched_change_group(task
, TASK_SET_GROUP
);
6511 task_rq_unlock(rq
, task
, &rf
);
6514 static int cpu_cgroup_can_attach(struct cgroup_taskset
*tset
)
6516 struct task_struct
*task
;
6517 struct cgroup_subsys_state
*css
;
6520 cgroup_taskset_for_each(task
, css
, tset
) {
6521 #ifdef CONFIG_RT_GROUP_SCHED
6522 if (!sched_rt_can_attach(css_tg(css
), task
))
6525 /* We don't support RT-tasks being in separate groups */
6526 if (task
->sched_class
!= &fair_sched_class
)
6530 * Serialize against wake_up_new_task() such that if its
6531 * running, we're sure to observe its full state.
6533 raw_spin_lock_irq(&task
->pi_lock
);
6535 * Avoid calling sched_move_task() before wake_up_new_task()
6536 * has happened. This would lead to problems with PELT, due to
6537 * move wanting to detach+attach while we're not attached yet.
6539 if (task
->state
== TASK_NEW
)
6541 raw_spin_unlock_irq(&task
->pi_lock
);
6549 static void cpu_cgroup_attach(struct cgroup_taskset
*tset
)
6551 struct task_struct
*task
;
6552 struct cgroup_subsys_state
*css
;
6554 cgroup_taskset_for_each(task
, css
, tset
)
6555 sched_move_task(task
);
6558 #ifdef CONFIG_FAIR_GROUP_SCHED
6559 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
6560 struct cftype
*cftype
, u64 shareval
)
6562 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
6565 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
6568 struct task_group
*tg
= css_tg(css
);
6570 return (u64
) scale_load_down(tg
->shares
);
6573 #ifdef CONFIG_CFS_BANDWIDTH
6574 static DEFINE_MUTEX(cfs_constraints_mutex
);
6576 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
6577 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
6579 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
6581 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
6583 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
6584 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6586 if (tg
== &root_task_group
)
6590 * Ensure we have at some amount of bandwidth every period. This is
6591 * to prevent reaching a state of large arrears when throttled via
6592 * entity_tick() resulting in prolonged exit starvation.
6594 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
6598 * Likewise, bound things on the otherside by preventing insane quota
6599 * periods. This also allows us to normalize in computing quota
6602 if (period
> max_cfs_quota_period
)
6606 * Prevent race between setting of cfs_rq->runtime_enabled and
6607 * unthrottle_offline_cfs_rqs().
6610 mutex_lock(&cfs_constraints_mutex
);
6611 ret
= __cfs_schedulable(tg
, period
, quota
);
6615 runtime_enabled
= quota
!= RUNTIME_INF
;
6616 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
6618 * If we need to toggle cfs_bandwidth_used, off->on must occur
6619 * before making related changes, and on->off must occur afterwards
6621 if (runtime_enabled
&& !runtime_was_enabled
)
6622 cfs_bandwidth_usage_inc();
6623 raw_spin_lock_irq(&cfs_b
->lock
);
6624 cfs_b
->period
= ns_to_ktime(period
);
6625 cfs_b
->quota
= quota
;
6627 __refill_cfs_bandwidth_runtime(cfs_b
);
6629 /* Restart the period timer (if active) to handle new period expiry: */
6630 if (runtime_enabled
)
6631 start_cfs_bandwidth(cfs_b
);
6633 raw_spin_unlock_irq(&cfs_b
->lock
);
6635 for_each_online_cpu(i
) {
6636 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
6637 struct rq
*rq
= cfs_rq
->rq
;
6640 rq_lock_irq(rq
, &rf
);
6641 cfs_rq
->runtime_enabled
= runtime_enabled
;
6642 cfs_rq
->runtime_remaining
= 0;
6644 if (cfs_rq
->throttled
)
6645 unthrottle_cfs_rq(cfs_rq
);
6646 rq_unlock_irq(rq
, &rf
);
6648 if (runtime_was_enabled
&& !runtime_enabled
)
6649 cfs_bandwidth_usage_dec();
6651 mutex_unlock(&cfs_constraints_mutex
);
6657 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
6661 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6662 if (cfs_quota_us
< 0)
6663 quota
= RUNTIME_INF
;
6665 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
6667 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6670 long tg_get_cfs_quota(struct task_group
*tg
)
6674 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
6677 quota_us
= tg
->cfs_bandwidth
.quota
;
6678 do_div(quota_us
, NSEC_PER_USEC
);
6683 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
6687 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
6688 quota
= tg
->cfs_bandwidth
.quota
;
6690 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6693 long tg_get_cfs_period(struct task_group
*tg
)
6697 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6698 do_div(cfs_period_us
, NSEC_PER_USEC
);
6700 return cfs_period_us
;
6703 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
6706 return tg_get_cfs_quota(css_tg(css
));
6709 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
6710 struct cftype
*cftype
, s64 cfs_quota_us
)
6712 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
6715 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
6718 return tg_get_cfs_period(css_tg(css
));
6721 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
6722 struct cftype
*cftype
, u64 cfs_period_us
)
6724 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
6727 struct cfs_schedulable_data
{
6728 struct task_group
*tg
;
6733 * normalize group quota/period to be quota/max_period
6734 * note: units are usecs
6736 static u64
normalize_cfs_quota(struct task_group
*tg
,
6737 struct cfs_schedulable_data
*d
)
6745 period
= tg_get_cfs_period(tg
);
6746 quota
= tg_get_cfs_quota(tg
);
6749 /* note: these should typically be equivalent */
6750 if (quota
== RUNTIME_INF
|| quota
== -1)
6753 return to_ratio(period
, quota
);
6756 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
6758 struct cfs_schedulable_data
*d
= data
;
6759 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6760 s64 quota
= 0, parent_quota
= -1;
6763 quota
= RUNTIME_INF
;
6765 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
6767 quota
= normalize_cfs_quota(tg
, d
);
6768 parent_quota
= parent_b
->hierarchical_quota
;
6771 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6772 * always take the min. On cgroup1, only inherit when no
6775 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys
)) {
6776 quota
= min(quota
, parent_quota
);
6778 if (quota
== RUNTIME_INF
)
6779 quota
= parent_quota
;
6780 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
6784 cfs_b
->hierarchical_quota
= quota
;
6789 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
6792 struct cfs_schedulable_data data
= {
6798 if (quota
!= RUNTIME_INF
) {
6799 do_div(data
.period
, NSEC_PER_USEC
);
6800 do_div(data
.quota
, NSEC_PER_USEC
);
6804 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
6810 static int cpu_cfs_stat_show(struct seq_file
*sf
, void *v
)
6812 struct task_group
*tg
= css_tg(seq_css(sf
));
6813 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6815 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
6816 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
6817 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
6819 if (schedstat_enabled() && tg
!= &root_task_group
) {
6823 for_each_possible_cpu(i
)
6824 ws
+= schedstat_val(tg
->se
[i
]->statistics
.wait_sum
);
6826 seq_printf(sf
, "wait_sum %llu\n", ws
);
6831 #endif /* CONFIG_CFS_BANDWIDTH */
6832 #endif /* CONFIG_FAIR_GROUP_SCHED */
6834 #ifdef CONFIG_RT_GROUP_SCHED
6835 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
6836 struct cftype
*cft
, s64 val
)
6838 return sched_group_set_rt_runtime(css_tg(css
), val
);
6841 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
6844 return sched_group_rt_runtime(css_tg(css
));
6847 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
6848 struct cftype
*cftype
, u64 rt_period_us
)
6850 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
6853 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
6856 return sched_group_rt_period(css_tg(css
));
6858 #endif /* CONFIG_RT_GROUP_SCHED */
6860 static struct cftype cpu_legacy_files
[] = {
6861 #ifdef CONFIG_FAIR_GROUP_SCHED
6864 .read_u64
= cpu_shares_read_u64
,
6865 .write_u64
= cpu_shares_write_u64
,
6868 #ifdef CONFIG_CFS_BANDWIDTH
6870 .name
= "cfs_quota_us",
6871 .read_s64
= cpu_cfs_quota_read_s64
,
6872 .write_s64
= cpu_cfs_quota_write_s64
,
6875 .name
= "cfs_period_us",
6876 .read_u64
= cpu_cfs_period_read_u64
,
6877 .write_u64
= cpu_cfs_period_write_u64
,
6881 .seq_show
= cpu_cfs_stat_show
,
6884 #ifdef CONFIG_RT_GROUP_SCHED
6886 .name
= "rt_runtime_us",
6887 .read_s64
= cpu_rt_runtime_read
,
6888 .write_s64
= cpu_rt_runtime_write
,
6891 .name
= "rt_period_us",
6892 .read_u64
= cpu_rt_period_read_uint
,
6893 .write_u64
= cpu_rt_period_write_uint
,
6899 static int cpu_extra_stat_show(struct seq_file
*sf
,
6900 struct cgroup_subsys_state
*css
)
6902 #ifdef CONFIG_CFS_BANDWIDTH
6904 struct task_group
*tg
= css_tg(css
);
6905 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6908 throttled_usec
= cfs_b
->throttled_time
;
6909 do_div(throttled_usec
, NSEC_PER_USEC
);
6911 seq_printf(sf
, "nr_periods %d\n"
6913 "throttled_usec %llu\n",
6914 cfs_b
->nr_periods
, cfs_b
->nr_throttled
,
6921 #ifdef CONFIG_FAIR_GROUP_SCHED
6922 static u64
cpu_weight_read_u64(struct cgroup_subsys_state
*css
,
6925 struct task_group
*tg
= css_tg(css
);
6926 u64 weight
= scale_load_down(tg
->shares
);
6928 return DIV_ROUND_CLOSEST_ULL(weight
* CGROUP_WEIGHT_DFL
, 1024);
6931 static int cpu_weight_write_u64(struct cgroup_subsys_state
*css
,
6932 struct cftype
*cft
, u64 weight
)
6935 * cgroup weight knobs should use the common MIN, DFL and MAX
6936 * values which are 1, 100 and 10000 respectively. While it loses
6937 * a bit of range on both ends, it maps pretty well onto the shares
6938 * value used by scheduler and the round-trip conversions preserve
6939 * the original value over the entire range.
6941 if (weight
< CGROUP_WEIGHT_MIN
|| weight
> CGROUP_WEIGHT_MAX
)
6944 weight
= DIV_ROUND_CLOSEST_ULL(weight
* 1024, CGROUP_WEIGHT_DFL
);
6946 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6949 static s64
cpu_weight_nice_read_s64(struct cgroup_subsys_state
*css
,
6952 unsigned long weight
= scale_load_down(css_tg(css
)->shares
);
6953 int last_delta
= INT_MAX
;
6956 /* find the closest nice value to the current weight */
6957 for (prio
= 0; prio
< ARRAY_SIZE(sched_prio_to_weight
); prio
++) {
6958 delta
= abs(sched_prio_to_weight
[prio
] - weight
);
6959 if (delta
>= last_delta
)
6964 return PRIO_TO_NICE(prio
- 1 + MAX_RT_PRIO
);
6967 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state
*css
,
6968 struct cftype
*cft
, s64 nice
)
6970 unsigned long weight
;
6973 if (nice
< MIN_NICE
|| nice
> MAX_NICE
)
6976 idx
= NICE_TO_PRIO(nice
) - MAX_RT_PRIO
;
6977 idx
= array_index_nospec(idx
, 40);
6978 weight
= sched_prio_to_weight
[idx
];
6980 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6984 static void __maybe_unused
cpu_period_quota_print(struct seq_file
*sf
,
6985 long period
, long quota
)
6988 seq_puts(sf
, "max");
6990 seq_printf(sf
, "%ld", quota
);
6992 seq_printf(sf
, " %ld\n", period
);
6995 /* caller should put the current value in *@periodp before calling */
6996 static int __maybe_unused
cpu_period_quota_parse(char *buf
,
6997 u64
*periodp
, u64
*quotap
)
6999 char tok
[21]; /* U64_MAX */
7001 if (sscanf(buf
, "%20s %llu", tok
, periodp
) < 1)
7004 *periodp
*= NSEC_PER_USEC
;
7006 if (sscanf(tok
, "%llu", quotap
))
7007 *quotap
*= NSEC_PER_USEC
;
7008 else if (!strcmp(tok
, "max"))
7009 *quotap
= RUNTIME_INF
;
7016 #ifdef CONFIG_CFS_BANDWIDTH
7017 static int cpu_max_show(struct seq_file
*sf
, void *v
)
7019 struct task_group
*tg
= css_tg(seq_css(sf
));
7021 cpu_period_quota_print(sf
, tg_get_cfs_period(tg
), tg_get_cfs_quota(tg
));
7025 static ssize_t
cpu_max_write(struct kernfs_open_file
*of
,
7026 char *buf
, size_t nbytes
, loff_t off
)
7028 struct task_group
*tg
= css_tg(of_css(of
));
7029 u64 period
= tg_get_cfs_period(tg
);
7033 ret
= cpu_period_quota_parse(buf
, &period
, "a
);
7035 ret
= tg_set_cfs_bandwidth(tg
, period
, quota
);
7036 return ret
?: nbytes
;
7040 static struct cftype cpu_files
[] = {
7041 #ifdef CONFIG_FAIR_GROUP_SCHED
7044 .flags
= CFTYPE_NOT_ON_ROOT
,
7045 .read_u64
= cpu_weight_read_u64
,
7046 .write_u64
= cpu_weight_write_u64
,
7049 .name
= "weight.nice",
7050 .flags
= CFTYPE_NOT_ON_ROOT
,
7051 .read_s64
= cpu_weight_nice_read_s64
,
7052 .write_s64
= cpu_weight_nice_write_s64
,
7055 #ifdef CONFIG_CFS_BANDWIDTH
7058 .flags
= CFTYPE_NOT_ON_ROOT
,
7059 .seq_show
= cpu_max_show
,
7060 .write
= cpu_max_write
,
7066 struct cgroup_subsys cpu_cgrp_subsys
= {
7067 .css_alloc
= cpu_cgroup_css_alloc
,
7068 .css_online
= cpu_cgroup_css_online
,
7069 .css_released
= cpu_cgroup_css_released
,
7070 .css_free
= cpu_cgroup_css_free
,
7071 .css_extra_stat_show
= cpu_extra_stat_show
,
7072 .fork
= cpu_cgroup_fork
,
7073 .can_attach
= cpu_cgroup_can_attach
,
7074 .attach
= cpu_cgroup_attach
,
7075 .legacy_cftypes
= cpu_legacy_files
,
7076 .dfl_cftypes
= cpu_files
,
7081 #endif /* CONFIG_CGROUP_SCHED */
7083 void dump_cpu_task(int cpu
)
7085 pr_info("Task dump for CPU %d:\n", cpu
);
7086 sched_show_task(cpu_curr(cpu
));
7090 * Nice levels are multiplicative, with a gentle 10% change for every
7091 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7092 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7093 * that remained on nice 0.
7095 * The "10% effect" is relative and cumulative: from _any_ nice level,
7096 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7097 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7098 * If a task goes up by ~10% and another task goes down by ~10% then
7099 * the relative distance between them is ~25%.)
7101 const int sched_prio_to_weight
[40] = {
7102 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7103 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7104 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7105 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7106 /* 0 */ 1024, 820, 655, 526, 423,
7107 /* 5 */ 335, 272, 215, 172, 137,
7108 /* 10 */ 110, 87, 70, 56, 45,
7109 /* 15 */ 36, 29, 23, 18, 15,
7113 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7115 * In cases where the weight does not change often, we can use the
7116 * precalculated inverse to speed up arithmetics by turning divisions
7117 * into multiplications:
7119 const u32 sched_prio_to_wmult
[40] = {
7120 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7121 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7122 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7123 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7124 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7125 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7126 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7127 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7130 #undef CREATE_TRACE_POINTS