1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
94 * ->anon_vma.lock (vma_adjust)
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space
*mapping
,
119 struct page
*page
, void *shadow
)
121 XA_STATE(xas
, &mapping
->i_pages
, page
->index
);
124 mapping_set_update(&xas
, mapping
);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page
)) {
128 xas_set_order(&xas
, page
->index
, compound_order(page
));
129 nr
= 1U << compound_order(page
);
132 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
133 VM_BUG_ON_PAGE(PageTail(page
), page
);
134 VM_BUG_ON_PAGE(nr
!= 1 && shadow
, page
);
136 xas_store(&xas
, shadow
);
137 xas_init_marks(&xas
);
139 page
->mapping
= NULL
;
140 /* Leave page->index set: truncation lookup relies upon it */
143 mapping
->nrexceptional
+= nr
;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
152 mapping
->nrpages
-= nr
;
155 static void unaccount_page_cache_page(struct address_space
*mapping
,
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page
) && PageMappedToDisk(page
))
166 cleancache_put_page(page
);
168 cleancache_invalidate_page(mapping
, page
);
170 VM_BUG_ON_PAGE(PageTail(page
), page
);
171 VM_BUG_ON_PAGE(page_mapped(page
), page
);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM
) && unlikely(page_mapped(page
))) {
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current
->comm
, page_to_pfn(page
));
177 dump_page(page
, "still mapped when deleted");
179 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
181 mapcount
= page_mapcount(page
);
182 if (mapping_exiting(mapping
) &&
183 page_count(page
) >= mapcount
+ 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page
);
191 page_ref_sub(page
, mapcount
);
195 /* hugetlb pages do not participate in page cache accounting. */
199 nr
= hpage_nr_pages(page
);
201 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, -nr
);
202 if (PageSwapBacked(page
)) {
203 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, -nr
);
204 if (PageTransHuge(page
))
205 __dec_node_page_state(page
, NR_SHMEM_THPS
);
207 VM_BUG_ON_PAGE(PageTransHuge(page
), page
);
211 * At this point page must be either written or cleaned by
212 * truncate. Dirty page here signals a bug and loss of
215 * This fixes dirty accounting after removing the page entirely
216 * but leaves PageDirty set: it has no effect for truncated
217 * page and anyway will be cleared before returning page into
220 if (WARN_ON_ONCE(PageDirty(page
)))
221 account_page_cleaned(page
, mapping
, inode_to_wb(mapping
->host
));
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
227 * is safe. The caller must hold the i_pages lock.
229 void __delete_from_page_cache(struct page
*page
, void *shadow
)
231 struct address_space
*mapping
= page
->mapping
;
233 trace_mm_filemap_delete_from_page_cache(page
);
235 unaccount_page_cache_page(mapping
, page
);
236 page_cache_delete(mapping
, page
, shadow
);
239 static void page_cache_free_page(struct address_space
*mapping
,
242 void (*freepage
)(struct page
*);
244 freepage
= mapping
->a_ops
->freepage
;
248 if (PageTransHuge(page
) && !PageHuge(page
)) {
249 page_ref_sub(page
, HPAGE_PMD_NR
);
250 VM_BUG_ON_PAGE(page_count(page
) <= 0, page
);
257 * delete_from_page_cache - delete page from page cache
258 * @page: the page which the kernel is trying to remove from page cache
260 * This must be called only on pages that have been verified to be in the page
261 * cache and locked. It will never put the page into the free list, the caller
262 * has a reference on the page.
264 void delete_from_page_cache(struct page
*page
)
266 struct address_space
*mapping
= page_mapping(page
);
269 BUG_ON(!PageLocked(page
));
270 xa_lock_irqsave(&mapping
->i_pages
, flags
);
271 __delete_from_page_cache(page
, NULL
);
272 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
274 page_cache_free_page(mapping
, page
);
276 EXPORT_SYMBOL(delete_from_page_cache
);
279 * page_cache_delete_batch - delete several pages from page cache
280 * @mapping: the mapping to which pages belong
281 * @pvec: pagevec with pages to delete
283 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 * from the mapping. The function expects @pvec to be sorted by page index.
285 * It tolerates holes in @pvec (mapping entries at those indices are not
286 * modified). The function expects only THP head pages to be present in the
287 * @pvec and takes care to delete all corresponding tail pages from the
290 * The function expects the i_pages lock to be held.
292 static void page_cache_delete_batch(struct address_space
*mapping
,
293 struct pagevec
*pvec
)
295 XA_STATE(xas
, &mapping
->i_pages
, pvec
->pages
[0]->index
);
297 int i
= 0, tail_pages
= 0;
300 mapping_set_update(&xas
, mapping
);
301 xas_for_each(&xas
, page
, ULONG_MAX
) {
302 if (i
>= pagevec_count(pvec
) && !tail_pages
)
304 if (xa_is_value(page
))
308 * Some page got inserted in our range? Skip it. We
309 * have our pages locked so they are protected from
312 if (page
!= pvec
->pages
[i
]) {
313 VM_BUG_ON_PAGE(page
->index
>
314 pvec
->pages
[i
]->index
, page
);
317 WARN_ON_ONCE(!PageLocked(page
));
318 if (PageTransHuge(page
) && !PageHuge(page
))
319 tail_pages
= HPAGE_PMD_NR
- 1;
320 page
->mapping
= NULL
;
322 * Leave page->index set: truncation lookup relies
327 VM_BUG_ON_PAGE(page
->index
+ HPAGE_PMD_NR
- tail_pages
328 != pvec
->pages
[i
]->index
, page
);
331 xas_store(&xas
, NULL
);
334 mapping
->nrpages
-= total_pages
;
337 void delete_from_page_cache_batch(struct address_space
*mapping
,
338 struct pagevec
*pvec
)
343 if (!pagevec_count(pvec
))
346 xa_lock_irqsave(&mapping
->i_pages
, flags
);
347 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
348 trace_mm_filemap_delete_from_page_cache(pvec
->pages
[i
]);
350 unaccount_page_cache_page(mapping
, pvec
->pages
[i
]);
352 page_cache_delete_batch(mapping
, pvec
);
353 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
355 for (i
= 0; i
< pagevec_count(pvec
); i
++)
356 page_cache_free_page(mapping
, pvec
->pages
[i
]);
359 int filemap_check_errors(struct address_space
*mapping
)
362 /* Check for outstanding write errors */
363 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
364 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
366 if (test_bit(AS_EIO
, &mapping
->flags
) &&
367 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
371 EXPORT_SYMBOL(filemap_check_errors
);
373 static int filemap_check_and_keep_errors(struct address_space
*mapping
)
375 /* Check for outstanding write errors */
376 if (test_bit(AS_EIO
, &mapping
->flags
))
378 if (test_bit(AS_ENOSPC
, &mapping
->flags
))
384 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
385 * @mapping: address space structure to write
386 * @start: offset in bytes where the range starts
387 * @end: offset in bytes where the range ends (inclusive)
388 * @sync_mode: enable synchronous operation
390 * Start writeback against all of a mapping's dirty pages that lie
391 * within the byte offsets <start, end> inclusive.
393 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
394 * opposed to a regular memory cleansing writeback. The difference between
395 * these two operations is that if a dirty page/buffer is encountered, it must
396 * be waited upon, and not just skipped over.
398 * Return: %0 on success, negative error code otherwise.
400 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
401 loff_t end
, int sync_mode
)
404 struct writeback_control wbc
= {
405 .sync_mode
= sync_mode
,
406 .nr_to_write
= LONG_MAX
,
407 .range_start
= start
,
411 if (!mapping_cap_writeback_dirty(mapping
))
414 wbc_attach_fdatawrite_inode(&wbc
, mapping
->host
);
415 ret
= do_writepages(mapping
, &wbc
);
416 wbc_detach_inode(&wbc
);
420 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
423 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
426 int filemap_fdatawrite(struct address_space
*mapping
)
428 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
430 EXPORT_SYMBOL(filemap_fdatawrite
);
432 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
435 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
437 EXPORT_SYMBOL(filemap_fdatawrite_range
);
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
446 * Return: %0 on success, negative error code otherwise.
448 int filemap_flush(struct address_space
*mapping
)
450 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
452 EXPORT_SYMBOL(filemap_flush
);
455 * filemap_range_has_page - check if a page exists in range.
456 * @mapping: address space within which to check
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
460 * Find at least one page in the range supplied, usually used to check if
461 * direct writing in this range will trigger a writeback.
463 * Return: %true if at least one page exists in the specified range,
466 bool filemap_range_has_page(struct address_space
*mapping
,
467 loff_t start_byte
, loff_t end_byte
)
470 XA_STATE(xas
, &mapping
->i_pages
, start_byte
>> PAGE_SHIFT
);
471 pgoff_t max
= end_byte
>> PAGE_SHIFT
;
473 if (end_byte
< start_byte
)
478 page
= xas_find(&xas
, max
);
479 if (xas_retry(&xas
, page
))
481 /* Shadow entries don't count */
482 if (xa_is_value(page
))
485 * We don't need to try to pin this page; we're about to
486 * release the RCU lock anyway. It is enough to know that
487 * there was a page here recently.
495 EXPORT_SYMBOL(filemap_range_has_page
);
497 static void __filemap_fdatawait_range(struct address_space
*mapping
,
498 loff_t start_byte
, loff_t end_byte
)
500 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
501 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
505 if (end_byte
< start_byte
)
509 while (index
<= end
) {
512 nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
,
513 end
, PAGECACHE_TAG_WRITEBACK
);
517 for (i
= 0; i
< nr_pages
; i
++) {
518 struct page
*page
= pvec
.pages
[i
];
520 wait_on_page_writeback(page
);
521 ClearPageError(page
);
523 pagevec_release(&pvec
);
529 * filemap_fdatawait_range - wait for writeback to complete
530 * @mapping: address space structure to wait for
531 * @start_byte: offset in bytes where the range starts
532 * @end_byte: offset in bytes where the range ends (inclusive)
534 * Walk the list of under-writeback pages of the given address space
535 * in the given range and wait for all of them. Check error status of
536 * the address space and return it.
538 * Since the error status of the address space is cleared by this function,
539 * callers are responsible for checking the return value and handling and/or
540 * reporting the error.
542 * Return: error status of the address space.
544 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
547 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
548 return filemap_check_errors(mapping
);
550 EXPORT_SYMBOL(filemap_fdatawait_range
);
553 * file_fdatawait_range - wait for writeback to complete
554 * @file: file pointing to address space structure to wait for
555 * @start_byte: offset in bytes where the range starts
556 * @end_byte: offset in bytes where the range ends (inclusive)
558 * Walk the list of under-writeback pages of the address space that file
559 * refers to, in the given range and wait for all of them. Check error
560 * status of the address space vs. the file->f_wb_err cursor and return it.
562 * Since the error status of the file is advanced by this function,
563 * callers are responsible for checking the return value and handling and/or
564 * reporting the error.
566 * Return: error status of the address space vs. the file->f_wb_err cursor.
568 int file_fdatawait_range(struct file
*file
, loff_t start_byte
, loff_t end_byte
)
570 struct address_space
*mapping
= file
->f_mapping
;
572 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
573 return file_check_and_advance_wb_err(file
);
575 EXPORT_SYMBOL(file_fdatawait_range
);
578 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
579 * @mapping: address space structure to wait for
581 * Walk the list of under-writeback pages of the given address space
582 * and wait for all of them. Unlike filemap_fdatawait(), this function
583 * does not clear error status of the address space.
585 * Use this function if callers don't handle errors themselves. Expected
586 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
589 * Return: error status of the address space.
591 int filemap_fdatawait_keep_errors(struct address_space
*mapping
)
593 __filemap_fdatawait_range(mapping
, 0, LLONG_MAX
);
594 return filemap_check_and_keep_errors(mapping
);
596 EXPORT_SYMBOL(filemap_fdatawait_keep_errors
);
598 static bool mapping_needs_writeback(struct address_space
*mapping
)
600 return (!dax_mapping(mapping
) && mapping
->nrpages
) ||
601 (dax_mapping(mapping
) && mapping
->nrexceptional
);
604 int filemap_write_and_wait(struct address_space
*mapping
)
608 if (mapping_needs_writeback(mapping
)) {
609 err
= filemap_fdatawrite(mapping
);
611 * Even if the above returned error, the pages may be
612 * written partially (e.g. -ENOSPC), so we wait for it.
613 * But the -EIO is special case, it may indicate the worst
614 * thing (e.g. bug) happened, so we avoid waiting for it.
617 int err2
= filemap_fdatawait(mapping
);
621 /* Clear any previously stored errors */
622 filemap_check_errors(mapping
);
625 err
= filemap_check_errors(mapping
);
629 EXPORT_SYMBOL(filemap_write_and_wait
);
632 * filemap_write_and_wait_range - write out & wait on a file range
633 * @mapping: the address_space for the pages
634 * @lstart: offset in bytes where the range starts
635 * @lend: offset in bytes where the range ends (inclusive)
637 * Write out and wait upon file offsets lstart->lend, inclusive.
639 * Note that @lend is inclusive (describes the last byte to be written) so
640 * that this function can be used to write to the very end-of-file (end = -1).
642 * Return: error status of the address space.
644 int filemap_write_and_wait_range(struct address_space
*mapping
,
645 loff_t lstart
, loff_t lend
)
649 if (mapping_needs_writeback(mapping
)) {
650 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
652 /* See comment of filemap_write_and_wait() */
654 int err2
= filemap_fdatawait_range(mapping
,
659 /* Clear any previously stored errors */
660 filemap_check_errors(mapping
);
663 err
= filemap_check_errors(mapping
);
667 EXPORT_SYMBOL(filemap_write_and_wait_range
);
669 void __filemap_set_wb_err(struct address_space
*mapping
, int err
)
671 errseq_t eseq
= errseq_set(&mapping
->wb_err
, err
);
673 trace_filemap_set_wb_err(mapping
, eseq
);
675 EXPORT_SYMBOL(__filemap_set_wb_err
);
678 * file_check_and_advance_wb_err - report wb error (if any) that was previously
679 * and advance wb_err to current one
680 * @file: struct file on which the error is being reported
682 * When userland calls fsync (or something like nfsd does the equivalent), we
683 * want to report any writeback errors that occurred since the last fsync (or
684 * since the file was opened if there haven't been any).
686 * Grab the wb_err from the mapping. If it matches what we have in the file,
687 * then just quickly return 0. The file is all caught up.
689 * If it doesn't match, then take the mapping value, set the "seen" flag in
690 * it and try to swap it into place. If it works, or another task beat us
691 * to it with the new value, then update the f_wb_err and return the error
692 * portion. The error at this point must be reported via proper channels
693 * (a'la fsync, or NFS COMMIT operation, etc.).
695 * While we handle mapping->wb_err with atomic operations, the f_wb_err
696 * value is protected by the f_lock since we must ensure that it reflects
697 * the latest value swapped in for this file descriptor.
699 * Return: %0 on success, negative error code otherwise.
701 int file_check_and_advance_wb_err(struct file
*file
)
704 errseq_t old
= READ_ONCE(file
->f_wb_err
);
705 struct address_space
*mapping
= file
->f_mapping
;
707 /* Locklessly handle the common case where nothing has changed */
708 if (errseq_check(&mapping
->wb_err
, old
)) {
709 /* Something changed, must use slow path */
710 spin_lock(&file
->f_lock
);
711 old
= file
->f_wb_err
;
712 err
= errseq_check_and_advance(&mapping
->wb_err
,
714 trace_file_check_and_advance_wb_err(file
, old
);
715 spin_unlock(&file
->f_lock
);
719 * We're mostly using this function as a drop in replacement for
720 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
721 * that the legacy code would have had on these flags.
723 clear_bit(AS_EIO
, &mapping
->flags
);
724 clear_bit(AS_ENOSPC
, &mapping
->flags
);
727 EXPORT_SYMBOL(file_check_and_advance_wb_err
);
730 * file_write_and_wait_range - write out & wait on a file range
731 * @file: file pointing to address_space with pages
732 * @lstart: offset in bytes where the range starts
733 * @lend: offset in bytes where the range ends (inclusive)
735 * Write out and wait upon file offsets lstart->lend, inclusive.
737 * Note that @lend is inclusive (describes the last byte to be written) so
738 * that this function can be used to write to the very end-of-file (end = -1).
740 * After writing out and waiting on the data, we check and advance the
741 * f_wb_err cursor to the latest value, and return any errors detected there.
743 * Return: %0 on success, negative error code otherwise.
745 int file_write_and_wait_range(struct file
*file
, loff_t lstart
, loff_t lend
)
748 struct address_space
*mapping
= file
->f_mapping
;
750 if (mapping_needs_writeback(mapping
)) {
751 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
753 /* See comment of filemap_write_and_wait() */
755 __filemap_fdatawait_range(mapping
, lstart
, lend
);
757 err2
= file_check_and_advance_wb_err(file
);
762 EXPORT_SYMBOL(file_write_and_wait_range
);
765 * replace_page_cache_page - replace a pagecache page with a new one
766 * @old: page to be replaced
767 * @new: page to replace with
768 * @gfp_mask: allocation mode
770 * This function replaces a page in the pagecache with a new one. On
771 * success it acquires the pagecache reference for the new page and
772 * drops it for the old page. Both the old and new pages must be
773 * locked. This function does not add the new page to the LRU, the
774 * caller must do that.
776 * The remove + add is atomic. This function cannot fail.
780 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
782 struct address_space
*mapping
= old
->mapping
;
783 void (*freepage
)(struct page
*) = mapping
->a_ops
->freepage
;
784 pgoff_t offset
= old
->index
;
785 XA_STATE(xas
, &mapping
->i_pages
, offset
);
788 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
789 VM_BUG_ON_PAGE(!PageLocked(new), new);
790 VM_BUG_ON_PAGE(new->mapping
, new);
793 new->mapping
= mapping
;
796 xas_lock_irqsave(&xas
, flags
);
797 xas_store(&xas
, new);
800 /* hugetlb pages do not participate in page cache accounting. */
802 __dec_node_page_state(new, NR_FILE_PAGES
);
804 __inc_node_page_state(new, NR_FILE_PAGES
);
805 if (PageSwapBacked(old
))
806 __dec_node_page_state(new, NR_SHMEM
);
807 if (PageSwapBacked(new))
808 __inc_node_page_state(new, NR_SHMEM
);
809 xas_unlock_irqrestore(&xas
, flags
);
810 mem_cgroup_migrate(old
, new);
817 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
819 static int __add_to_page_cache_locked(struct page
*page
,
820 struct address_space
*mapping
,
821 pgoff_t offset
, gfp_t gfp_mask
,
824 XA_STATE(xas
, &mapping
->i_pages
, offset
);
825 int huge
= PageHuge(page
);
826 struct mem_cgroup
*memcg
;
830 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
831 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
832 mapping_set_update(&xas
, mapping
);
835 error
= mem_cgroup_try_charge(page
, current
->mm
,
836 gfp_mask
, &memcg
, false);
842 page
->mapping
= mapping
;
843 page
->index
= offset
;
847 old
= xas_load(&xas
);
848 if (old
&& !xa_is_value(old
))
849 xas_set_err(&xas
, -EEXIST
);
850 xas_store(&xas
, page
);
854 if (xa_is_value(old
)) {
855 mapping
->nrexceptional
--;
861 /* hugetlb pages do not participate in page cache accounting */
863 __inc_node_page_state(page
, NR_FILE_PAGES
);
865 xas_unlock_irq(&xas
);
866 } while (xas_nomem(&xas
, gfp_mask
& GFP_RECLAIM_MASK
));
872 mem_cgroup_commit_charge(page
, memcg
, false, false);
873 trace_mm_filemap_add_to_page_cache(page
);
876 page
->mapping
= NULL
;
877 /* Leave page->index set: truncation relies upon it */
879 mem_cgroup_cancel_charge(page
, memcg
, false);
881 return xas_error(&xas
);
883 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked
, ERRNO
);
886 * add_to_page_cache_locked - add a locked page to the pagecache
888 * @mapping: the page's address_space
889 * @offset: page index
890 * @gfp_mask: page allocation mode
892 * This function is used to add a page to the pagecache. It must be locked.
893 * This function does not add the page to the LRU. The caller must do that.
895 * Return: %0 on success, negative error code otherwise.
897 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
898 pgoff_t offset
, gfp_t gfp_mask
)
900 return __add_to_page_cache_locked(page
, mapping
, offset
,
903 EXPORT_SYMBOL(add_to_page_cache_locked
);
905 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
906 pgoff_t offset
, gfp_t gfp_mask
)
911 __SetPageLocked(page
);
912 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
915 __ClearPageLocked(page
);
918 * The page might have been evicted from cache only
919 * recently, in which case it should be activated like
920 * any other repeatedly accessed page.
921 * The exception is pages getting rewritten; evicting other
922 * data from the working set, only to cache data that will
923 * get overwritten with something else, is a waste of memory.
925 WARN_ON_ONCE(PageActive(page
));
926 if (!(gfp_mask
& __GFP_WRITE
) && shadow
)
927 workingset_refault(page
, shadow
);
932 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
935 struct page
*__page_cache_alloc(gfp_t gfp
)
940 if (cpuset_do_page_mem_spread()) {
941 unsigned int cpuset_mems_cookie
;
943 cpuset_mems_cookie
= read_mems_allowed_begin();
944 n
= cpuset_mem_spread_node();
945 page
= __alloc_pages_node(n
, gfp
, 0);
946 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
950 return alloc_pages(gfp
, 0);
952 EXPORT_SYMBOL(__page_cache_alloc
);
956 * In order to wait for pages to become available there must be
957 * waitqueues associated with pages. By using a hash table of
958 * waitqueues where the bucket discipline is to maintain all
959 * waiters on the same queue and wake all when any of the pages
960 * become available, and for the woken contexts to check to be
961 * sure the appropriate page became available, this saves space
962 * at a cost of "thundering herd" phenomena during rare hash
965 #define PAGE_WAIT_TABLE_BITS 8
966 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
967 static wait_queue_head_t page_wait_table
[PAGE_WAIT_TABLE_SIZE
] __cacheline_aligned
;
969 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
971 return &page_wait_table
[hash_ptr(page
, PAGE_WAIT_TABLE_BITS
)];
974 void __init
pagecache_init(void)
978 for (i
= 0; i
< PAGE_WAIT_TABLE_SIZE
; i
++)
979 init_waitqueue_head(&page_wait_table
[i
]);
981 page_writeback_init();
984 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
985 struct wait_page_key
{
991 struct wait_page_queue
{
994 wait_queue_entry_t wait
;
997 static int wake_page_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *arg
)
999 struct wait_page_key
*key
= arg
;
1000 struct wait_page_queue
*wait_page
1001 = container_of(wait
, struct wait_page_queue
, wait
);
1003 if (wait_page
->page
!= key
->page
)
1005 key
->page_match
= 1;
1007 if (wait_page
->bit_nr
!= key
->bit_nr
)
1011 * Stop walking if it's locked.
1012 * Is this safe if put_and_wait_on_page_locked() is in use?
1013 * Yes: the waker must hold a reference to this page, and if PG_locked
1014 * has now already been set by another task, that task must also hold
1015 * a reference to the *same usage* of this page; so there is no need
1016 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1018 if (test_bit(key
->bit_nr
, &key
->page
->flags
))
1021 return autoremove_wake_function(wait
, mode
, sync
, key
);
1024 static void wake_up_page_bit(struct page
*page
, int bit_nr
)
1026 wait_queue_head_t
*q
= page_waitqueue(page
);
1027 struct wait_page_key key
;
1028 unsigned long flags
;
1029 wait_queue_entry_t bookmark
;
1032 key
.bit_nr
= bit_nr
;
1036 bookmark
.private = NULL
;
1037 bookmark
.func
= NULL
;
1038 INIT_LIST_HEAD(&bookmark
.entry
);
1040 spin_lock_irqsave(&q
->lock
, flags
);
1041 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1043 while (bookmark
.flags
& WQ_FLAG_BOOKMARK
) {
1045 * Take a breather from holding the lock,
1046 * allow pages that finish wake up asynchronously
1047 * to acquire the lock and remove themselves
1050 spin_unlock_irqrestore(&q
->lock
, flags
);
1052 spin_lock_irqsave(&q
->lock
, flags
);
1053 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1057 * It is possible for other pages to have collided on the waitqueue
1058 * hash, so in that case check for a page match. That prevents a long-
1061 * It is still possible to miss a case here, when we woke page waiters
1062 * and removed them from the waitqueue, but there are still other
1065 if (!waitqueue_active(q
) || !key
.page_match
) {
1066 ClearPageWaiters(page
);
1068 * It's possible to miss clearing Waiters here, when we woke
1069 * our page waiters, but the hashed waitqueue has waiters for
1070 * other pages on it.
1072 * That's okay, it's a rare case. The next waker will clear it.
1075 spin_unlock_irqrestore(&q
->lock
, flags
);
1078 static void wake_up_page(struct page
*page
, int bit
)
1080 if (!PageWaiters(page
))
1082 wake_up_page_bit(page
, bit
);
1086 * A choice of three behaviors for wait_on_page_bit_common():
1089 EXCLUSIVE
, /* Hold ref to page and take the bit when woken, like
1090 * __lock_page() waiting on then setting PG_locked.
1092 SHARED
, /* Hold ref to page and check the bit when woken, like
1093 * wait_on_page_writeback() waiting on PG_writeback.
1095 DROP
, /* Drop ref to page before wait, no check when woken,
1096 * like put_and_wait_on_page_locked() on PG_locked.
1100 static inline int wait_on_page_bit_common(wait_queue_head_t
*q
,
1101 struct page
*page
, int bit_nr
, int state
, enum behavior behavior
)
1103 struct wait_page_queue wait_page
;
1104 wait_queue_entry_t
*wait
= &wait_page
.wait
;
1106 bool thrashing
= false;
1107 bool delayacct
= false;
1108 unsigned long pflags
;
1111 if (bit_nr
== PG_locked
&&
1112 !PageUptodate(page
) && PageWorkingset(page
)) {
1113 if (!PageSwapBacked(page
)) {
1114 delayacct_thrashing_start();
1117 psi_memstall_enter(&pflags
);
1122 wait
->flags
= behavior
== EXCLUSIVE
? WQ_FLAG_EXCLUSIVE
: 0;
1123 wait
->func
= wake_page_function
;
1124 wait_page
.page
= page
;
1125 wait_page
.bit_nr
= bit_nr
;
1128 spin_lock_irq(&q
->lock
);
1130 if (likely(list_empty(&wait
->entry
))) {
1131 __add_wait_queue_entry_tail(q
, wait
);
1132 SetPageWaiters(page
);
1135 set_current_state(state
);
1137 spin_unlock_irq(&q
->lock
);
1139 bit_is_set
= test_bit(bit_nr
, &page
->flags
);
1140 if (behavior
== DROP
)
1143 if (likely(bit_is_set
))
1146 if (behavior
== EXCLUSIVE
) {
1147 if (!test_and_set_bit_lock(bit_nr
, &page
->flags
))
1149 } else if (behavior
== SHARED
) {
1150 if (!test_bit(bit_nr
, &page
->flags
))
1154 if (signal_pending_state(state
, current
)) {
1159 if (behavior
== DROP
) {
1161 * We can no longer safely access page->flags:
1162 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1163 * there is a risk of waiting forever on a page reused
1164 * for something that keeps it locked indefinitely.
1165 * But best check for -EINTR above before breaking.
1171 finish_wait(q
, wait
);
1175 delayacct_thrashing_end();
1176 psi_memstall_leave(&pflags
);
1180 * A signal could leave PageWaiters set. Clearing it here if
1181 * !waitqueue_active would be possible (by open-coding finish_wait),
1182 * but still fail to catch it in the case of wait hash collision. We
1183 * already can fail to clear wait hash collision cases, so don't
1184 * bother with signals either.
1190 void wait_on_page_bit(struct page
*page
, int bit_nr
)
1192 wait_queue_head_t
*q
= page_waitqueue(page
);
1193 wait_on_page_bit_common(q
, page
, bit_nr
, TASK_UNINTERRUPTIBLE
, SHARED
);
1195 EXPORT_SYMBOL(wait_on_page_bit
);
1197 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
1199 wait_queue_head_t
*q
= page_waitqueue(page
);
1200 return wait_on_page_bit_common(q
, page
, bit_nr
, TASK_KILLABLE
, SHARED
);
1202 EXPORT_SYMBOL(wait_on_page_bit_killable
);
1205 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1206 * @page: The page to wait for.
1208 * The caller should hold a reference on @page. They expect the page to
1209 * become unlocked relatively soon, but do not wish to hold up migration
1210 * (for example) by holding the reference while waiting for the page to
1211 * come unlocked. After this function returns, the caller should not
1212 * dereference @page.
1214 void put_and_wait_on_page_locked(struct page
*page
)
1216 wait_queue_head_t
*q
;
1218 page
= compound_head(page
);
1219 q
= page_waitqueue(page
);
1220 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
, DROP
);
1224 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1225 * @page: Page defining the wait queue of interest
1226 * @waiter: Waiter to add to the queue
1228 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1230 void add_page_wait_queue(struct page
*page
, wait_queue_entry_t
*waiter
)
1232 wait_queue_head_t
*q
= page_waitqueue(page
);
1233 unsigned long flags
;
1235 spin_lock_irqsave(&q
->lock
, flags
);
1236 __add_wait_queue_entry_tail(q
, waiter
);
1237 SetPageWaiters(page
);
1238 spin_unlock_irqrestore(&q
->lock
, flags
);
1240 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
1242 #ifndef clear_bit_unlock_is_negative_byte
1245 * PG_waiters is the high bit in the same byte as PG_lock.
1247 * On x86 (and on many other architectures), we can clear PG_lock and
1248 * test the sign bit at the same time. But if the architecture does
1249 * not support that special operation, we just do this all by hand
1252 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1253 * being cleared, but a memory barrier should be unneccssary since it is
1254 * in the same byte as PG_locked.
1256 static inline bool clear_bit_unlock_is_negative_byte(long nr
, volatile void *mem
)
1258 clear_bit_unlock(nr
, mem
);
1259 /* smp_mb__after_atomic(); */
1260 return test_bit(PG_waiters
, mem
);
1266 * unlock_page - unlock a locked page
1269 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1270 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1271 * mechanism between PageLocked pages and PageWriteback pages is shared.
1272 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1274 * Note that this depends on PG_waiters being the sign bit in the byte
1275 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1276 * clear the PG_locked bit and test PG_waiters at the same time fairly
1277 * portably (architectures that do LL/SC can test any bit, while x86 can
1278 * test the sign bit).
1280 void unlock_page(struct page
*page
)
1282 BUILD_BUG_ON(PG_waiters
!= 7);
1283 page
= compound_head(page
);
1284 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1285 if (clear_bit_unlock_is_negative_byte(PG_locked
, &page
->flags
))
1286 wake_up_page_bit(page
, PG_locked
);
1288 EXPORT_SYMBOL(unlock_page
);
1291 * end_page_writeback - end writeback against a page
1294 void end_page_writeback(struct page
*page
)
1297 * TestClearPageReclaim could be used here but it is an atomic
1298 * operation and overkill in this particular case. Failing to
1299 * shuffle a page marked for immediate reclaim is too mild to
1300 * justify taking an atomic operation penalty at the end of
1301 * ever page writeback.
1303 if (PageReclaim(page
)) {
1304 ClearPageReclaim(page
);
1305 rotate_reclaimable_page(page
);
1308 if (!test_clear_page_writeback(page
))
1311 smp_mb__after_atomic();
1312 wake_up_page(page
, PG_writeback
);
1314 EXPORT_SYMBOL(end_page_writeback
);
1317 * After completing I/O on a page, call this routine to update the page
1318 * flags appropriately
1320 void page_endio(struct page
*page
, bool is_write
, int err
)
1324 SetPageUptodate(page
);
1326 ClearPageUptodate(page
);
1332 struct address_space
*mapping
;
1335 mapping
= page_mapping(page
);
1337 mapping_set_error(mapping
, err
);
1339 end_page_writeback(page
);
1342 EXPORT_SYMBOL_GPL(page_endio
);
1345 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1346 * @__page: the page to lock
1348 void __lock_page(struct page
*__page
)
1350 struct page
*page
= compound_head(__page
);
1351 wait_queue_head_t
*q
= page_waitqueue(page
);
1352 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
,
1355 EXPORT_SYMBOL(__lock_page
);
1357 int __lock_page_killable(struct page
*__page
)
1359 struct page
*page
= compound_head(__page
);
1360 wait_queue_head_t
*q
= page_waitqueue(page
);
1361 return wait_on_page_bit_common(q
, page
, PG_locked
, TASK_KILLABLE
,
1364 EXPORT_SYMBOL_GPL(__lock_page_killable
);
1368 * 1 - page is locked; mmap_sem is still held.
1369 * 0 - page is not locked.
1370 * mmap_sem has been released (up_read()), unless flags had both
1371 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1372 * which case mmap_sem is still held.
1374 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1375 * with the page locked and the mmap_sem unperturbed.
1377 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
1380 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1382 * CAUTION! In this case, mmap_sem is not released
1383 * even though return 0.
1385 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
1388 up_read(&mm
->mmap_sem
);
1389 if (flags
& FAULT_FLAG_KILLABLE
)
1390 wait_on_page_locked_killable(page
);
1392 wait_on_page_locked(page
);
1395 if (flags
& FAULT_FLAG_KILLABLE
) {
1398 ret
= __lock_page_killable(page
);
1400 up_read(&mm
->mmap_sem
);
1410 * page_cache_next_miss() - Find the next gap in the page cache.
1411 * @mapping: Mapping.
1413 * @max_scan: Maximum range to search.
1415 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1416 * gap with the lowest index.
1418 * This function may be called under the rcu_read_lock. However, this will
1419 * not atomically search a snapshot of the cache at a single point in time.
1420 * For example, if a gap is created at index 5, then subsequently a gap is
1421 * created at index 10, page_cache_next_miss covering both indices may
1422 * return 10 if called under the rcu_read_lock.
1424 * Return: The index of the gap if found, otherwise an index outside the
1425 * range specified (in which case 'return - index >= max_scan' will be true).
1426 * In the rare case of index wrap-around, 0 will be returned.
1428 pgoff_t
page_cache_next_miss(struct address_space
*mapping
,
1429 pgoff_t index
, unsigned long max_scan
)
1431 XA_STATE(xas
, &mapping
->i_pages
, index
);
1433 while (max_scan
--) {
1434 void *entry
= xas_next(&xas
);
1435 if (!entry
|| xa_is_value(entry
))
1437 if (xas
.xa_index
== 0)
1441 return xas
.xa_index
;
1443 EXPORT_SYMBOL(page_cache_next_miss
);
1446 * page_cache_prev_miss() - Find the previous gap in the page cache.
1447 * @mapping: Mapping.
1449 * @max_scan: Maximum range to search.
1451 * Search the range [max(index - max_scan + 1, 0), index] for the
1452 * gap with the highest index.
1454 * This function may be called under the rcu_read_lock. However, this will
1455 * not atomically search a snapshot of the cache at a single point in time.
1456 * For example, if a gap is created at index 10, then subsequently a gap is
1457 * created at index 5, page_cache_prev_miss() covering both indices may
1458 * return 5 if called under the rcu_read_lock.
1460 * Return: The index of the gap if found, otherwise an index outside the
1461 * range specified (in which case 'index - return >= max_scan' will be true).
1462 * In the rare case of wrap-around, ULONG_MAX will be returned.
1464 pgoff_t
page_cache_prev_miss(struct address_space
*mapping
,
1465 pgoff_t index
, unsigned long max_scan
)
1467 XA_STATE(xas
, &mapping
->i_pages
, index
);
1469 while (max_scan
--) {
1470 void *entry
= xas_prev(&xas
);
1471 if (!entry
|| xa_is_value(entry
))
1473 if (xas
.xa_index
== ULONG_MAX
)
1477 return xas
.xa_index
;
1479 EXPORT_SYMBOL(page_cache_prev_miss
);
1482 * find_get_entry - find and get a page cache entry
1483 * @mapping: the address_space to search
1484 * @offset: the page cache index
1486 * Looks up the page cache slot at @mapping & @offset. If there is a
1487 * page cache page, it is returned with an increased refcount.
1489 * If the slot holds a shadow entry of a previously evicted page, or a
1490 * swap entry from shmem/tmpfs, it is returned.
1492 * Return: the found page or shadow entry, %NULL if nothing is found.
1494 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
1496 XA_STATE(xas
, &mapping
->i_pages
, offset
);
1497 struct page
*head
, *page
;
1502 page
= xas_load(&xas
);
1503 if (xas_retry(&xas
, page
))
1506 * A shadow entry of a recently evicted page, or a swap entry from
1507 * shmem/tmpfs. Return it without attempting to raise page count.
1509 if (!page
|| xa_is_value(page
))
1512 head
= compound_head(page
);
1513 if (!page_cache_get_speculative(head
))
1516 /* The page was split under us? */
1517 if (compound_head(page
) != head
) {
1523 * Has the page moved?
1524 * This is part of the lockless pagecache protocol. See
1525 * include/linux/pagemap.h for details.
1527 if (unlikely(page
!= xas_reload(&xas
))) {
1536 EXPORT_SYMBOL(find_get_entry
);
1539 * find_lock_entry - locate, pin and lock a page cache entry
1540 * @mapping: the address_space to search
1541 * @offset: the page cache index
1543 * Looks up the page cache slot at @mapping & @offset. If there is a
1544 * page cache page, it is returned locked and with an increased
1547 * If the slot holds a shadow entry of a previously evicted page, or a
1548 * swap entry from shmem/tmpfs, it is returned.
1550 * find_lock_entry() may sleep.
1552 * Return: the found page or shadow entry, %NULL if nothing is found.
1554 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1559 page
= find_get_entry(mapping
, offset
);
1560 if (page
&& !xa_is_value(page
)) {
1562 /* Has the page been truncated? */
1563 if (unlikely(page_mapping(page
) != mapping
)) {
1568 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
1572 EXPORT_SYMBOL(find_lock_entry
);
1575 * pagecache_get_page - find and get a page reference
1576 * @mapping: the address_space to search
1577 * @offset: the page index
1578 * @fgp_flags: PCG flags
1579 * @gfp_mask: gfp mask to use for the page cache data page allocation
1581 * Looks up the page cache slot at @mapping & @offset.
1583 * PCG flags modify how the page is returned.
1585 * @fgp_flags can be:
1587 * - FGP_ACCESSED: the page will be marked accessed
1588 * - FGP_LOCK: Page is return locked
1589 * - FGP_CREAT: If page is not present then a new page is allocated using
1590 * @gfp_mask and added to the page cache and the VM's LRU
1591 * list. The page is returned locked and with an increased
1593 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1594 * its own locking dance if the page is already in cache, or unlock the page
1595 * before returning if we had to add the page to pagecache.
1597 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1598 * if the GFP flags specified for FGP_CREAT are atomic.
1600 * If there is a page cache page, it is returned with an increased refcount.
1602 * Return: the found page or %NULL otherwise.
1604 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1605 int fgp_flags
, gfp_t gfp_mask
)
1610 page
= find_get_entry(mapping
, offset
);
1611 if (xa_is_value(page
))
1616 if (fgp_flags
& FGP_LOCK
) {
1617 if (fgp_flags
& FGP_NOWAIT
) {
1618 if (!trylock_page(page
)) {
1626 /* Has the page been truncated? */
1627 if (unlikely(page
->mapping
!= mapping
)) {
1632 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1635 if (fgp_flags
& FGP_ACCESSED
)
1636 mark_page_accessed(page
);
1639 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1641 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1642 gfp_mask
|= __GFP_WRITE
;
1643 if (fgp_flags
& FGP_NOFS
)
1644 gfp_mask
&= ~__GFP_FS
;
1646 page
= __page_cache_alloc(gfp_mask
);
1650 if (WARN_ON_ONCE(!(fgp_flags
& (FGP_LOCK
| FGP_FOR_MMAP
))))
1651 fgp_flags
|= FGP_LOCK
;
1653 /* Init accessed so avoid atomic mark_page_accessed later */
1654 if (fgp_flags
& FGP_ACCESSED
)
1655 __SetPageReferenced(page
);
1657 err
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
);
1658 if (unlikely(err
)) {
1666 * add_to_page_cache_lru locks the page, and for mmap we expect
1669 if (page
&& (fgp_flags
& FGP_FOR_MMAP
))
1675 EXPORT_SYMBOL(pagecache_get_page
);
1678 * find_get_entries - gang pagecache lookup
1679 * @mapping: The address_space to search
1680 * @start: The starting page cache index
1681 * @nr_entries: The maximum number of entries
1682 * @entries: Where the resulting entries are placed
1683 * @indices: The cache indices corresponding to the entries in @entries
1685 * find_get_entries() will search for and return a group of up to
1686 * @nr_entries entries in the mapping. The entries are placed at
1687 * @entries. find_get_entries() takes a reference against any actual
1690 * The search returns a group of mapping-contiguous page cache entries
1691 * with ascending indexes. There may be holes in the indices due to
1692 * not-present pages.
1694 * Any shadow entries of evicted pages, or swap entries from
1695 * shmem/tmpfs, are included in the returned array.
1697 * Return: the number of pages and shadow entries which were found.
1699 unsigned find_get_entries(struct address_space
*mapping
,
1700 pgoff_t start
, unsigned int nr_entries
,
1701 struct page
**entries
, pgoff_t
*indices
)
1703 XA_STATE(xas
, &mapping
->i_pages
, start
);
1705 unsigned int ret
= 0;
1711 xas_for_each(&xas
, page
, ULONG_MAX
) {
1713 if (xas_retry(&xas
, page
))
1716 * A shadow entry of a recently evicted page, a swap
1717 * entry from shmem/tmpfs or a DAX entry. Return it
1718 * without attempting to raise page count.
1720 if (xa_is_value(page
))
1723 head
= compound_head(page
);
1724 if (!page_cache_get_speculative(head
))
1727 /* The page was split under us? */
1728 if (compound_head(page
) != head
)
1731 /* Has the page moved? */
1732 if (unlikely(page
!= xas_reload(&xas
)))
1736 indices
[ret
] = xas
.xa_index
;
1737 entries
[ret
] = page
;
1738 if (++ret
== nr_entries
)
1751 * find_get_pages_range - gang pagecache lookup
1752 * @mapping: The address_space to search
1753 * @start: The starting page index
1754 * @end: The final page index (inclusive)
1755 * @nr_pages: The maximum number of pages
1756 * @pages: Where the resulting pages are placed
1758 * find_get_pages_range() will search for and return a group of up to @nr_pages
1759 * pages in the mapping starting at index @start and up to index @end
1760 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1761 * a reference against the returned pages.
1763 * The search returns a group of mapping-contiguous pages with ascending
1764 * indexes. There may be holes in the indices due to not-present pages.
1765 * We also update @start to index the next page for the traversal.
1767 * Return: the number of pages which were found. If this number is
1768 * smaller than @nr_pages, the end of specified range has been
1771 unsigned find_get_pages_range(struct address_space
*mapping
, pgoff_t
*start
,
1772 pgoff_t end
, unsigned int nr_pages
,
1773 struct page
**pages
)
1775 XA_STATE(xas
, &mapping
->i_pages
, *start
);
1779 if (unlikely(!nr_pages
))
1783 xas_for_each(&xas
, page
, end
) {
1785 if (xas_retry(&xas
, page
))
1787 /* Skip over shadow, swap and DAX entries */
1788 if (xa_is_value(page
))
1791 head
= compound_head(page
);
1792 if (!page_cache_get_speculative(head
))
1795 /* The page was split under us? */
1796 if (compound_head(page
) != head
)
1799 /* Has the page moved? */
1800 if (unlikely(page
!= xas_reload(&xas
)))
1804 if (++ret
== nr_pages
) {
1805 *start
= xas
.xa_index
+ 1;
1816 * We come here when there is no page beyond @end. We take care to not
1817 * overflow the index @start as it confuses some of the callers. This
1818 * breaks the iteration when there is a page at index -1 but that is
1819 * already broken anyway.
1821 if (end
== (pgoff_t
)-1)
1822 *start
= (pgoff_t
)-1;
1832 * find_get_pages_contig - gang contiguous pagecache lookup
1833 * @mapping: The address_space to search
1834 * @index: The starting page index
1835 * @nr_pages: The maximum number of pages
1836 * @pages: Where the resulting pages are placed
1838 * find_get_pages_contig() works exactly like find_get_pages(), except
1839 * that the returned number of pages are guaranteed to be contiguous.
1841 * Return: the number of pages which were found.
1843 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1844 unsigned int nr_pages
, struct page
**pages
)
1846 XA_STATE(xas
, &mapping
->i_pages
, index
);
1848 unsigned int ret
= 0;
1850 if (unlikely(!nr_pages
))
1854 for (page
= xas_load(&xas
); page
; page
= xas_next(&xas
)) {
1856 if (xas_retry(&xas
, page
))
1859 * If the entry has been swapped out, we can stop looking.
1860 * No current caller is looking for DAX entries.
1862 if (xa_is_value(page
))
1865 head
= compound_head(page
);
1866 if (!page_cache_get_speculative(head
))
1869 /* The page was split under us? */
1870 if (compound_head(page
) != head
)
1873 /* Has the page moved? */
1874 if (unlikely(page
!= xas_reload(&xas
)))
1878 if (++ret
== nr_pages
)
1889 EXPORT_SYMBOL(find_get_pages_contig
);
1892 * find_get_pages_range_tag - find and return pages in given range matching @tag
1893 * @mapping: the address_space to search
1894 * @index: the starting page index
1895 * @end: The final page index (inclusive)
1896 * @tag: the tag index
1897 * @nr_pages: the maximum number of pages
1898 * @pages: where the resulting pages are placed
1900 * Like find_get_pages, except we only return pages which are tagged with
1901 * @tag. We update @index to index the next page for the traversal.
1903 * Return: the number of pages which were found.
1905 unsigned find_get_pages_range_tag(struct address_space
*mapping
, pgoff_t
*index
,
1906 pgoff_t end
, xa_mark_t tag
, unsigned int nr_pages
,
1907 struct page
**pages
)
1909 XA_STATE(xas
, &mapping
->i_pages
, *index
);
1913 if (unlikely(!nr_pages
))
1917 xas_for_each_marked(&xas
, page
, end
, tag
) {
1919 if (xas_retry(&xas
, page
))
1922 * Shadow entries should never be tagged, but this iteration
1923 * is lockless so there is a window for page reclaim to evict
1924 * a page we saw tagged. Skip over it.
1926 if (xa_is_value(page
))
1929 head
= compound_head(page
);
1930 if (!page_cache_get_speculative(head
))
1933 /* The page was split under us? */
1934 if (compound_head(page
) != head
)
1937 /* Has the page moved? */
1938 if (unlikely(page
!= xas_reload(&xas
)))
1942 if (++ret
== nr_pages
) {
1943 *index
= xas
.xa_index
+ 1;
1954 * We come here when we got to @end. We take care to not overflow the
1955 * index @index as it confuses some of the callers. This breaks the
1956 * iteration when there is a page at index -1 but that is already
1959 if (end
== (pgoff_t
)-1)
1960 *index
= (pgoff_t
)-1;
1968 EXPORT_SYMBOL(find_get_pages_range_tag
);
1971 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1972 * a _large_ part of the i/o request. Imagine the worst scenario:
1974 * ---R__________________________________________B__________
1975 * ^ reading here ^ bad block(assume 4k)
1977 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1978 * => failing the whole request => read(R) => read(R+1) =>
1979 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1980 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1981 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1983 * It is going insane. Fix it by quickly scaling down the readahead size.
1985 static void shrink_readahead_size_eio(struct file
*filp
,
1986 struct file_ra_state
*ra
)
1992 * generic_file_buffered_read - generic file read routine
1993 * @iocb: the iocb to read
1994 * @iter: data destination
1995 * @written: already copied
1997 * This is a generic file read routine, and uses the
1998 * mapping->a_ops->readpage() function for the actual low-level stuff.
2000 * This is really ugly. But the goto's actually try to clarify some
2001 * of the logic when it comes to error handling etc.
2004 * * total number of bytes copied, including those the were already @written
2005 * * negative error code if nothing was copied
2007 static ssize_t
generic_file_buffered_read(struct kiocb
*iocb
,
2008 struct iov_iter
*iter
, ssize_t written
)
2010 struct file
*filp
= iocb
->ki_filp
;
2011 struct address_space
*mapping
= filp
->f_mapping
;
2012 struct inode
*inode
= mapping
->host
;
2013 struct file_ra_state
*ra
= &filp
->f_ra
;
2014 loff_t
*ppos
= &iocb
->ki_pos
;
2018 unsigned long offset
; /* offset into pagecache page */
2019 unsigned int prev_offset
;
2022 if (unlikely(*ppos
>= inode
->i_sb
->s_maxbytes
))
2024 iov_iter_truncate(iter
, inode
->i_sb
->s_maxbytes
);
2026 index
= *ppos
>> PAGE_SHIFT
;
2027 prev_index
= ra
->prev_pos
>> PAGE_SHIFT
;
2028 prev_offset
= ra
->prev_pos
& (PAGE_SIZE
-1);
2029 last_index
= (*ppos
+ iter
->count
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
2030 offset
= *ppos
& ~PAGE_MASK
;
2036 unsigned long nr
, ret
;
2040 if (fatal_signal_pending(current
)) {
2045 page
= find_get_page(mapping
, index
);
2047 if (iocb
->ki_flags
& IOCB_NOWAIT
)
2049 page_cache_sync_readahead(mapping
,
2051 index
, last_index
- index
);
2052 page
= find_get_page(mapping
, index
);
2053 if (unlikely(page
== NULL
))
2054 goto no_cached_page
;
2056 if (PageReadahead(page
)) {
2057 page_cache_async_readahead(mapping
,
2059 index
, last_index
- index
);
2061 if (!PageUptodate(page
)) {
2062 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2068 * See comment in do_read_cache_page on why
2069 * wait_on_page_locked is used to avoid unnecessarily
2070 * serialisations and why it's safe.
2072 error
= wait_on_page_locked_killable(page
);
2073 if (unlikely(error
))
2074 goto readpage_error
;
2075 if (PageUptodate(page
))
2078 if (inode
->i_blkbits
== PAGE_SHIFT
||
2079 !mapping
->a_ops
->is_partially_uptodate
)
2080 goto page_not_up_to_date
;
2081 /* pipes can't handle partially uptodate pages */
2082 if (unlikely(iov_iter_is_pipe(iter
)))
2083 goto page_not_up_to_date
;
2084 if (!trylock_page(page
))
2085 goto page_not_up_to_date
;
2086 /* Did it get truncated before we got the lock? */
2088 goto page_not_up_to_date_locked
;
2089 if (!mapping
->a_ops
->is_partially_uptodate(page
,
2090 offset
, iter
->count
))
2091 goto page_not_up_to_date_locked
;
2096 * i_size must be checked after we know the page is Uptodate.
2098 * Checking i_size after the check allows us to calculate
2099 * the correct value for "nr", which means the zero-filled
2100 * part of the page is not copied back to userspace (unless
2101 * another truncate extends the file - this is desired though).
2104 isize
= i_size_read(inode
);
2105 end_index
= (isize
- 1) >> PAGE_SHIFT
;
2106 if (unlikely(!isize
|| index
> end_index
)) {
2111 /* nr is the maximum number of bytes to copy from this page */
2113 if (index
== end_index
) {
2114 nr
= ((isize
- 1) & ~PAGE_MASK
) + 1;
2122 /* If users can be writing to this page using arbitrary
2123 * virtual addresses, take care about potential aliasing
2124 * before reading the page on the kernel side.
2126 if (mapping_writably_mapped(mapping
))
2127 flush_dcache_page(page
);
2130 * When a sequential read accesses a page several times,
2131 * only mark it as accessed the first time.
2133 if (prev_index
!= index
|| offset
!= prev_offset
)
2134 mark_page_accessed(page
);
2138 * Ok, we have the page, and it's up-to-date, so
2139 * now we can copy it to user space...
2142 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
2144 index
+= offset
>> PAGE_SHIFT
;
2145 offset
&= ~PAGE_MASK
;
2146 prev_offset
= offset
;
2150 if (!iov_iter_count(iter
))
2158 page_not_up_to_date
:
2159 /* Get exclusive access to the page ... */
2160 error
= lock_page_killable(page
);
2161 if (unlikely(error
))
2162 goto readpage_error
;
2164 page_not_up_to_date_locked
:
2165 /* Did it get truncated before we got the lock? */
2166 if (!page
->mapping
) {
2172 /* Did somebody else fill it already? */
2173 if (PageUptodate(page
)) {
2180 * A previous I/O error may have been due to temporary
2181 * failures, eg. multipath errors.
2182 * PG_error will be set again if readpage fails.
2184 ClearPageError(page
);
2185 /* Start the actual read. The read will unlock the page. */
2186 error
= mapping
->a_ops
->readpage(filp
, page
);
2188 if (unlikely(error
)) {
2189 if (error
== AOP_TRUNCATED_PAGE
) {
2194 goto readpage_error
;
2197 if (!PageUptodate(page
)) {
2198 error
= lock_page_killable(page
);
2199 if (unlikely(error
))
2200 goto readpage_error
;
2201 if (!PageUptodate(page
)) {
2202 if (page
->mapping
== NULL
) {
2204 * invalidate_mapping_pages got it
2211 shrink_readahead_size_eio(filp
, ra
);
2213 goto readpage_error
;
2221 /* UHHUH! A synchronous read error occurred. Report it */
2227 * Ok, it wasn't cached, so we need to create a new
2230 page
= page_cache_alloc(mapping
);
2235 error
= add_to_page_cache_lru(page
, mapping
, index
,
2236 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
2239 if (error
== -EEXIST
) {
2251 ra
->prev_pos
= prev_index
;
2252 ra
->prev_pos
<<= PAGE_SHIFT
;
2253 ra
->prev_pos
|= prev_offset
;
2255 *ppos
= ((loff_t
)index
<< PAGE_SHIFT
) + offset
;
2256 file_accessed(filp
);
2257 return written
? written
: error
;
2261 * generic_file_read_iter - generic filesystem read routine
2262 * @iocb: kernel I/O control block
2263 * @iter: destination for the data read
2265 * This is the "read_iter()" routine for all filesystems
2266 * that can use the page cache directly.
2268 * * number of bytes copied, even for partial reads
2269 * * negative error code if nothing was read
2272 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
2274 size_t count
= iov_iter_count(iter
);
2278 goto out
; /* skip atime */
2280 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2281 struct file
*file
= iocb
->ki_filp
;
2282 struct address_space
*mapping
= file
->f_mapping
;
2283 struct inode
*inode
= mapping
->host
;
2286 size
= i_size_read(inode
);
2287 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2288 if (filemap_range_has_page(mapping
, iocb
->ki_pos
,
2289 iocb
->ki_pos
+ count
- 1))
2292 retval
= filemap_write_and_wait_range(mapping
,
2294 iocb
->ki_pos
+ count
- 1);
2299 file_accessed(file
);
2301 retval
= mapping
->a_ops
->direct_IO(iocb
, iter
);
2303 iocb
->ki_pos
+= retval
;
2306 iov_iter_revert(iter
, count
- iov_iter_count(iter
));
2309 * Btrfs can have a short DIO read if we encounter
2310 * compressed extents, so if there was an error, or if
2311 * we've already read everything we wanted to, or if
2312 * there was a short read because we hit EOF, go ahead
2313 * and return. Otherwise fallthrough to buffered io for
2314 * the rest of the read. Buffered reads will not work for
2315 * DAX files, so don't bother trying.
2317 if (retval
< 0 || !count
|| iocb
->ki_pos
>= size
||
2322 retval
= generic_file_buffered_read(iocb
, iter
, retval
);
2326 EXPORT_SYMBOL(generic_file_read_iter
);
2329 #define MMAP_LOTSAMISS (100)
2330 static struct file
*maybe_unlock_mmap_for_io(struct vm_fault
*vmf
,
2333 int flags
= vmf
->flags
;
2339 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2340 * anything, so we only pin the file and drop the mmap_sem if only
2341 * FAULT_FLAG_ALLOW_RETRY is set.
2343 if ((flags
& (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
)) ==
2344 FAULT_FLAG_ALLOW_RETRY
) {
2345 fpin
= get_file(vmf
->vma
->vm_file
);
2346 up_read(&vmf
->vma
->vm_mm
->mmap_sem
);
2352 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2353 * @vmf - the vm_fault for this fault.
2354 * @page - the page to lock.
2355 * @fpin - the pointer to the file we may pin (or is already pinned).
2357 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2358 * It differs in that it actually returns the page locked if it returns 1 and 0
2359 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2360 * will point to the pinned file and needs to be fput()'ed at a later point.
2362 static int lock_page_maybe_drop_mmap(struct vm_fault
*vmf
, struct page
*page
,
2365 if (trylock_page(page
))
2369 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2370 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2371 * is supposed to work. We have way too many special cases..
2373 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
2376 *fpin
= maybe_unlock_mmap_for_io(vmf
, *fpin
);
2377 if (vmf
->flags
& FAULT_FLAG_KILLABLE
) {
2378 if (__lock_page_killable(page
)) {
2380 * We didn't have the right flags to drop the mmap_sem,
2381 * but all fault_handlers only check for fatal signals
2382 * if we return VM_FAULT_RETRY, so we need to drop the
2383 * mmap_sem here and return 0 if we don't have a fpin.
2386 up_read(&vmf
->vma
->vm_mm
->mmap_sem
);
2396 * Synchronous readahead happens when we don't even find a page in the page
2397 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2398 * to drop the mmap sem we return the file that was pinned in order for us to do
2399 * that. If we didn't pin a file then we return NULL. The file that is
2400 * returned needs to be fput()'ed when we're done with it.
2402 static struct file
*do_sync_mmap_readahead(struct vm_fault
*vmf
)
2404 struct file
*file
= vmf
->vma
->vm_file
;
2405 struct file_ra_state
*ra
= &file
->f_ra
;
2406 struct address_space
*mapping
= file
->f_mapping
;
2407 struct file
*fpin
= NULL
;
2408 pgoff_t offset
= vmf
->pgoff
;
2410 /* If we don't want any read-ahead, don't bother */
2411 if (vmf
->vma
->vm_flags
& VM_RAND_READ
)
2416 if (vmf
->vma
->vm_flags
& VM_SEQ_READ
) {
2417 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2418 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
2423 /* Avoid banging the cache line if not needed */
2424 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
2428 * Do we miss much more than hit in this file? If so,
2429 * stop bothering with read-ahead. It will only hurt.
2431 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
2437 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2438 ra
->start
= max_t(long, 0, offset
- ra
->ra_pages
/ 2);
2439 ra
->size
= ra
->ra_pages
;
2440 ra
->async_size
= ra
->ra_pages
/ 4;
2441 ra_submit(ra
, mapping
, file
);
2446 * Asynchronous readahead happens when we find the page and PG_readahead,
2447 * so we want to possibly extend the readahead further. We return the file that
2448 * was pinned if we have to drop the mmap_sem in order to do IO.
2450 static struct file
*do_async_mmap_readahead(struct vm_fault
*vmf
,
2453 struct file
*file
= vmf
->vma
->vm_file
;
2454 struct file_ra_state
*ra
= &file
->f_ra
;
2455 struct address_space
*mapping
= file
->f_mapping
;
2456 struct file
*fpin
= NULL
;
2457 pgoff_t offset
= vmf
->pgoff
;
2459 /* If we don't want any read-ahead, don't bother */
2460 if (vmf
->vma
->vm_flags
& VM_RAND_READ
)
2462 if (ra
->mmap_miss
> 0)
2464 if (PageReadahead(page
)) {
2465 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2466 page_cache_async_readahead(mapping
, ra
, file
,
2467 page
, offset
, ra
->ra_pages
);
2473 * filemap_fault - read in file data for page fault handling
2474 * @vmf: struct vm_fault containing details of the fault
2476 * filemap_fault() is invoked via the vma operations vector for a
2477 * mapped memory region to read in file data during a page fault.
2479 * The goto's are kind of ugly, but this streamlines the normal case of having
2480 * it in the page cache, and handles the special cases reasonably without
2481 * having a lot of duplicated code.
2483 * vma->vm_mm->mmap_sem must be held on entry.
2485 * If our return value has VM_FAULT_RETRY set, it's because
2486 * lock_page_or_retry() returned 0.
2487 * The mmap_sem has usually been released in this case.
2488 * See __lock_page_or_retry() for the exception.
2490 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2491 * has not been released.
2493 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2495 * Return: bitwise-OR of %VM_FAULT_ codes.
2497 vm_fault_t
filemap_fault(struct vm_fault
*vmf
)
2500 struct file
*file
= vmf
->vma
->vm_file
;
2501 struct file
*fpin
= NULL
;
2502 struct address_space
*mapping
= file
->f_mapping
;
2503 struct file_ra_state
*ra
= &file
->f_ra
;
2504 struct inode
*inode
= mapping
->host
;
2505 pgoff_t offset
= vmf
->pgoff
;
2510 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2511 if (unlikely(offset
>= max_off
))
2512 return VM_FAULT_SIGBUS
;
2515 * Do we have something in the page cache already?
2517 page
= find_get_page(mapping
, offset
);
2518 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
2520 * We found the page, so try async readahead before
2521 * waiting for the lock.
2523 fpin
= do_async_mmap_readahead(vmf
, page
);
2525 /* No page in the page cache at all */
2526 count_vm_event(PGMAJFAULT
);
2527 count_memcg_event_mm(vmf
->vma
->vm_mm
, PGMAJFAULT
);
2528 ret
= VM_FAULT_MAJOR
;
2529 fpin
= do_sync_mmap_readahead(vmf
);
2531 page
= pagecache_get_page(mapping
, offset
,
2532 FGP_CREAT
|FGP_FOR_MMAP
,
2537 return vmf_error(-ENOMEM
);
2541 if (!lock_page_maybe_drop_mmap(vmf
, page
, &fpin
))
2544 /* Did it get truncated? */
2545 if (unlikely(page
->mapping
!= mapping
)) {
2550 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
2553 * We have a locked page in the page cache, now we need to check
2554 * that it's up-to-date. If not, it is going to be due to an error.
2556 if (unlikely(!PageUptodate(page
)))
2557 goto page_not_uptodate
;
2560 * We've made it this far and we had to drop our mmap_sem, now is the
2561 * time to return to the upper layer and have it re-find the vma and
2570 * Found the page and have a reference on it.
2571 * We must recheck i_size under page lock.
2573 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2574 if (unlikely(offset
>= max_off
)) {
2577 return VM_FAULT_SIGBUS
;
2581 return ret
| VM_FAULT_LOCKED
;
2585 * Umm, take care of errors if the page isn't up-to-date.
2586 * Try to re-read it _once_. We do this synchronously,
2587 * because there really aren't any performance issues here
2588 * and we need to check for errors.
2590 ClearPageError(page
);
2591 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2592 error
= mapping
->a_ops
->readpage(file
, page
);
2594 wait_on_page_locked(page
);
2595 if (!PageUptodate(page
))
2602 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
2605 /* Things didn't work out. Return zero to tell the mm layer so. */
2606 shrink_readahead_size_eio(file
, ra
);
2607 return VM_FAULT_SIGBUS
;
2611 * We dropped the mmap_sem, we need to return to the fault handler to
2612 * re-find the vma and come back and find our hopefully still populated
2619 return ret
| VM_FAULT_RETRY
;
2621 EXPORT_SYMBOL(filemap_fault
);
2623 void filemap_map_pages(struct vm_fault
*vmf
,
2624 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
2626 struct file
*file
= vmf
->vma
->vm_file
;
2627 struct address_space
*mapping
= file
->f_mapping
;
2628 pgoff_t last_pgoff
= start_pgoff
;
2629 unsigned long max_idx
;
2630 XA_STATE(xas
, &mapping
->i_pages
, start_pgoff
);
2631 struct page
*head
, *page
;
2634 xas_for_each(&xas
, page
, end_pgoff
) {
2635 if (xas_retry(&xas
, page
))
2637 if (xa_is_value(page
))
2640 head
= compound_head(page
);
2643 * Check for a locked page first, as a speculative
2644 * reference may adversely influence page migration.
2646 if (PageLocked(head
))
2648 if (!page_cache_get_speculative(head
))
2651 /* The page was split under us? */
2652 if (compound_head(page
) != head
)
2655 /* Has the page moved? */
2656 if (unlikely(page
!= xas_reload(&xas
)))
2659 if (!PageUptodate(page
) ||
2660 PageReadahead(page
) ||
2663 if (!trylock_page(page
))
2666 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2669 max_idx
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2670 if (page
->index
>= max_idx
)
2673 if (file
->f_ra
.mmap_miss
> 0)
2674 file
->f_ra
.mmap_miss
--;
2676 vmf
->address
+= (xas
.xa_index
- last_pgoff
) << PAGE_SHIFT
;
2678 vmf
->pte
+= xas
.xa_index
- last_pgoff
;
2679 last_pgoff
= xas
.xa_index
;
2680 if (alloc_set_pte(vmf
, NULL
, page
))
2689 /* Huge page is mapped? No need to proceed. */
2690 if (pmd_trans_huge(*vmf
->pmd
))
2695 EXPORT_SYMBOL(filemap_map_pages
);
2697 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2699 struct page
*page
= vmf
->page
;
2700 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
2701 vm_fault_t ret
= VM_FAULT_LOCKED
;
2703 sb_start_pagefault(inode
->i_sb
);
2704 file_update_time(vmf
->vma
->vm_file
);
2706 if (page
->mapping
!= inode
->i_mapping
) {
2708 ret
= VM_FAULT_NOPAGE
;
2712 * We mark the page dirty already here so that when freeze is in
2713 * progress, we are guaranteed that writeback during freezing will
2714 * see the dirty page and writeprotect it again.
2716 set_page_dirty(page
);
2717 wait_for_stable_page(page
);
2719 sb_end_pagefault(inode
->i_sb
);
2723 const struct vm_operations_struct generic_file_vm_ops
= {
2724 .fault
= filemap_fault
,
2725 .map_pages
= filemap_map_pages
,
2726 .page_mkwrite
= filemap_page_mkwrite
,
2729 /* This is used for a general mmap of a disk file */
2731 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2733 struct address_space
*mapping
= file
->f_mapping
;
2735 if (!mapping
->a_ops
->readpage
)
2737 file_accessed(file
);
2738 vma
->vm_ops
= &generic_file_vm_ops
;
2743 * This is for filesystems which do not implement ->writepage.
2745 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2747 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2749 return generic_file_mmap(file
, vma
);
2752 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2754 return VM_FAULT_SIGBUS
;
2756 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2760 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2764 #endif /* CONFIG_MMU */
2766 EXPORT_SYMBOL(filemap_page_mkwrite
);
2767 EXPORT_SYMBOL(generic_file_mmap
);
2768 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2770 static struct page
*wait_on_page_read(struct page
*page
)
2772 if (!IS_ERR(page
)) {
2773 wait_on_page_locked(page
);
2774 if (!PageUptodate(page
)) {
2776 page
= ERR_PTR(-EIO
);
2782 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2784 int (*filler
)(void *, struct page
*),
2791 page
= find_get_page(mapping
, index
);
2793 page
= __page_cache_alloc(gfp
);
2795 return ERR_PTR(-ENOMEM
);
2796 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2797 if (unlikely(err
)) {
2801 /* Presumably ENOMEM for xarray node */
2802 return ERR_PTR(err
);
2806 err
= filler(data
, page
);
2809 return ERR_PTR(err
);
2812 page
= wait_on_page_read(page
);
2817 if (PageUptodate(page
))
2821 * Page is not up to date and may be locked due one of the following
2822 * case a: Page is being filled and the page lock is held
2823 * case b: Read/write error clearing the page uptodate status
2824 * case c: Truncation in progress (page locked)
2825 * case d: Reclaim in progress
2827 * Case a, the page will be up to date when the page is unlocked.
2828 * There is no need to serialise on the page lock here as the page
2829 * is pinned so the lock gives no additional protection. Even if the
2830 * the page is truncated, the data is still valid if PageUptodate as
2831 * it's a race vs truncate race.
2832 * Case b, the page will not be up to date
2833 * Case c, the page may be truncated but in itself, the data may still
2834 * be valid after IO completes as it's a read vs truncate race. The
2835 * operation must restart if the page is not uptodate on unlock but
2836 * otherwise serialising on page lock to stabilise the mapping gives
2837 * no additional guarantees to the caller as the page lock is
2838 * released before return.
2839 * Case d, similar to truncation. If reclaim holds the page lock, it
2840 * will be a race with remove_mapping that determines if the mapping
2841 * is valid on unlock but otherwise the data is valid and there is
2842 * no need to serialise with page lock.
2844 * As the page lock gives no additional guarantee, we optimistically
2845 * wait on the page to be unlocked and check if it's up to date and
2846 * use the page if it is. Otherwise, the page lock is required to
2847 * distinguish between the different cases. The motivation is that we
2848 * avoid spurious serialisations and wakeups when multiple processes
2849 * wait on the same page for IO to complete.
2851 wait_on_page_locked(page
);
2852 if (PageUptodate(page
))
2855 /* Distinguish between all the cases under the safety of the lock */
2858 /* Case c or d, restart the operation */
2859 if (!page
->mapping
) {
2865 /* Someone else locked and filled the page in a very small window */
2866 if (PageUptodate(page
)) {
2873 mark_page_accessed(page
);
2878 * read_cache_page - read into page cache, fill it if needed
2879 * @mapping: the page's address_space
2880 * @index: the page index
2881 * @filler: function to perform the read
2882 * @data: first arg to filler(data, page) function, often left as NULL
2884 * Read into the page cache. If a page already exists, and PageUptodate() is
2885 * not set, try to fill the page and wait for it to become unlocked.
2887 * If the page does not get brought uptodate, return -EIO.
2889 * Return: up to date page on success, ERR_PTR() on failure.
2891 struct page
*read_cache_page(struct address_space
*mapping
,
2893 int (*filler
)(void *, struct page
*),
2896 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2898 EXPORT_SYMBOL(read_cache_page
);
2901 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2902 * @mapping: the page's address_space
2903 * @index: the page index
2904 * @gfp: the page allocator flags to use if allocating
2906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2907 * any new page allocations done using the specified allocation flags.
2909 * If the page does not get brought uptodate, return -EIO.
2911 * Return: up to date page on success, ERR_PTR() on failure.
2913 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2917 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2919 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2921 EXPORT_SYMBOL(read_cache_page_gfp
);
2924 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2925 * LFS limits. If pos is under the limit it becomes a short access. If it
2926 * exceeds the limit we return -EFBIG.
2928 static int generic_access_check_limits(struct file
*file
, loff_t pos
,
2931 struct inode
*inode
= file
->f_mapping
->host
;
2932 loff_t max_size
= inode
->i_sb
->s_maxbytes
;
2934 if (!(file
->f_flags
& O_LARGEFILE
))
2935 max_size
= MAX_NON_LFS
;
2937 if (unlikely(pos
>= max_size
))
2939 *count
= min(*count
, max_size
- pos
);
2943 static int generic_write_check_limits(struct file
*file
, loff_t pos
,
2946 loff_t limit
= rlimit(RLIMIT_FSIZE
);
2948 if (limit
!= RLIM_INFINITY
) {
2950 send_sig(SIGXFSZ
, current
, 0);
2953 *count
= min(*count
, limit
- pos
);
2956 return generic_access_check_limits(file
, pos
, count
);
2960 * Performs necessary checks before doing a write
2962 * Can adjust writing position or amount of bytes to write.
2963 * Returns appropriate error code that caller should return or
2964 * zero in case that write should be allowed.
2966 inline ssize_t
generic_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
2968 struct file
*file
= iocb
->ki_filp
;
2969 struct inode
*inode
= file
->f_mapping
->host
;
2973 if (!iov_iter_count(from
))
2976 /* FIXME: this is for backwards compatibility with 2.4 */
2977 if (iocb
->ki_flags
& IOCB_APPEND
)
2978 iocb
->ki_pos
= i_size_read(inode
);
2980 if ((iocb
->ki_flags
& IOCB_NOWAIT
) && !(iocb
->ki_flags
& IOCB_DIRECT
))
2983 count
= iov_iter_count(from
);
2984 ret
= generic_write_check_limits(file
, iocb
->ki_pos
, &count
);
2988 iov_iter_truncate(from
, count
);
2989 return iov_iter_count(from
);
2991 EXPORT_SYMBOL(generic_write_checks
);
2994 * Performs necessary checks before doing a clone.
2996 * Can adjust amount of bytes to clone.
2997 * Returns appropriate error code that caller should return or
2998 * zero in case the clone should be allowed.
3000 int generic_remap_checks(struct file
*file_in
, loff_t pos_in
,
3001 struct file
*file_out
, loff_t pos_out
,
3002 loff_t
*req_count
, unsigned int remap_flags
)
3004 struct inode
*inode_in
= file_in
->f_mapping
->host
;
3005 struct inode
*inode_out
= file_out
->f_mapping
->host
;
3006 uint64_t count
= *req_count
;
3008 loff_t size_in
, size_out
;
3009 loff_t bs
= inode_out
->i_sb
->s_blocksize
;
3012 /* The start of both ranges must be aligned to an fs block. */
3013 if (!IS_ALIGNED(pos_in
, bs
) || !IS_ALIGNED(pos_out
, bs
))
3016 /* Ensure offsets don't wrap. */
3017 if (pos_in
+ count
< pos_in
|| pos_out
+ count
< pos_out
)
3020 size_in
= i_size_read(inode_in
);
3021 size_out
= i_size_read(inode_out
);
3023 /* Dedupe requires both ranges to be within EOF. */
3024 if ((remap_flags
& REMAP_FILE_DEDUP
) &&
3025 (pos_in
>= size_in
|| pos_in
+ count
> size_in
||
3026 pos_out
>= size_out
|| pos_out
+ count
> size_out
))
3029 /* Ensure the infile range is within the infile. */
3030 if (pos_in
>= size_in
)
3032 count
= min(count
, size_in
- (uint64_t)pos_in
);
3034 ret
= generic_access_check_limits(file_in
, pos_in
, &count
);
3038 ret
= generic_write_check_limits(file_out
, pos_out
, &count
);
3043 * If the user wanted us to link to the infile's EOF, round up to the
3044 * next block boundary for this check.
3046 * Otherwise, make sure the count is also block-aligned, having
3047 * already confirmed the starting offsets' block alignment.
3049 if (pos_in
+ count
== size_in
) {
3050 bcount
= ALIGN(size_in
, bs
) - pos_in
;
3052 if (!IS_ALIGNED(count
, bs
))
3053 count
= ALIGN_DOWN(count
, bs
);
3057 /* Don't allow overlapped cloning within the same file. */
3058 if (inode_in
== inode_out
&&
3059 pos_out
+ bcount
> pos_in
&&
3060 pos_out
< pos_in
+ bcount
)
3064 * We shortened the request but the caller can't deal with that, so
3065 * bounce the request back to userspace.
3067 if (*req_count
!= count
&& !(remap_flags
& REMAP_FILE_CAN_SHORTEN
))
3074 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
3075 loff_t pos
, unsigned len
, unsigned flags
,
3076 struct page
**pagep
, void **fsdata
)
3078 const struct address_space_operations
*aops
= mapping
->a_ops
;
3080 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
3083 EXPORT_SYMBOL(pagecache_write_begin
);
3085 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
3086 loff_t pos
, unsigned len
, unsigned copied
,
3087 struct page
*page
, void *fsdata
)
3089 const struct address_space_operations
*aops
= mapping
->a_ops
;
3091 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
3093 EXPORT_SYMBOL(pagecache_write_end
);
3096 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
3098 struct file
*file
= iocb
->ki_filp
;
3099 struct address_space
*mapping
= file
->f_mapping
;
3100 struct inode
*inode
= mapping
->host
;
3101 loff_t pos
= iocb
->ki_pos
;
3106 write_len
= iov_iter_count(from
);
3107 end
= (pos
+ write_len
- 1) >> PAGE_SHIFT
;
3109 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
3110 /* If there are pages to writeback, return */
3111 if (filemap_range_has_page(inode
->i_mapping
, pos
,
3112 pos
+ write_len
- 1))
3115 written
= filemap_write_and_wait_range(mapping
, pos
,
3116 pos
+ write_len
- 1);
3122 * After a write we want buffered reads to be sure to go to disk to get
3123 * the new data. We invalidate clean cached page from the region we're
3124 * about to write. We do this *before* the write so that we can return
3125 * without clobbering -EIOCBQUEUED from ->direct_IO().
3127 written
= invalidate_inode_pages2_range(mapping
,
3128 pos
>> PAGE_SHIFT
, end
);
3130 * If a page can not be invalidated, return 0 to fall back
3131 * to buffered write.
3134 if (written
== -EBUSY
)
3139 written
= mapping
->a_ops
->direct_IO(iocb
, from
);
3142 * Finally, try again to invalidate clean pages which might have been
3143 * cached by non-direct readahead, or faulted in by get_user_pages()
3144 * if the source of the write was an mmap'ed region of the file
3145 * we're writing. Either one is a pretty crazy thing to do,
3146 * so we don't support it 100%. If this invalidation
3147 * fails, tough, the write still worked...
3149 * Most of the time we do not need this since dio_complete() will do
3150 * the invalidation for us. However there are some file systems that
3151 * do not end up with dio_complete() being called, so let's not break
3152 * them by removing it completely
3154 if (mapping
->nrpages
)
3155 invalidate_inode_pages2_range(mapping
,
3156 pos
>> PAGE_SHIFT
, end
);
3160 write_len
-= written
;
3161 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
3162 i_size_write(inode
, pos
);
3163 mark_inode_dirty(inode
);
3167 iov_iter_revert(from
, write_len
- iov_iter_count(from
));
3171 EXPORT_SYMBOL(generic_file_direct_write
);
3174 * Find or create a page at the given pagecache position. Return the locked
3175 * page. This function is specifically for buffered writes.
3177 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
3178 pgoff_t index
, unsigned flags
)
3181 int fgp_flags
= FGP_LOCK
|FGP_WRITE
|FGP_CREAT
;
3183 if (flags
& AOP_FLAG_NOFS
)
3184 fgp_flags
|= FGP_NOFS
;
3186 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
3187 mapping_gfp_mask(mapping
));
3189 wait_for_stable_page(page
);
3193 EXPORT_SYMBOL(grab_cache_page_write_begin
);
3195 ssize_t
generic_perform_write(struct file
*file
,
3196 struct iov_iter
*i
, loff_t pos
)
3198 struct address_space
*mapping
= file
->f_mapping
;
3199 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
3201 ssize_t written
= 0;
3202 unsigned int flags
= 0;
3206 unsigned long offset
; /* Offset into pagecache page */
3207 unsigned long bytes
; /* Bytes to write to page */
3208 size_t copied
; /* Bytes copied from user */
3211 offset
= (pos
& (PAGE_SIZE
- 1));
3212 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3217 * Bring in the user page that we will copy from _first_.
3218 * Otherwise there's a nasty deadlock on copying from the
3219 * same page as we're writing to, without it being marked
3222 * Not only is this an optimisation, but it is also required
3223 * to check that the address is actually valid, when atomic
3224 * usercopies are used, below.
3226 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
3231 if (fatal_signal_pending(current
)) {
3236 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
3238 if (unlikely(status
< 0))
3241 if (mapping_writably_mapped(mapping
))
3242 flush_dcache_page(page
);
3244 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
3245 flush_dcache_page(page
);
3247 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
3249 if (unlikely(status
< 0))
3255 iov_iter_advance(i
, copied
);
3256 if (unlikely(copied
== 0)) {
3258 * If we were unable to copy any data at all, we must
3259 * fall back to a single segment length write.
3261 * If we didn't fallback here, we could livelock
3262 * because not all segments in the iov can be copied at
3263 * once without a pagefault.
3265 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3266 iov_iter_single_seg_count(i
));
3272 balance_dirty_pages_ratelimited(mapping
);
3273 } while (iov_iter_count(i
));
3275 return written
? written
: status
;
3277 EXPORT_SYMBOL(generic_perform_write
);
3280 * __generic_file_write_iter - write data to a file
3281 * @iocb: IO state structure (file, offset, etc.)
3282 * @from: iov_iter with data to write
3284 * This function does all the work needed for actually writing data to a
3285 * file. It does all basic checks, removes SUID from the file, updates
3286 * modification times and calls proper subroutines depending on whether we
3287 * do direct IO or a standard buffered write.
3289 * It expects i_mutex to be grabbed unless we work on a block device or similar
3290 * object which does not need locking at all.
3292 * This function does *not* take care of syncing data in case of O_SYNC write.
3293 * A caller has to handle it. This is mainly due to the fact that we want to
3294 * avoid syncing under i_mutex.
3297 * * number of bytes written, even for truncated writes
3298 * * negative error code if no data has been written at all
3300 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3302 struct file
*file
= iocb
->ki_filp
;
3303 struct address_space
* mapping
= file
->f_mapping
;
3304 struct inode
*inode
= mapping
->host
;
3305 ssize_t written
= 0;
3309 /* We can write back this queue in page reclaim */
3310 current
->backing_dev_info
= inode_to_bdi(inode
);
3311 err
= file_remove_privs(file
);
3315 err
= file_update_time(file
);
3319 if (iocb
->ki_flags
& IOCB_DIRECT
) {
3320 loff_t pos
, endbyte
;
3322 written
= generic_file_direct_write(iocb
, from
);
3324 * If the write stopped short of completing, fall back to
3325 * buffered writes. Some filesystems do this for writes to
3326 * holes, for example. For DAX files, a buffered write will
3327 * not succeed (even if it did, DAX does not handle dirty
3328 * page-cache pages correctly).
3330 if (written
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
3333 status
= generic_perform_write(file
, from
, pos
= iocb
->ki_pos
);
3335 * If generic_perform_write() returned a synchronous error
3336 * then we want to return the number of bytes which were
3337 * direct-written, or the error code if that was zero. Note
3338 * that this differs from normal direct-io semantics, which
3339 * will return -EFOO even if some bytes were written.
3341 if (unlikely(status
< 0)) {
3346 * We need to ensure that the page cache pages are written to
3347 * disk and invalidated to preserve the expected O_DIRECT
3350 endbyte
= pos
+ status
- 1;
3351 err
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
3353 iocb
->ki_pos
= endbyte
+ 1;
3355 invalidate_mapping_pages(mapping
,
3357 endbyte
>> PAGE_SHIFT
);
3360 * We don't know how much we wrote, so just return
3361 * the number of bytes which were direct-written
3365 written
= generic_perform_write(file
, from
, iocb
->ki_pos
);
3366 if (likely(written
> 0))
3367 iocb
->ki_pos
+= written
;
3370 current
->backing_dev_info
= NULL
;
3371 return written
? written
: err
;
3373 EXPORT_SYMBOL(__generic_file_write_iter
);
3376 * generic_file_write_iter - write data to a file
3377 * @iocb: IO state structure
3378 * @from: iov_iter with data to write
3380 * This is a wrapper around __generic_file_write_iter() to be used by most
3381 * filesystems. It takes care of syncing the file in case of O_SYNC file
3382 * and acquires i_mutex as needed.
3384 * * negative error code if no data has been written at all of
3385 * vfs_fsync_range() failed for a synchronous write
3386 * * number of bytes written, even for truncated writes
3388 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3390 struct file
*file
= iocb
->ki_filp
;
3391 struct inode
*inode
= file
->f_mapping
->host
;
3395 ret
= generic_write_checks(iocb
, from
);
3397 ret
= __generic_file_write_iter(iocb
, from
);
3398 inode_unlock(inode
);
3401 ret
= generic_write_sync(iocb
, ret
);
3404 EXPORT_SYMBOL(generic_file_write_iter
);
3407 * try_to_release_page() - release old fs-specific metadata on a page
3409 * @page: the page which the kernel is trying to free
3410 * @gfp_mask: memory allocation flags (and I/O mode)
3412 * The address_space is to try to release any data against the page
3413 * (presumably at page->private).
3415 * This may also be called if PG_fscache is set on a page, indicating that the
3416 * page is known to the local caching routines.
3418 * The @gfp_mask argument specifies whether I/O may be performed to release
3419 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3421 * Return: %1 if the release was successful, otherwise return zero.
3423 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
3425 struct address_space
* const mapping
= page
->mapping
;
3427 BUG_ON(!PageLocked(page
));
3428 if (PageWriteback(page
))
3431 if (mapping
&& mapping
->a_ops
->releasepage
)
3432 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
3433 return try_to_free_buffers(page
);
3436 EXPORT_SYMBOL(try_to_release_page
);