Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6/linux-2.6-arm.git] / mm / filemap.c
blob6dd9a2274c805ad670959418f0caf27292c16bc4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include "internal.h"
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53 #include <asm/mman.h>
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
57 * though.
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68 * Lock ordering:
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
73 * ->i_pages lock
75 * ->i_mutex
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
78 * ->mmap_sem
79 * ->i_mmap_rwsem
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
83 * ->mmap_sem
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
89 * bdi->wb.list_lock
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
93 * ->i_mmap_rwsem
94 * ->anon_vma.lock (vma_adjust)
96 * ->anon_vma.lock
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 * ->i_mmap_rwsem
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space *mapping,
119 struct page *page, void *shadow)
121 XA_STATE(xas, &mapping->i_pages, page->index);
122 unsigned int nr = 1;
124 mapping_set_update(&xas, mapping);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page)) {
128 xas_set_order(&xas, page->index, compound_order(page));
129 nr = 1U << compound_order(page);
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE(PageTail(page), page);
134 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 xas_store(&xas, shadow);
137 xas_init_marks(&xas);
139 page->mapping = NULL;
140 /* Leave page->index set: truncation lookup relies upon it */
142 if (shadow) {
143 mapping->nrexceptional += nr;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
150 smp_wmb();
152 mapping->nrpages -= nr;
155 static void unaccount_page_cache_page(struct address_space *mapping,
156 struct page *page)
158 int nr;
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page) && PageMappedToDisk(page))
166 cleancache_put_page(page);
167 else
168 cleancache_invalidate_page(mapping, page);
170 VM_BUG_ON_PAGE(PageTail(page), page);
171 VM_BUG_ON_PAGE(page_mapped(page), page);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 int mapcount;
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current->comm, page_to_pfn(page));
177 dump_page(page, "still mapped when deleted");
178 dump_stack();
179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 mapcount = page_mapcount(page);
182 if (mapping_exiting(mapping) &&
183 page_count(page) >= mapcount + 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page);
191 page_ref_sub(page, mapcount);
195 /* hugetlb pages do not participate in page cache accounting. */
196 if (PageHuge(page))
197 return;
199 nr = hpage_nr_pages(page);
201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 if (PageSwapBacked(page)) {
203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 if (PageTransHuge(page))
205 __dec_node_page_state(page, NR_SHMEM_THPS);
206 } else {
207 VM_BUG_ON_PAGE(PageTransHuge(page), page);
211 * At this point page must be either written or cleaned by
212 * truncate. Dirty page here signals a bug and loss of
213 * unwritten data.
215 * This fixes dirty accounting after removing the page entirely
216 * but leaves PageDirty set: it has no effect for truncated
217 * page and anyway will be cleared before returning page into
218 * buddy allocator.
220 if (WARN_ON_ONCE(PageDirty(page)))
221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
227 * is safe. The caller must hold the i_pages lock.
229 void __delete_from_page_cache(struct page *page, void *shadow)
231 struct address_space *mapping = page->mapping;
233 trace_mm_filemap_delete_from_page_cache(page);
235 unaccount_page_cache_page(mapping, page);
236 page_cache_delete(mapping, page, shadow);
239 static void page_cache_free_page(struct address_space *mapping,
240 struct page *page)
242 void (*freepage)(struct page *);
244 freepage = mapping->a_ops->freepage;
245 if (freepage)
246 freepage(page);
248 if (PageTransHuge(page) && !PageHuge(page)) {
249 page_ref_sub(page, HPAGE_PMD_NR);
250 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
251 } else {
252 put_page(page);
257 * delete_from_page_cache - delete page from page cache
258 * @page: the page which the kernel is trying to remove from page cache
260 * This must be called only on pages that have been verified to be in the page
261 * cache and locked. It will never put the page into the free list, the caller
262 * has a reference on the page.
264 void delete_from_page_cache(struct page *page)
266 struct address_space *mapping = page_mapping(page);
267 unsigned long flags;
269 BUG_ON(!PageLocked(page));
270 xa_lock_irqsave(&mapping->i_pages, flags);
271 __delete_from_page_cache(page, NULL);
272 xa_unlock_irqrestore(&mapping->i_pages, flags);
274 page_cache_free_page(mapping, page);
276 EXPORT_SYMBOL(delete_from_page_cache);
279 * page_cache_delete_batch - delete several pages from page cache
280 * @mapping: the mapping to which pages belong
281 * @pvec: pagevec with pages to delete
283 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 * from the mapping. The function expects @pvec to be sorted by page index.
285 * It tolerates holes in @pvec (mapping entries at those indices are not
286 * modified). The function expects only THP head pages to be present in the
287 * @pvec and takes care to delete all corresponding tail pages from the
288 * mapping as well.
290 * The function expects the i_pages lock to be held.
292 static void page_cache_delete_batch(struct address_space *mapping,
293 struct pagevec *pvec)
295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
296 int total_pages = 0;
297 int i = 0, tail_pages = 0;
298 struct page *page;
300 mapping_set_update(&xas, mapping);
301 xas_for_each(&xas, page, ULONG_MAX) {
302 if (i >= pagevec_count(pvec) && !tail_pages)
303 break;
304 if (xa_is_value(page))
305 continue;
306 if (!tail_pages) {
308 * Some page got inserted in our range? Skip it. We
309 * have our pages locked so they are protected from
310 * being removed.
312 if (page != pvec->pages[i]) {
313 VM_BUG_ON_PAGE(page->index >
314 pvec->pages[i]->index, page);
315 continue;
317 WARN_ON_ONCE(!PageLocked(page));
318 if (PageTransHuge(page) && !PageHuge(page))
319 tail_pages = HPAGE_PMD_NR - 1;
320 page->mapping = NULL;
322 * Leave page->index set: truncation lookup relies
323 * upon it
325 i++;
326 } else {
327 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
328 != pvec->pages[i]->index, page);
329 tail_pages--;
331 xas_store(&xas, NULL);
332 total_pages++;
334 mapping->nrpages -= total_pages;
337 void delete_from_page_cache_batch(struct address_space *mapping,
338 struct pagevec *pvec)
340 int i;
341 unsigned long flags;
343 if (!pagevec_count(pvec))
344 return;
346 xa_lock_irqsave(&mapping->i_pages, flags);
347 for (i = 0; i < pagevec_count(pvec); i++) {
348 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
350 unaccount_page_cache_page(mapping, pvec->pages[i]);
352 page_cache_delete_batch(mapping, pvec);
353 xa_unlock_irqrestore(&mapping->i_pages, flags);
355 for (i = 0; i < pagevec_count(pvec); i++)
356 page_cache_free_page(mapping, pvec->pages[i]);
359 int filemap_check_errors(struct address_space *mapping)
361 int ret = 0;
362 /* Check for outstanding write errors */
363 if (test_bit(AS_ENOSPC, &mapping->flags) &&
364 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
365 ret = -ENOSPC;
366 if (test_bit(AS_EIO, &mapping->flags) &&
367 test_and_clear_bit(AS_EIO, &mapping->flags))
368 ret = -EIO;
369 return ret;
371 EXPORT_SYMBOL(filemap_check_errors);
373 static int filemap_check_and_keep_errors(struct address_space *mapping)
375 /* Check for outstanding write errors */
376 if (test_bit(AS_EIO, &mapping->flags))
377 return -EIO;
378 if (test_bit(AS_ENOSPC, &mapping->flags))
379 return -ENOSPC;
380 return 0;
384 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
385 * @mapping: address space structure to write
386 * @start: offset in bytes where the range starts
387 * @end: offset in bytes where the range ends (inclusive)
388 * @sync_mode: enable synchronous operation
390 * Start writeback against all of a mapping's dirty pages that lie
391 * within the byte offsets <start, end> inclusive.
393 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
394 * opposed to a regular memory cleansing writeback. The difference between
395 * these two operations is that if a dirty page/buffer is encountered, it must
396 * be waited upon, and not just skipped over.
398 * Return: %0 on success, negative error code otherwise.
400 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
401 loff_t end, int sync_mode)
403 int ret;
404 struct writeback_control wbc = {
405 .sync_mode = sync_mode,
406 .nr_to_write = LONG_MAX,
407 .range_start = start,
408 .range_end = end,
411 if (!mapping_cap_writeback_dirty(mapping))
412 return 0;
414 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
415 ret = do_writepages(mapping, &wbc);
416 wbc_detach_inode(&wbc);
417 return ret;
420 static inline int __filemap_fdatawrite(struct address_space *mapping,
421 int sync_mode)
423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
426 int filemap_fdatawrite(struct address_space *mapping)
428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
430 EXPORT_SYMBOL(filemap_fdatawrite);
432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433 loff_t end)
435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
437 EXPORT_SYMBOL(filemap_fdatawrite_range);
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
446 * Return: %0 on success, negative error code otherwise.
448 int filemap_flush(struct address_space *mapping)
450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
452 EXPORT_SYMBOL(filemap_flush);
455 * filemap_range_has_page - check if a page exists in range.
456 * @mapping: address space within which to check
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
460 * Find at least one page in the range supplied, usually used to check if
461 * direct writing in this range will trigger a writeback.
463 * Return: %true if at least one page exists in the specified range,
464 * %false otherwise.
466 bool filemap_range_has_page(struct address_space *mapping,
467 loff_t start_byte, loff_t end_byte)
469 struct page *page;
470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 pgoff_t max = end_byte >> PAGE_SHIFT;
473 if (end_byte < start_byte)
474 return false;
476 rcu_read_lock();
477 for (;;) {
478 page = xas_find(&xas, max);
479 if (xas_retry(&xas, page))
480 continue;
481 /* Shadow entries don't count */
482 if (xa_is_value(page))
483 continue;
485 * We don't need to try to pin this page; we're about to
486 * release the RCU lock anyway. It is enough to know that
487 * there was a page here recently.
489 break;
491 rcu_read_unlock();
493 return page != NULL;
495 EXPORT_SYMBOL(filemap_range_has_page);
497 static void __filemap_fdatawait_range(struct address_space *mapping,
498 loff_t start_byte, loff_t end_byte)
500 pgoff_t index = start_byte >> PAGE_SHIFT;
501 pgoff_t end = end_byte >> PAGE_SHIFT;
502 struct pagevec pvec;
503 int nr_pages;
505 if (end_byte < start_byte)
506 return;
508 pagevec_init(&pvec);
509 while (index <= end) {
510 unsigned i;
512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
513 end, PAGECACHE_TAG_WRITEBACK);
514 if (!nr_pages)
515 break;
517 for (i = 0; i < nr_pages; i++) {
518 struct page *page = pvec.pages[i];
520 wait_on_page_writeback(page);
521 ClearPageError(page);
523 pagevec_release(&pvec);
524 cond_resched();
529 * filemap_fdatawait_range - wait for writeback to complete
530 * @mapping: address space structure to wait for
531 * @start_byte: offset in bytes where the range starts
532 * @end_byte: offset in bytes where the range ends (inclusive)
534 * Walk the list of under-writeback pages of the given address space
535 * in the given range and wait for all of them. Check error status of
536 * the address space and return it.
538 * Since the error status of the address space is cleared by this function,
539 * callers are responsible for checking the return value and handling and/or
540 * reporting the error.
542 * Return: error status of the address space.
544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 loff_t end_byte)
547 __filemap_fdatawait_range(mapping, start_byte, end_byte);
548 return filemap_check_errors(mapping);
550 EXPORT_SYMBOL(filemap_fdatawait_range);
553 * file_fdatawait_range - wait for writeback to complete
554 * @file: file pointing to address space structure to wait for
555 * @start_byte: offset in bytes where the range starts
556 * @end_byte: offset in bytes where the range ends (inclusive)
558 * Walk the list of under-writeback pages of the address space that file
559 * refers to, in the given range and wait for all of them. Check error
560 * status of the address space vs. the file->f_wb_err cursor and return it.
562 * Since the error status of the file is advanced by this function,
563 * callers are responsible for checking the return value and handling and/or
564 * reporting the error.
566 * Return: error status of the address space vs. the file->f_wb_err cursor.
568 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
570 struct address_space *mapping = file->f_mapping;
572 __filemap_fdatawait_range(mapping, start_byte, end_byte);
573 return file_check_and_advance_wb_err(file);
575 EXPORT_SYMBOL(file_fdatawait_range);
578 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
579 * @mapping: address space structure to wait for
581 * Walk the list of under-writeback pages of the given address space
582 * and wait for all of them. Unlike filemap_fdatawait(), this function
583 * does not clear error status of the address space.
585 * Use this function if callers don't handle errors themselves. Expected
586 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
587 * fsfreeze(8)
589 * Return: error status of the address space.
591 int filemap_fdatawait_keep_errors(struct address_space *mapping)
593 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
594 return filemap_check_and_keep_errors(mapping);
596 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
598 static bool mapping_needs_writeback(struct address_space *mapping)
600 return (!dax_mapping(mapping) && mapping->nrpages) ||
601 (dax_mapping(mapping) && mapping->nrexceptional);
604 int filemap_write_and_wait(struct address_space *mapping)
606 int err = 0;
608 if (mapping_needs_writeback(mapping)) {
609 err = filemap_fdatawrite(mapping);
611 * Even if the above returned error, the pages may be
612 * written partially (e.g. -ENOSPC), so we wait for it.
613 * But the -EIO is special case, it may indicate the worst
614 * thing (e.g. bug) happened, so we avoid waiting for it.
616 if (err != -EIO) {
617 int err2 = filemap_fdatawait(mapping);
618 if (!err)
619 err = err2;
620 } else {
621 /* Clear any previously stored errors */
622 filemap_check_errors(mapping);
624 } else {
625 err = filemap_check_errors(mapping);
627 return err;
629 EXPORT_SYMBOL(filemap_write_and_wait);
632 * filemap_write_and_wait_range - write out & wait on a file range
633 * @mapping: the address_space for the pages
634 * @lstart: offset in bytes where the range starts
635 * @lend: offset in bytes where the range ends (inclusive)
637 * Write out and wait upon file offsets lstart->lend, inclusive.
639 * Note that @lend is inclusive (describes the last byte to be written) so
640 * that this function can be used to write to the very end-of-file (end = -1).
642 * Return: error status of the address space.
644 int filemap_write_and_wait_range(struct address_space *mapping,
645 loff_t lstart, loff_t lend)
647 int err = 0;
649 if (mapping_needs_writeback(mapping)) {
650 err = __filemap_fdatawrite_range(mapping, lstart, lend,
651 WB_SYNC_ALL);
652 /* See comment of filemap_write_and_wait() */
653 if (err != -EIO) {
654 int err2 = filemap_fdatawait_range(mapping,
655 lstart, lend);
656 if (!err)
657 err = err2;
658 } else {
659 /* Clear any previously stored errors */
660 filemap_check_errors(mapping);
662 } else {
663 err = filemap_check_errors(mapping);
665 return err;
667 EXPORT_SYMBOL(filemap_write_and_wait_range);
669 void __filemap_set_wb_err(struct address_space *mapping, int err)
671 errseq_t eseq = errseq_set(&mapping->wb_err, err);
673 trace_filemap_set_wb_err(mapping, eseq);
675 EXPORT_SYMBOL(__filemap_set_wb_err);
678 * file_check_and_advance_wb_err - report wb error (if any) that was previously
679 * and advance wb_err to current one
680 * @file: struct file on which the error is being reported
682 * When userland calls fsync (or something like nfsd does the equivalent), we
683 * want to report any writeback errors that occurred since the last fsync (or
684 * since the file was opened if there haven't been any).
686 * Grab the wb_err from the mapping. If it matches what we have in the file,
687 * then just quickly return 0. The file is all caught up.
689 * If it doesn't match, then take the mapping value, set the "seen" flag in
690 * it and try to swap it into place. If it works, or another task beat us
691 * to it with the new value, then update the f_wb_err and return the error
692 * portion. The error at this point must be reported via proper channels
693 * (a'la fsync, or NFS COMMIT operation, etc.).
695 * While we handle mapping->wb_err with atomic operations, the f_wb_err
696 * value is protected by the f_lock since we must ensure that it reflects
697 * the latest value swapped in for this file descriptor.
699 * Return: %0 on success, negative error code otherwise.
701 int file_check_and_advance_wb_err(struct file *file)
703 int err = 0;
704 errseq_t old = READ_ONCE(file->f_wb_err);
705 struct address_space *mapping = file->f_mapping;
707 /* Locklessly handle the common case where nothing has changed */
708 if (errseq_check(&mapping->wb_err, old)) {
709 /* Something changed, must use slow path */
710 spin_lock(&file->f_lock);
711 old = file->f_wb_err;
712 err = errseq_check_and_advance(&mapping->wb_err,
713 &file->f_wb_err);
714 trace_file_check_and_advance_wb_err(file, old);
715 spin_unlock(&file->f_lock);
719 * We're mostly using this function as a drop in replacement for
720 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
721 * that the legacy code would have had on these flags.
723 clear_bit(AS_EIO, &mapping->flags);
724 clear_bit(AS_ENOSPC, &mapping->flags);
725 return err;
727 EXPORT_SYMBOL(file_check_and_advance_wb_err);
730 * file_write_and_wait_range - write out & wait on a file range
731 * @file: file pointing to address_space with pages
732 * @lstart: offset in bytes where the range starts
733 * @lend: offset in bytes where the range ends (inclusive)
735 * Write out and wait upon file offsets lstart->lend, inclusive.
737 * Note that @lend is inclusive (describes the last byte to be written) so
738 * that this function can be used to write to the very end-of-file (end = -1).
740 * After writing out and waiting on the data, we check and advance the
741 * f_wb_err cursor to the latest value, and return any errors detected there.
743 * Return: %0 on success, negative error code otherwise.
745 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
747 int err = 0, err2;
748 struct address_space *mapping = file->f_mapping;
750 if (mapping_needs_writeback(mapping)) {
751 err = __filemap_fdatawrite_range(mapping, lstart, lend,
752 WB_SYNC_ALL);
753 /* See comment of filemap_write_and_wait() */
754 if (err != -EIO)
755 __filemap_fdatawait_range(mapping, lstart, lend);
757 err2 = file_check_and_advance_wb_err(file);
758 if (!err)
759 err = err2;
760 return err;
762 EXPORT_SYMBOL(file_write_and_wait_range);
765 * replace_page_cache_page - replace a pagecache page with a new one
766 * @old: page to be replaced
767 * @new: page to replace with
768 * @gfp_mask: allocation mode
770 * This function replaces a page in the pagecache with a new one. On
771 * success it acquires the pagecache reference for the new page and
772 * drops it for the old page. Both the old and new pages must be
773 * locked. This function does not add the new page to the LRU, the
774 * caller must do that.
776 * The remove + add is atomic. This function cannot fail.
778 * Return: %0
780 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
782 struct address_space *mapping = old->mapping;
783 void (*freepage)(struct page *) = mapping->a_ops->freepage;
784 pgoff_t offset = old->index;
785 XA_STATE(xas, &mapping->i_pages, offset);
786 unsigned long flags;
788 VM_BUG_ON_PAGE(!PageLocked(old), old);
789 VM_BUG_ON_PAGE(!PageLocked(new), new);
790 VM_BUG_ON_PAGE(new->mapping, new);
792 get_page(new);
793 new->mapping = mapping;
794 new->index = offset;
796 xas_lock_irqsave(&xas, flags);
797 xas_store(&xas, new);
799 old->mapping = NULL;
800 /* hugetlb pages do not participate in page cache accounting. */
801 if (!PageHuge(old))
802 __dec_node_page_state(new, NR_FILE_PAGES);
803 if (!PageHuge(new))
804 __inc_node_page_state(new, NR_FILE_PAGES);
805 if (PageSwapBacked(old))
806 __dec_node_page_state(new, NR_SHMEM);
807 if (PageSwapBacked(new))
808 __inc_node_page_state(new, NR_SHMEM);
809 xas_unlock_irqrestore(&xas, flags);
810 mem_cgroup_migrate(old, new);
811 if (freepage)
812 freepage(old);
813 put_page(old);
815 return 0;
817 EXPORT_SYMBOL_GPL(replace_page_cache_page);
819 static int __add_to_page_cache_locked(struct page *page,
820 struct address_space *mapping,
821 pgoff_t offset, gfp_t gfp_mask,
822 void **shadowp)
824 XA_STATE(xas, &mapping->i_pages, offset);
825 int huge = PageHuge(page);
826 struct mem_cgroup *memcg;
827 int error;
828 void *old;
830 VM_BUG_ON_PAGE(!PageLocked(page), page);
831 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
832 mapping_set_update(&xas, mapping);
834 if (!huge) {
835 error = mem_cgroup_try_charge(page, current->mm,
836 gfp_mask, &memcg, false);
837 if (error)
838 return error;
841 get_page(page);
842 page->mapping = mapping;
843 page->index = offset;
845 do {
846 xas_lock_irq(&xas);
847 old = xas_load(&xas);
848 if (old && !xa_is_value(old))
849 xas_set_err(&xas, -EEXIST);
850 xas_store(&xas, page);
851 if (xas_error(&xas))
852 goto unlock;
854 if (xa_is_value(old)) {
855 mapping->nrexceptional--;
856 if (shadowp)
857 *shadowp = old;
859 mapping->nrpages++;
861 /* hugetlb pages do not participate in page cache accounting */
862 if (!huge)
863 __inc_node_page_state(page, NR_FILE_PAGES);
864 unlock:
865 xas_unlock_irq(&xas);
866 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
868 if (xas_error(&xas))
869 goto error;
871 if (!huge)
872 mem_cgroup_commit_charge(page, memcg, false, false);
873 trace_mm_filemap_add_to_page_cache(page);
874 return 0;
875 error:
876 page->mapping = NULL;
877 /* Leave page->index set: truncation relies upon it */
878 if (!huge)
879 mem_cgroup_cancel_charge(page, memcg, false);
880 put_page(page);
881 return xas_error(&xas);
883 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
886 * add_to_page_cache_locked - add a locked page to the pagecache
887 * @page: page to add
888 * @mapping: the page's address_space
889 * @offset: page index
890 * @gfp_mask: page allocation mode
892 * This function is used to add a page to the pagecache. It must be locked.
893 * This function does not add the page to the LRU. The caller must do that.
895 * Return: %0 on success, negative error code otherwise.
897 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
898 pgoff_t offset, gfp_t gfp_mask)
900 return __add_to_page_cache_locked(page, mapping, offset,
901 gfp_mask, NULL);
903 EXPORT_SYMBOL(add_to_page_cache_locked);
905 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
906 pgoff_t offset, gfp_t gfp_mask)
908 void *shadow = NULL;
909 int ret;
911 __SetPageLocked(page);
912 ret = __add_to_page_cache_locked(page, mapping, offset,
913 gfp_mask, &shadow);
914 if (unlikely(ret))
915 __ClearPageLocked(page);
916 else {
918 * The page might have been evicted from cache only
919 * recently, in which case it should be activated like
920 * any other repeatedly accessed page.
921 * The exception is pages getting rewritten; evicting other
922 * data from the working set, only to cache data that will
923 * get overwritten with something else, is a waste of memory.
925 WARN_ON_ONCE(PageActive(page));
926 if (!(gfp_mask & __GFP_WRITE) && shadow)
927 workingset_refault(page, shadow);
928 lru_cache_add(page);
930 return ret;
932 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
934 #ifdef CONFIG_NUMA
935 struct page *__page_cache_alloc(gfp_t gfp)
937 int n;
938 struct page *page;
940 if (cpuset_do_page_mem_spread()) {
941 unsigned int cpuset_mems_cookie;
942 do {
943 cpuset_mems_cookie = read_mems_allowed_begin();
944 n = cpuset_mem_spread_node();
945 page = __alloc_pages_node(n, gfp, 0);
946 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
948 return page;
950 return alloc_pages(gfp, 0);
952 EXPORT_SYMBOL(__page_cache_alloc);
953 #endif
956 * In order to wait for pages to become available there must be
957 * waitqueues associated with pages. By using a hash table of
958 * waitqueues where the bucket discipline is to maintain all
959 * waiters on the same queue and wake all when any of the pages
960 * become available, and for the woken contexts to check to be
961 * sure the appropriate page became available, this saves space
962 * at a cost of "thundering herd" phenomena during rare hash
963 * collisions.
965 #define PAGE_WAIT_TABLE_BITS 8
966 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
967 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
969 static wait_queue_head_t *page_waitqueue(struct page *page)
971 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
974 void __init pagecache_init(void)
976 int i;
978 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
979 init_waitqueue_head(&page_wait_table[i]);
981 page_writeback_init();
984 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
985 struct wait_page_key {
986 struct page *page;
987 int bit_nr;
988 int page_match;
991 struct wait_page_queue {
992 struct page *page;
993 int bit_nr;
994 wait_queue_entry_t wait;
997 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
999 struct wait_page_key *key = arg;
1000 struct wait_page_queue *wait_page
1001 = container_of(wait, struct wait_page_queue, wait);
1003 if (wait_page->page != key->page)
1004 return 0;
1005 key->page_match = 1;
1007 if (wait_page->bit_nr != key->bit_nr)
1008 return 0;
1011 * Stop walking if it's locked.
1012 * Is this safe if put_and_wait_on_page_locked() is in use?
1013 * Yes: the waker must hold a reference to this page, and if PG_locked
1014 * has now already been set by another task, that task must also hold
1015 * a reference to the *same usage* of this page; so there is no need
1016 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1018 if (test_bit(key->bit_nr, &key->page->flags))
1019 return -1;
1021 return autoremove_wake_function(wait, mode, sync, key);
1024 static void wake_up_page_bit(struct page *page, int bit_nr)
1026 wait_queue_head_t *q = page_waitqueue(page);
1027 struct wait_page_key key;
1028 unsigned long flags;
1029 wait_queue_entry_t bookmark;
1031 key.page = page;
1032 key.bit_nr = bit_nr;
1033 key.page_match = 0;
1035 bookmark.flags = 0;
1036 bookmark.private = NULL;
1037 bookmark.func = NULL;
1038 INIT_LIST_HEAD(&bookmark.entry);
1040 spin_lock_irqsave(&q->lock, flags);
1041 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1045 * Take a breather from holding the lock,
1046 * allow pages that finish wake up asynchronously
1047 * to acquire the lock and remove themselves
1048 * from wait queue
1050 spin_unlock_irqrestore(&q->lock, flags);
1051 cpu_relax();
1052 spin_lock_irqsave(&q->lock, flags);
1053 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1057 * It is possible for other pages to have collided on the waitqueue
1058 * hash, so in that case check for a page match. That prevents a long-
1059 * term waiter
1061 * It is still possible to miss a case here, when we woke page waiters
1062 * and removed them from the waitqueue, but there are still other
1063 * page waiters.
1065 if (!waitqueue_active(q) || !key.page_match) {
1066 ClearPageWaiters(page);
1068 * It's possible to miss clearing Waiters here, when we woke
1069 * our page waiters, but the hashed waitqueue has waiters for
1070 * other pages on it.
1072 * That's okay, it's a rare case. The next waker will clear it.
1075 spin_unlock_irqrestore(&q->lock, flags);
1078 static void wake_up_page(struct page *page, int bit)
1080 if (!PageWaiters(page))
1081 return;
1082 wake_up_page_bit(page, bit);
1086 * A choice of three behaviors for wait_on_page_bit_common():
1088 enum behavior {
1089 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1090 * __lock_page() waiting on then setting PG_locked.
1092 SHARED, /* Hold ref to page and check the bit when woken, like
1093 * wait_on_page_writeback() waiting on PG_writeback.
1095 DROP, /* Drop ref to page before wait, no check when woken,
1096 * like put_and_wait_on_page_locked() on PG_locked.
1100 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1101 struct page *page, int bit_nr, int state, enum behavior behavior)
1103 struct wait_page_queue wait_page;
1104 wait_queue_entry_t *wait = &wait_page.wait;
1105 bool bit_is_set;
1106 bool thrashing = false;
1107 bool delayacct = false;
1108 unsigned long pflags;
1109 int ret = 0;
1111 if (bit_nr == PG_locked &&
1112 !PageUptodate(page) && PageWorkingset(page)) {
1113 if (!PageSwapBacked(page)) {
1114 delayacct_thrashing_start();
1115 delayacct = true;
1117 psi_memstall_enter(&pflags);
1118 thrashing = true;
1121 init_wait(wait);
1122 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1123 wait->func = wake_page_function;
1124 wait_page.page = page;
1125 wait_page.bit_nr = bit_nr;
1127 for (;;) {
1128 spin_lock_irq(&q->lock);
1130 if (likely(list_empty(&wait->entry))) {
1131 __add_wait_queue_entry_tail(q, wait);
1132 SetPageWaiters(page);
1135 set_current_state(state);
1137 spin_unlock_irq(&q->lock);
1139 bit_is_set = test_bit(bit_nr, &page->flags);
1140 if (behavior == DROP)
1141 put_page(page);
1143 if (likely(bit_is_set))
1144 io_schedule();
1146 if (behavior == EXCLUSIVE) {
1147 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1148 break;
1149 } else if (behavior == SHARED) {
1150 if (!test_bit(bit_nr, &page->flags))
1151 break;
1154 if (signal_pending_state(state, current)) {
1155 ret = -EINTR;
1156 break;
1159 if (behavior == DROP) {
1161 * We can no longer safely access page->flags:
1162 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1163 * there is a risk of waiting forever on a page reused
1164 * for something that keeps it locked indefinitely.
1165 * But best check for -EINTR above before breaking.
1167 break;
1171 finish_wait(q, wait);
1173 if (thrashing) {
1174 if (delayacct)
1175 delayacct_thrashing_end();
1176 psi_memstall_leave(&pflags);
1180 * A signal could leave PageWaiters set. Clearing it here if
1181 * !waitqueue_active would be possible (by open-coding finish_wait),
1182 * but still fail to catch it in the case of wait hash collision. We
1183 * already can fail to clear wait hash collision cases, so don't
1184 * bother with signals either.
1187 return ret;
1190 void wait_on_page_bit(struct page *page, int bit_nr)
1192 wait_queue_head_t *q = page_waitqueue(page);
1193 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1195 EXPORT_SYMBOL(wait_on_page_bit);
1197 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1199 wait_queue_head_t *q = page_waitqueue(page);
1200 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1202 EXPORT_SYMBOL(wait_on_page_bit_killable);
1205 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1206 * @page: The page to wait for.
1208 * The caller should hold a reference on @page. They expect the page to
1209 * become unlocked relatively soon, but do not wish to hold up migration
1210 * (for example) by holding the reference while waiting for the page to
1211 * come unlocked. After this function returns, the caller should not
1212 * dereference @page.
1214 void put_and_wait_on_page_locked(struct page *page)
1216 wait_queue_head_t *q;
1218 page = compound_head(page);
1219 q = page_waitqueue(page);
1220 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1224 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1225 * @page: Page defining the wait queue of interest
1226 * @waiter: Waiter to add to the queue
1228 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1230 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1232 wait_queue_head_t *q = page_waitqueue(page);
1233 unsigned long flags;
1235 spin_lock_irqsave(&q->lock, flags);
1236 __add_wait_queue_entry_tail(q, waiter);
1237 SetPageWaiters(page);
1238 spin_unlock_irqrestore(&q->lock, flags);
1240 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1242 #ifndef clear_bit_unlock_is_negative_byte
1245 * PG_waiters is the high bit in the same byte as PG_lock.
1247 * On x86 (and on many other architectures), we can clear PG_lock and
1248 * test the sign bit at the same time. But if the architecture does
1249 * not support that special operation, we just do this all by hand
1250 * instead.
1252 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1253 * being cleared, but a memory barrier should be unneccssary since it is
1254 * in the same byte as PG_locked.
1256 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1258 clear_bit_unlock(nr, mem);
1259 /* smp_mb__after_atomic(); */
1260 return test_bit(PG_waiters, mem);
1263 #endif
1266 * unlock_page - unlock a locked page
1267 * @page: the page
1269 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1270 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1271 * mechanism between PageLocked pages and PageWriteback pages is shared.
1272 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1274 * Note that this depends on PG_waiters being the sign bit in the byte
1275 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1276 * clear the PG_locked bit and test PG_waiters at the same time fairly
1277 * portably (architectures that do LL/SC can test any bit, while x86 can
1278 * test the sign bit).
1280 void unlock_page(struct page *page)
1282 BUILD_BUG_ON(PG_waiters != 7);
1283 page = compound_head(page);
1284 VM_BUG_ON_PAGE(!PageLocked(page), page);
1285 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1286 wake_up_page_bit(page, PG_locked);
1288 EXPORT_SYMBOL(unlock_page);
1291 * end_page_writeback - end writeback against a page
1292 * @page: the page
1294 void end_page_writeback(struct page *page)
1297 * TestClearPageReclaim could be used here but it is an atomic
1298 * operation and overkill in this particular case. Failing to
1299 * shuffle a page marked for immediate reclaim is too mild to
1300 * justify taking an atomic operation penalty at the end of
1301 * ever page writeback.
1303 if (PageReclaim(page)) {
1304 ClearPageReclaim(page);
1305 rotate_reclaimable_page(page);
1308 if (!test_clear_page_writeback(page))
1309 BUG();
1311 smp_mb__after_atomic();
1312 wake_up_page(page, PG_writeback);
1314 EXPORT_SYMBOL(end_page_writeback);
1317 * After completing I/O on a page, call this routine to update the page
1318 * flags appropriately
1320 void page_endio(struct page *page, bool is_write, int err)
1322 if (!is_write) {
1323 if (!err) {
1324 SetPageUptodate(page);
1325 } else {
1326 ClearPageUptodate(page);
1327 SetPageError(page);
1329 unlock_page(page);
1330 } else {
1331 if (err) {
1332 struct address_space *mapping;
1334 SetPageError(page);
1335 mapping = page_mapping(page);
1336 if (mapping)
1337 mapping_set_error(mapping, err);
1339 end_page_writeback(page);
1342 EXPORT_SYMBOL_GPL(page_endio);
1345 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1346 * @__page: the page to lock
1348 void __lock_page(struct page *__page)
1350 struct page *page = compound_head(__page);
1351 wait_queue_head_t *q = page_waitqueue(page);
1352 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1353 EXCLUSIVE);
1355 EXPORT_SYMBOL(__lock_page);
1357 int __lock_page_killable(struct page *__page)
1359 struct page *page = compound_head(__page);
1360 wait_queue_head_t *q = page_waitqueue(page);
1361 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1362 EXCLUSIVE);
1364 EXPORT_SYMBOL_GPL(__lock_page_killable);
1367 * Return values:
1368 * 1 - page is locked; mmap_sem is still held.
1369 * 0 - page is not locked.
1370 * mmap_sem has been released (up_read()), unless flags had both
1371 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1372 * which case mmap_sem is still held.
1374 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1375 * with the page locked and the mmap_sem unperturbed.
1377 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1378 unsigned int flags)
1380 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1382 * CAUTION! In this case, mmap_sem is not released
1383 * even though return 0.
1385 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1386 return 0;
1388 up_read(&mm->mmap_sem);
1389 if (flags & FAULT_FLAG_KILLABLE)
1390 wait_on_page_locked_killable(page);
1391 else
1392 wait_on_page_locked(page);
1393 return 0;
1394 } else {
1395 if (flags & FAULT_FLAG_KILLABLE) {
1396 int ret;
1398 ret = __lock_page_killable(page);
1399 if (ret) {
1400 up_read(&mm->mmap_sem);
1401 return 0;
1403 } else
1404 __lock_page(page);
1405 return 1;
1410 * page_cache_next_miss() - Find the next gap in the page cache.
1411 * @mapping: Mapping.
1412 * @index: Index.
1413 * @max_scan: Maximum range to search.
1415 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1416 * gap with the lowest index.
1418 * This function may be called under the rcu_read_lock. However, this will
1419 * not atomically search a snapshot of the cache at a single point in time.
1420 * For example, if a gap is created at index 5, then subsequently a gap is
1421 * created at index 10, page_cache_next_miss covering both indices may
1422 * return 10 if called under the rcu_read_lock.
1424 * Return: The index of the gap if found, otherwise an index outside the
1425 * range specified (in which case 'return - index >= max_scan' will be true).
1426 * In the rare case of index wrap-around, 0 will be returned.
1428 pgoff_t page_cache_next_miss(struct address_space *mapping,
1429 pgoff_t index, unsigned long max_scan)
1431 XA_STATE(xas, &mapping->i_pages, index);
1433 while (max_scan--) {
1434 void *entry = xas_next(&xas);
1435 if (!entry || xa_is_value(entry))
1436 break;
1437 if (xas.xa_index == 0)
1438 break;
1441 return xas.xa_index;
1443 EXPORT_SYMBOL(page_cache_next_miss);
1446 * page_cache_prev_miss() - Find the previous gap in the page cache.
1447 * @mapping: Mapping.
1448 * @index: Index.
1449 * @max_scan: Maximum range to search.
1451 * Search the range [max(index - max_scan + 1, 0), index] for the
1452 * gap with the highest index.
1454 * This function may be called under the rcu_read_lock. However, this will
1455 * not atomically search a snapshot of the cache at a single point in time.
1456 * For example, if a gap is created at index 10, then subsequently a gap is
1457 * created at index 5, page_cache_prev_miss() covering both indices may
1458 * return 5 if called under the rcu_read_lock.
1460 * Return: The index of the gap if found, otherwise an index outside the
1461 * range specified (in which case 'index - return >= max_scan' will be true).
1462 * In the rare case of wrap-around, ULONG_MAX will be returned.
1464 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1465 pgoff_t index, unsigned long max_scan)
1467 XA_STATE(xas, &mapping->i_pages, index);
1469 while (max_scan--) {
1470 void *entry = xas_prev(&xas);
1471 if (!entry || xa_is_value(entry))
1472 break;
1473 if (xas.xa_index == ULONG_MAX)
1474 break;
1477 return xas.xa_index;
1479 EXPORT_SYMBOL(page_cache_prev_miss);
1482 * find_get_entry - find and get a page cache entry
1483 * @mapping: the address_space to search
1484 * @offset: the page cache index
1486 * Looks up the page cache slot at @mapping & @offset. If there is a
1487 * page cache page, it is returned with an increased refcount.
1489 * If the slot holds a shadow entry of a previously evicted page, or a
1490 * swap entry from shmem/tmpfs, it is returned.
1492 * Return: the found page or shadow entry, %NULL if nothing is found.
1494 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1496 XA_STATE(xas, &mapping->i_pages, offset);
1497 struct page *head, *page;
1499 rcu_read_lock();
1500 repeat:
1501 xas_reset(&xas);
1502 page = xas_load(&xas);
1503 if (xas_retry(&xas, page))
1504 goto repeat;
1506 * A shadow entry of a recently evicted page, or a swap entry from
1507 * shmem/tmpfs. Return it without attempting to raise page count.
1509 if (!page || xa_is_value(page))
1510 goto out;
1512 head = compound_head(page);
1513 if (!page_cache_get_speculative(head))
1514 goto repeat;
1516 /* The page was split under us? */
1517 if (compound_head(page) != head) {
1518 put_page(head);
1519 goto repeat;
1523 * Has the page moved?
1524 * This is part of the lockless pagecache protocol. See
1525 * include/linux/pagemap.h for details.
1527 if (unlikely(page != xas_reload(&xas))) {
1528 put_page(head);
1529 goto repeat;
1531 out:
1532 rcu_read_unlock();
1534 return page;
1536 EXPORT_SYMBOL(find_get_entry);
1539 * find_lock_entry - locate, pin and lock a page cache entry
1540 * @mapping: the address_space to search
1541 * @offset: the page cache index
1543 * Looks up the page cache slot at @mapping & @offset. If there is a
1544 * page cache page, it is returned locked and with an increased
1545 * refcount.
1547 * If the slot holds a shadow entry of a previously evicted page, or a
1548 * swap entry from shmem/tmpfs, it is returned.
1550 * find_lock_entry() may sleep.
1552 * Return: the found page or shadow entry, %NULL if nothing is found.
1554 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1556 struct page *page;
1558 repeat:
1559 page = find_get_entry(mapping, offset);
1560 if (page && !xa_is_value(page)) {
1561 lock_page(page);
1562 /* Has the page been truncated? */
1563 if (unlikely(page_mapping(page) != mapping)) {
1564 unlock_page(page);
1565 put_page(page);
1566 goto repeat;
1568 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1570 return page;
1572 EXPORT_SYMBOL(find_lock_entry);
1575 * pagecache_get_page - find and get a page reference
1576 * @mapping: the address_space to search
1577 * @offset: the page index
1578 * @fgp_flags: PCG flags
1579 * @gfp_mask: gfp mask to use for the page cache data page allocation
1581 * Looks up the page cache slot at @mapping & @offset.
1583 * PCG flags modify how the page is returned.
1585 * @fgp_flags can be:
1587 * - FGP_ACCESSED: the page will be marked accessed
1588 * - FGP_LOCK: Page is return locked
1589 * - FGP_CREAT: If page is not present then a new page is allocated using
1590 * @gfp_mask and added to the page cache and the VM's LRU
1591 * list. The page is returned locked and with an increased
1592 * refcount.
1593 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1594 * its own locking dance if the page is already in cache, or unlock the page
1595 * before returning if we had to add the page to pagecache.
1597 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1598 * if the GFP flags specified for FGP_CREAT are atomic.
1600 * If there is a page cache page, it is returned with an increased refcount.
1602 * Return: the found page or %NULL otherwise.
1604 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1605 int fgp_flags, gfp_t gfp_mask)
1607 struct page *page;
1609 repeat:
1610 page = find_get_entry(mapping, offset);
1611 if (xa_is_value(page))
1612 page = NULL;
1613 if (!page)
1614 goto no_page;
1616 if (fgp_flags & FGP_LOCK) {
1617 if (fgp_flags & FGP_NOWAIT) {
1618 if (!trylock_page(page)) {
1619 put_page(page);
1620 return NULL;
1622 } else {
1623 lock_page(page);
1626 /* Has the page been truncated? */
1627 if (unlikely(page->mapping != mapping)) {
1628 unlock_page(page);
1629 put_page(page);
1630 goto repeat;
1632 VM_BUG_ON_PAGE(page->index != offset, page);
1635 if (fgp_flags & FGP_ACCESSED)
1636 mark_page_accessed(page);
1638 no_page:
1639 if (!page && (fgp_flags & FGP_CREAT)) {
1640 int err;
1641 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1642 gfp_mask |= __GFP_WRITE;
1643 if (fgp_flags & FGP_NOFS)
1644 gfp_mask &= ~__GFP_FS;
1646 page = __page_cache_alloc(gfp_mask);
1647 if (!page)
1648 return NULL;
1650 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1651 fgp_flags |= FGP_LOCK;
1653 /* Init accessed so avoid atomic mark_page_accessed later */
1654 if (fgp_flags & FGP_ACCESSED)
1655 __SetPageReferenced(page);
1657 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1658 if (unlikely(err)) {
1659 put_page(page);
1660 page = NULL;
1661 if (err == -EEXIST)
1662 goto repeat;
1666 * add_to_page_cache_lru locks the page, and for mmap we expect
1667 * an unlocked page.
1669 if (page && (fgp_flags & FGP_FOR_MMAP))
1670 unlock_page(page);
1673 return page;
1675 EXPORT_SYMBOL(pagecache_get_page);
1678 * find_get_entries - gang pagecache lookup
1679 * @mapping: The address_space to search
1680 * @start: The starting page cache index
1681 * @nr_entries: The maximum number of entries
1682 * @entries: Where the resulting entries are placed
1683 * @indices: The cache indices corresponding to the entries in @entries
1685 * find_get_entries() will search for and return a group of up to
1686 * @nr_entries entries in the mapping. The entries are placed at
1687 * @entries. find_get_entries() takes a reference against any actual
1688 * pages it returns.
1690 * The search returns a group of mapping-contiguous page cache entries
1691 * with ascending indexes. There may be holes in the indices due to
1692 * not-present pages.
1694 * Any shadow entries of evicted pages, or swap entries from
1695 * shmem/tmpfs, are included in the returned array.
1697 * Return: the number of pages and shadow entries which were found.
1699 unsigned find_get_entries(struct address_space *mapping,
1700 pgoff_t start, unsigned int nr_entries,
1701 struct page **entries, pgoff_t *indices)
1703 XA_STATE(xas, &mapping->i_pages, start);
1704 struct page *page;
1705 unsigned int ret = 0;
1707 if (!nr_entries)
1708 return 0;
1710 rcu_read_lock();
1711 xas_for_each(&xas, page, ULONG_MAX) {
1712 struct page *head;
1713 if (xas_retry(&xas, page))
1714 continue;
1716 * A shadow entry of a recently evicted page, a swap
1717 * entry from shmem/tmpfs or a DAX entry. Return it
1718 * without attempting to raise page count.
1720 if (xa_is_value(page))
1721 goto export;
1723 head = compound_head(page);
1724 if (!page_cache_get_speculative(head))
1725 goto retry;
1727 /* The page was split under us? */
1728 if (compound_head(page) != head)
1729 goto put_page;
1731 /* Has the page moved? */
1732 if (unlikely(page != xas_reload(&xas)))
1733 goto put_page;
1735 export:
1736 indices[ret] = xas.xa_index;
1737 entries[ret] = page;
1738 if (++ret == nr_entries)
1739 break;
1740 continue;
1741 put_page:
1742 put_page(head);
1743 retry:
1744 xas_reset(&xas);
1746 rcu_read_unlock();
1747 return ret;
1751 * find_get_pages_range - gang pagecache lookup
1752 * @mapping: The address_space to search
1753 * @start: The starting page index
1754 * @end: The final page index (inclusive)
1755 * @nr_pages: The maximum number of pages
1756 * @pages: Where the resulting pages are placed
1758 * find_get_pages_range() will search for and return a group of up to @nr_pages
1759 * pages in the mapping starting at index @start and up to index @end
1760 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1761 * a reference against the returned pages.
1763 * The search returns a group of mapping-contiguous pages with ascending
1764 * indexes. There may be holes in the indices due to not-present pages.
1765 * We also update @start to index the next page for the traversal.
1767 * Return: the number of pages which were found. If this number is
1768 * smaller than @nr_pages, the end of specified range has been
1769 * reached.
1771 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1772 pgoff_t end, unsigned int nr_pages,
1773 struct page **pages)
1775 XA_STATE(xas, &mapping->i_pages, *start);
1776 struct page *page;
1777 unsigned ret = 0;
1779 if (unlikely(!nr_pages))
1780 return 0;
1782 rcu_read_lock();
1783 xas_for_each(&xas, page, end) {
1784 struct page *head;
1785 if (xas_retry(&xas, page))
1786 continue;
1787 /* Skip over shadow, swap and DAX entries */
1788 if (xa_is_value(page))
1789 continue;
1791 head = compound_head(page);
1792 if (!page_cache_get_speculative(head))
1793 goto retry;
1795 /* The page was split under us? */
1796 if (compound_head(page) != head)
1797 goto put_page;
1799 /* Has the page moved? */
1800 if (unlikely(page != xas_reload(&xas)))
1801 goto put_page;
1803 pages[ret] = page;
1804 if (++ret == nr_pages) {
1805 *start = xas.xa_index + 1;
1806 goto out;
1808 continue;
1809 put_page:
1810 put_page(head);
1811 retry:
1812 xas_reset(&xas);
1816 * We come here when there is no page beyond @end. We take care to not
1817 * overflow the index @start as it confuses some of the callers. This
1818 * breaks the iteration when there is a page at index -1 but that is
1819 * already broken anyway.
1821 if (end == (pgoff_t)-1)
1822 *start = (pgoff_t)-1;
1823 else
1824 *start = end + 1;
1825 out:
1826 rcu_read_unlock();
1828 return ret;
1832 * find_get_pages_contig - gang contiguous pagecache lookup
1833 * @mapping: The address_space to search
1834 * @index: The starting page index
1835 * @nr_pages: The maximum number of pages
1836 * @pages: Where the resulting pages are placed
1838 * find_get_pages_contig() works exactly like find_get_pages(), except
1839 * that the returned number of pages are guaranteed to be contiguous.
1841 * Return: the number of pages which were found.
1843 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1844 unsigned int nr_pages, struct page **pages)
1846 XA_STATE(xas, &mapping->i_pages, index);
1847 struct page *page;
1848 unsigned int ret = 0;
1850 if (unlikely(!nr_pages))
1851 return 0;
1853 rcu_read_lock();
1854 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1855 struct page *head;
1856 if (xas_retry(&xas, page))
1857 continue;
1859 * If the entry has been swapped out, we can stop looking.
1860 * No current caller is looking for DAX entries.
1862 if (xa_is_value(page))
1863 break;
1865 head = compound_head(page);
1866 if (!page_cache_get_speculative(head))
1867 goto retry;
1869 /* The page was split under us? */
1870 if (compound_head(page) != head)
1871 goto put_page;
1873 /* Has the page moved? */
1874 if (unlikely(page != xas_reload(&xas)))
1875 goto put_page;
1877 pages[ret] = page;
1878 if (++ret == nr_pages)
1879 break;
1880 continue;
1881 put_page:
1882 put_page(head);
1883 retry:
1884 xas_reset(&xas);
1886 rcu_read_unlock();
1887 return ret;
1889 EXPORT_SYMBOL(find_get_pages_contig);
1892 * find_get_pages_range_tag - find and return pages in given range matching @tag
1893 * @mapping: the address_space to search
1894 * @index: the starting page index
1895 * @end: The final page index (inclusive)
1896 * @tag: the tag index
1897 * @nr_pages: the maximum number of pages
1898 * @pages: where the resulting pages are placed
1900 * Like find_get_pages, except we only return pages which are tagged with
1901 * @tag. We update @index to index the next page for the traversal.
1903 * Return: the number of pages which were found.
1905 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1906 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1907 struct page **pages)
1909 XA_STATE(xas, &mapping->i_pages, *index);
1910 struct page *page;
1911 unsigned ret = 0;
1913 if (unlikely(!nr_pages))
1914 return 0;
1916 rcu_read_lock();
1917 xas_for_each_marked(&xas, page, end, tag) {
1918 struct page *head;
1919 if (xas_retry(&xas, page))
1920 continue;
1922 * Shadow entries should never be tagged, but this iteration
1923 * is lockless so there is a window for page reclaim to evict
1924 * a page we saw tagged. Skip over it.
1926 if (xa_is_value(page))
1927 continue;
1929 head = compound_head(page);
1930 if (!page_cache_get_speculative(head))
1931 goto retry;
1933 /* The page was split under us? */
1934 if (compound_head(page) != head)
1935 goto put_page;
1937 /* Has the page moved? */
1938 if (unlikely(page != xas_reload(&xas)))
1939 goto put_page;
1941 pages[ret] = page;
1942 if (++ret == nr_pages) {
1943 *index = xas.xa_index + 1;
1944 goto out;
1946 continue;
1947 put_page:
1948 put_page(head);
1949 retry:
1950 xas_reset(&xas);
1954 * We come here when we got to @end. We take care to not overflow the
1955 * index @index as it confuses some of the callers. This breaks the
1956 * iteration when there is a page at index -1 but that is already
1957 * broken anyway.
1959 if (end == (pgoff_t)-1)
1960 *index = (pgoff_t)-1;
1961 else
1962 *index = end + 1;
1963 out:
1964 rcu_read_unlock();
1966 return ret;
1968 EXPORT_SYMBOL(find_get_pages_range_tag);
1971 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1972 * a _large_ part of the i/o request. Imagine the worst scenario:
1974 * ---R__________________________________________B__________
1975 * ^ reading here ^ bad block(assume 4k)
1977 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1978 * => failing the whole request => read(R) => read(R+1) =>
1979 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1980 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1981 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1983 * It is going insane. Fix it by quickly scaling down the readahead size.
1985 static void shrink_readahead_size_eio(struct file *filp,
1986 struct file_ra_state *ra)
1988 ra->ra_pages /= 4;
1992 * generic_file_buffered_read - generic file read routine
1993 * @iocb: the iocb to read
1994 * @iter: data destination
1995 * @written: already copied
1997 * This is a generic file read routine, and uses the
1998 * mapping->a_ops->readpage() function for the actual low-level stuff.
2000 * This is really ugly. But the goto's actually try to clarify some
2001 * of the logic when it comes to error handling etc.
2003 * Return:
2004 * * total number of bytes copied, including those the were already @written
2005 * * negative error code if nothing was copied
2007 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2008 struct iov_iter *iter, ssize_t written)
2010 struct file *filp = iocb->ki_filp;
2011 struct address_space *mapping = filp->f_mapping;
2012 struct inode *inode = mapping->host;
2013 struct file_ra_state *ra = &filp->f_ra;
2014 loff_t *ppos = &iocb->ki_pos;
2015 pgoff_t index;
2016 pgoff_t last_index;
2017 pgoff_t prev_index;
2018 unsigned long offset; /* offset into pagecache page */
2019 unsigned int prev_offset;
2020 int error = 0;
2022 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2023 return 0;
2024 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2026 index = *ppos >> PAGE_SHIFT;
2027 prev_index = ra->prev_pos >> PAGE_SHIFT;
2028 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2029 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2030 offset = *ppos & ~PAGE_MASK;
2032 for (;;) {
2033 struct page *page;
2034 pgoff_t end_index;
2035 loff_t isize;
2036 unsigned long nr, ret;
2038 cond_resched();
2039 find_page:
2040 if (fatal_signal_pending(current)) {
2041 error = -EINTR;
2042 goto out;
2045 page = find_get_page(mapping, index);
2046 if (!page) {
2047 if (iocb->ki_flags & IOCB_NOWAIT)
2048 goto would_block;
2049 page_cache_sync_readahead(mapping,
2050 ra, filp,
2051 index, last_index - index);
2052 page = find_get_page(mapping, index);
2053 if (unlikely(page == NULL))
2054 goto no_cached_page;
2056 if (PageReadahead(page)) {
2057 page_cache_async_readahead(mapping,
2058 ra, filp, page,
2059 index, last_index - index);
2061 if (!PageUptodate(page)) {
2062 if (iocb->ki_flags & IOCB_NOWAIT) {
2063 put_page(page);
2064 goto would_block;
2068 * See comment in do_read_cache_page on why
2069 * wait_on_page_locked is used to avoid unnecessarily
2070 * serialisations and why it's safe.
2072 error = wait_on_page_locked_killable(page);
2073 if (unlikely(error))
2074 goto readpage_error;
2075 if (PageUptodate(page))
2076 goto page_ok;
2078 if (inode->i_blkbits == PAGE_SHIFT ||
2079 !mapping->a_ops->is_partially_uptodate)
2080 goto page_not_up_to_date;
2081 /* pipes can't handle partially uptodate pages */
2082 if (unlikely(iov_iter_is_pipe(iter)))
2083 goto page_not_up_to_date;
2084 if (!trylock_page(page))
2085 goto page_not_up_to_date;
2086 /* Did it get truncated before we got the lock? */
2087 if (!page->mapping)
2088 goto page_not_up_to_date_locked;
2089 if (!mapping->a_ops->is_partially_uptodate(page,
2090 offset, iter->count))
2091 goto page_not_up_to_date_locked;
2092 unlock_page(page);
2094 page_ok:
2096 * i_size must be checked after we know the page is Uptodate.
2098 * Checking i_size after the check allows us to calculate
2099 * the correct value for "nr", which means the zero-filled
2100 * part of the page is not copied back to userspace (unless
2101 * another truncate extends the file - this is desired though).
2104 isize = i_size_read(inode);
2105 end_index = (isize - 1) >> PAGE_SHIFT;
2106 if (unlikely(!isize || index > end_index)) {
2107 put_page(page);
2108 goto out;
2111 /* nr is the maximum number of bytes to copy from this page */
2112 nr = PAGE_SIZE;
2113 if (index == end_index) {
2114 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2115 if (nr <= offset) {
2116 put_page(page);
2117 goto out;
2120 nr = nr - offset;
2122 /* If users can be writing to this page using arbitrary
2123 * virtual addresses, take care about potential aliasing
2124 * before reading the page on the kernel side.
2126 if (mapping_writably_mapped(mapping))
2127 flush_dcache_page(page);
2130 * When a sequential read accesses a page several times,
2131 * only mark it as accessed the first time.
2133 if (prev_index != index || offset != prev_offset)
2134 mark_page_accessed(page);
2135 prev_index = index;
2138 * Ok, we have the page, and it's up-to-date, so
2139 * now we can copy it to user space...
2142 ret = copy_page_to_iter(page, offset, nr, iter);
2143 offset += ret;
2144 index += offset >> PAGE_SHIFT;
2145 offset &= ~PAGE_MASK;
2146 prev_offset = offset;
2148 put_page(page);
2149 written += ret;
2150 if (!iov_iter_count(iter))
2151 goto out;
2152 if (ret < nr) {
2153 error = -EFAULT;
2154 goto out;
2156 continue;
2158 page_not_up_to_date:
2159 /* Get exclusive access to the page ... */
2160 error = lock_page_killable(page);
2161 if (unlikely(error))
2162 goto readpage_error;
2164 page_not_up_to_date_locked:
2165 /* Did it get truncated before we got the lock? */
2166 if (!page->mapping) {
2167 unlock_page(page);
2168 put_page(page);
2169 continue;
2172 /* Did somebody else fill it already? */
2173 if (PageUptodate(page)) {
2174 unlock_page(page);
2175 goto page_ok;
2178 readpage:
2180 * A previous I/O error may have been due to temporary
2181 * failures, eg. multipath errors.
2182 * PG_error will be set again if readpage fails.
2184 ClearPageError(page);
2185 /* Start the actual read. The read will unlock the page. */
2186 error = mapping->a_ops->readpage(filp, page);
2188 if (unlikely(error)) {
2189 if (error == AOP_TRUNCATED_PAGE) {
2190 put_page(page);
2191 error = 0;
2192 goto find_page;
2194 goto readpage_error;
2197 if (!PageUptodate(page)) {
2198 error = lock_page_killable(page);
2199 if (unlikely(error))
2200 goto readpage_error;
2201 if (!PageUptodate(page)) {
2202 if (page->mapping == NULL) {
2204 * invalidate_mapping_pages got it
2206 unlock_page(page);
2207 put_page(page);
2208 goto find_page;
2210 unlock_page(page);
2211 shrink_readahead_size_eio(filp, ra);
2212 error = -EIO;
2213 goto readpage_error;
2215 unlock_page(page);
2218 goto page_ok;
2220 readpage_error:
2221 /* UHHUH! A synchronous read error occurred. Report it */
2222 put_page(page);
2223 goto out;
2225 no_cached_page:
2227 * Ok, it wasn't cached, so we need to create a new
2228 * page..
2230 page = page_cache_alloc(mapping);
2231 if (!page) {
2232 error = -ENOMEM;
2233 goto out;
2235 error = add_to_page_cache_lru(page, mapping, index,
2236 mapping_gfp_constraint(mapping, GFP_KERNEL));
2237 if (error) {
2238 put_page(page);
2239 if (error == -EEXIST) {
2240 error = 0;
2241 goto find_page;
2243 goto out;
2245 goto readpage;
2248 would_block:
2249 error = -EAGAIN;
2250 out:
2251 ra->prev_pos = prev_index;
2252 ra->prev_pos <<= PAGE_SHIFT;
2253 ra->prev_pos |= prev_offset;
2255 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2256 file_accessed(filp);
2257 return written ? written : error;
2261 * generic_file_read_iter - generic filesystem read routine
2262 * @iocb: kernel I/O control block
2263 * @iter: destination for the data read
2265 * This is the "read_iter()" routine for all filesystems
2266 * that can use the page cache directly.
2267 * Return:
2268 * * number of bytes copied, even for partial reads
2269 * * negative error code if nothing was read
2271 ssize_t
2272 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2274 size_t count = iov_iter_count(iter);
2275 ssize_t retval = 0;
2277 if (!count)
2278 goto out; /* skip atime */
2280 if (iocb->ki_flags & IOCB_DIRECT) {
2281 struct file *file = iocb->ki_filp;
2282 struct address_space *mapping = file->f_mapping;
2283 struct inode *inode = mapping->host;
2284 loff_t size;
2286 size = i_size_read(inode);
2287 if (iocb->ki_flags & IOCB_NOWAIT) {
2288 if (filemap_range_has_page(mapping, iocb->ki_pos,
2289 iocb->ki_pos + count - 1))
2290 return -EAGAIN;
2291 } else {
2292 retval = filemap_write_and_wait_range(mapping,
2293 iocb->ki_pos,
2294 iocb->ki_pos + count - 1);
2295 if (retval < 0)
2296 goto out;
2299 file_accessed(file);
2301 retval = mapping->a_ops->direct_IO(iocb, iter);
2302 if (retval >= 0) {
2303 iocb->ki_pos += retval;
2304 count -= retval;
2306 iov_iter_revert(iter, count - iov_iter_count(iter));
2309 * Btrfs can have a short DIO read if we encounter
2310 * compressed extents, so if there was an error, or if
2311 * we've already read everything we wanted to, or if
2312 * there was a short read because we hit EOF, go ahead
2313 * and return. Otherwise fallthrough to buffered io for
2314 * the rest of the read. Buffered reads will not work for
2315 * DAX files, so don't bother trying.
2317 if (retval < 0 || !count || iocb->ki_pos >= size ||
2318 IS_DAX(inode))
2319 goto out;
2322 retval = generic_file_buffered_read(iocb, iter, retval);
2323 out:
2324 return retval;
2326 EXPORT_SYMBOL(generic_file_read_iter);
2328 #ifdef CONFIG_MMU
2329 #define MMAP_LOTSAMISS (100)
2330 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2331 struct file *fpin)
2333 int flags = vmf->flags;
2335 if (fpin)
2336 return fpin;
2339 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2340 * anything, so we only pin the file and drop the mmap_sem if only
2341 * FAULT_FLAG_ALLOW_RETRY is set.
2343 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2344 FAULT_FLAG_ALLOW_RETRY) {
2345 fpin = get_file(vmf->vma->vm_file);
2346 up_read(&vmf->vma->vm_mm->mmap_sem);
2348 return fpin;
2352 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2353 * @vmf - the vm_fault for this fault.
2354 * @page - the page to lock.
2355 * @fpin - the pointer to the file we may pin (or is already pinned).
2357 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2358 * It differs in that it actually returns the page locked if it returns 1 and 0
2359 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2360 * will point to the pinned file and needs to be fput()'ed at a later point.
2362 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2363 struct file **fpin)
2365 if (trylock_page(page))
2366 return 1;
2369 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2370 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2371 * is supposed to work. We have way too many special cases..
2373 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2374 return 0;
2376 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2377 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2378 if (__lock_page_killable(page)) {
2380 * We didn't have the right flags to drop the mmap_sem,
2381 * but all fault_handlers only check for fatal signals
2382 * if we return VM_FAULT_RETRY, so we need to drop the
2383 * mmap_sem here and return 0 if we don't have a fpin.
2385 if (*fpin == NULL)
2386 up_read(&vmf->vma->vm_mm->mmap_sem);
2387 return 0;
2389 } else
2390 __lock_page(page);
2391 return 1;
2396 * Synchronous readahead happens when we don't even find a page in the page
2397 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2398 * to drop the mmap sem we return the file that was pinned in order for us to do
2399 * that. If we didn't pin a file then we return NULL. The file that is
2400 * returned needs to be fput()'ed when we're done with it.
2402 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2404 struct file *file = vmf->vma->vm_file;
2405 struct file_ra_state *ra = &file->f_ra;
2406 struct address_space *mapping = file->f_mapping;
2407 struct file *fpin = NULL;
2408 pgoff_t offset = vmf->pgoff;
2410 /* If we don't want any read-ahead, don't bother */
2411 if (vmf->vma->vm_flags & VM_RAND_READ)
2412 return fpin;
2413 if (!ra->ra_pages)
2414 return fpin;
2416 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2417 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2418 page_cache_sync_readahead(mapping, ra, file, offset,
2419 ra->ra_pages);
2420 return fpin;
2423 /* Avoid banging the cache line if not needed */
2424 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2425 ra->mmap_miss++;
2428 * Do we miss much more than hit in this file? If so,
2429 * stop bothering with read-ahead. It will only hurt.
2431 if (ra->mmap_miss > MMAP_LOTSAMISS)
2432 return fpin;
2435 * mmap read-around
2437 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2438 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2439 ra->size = ra->ra_pages;
2440 ra->async_size = ra->ra_pages / 4;
2441 ra_submit(ra, mapping, file);
2442 return fpin;
2446 * Asynchronous readahead happens when we find the page and PG_readahead,
2447 * so we want to possibly extend the readahead further. We return the file that
2448 * was pinned if we have to drop the mmap_sem in order to do IO.
2450 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2451 struct page *page)
2453 struct file *file = vmf->vma->vm_file;
2454 struct file_ra_state *ra = &file->f_ra;
2455 struct address_space *mapping = file->f_mapping;
2456 struct file *fpin = NULL;
2457 pgoff_t offset = vmf->pgoff;
2459 /* If we don't want any read-ahead, don't bother */
2460 if (vmf->vma->vm_flags & VM_RAND_READ)
2461 return fpin;
2462 if (ra->mmap_miss > 0)
2463 ra->mmap_miss--;
2464 if (PageReadahead(page)) {
2465 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2466 page_cache_async_readahead(mapping, ra, file,
2467 page, offset, ra->ra_pages);
2469 return fpin;
2473 * filemap_fault - read in file data for page fault handling
2474 * @vmf: struct vm_fault containing details of the fault
2476 * filemap_fault() is invoked via the vma operations vector for a
2477 * mapped memory region to read in file data during a page fault.
2479 * The goto's are kind of ugly, but this streamlines the normal case of having
2480 * it in the page cache, and handles the special cases reasonably without
2481 * having a lot of duplicated code.
2483 * vma->vm_mm->mmap_sem must be held on entry.
2485 * If our return value has VM_FAULT_RETRY set, it's because
2486 * lock_page_or_retry() returned 0.
2487 * The mmap_sem has usually been released in this case.
2488 * See __lock_page_or_retry() for the exception.
2490 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2491 * has not been released.
2493 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2495 * Return: bitwise-OR of %VM_FAULT_ codes.
2497 vm_fault_t filemap_fault(struct vm_fault *vmf)
2499 int error;
2500 struct file *file = vmf->vma->vm_file;
2501 struct file *fpin = NULL;
2502 struct address_space *mapping = file->f_mapping;
2503 struct file_ra_state *ra = &file->f_ra;
2504 struct inode *inode = mapping->host;
2505 pgoff_t offset = vmf->pgoff;
2506 pgoff_t max_off;
2507 struct page *page;
2508 vm_fault_t ret = 0;
2510 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2511 if (unlikely(offset >= max_off))
2512 return VM_FAULT_SIGBUS;
2515 * Do we have something in the page cache already?
2517 page = find_get_page(mapping, offset);
2518 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2520 * We found the page, so try async readahead before
2521 * waiting for the lock.
2523 fpin = do_async_mmap_readahead(vmf, page);
2524 } else if (!page) {
2525 /* No page in the page cache at all */
2526 count_vm_event(PGMAJFAULT);
2527 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2528 ret = VM_FAULT_MAJOR;
2529 fpin = do_sync_mmap_readahead(vmf);
2530 retry_find:
2531 page = pagecache_get_page(mapping, offset,
2532 FGP_CREAT|FGP_FOR_MMAP,
2533 vmf->gfp_mask);
2534 if (!page) {
2535 if (fpin)
2536 goto out_retry;
2537 return vmf_error(-ENOMEM);
2541 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2542 goto out_retry;
2544 /* Did it get truncated? */
2545 if (unlikely(page->mapping != mapping)) {
2546 unlock_page(page);
2547 put_page(page);
2548 goto retry_find;
2550 VM_BUG_ON_PAGE(page->index != offset, page);
2553 * We have a locked page in the page cache, now we need to check
2554 * that it's up-to-date. If not, it is going to be due to an error.
2556 if (unlikely(!PageUptodate(page)))
2557 goto page_not_uptodate;
2560 * We've made it this far and we had to drop our mmap_sem, now is the
2561 * time to return to the upper layer and have it re-find the vma and
2562 * redo the fault.
2564 if (fpin) {
2565 unlock_page(page);
2566 goto out_retry;
2570 * Found the page and have a reference on it.
2571 * We must recheck i_size under page lock.
2573 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2574 if (unlikely(offset >= max_off)) {
2575 unlock_page(page);
2576 put_page(page);
2577 return VM_FAULT_SIGBUS;
2580 vmf->page = page;
2581 return ret | VM_FAULT_LOCKED;
2583 page_not_uptodate:
2585 * Umm, take care of errors if the page isn't up-to-date.
2586 * Try to re-read it _once_. We do this synchronously,
2587 * because there really aren't any performance issues here
2588 * and we need to check for errors.
2590 ClearPageError(page);
2591 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2592 error = mapping->a_ops->readpage(file, page);
2593 if (!error) {
2594 wait_on_page_locked(page);
2595 if (!PageUptodate(page))
2596 error = -EIO;
2598 if (fpin)
2599 goto out_retry;
2600 put_page(page);
2602 if (!error || error == AOP_TRUNCATED_PAGE)
2603 goto retry_find;
2605 /* Things didn't work out. Return zero to tell the mm layer so. */
2606 shrink_readahead_size_eio(file, ra);
2607 return VM_FAULT_SIGBUS;
2609 out_retry:
2611 * We dropped the mmap_sem, we need to return to the fault handler to
2612 * re-find the vma and come back and find our hopefully still populated
2613 * page.
2615 if (page)
2616 put_page(page);
2617 if (fpin)
2618 fput(fpin);
2619 return ret | VM_FAULT_RETRY;
2621 EXPORT_SYMBOL(filemap_fault);
2623 void filemap_map_pages(struct vm_fault *vmf,
2624 pgoff_t start_pgoff, pgoff_t end_pgoff)
2626 struct file *file = vmf->vma->vm_file;
2627 struct address_space *mapping = file->f_mapping;
2628 pgoff_t last_pgoff = start_pgoff;
2629 unsigned long max_idx;
2630 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2631 struct page *head, *page;
2633 rcu_read_lock();
2634 xas_for_each(&xas, page, end_pgoff) {
2635 if (xas_retry(&xas, page))
2636 continue;
2637 if (xa_is_value(page))
2638 goto next;
2640 head = compound_head(page);
2643 * Check for a locked page first, as a speculative
2644 * reference may adversely influence page migration.
2646 if (PageLocked(head))
2647 goto next;
2648 if (!page_cache_get_speculative(head))
2649 goto next;
2651 /* The page was split under us? */
2652 if (compound_head(page) != head)
2653 goto skip;
2655 /* Has the page moved? */
2656 if (unlikely(page != xas_reload(&xas)))
2657 goto skip;
2659 if (!PageUptodate(page) ||
2660 PageReadahead(page) ||
2661 PageHWPoison(page))
2662 goto skip;
2663 if (!trylock_page(page))
2664 goto skip;
2666 if (page->mapping != mapping || !PageUptodate(page))
2667 goto unlock;
2669 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2670 if (page->index >= max_idx)
2671 goto unlock;
2673 if (file->f_ra.mmap_miss > 0)
2674 file->f_ra.mmap_miss--;
2676 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2677 if (vmf->pte)
2678 vmf->pte += xas.xa_index - last_pgoff;
2679 last_pgoff = xas.xa_index;
2680 if (alloc_set_pte(vmf, NULL, page))
2681 goto unlock;
2682 unlock_page(page);
2683 goto next;
2684 unlock:
2685 unlock_page(page);
2686 skip:
2687 put_page(page);
2688 next:
2689 /* Huge page is mapped? No need to proceed. */
2690 if (pmd_trans_huge(*vmf->pmd))
2691 break;
2693 rcu_read_unlock();
2695 EXPORT_SYMBOL(filemap_map_pages);
2697 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2699 struct page *page = vmf->page;
2700 struct inode *inode = file_inode(vmf->vma->vm_file);
2701 vm_fault_t ret = VM_FAULT_LOCKED;
2703 sb_start_pagefault(inode->i_sb);
2704 file_update_time(vmf->vma->vm_file);
2705 lock_page(page);
2706 if (page->mapping != inode->i_mapping) {
2707 unlock_page(page);
2708 ret = VM_FAULT_NOPAGE;
2709 goto out;
2712 * We mark the page dirty already here so that when freeze is in
2713 * progress, we are guaranteed that writeback during freezing will
2714 * see the dirty page and writeprotect it again.
2716 set_page_dirty(page);
2717 wait_for_stable_page(page);
2718 out:
2719 sb_end_pagefault(inode->i_sb);
2720 return ret;
2723 const struct vm_operations_struct generic_file_vm_ops = {
2724 .fault = filemap_fault,
2725 .map_pages = filemap_map_pages,
2726 .page_mkwrite = filemap_page_mkwrite,
2729 /* This is used for a general mmap of a disk file */
2731 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2733 struct address_space *mapping = file->f_mapping;
2735 if (!mapping->a_ops->readpage)
2736 return -ENOEXEC;
2737 file_accessed(file);
2738 vma->vm_ops = &generic_file_vm_ops;
2739 return 0;
2743 * This is for filesystems which do not implement ->writepage.
2745 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2747 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2748 return -EINVAL;
2749 return generic_file_mmap(file, vma);
2751 #else
2752 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2754 return VM_FAULT_SIGBUS;
2756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2758 return -ENOSYS;
2760 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2762 return -ENOSYS;
2764 #endif /* CONFIG_MMU */
2766 EXPORT_SYMBOL(filemap_page_mkwrite);
2767 EXPORT_SYMBOL(generic_file_mmap);
2768 EXPORT_SYMBOL(generic_file_readonly_mmap);
2770 static struct page *wait_on_page_read(struct page *page)
2772 if (!IS_ERR(page)) {
2773 wait_on_page_locked(page);
2774 if (!PageUptodate(page)) {
2775 put_page(page);
2776 page = ERR_PTR(-EIO);
2779 return page;
2782 static struct page *do_read_cache_page(struct address_space *mapping,
2783 pgoff_t index,
2784 int (*filler)(void *, struct page *),
2785 void *data,
2786 gfp_t gfp)
2788 struct page *page;
2789 int err;
2790 repeat:
2791 page = find_get_page(mapping, index);
2792 if (!page) {
2793 page = __page_cache_alloc(gfp);
2794 if (!page)
2795 return ERR_PTR(-ENOMEM);
2796 err = add_to_page_cache_lru(page, mapping, index, gfp);
2797 if (unlikely(err)) {
2798 put_page(page);
2799 if (err == -EEXIST)
2800 goto repeat;
2801 /* Presumably ENOMEM for xarray node */
2802 return ERR_PTR(err);
2805 filler:
2806 err = filler(data, page);
2807 if (err < 0) {
2808 put_page(page);
2809 return ERR_PTR(err);
2812 page = wait_on_page_read(page);
2813 if (IS_ERR(page))
2814 return page;
2815 goto out;
2817 if (PageUptodate(page))
2818 goto out;
2821 * Page is not up to date and may be locked due one of the following
2822 * case a: Page is being filled and the page lock is held
2823 * case b: Read/write error clearing the page uptodate status
2824 * case c: Truncation in progress (page locked)
2825 * case d: Reclaim in progress
2827 * Case a, the page will be up to date when the page is unlocked.
2828 * There is no need to serialise on the page lock here as the page
2829 * is pinned so the lock gives no additional protection. Even if the
2830 * the page is truncated, the data is still valid if PageUptodate as
2831 * it's a race vs truncate race.
2832 * Case b, the page will not be up to date
2833 * Case c, the page may be truncated but in itself, the data may still
2834 * be valid after IO completes as it's a read vs truncate race. The
2835 * operation must restart if the page is not uptodate on unlock but
2836 * otherwise serialising on page lock to stabilise the mapping gives
2837 * no additional guarantees to the caller as the page lock is
2838 * released before return.
2839 * Case d, similar to truncation. If reclaim holds the page lock, it
2840 * will be a race with remove_mapping that determines if the mapping
2841 * is valid on unlock but otherwise the data is valid and there is
2842 * no need to serialise with page lock.
2844 * As the page lock gives no additional guarantee, we optimistically
2845 * wait on the page to be unlocked and check if it's up to date and
2846 * use the page if it is. Otherwise, the page lock is required to
2847 * distinguish between the different cases. The motivation is that we
2848 * avoid spurious serialisations and wakeups when multiple processes
2849 * wait on the same page for IO to complete.
2851 wait_on_page_locked(page);
2852 if (PageUptodate(page))
2853 goto out;
2855 /* Distinguish between all the cases under the safety of the lock */
2856 lock_page(page);
2858 /* Case c or d, restart the operation */
2859 if (!page->mapping) {
2860 unlock_page(page);
2861 put_page(page);
2862 goto repeat;
2865 /* Someone else locked and filled the page in a very small window */
2866 if (PageUptodate(page)) {
2867 unlock_page(page);
2868 goto out;
2870 goto filler;
2872 out:
2873 mark_page_accessed(page);
2874 return page;
2878 * read_cache_page - read into page cache, fill it if needed
2879 * @mapping: the page's address_space
2880 * @index: the page index
2881 * @filler: function to perform the read
2882 * @data: first arg to filler(data, page) function, often left as NULL
2884 * Read into the page cache. If a page already exists, and PageUptodate() is
2885 * not set, try to fill the page and wait for it to become unlocked.
2887 * If the page does not get brought uptodate, return -EIO.
2889 * Return: up to date page on success, ERR_PTR() on failure.
2891 struct page *read_cache_page(struct address_space *mapping,
2892 pgoff_t index,
2893 int (*filler)(void *, struct page *),
2894 void *data)
2896 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2898 EXPORT_SYMBOL(read_cache_page);
2901 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2902 * @mapping: the page's address_space
2903 * @index: the page index
2904 * @gfp: the page allocator flags to use if allocating
2906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2907 * any new page allocations done using the specified allocation flags.
2909 * If the page does not get brought uptodate, return -EIO.
2911 * Return: up to date page on success, ERR_PTR() on failure.
2913 struct page *read_cache_page_gfp(struct address_space *mapping,
2914 pgoff_t index,
2915 gfp_t gfp)
2917 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2919 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2921 EXPORT_SYMBOL(read_cache_page_gfp);
2924 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2925 * LFS limits. If pos is under the limit it becomes a short access. If it
2926 * exceeds the limit we return -EFBIG.
2928 static int generic_access_check_limits(struct file *file, loff_t pos,
2929 loff_t *count)
2931 struct inode *inode = file->f_mapping->host;
2932 loff_t max_size = inode->i_sb->s_maxbytes;
2934 if (!(file->f_flags & O_LARGEFILE))
2935 max_size = MAX_NON_LFS;
2937 if (unlikely(pos >= max_size))
2938 return -EFBIG;
2939 *count = min(*count, max_size - pos);
2940 return 0;
2943 static int generic_write_check_limits(struct file *file, loff_t pos,
2944 loff_t *count)
2946 loff_t limit = rlimit(RLIMIT_FSIZE);
2948 if (limit != RLIM_INFINITY) {
2949 if (pos >= limit) {
2950 send_sig(SIGXFSZ, current, 0);
2951 return -EFBIG;
2953 *count = min(*count, limit - pos);
2956 return generic_access_check_limits(file, pos, count);
2960 * Performs necessary checks before doing a write
2962 * Can adjust writing position or amount of bytes to write.
2963 * Returns appropriate error code that caller should return or
2964 * zero in case that write should be allowed.
2966 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2968 struct file *file = iocb->ki_filp;
2969 struct inode *inode = file->f_mapping->host;
2970 loff_t count;
2971 int ret;
2973 if (!iov_iter_count(from))
2974 return 0;
2976 /* FIXME: this is for backwards compatibility with 2.4 */
2977 if (iocb->ki_flags & IOCB_APPEND)
2978 iocb->ki_pos = i_size_read(inode);
2980 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2981 return -EINVAL;
2983 count = iov_iter_count(from);
2984 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2985 if (ret)
2986 return ret;
2988 iov_iter_truncate(from, count);
2989 return iov_iter_count(from);
2991 EXPORT_SYMBOL(generic_write_checks);
2994 * Performs necessary checks before doing a clone.
2996 * Can adjust amount of bytes to clone.
2997 * Returns appropriate error code that caller should return or
2998 * zero in case the clone should be allowed.
3000 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3001 struct file *file_out, loff_t pos_out,
3002 loff_t *req_count, unsigned int remap_flags)
3004 struct inode *inode_in = file_in->f_mapping->host;
3005 struct inode *inode_out = file_out->f_mapping->host;
3006 uint64_t count = *req_count;
3007 uint64_t bcount;
3008 loff_t size_in, size_out;
3009 loff_t bs = inode_out->i_sb->s_blocksize;
3010 int ret;
3012 /* The start of both ranges must be aligned to an fs block. */
3013 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3014 return -EINVAL;
3016 /* Ensure offsets don't wrap. */
3017 if (pos_in + count < pos_in || pos_out + count < pos_out)
3018 return -EINVAL;
3020 size_in = i_size_read(inode_in);
3021 size_out = i_size_read(inode_out);
3023 /* Dedupe requires both ranges to be within EOF. */
3024 if ((remap_flags & REMAP_FILE_DEDUP) &&
3025 (pos_in >= size_in || pos_in + count > size_in ||
3026 pos_out >= size_out || pos_out + count > size_out))
3027 return -EINVAL;
3029 /* Ensure the infile range is within the infile. */
3030 if (pos_in >= size_in)
3031 return -EINVAL;
3032 count = min(count, size_in - (uint64_t)pos_in);
3034 ret = generic_access_check_limits(file_in, pos_in, &count);
3035 if (ret)
3036 return ret;
3038 ret = generic_write_check_limits(file_out, pos_out, &count);
3039 if (ret)
3040 return ret;
3043 * If the user wanted us to link to the infile's EOF, round up to the
3044 * next block boundary for this check.
3046 * Otherwise, make sure the count is also block-aligned, having
3047 * already confirmed the starting offsets' block alignment.
3049 if (pos_in + count == size_in) {
3050 bcount = ALIGN(size_in, bs) - pos_in;
3051 } else {
3052 if (!IS_ALIGNED(count, bs))
3053 count = ALIGN_DOWN(count, bs);
3054 bcount = count;
3057 /* Don't allow overlapped cloning within the same file. */
3058 if (inode_in == inode_out &&
3059 pos_out + bcount > pos_in &&
3060 pos_out < pos_in + bcount)
3061 return -EINVAL;
3064 * We shortened the request but the caller can't deal with that, so
3065 * bounce the request back to userspace.
3067 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3068 return -EINVAL;
3070 *req_count = count;
3071 return 0;
3074 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3075 loff_t pos, unsigned len, unsigned flags,
3076 struct page **pagep, void **fsdata)
3078 const struct address_space_operations *aops = mapping->a_ops;
3080 return aops->write_begin(file, mapping, pos, len, flags,
3081 pagep, fsdata);
3083 EXPORT_SYMBOL(pagecache_write_begin);
3085 int pagecache_write_end(struct file *file, struct address_space *mapping,
3086 loff_t pos, unsigned len, unsigned copied,
3087 struct page *page, void *fsdata)
3089 const struct address_space_operations *aops = mapping->a_ops;
3091 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3093 EXPORT_SYMBOL(pagecache_write_end);
3095 ssize_t
3096 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3098 struct file *file = iocb->ki_filp;
3099 struct address_space *mapping = file->f_mapping;
3100 struct inode *inode = mapping->host;
3101 loff_t pos = iocb->ki_pos;
3102 ssize_t written;
3103 size_t write_len;
3104 pgoff_t end;
3106 write_len = iov_iter_count(from);
3107 end = (pos + write_len - 1) >> PAGE_SHIFT;
3109 if (iocb->ki_flags & IOCB_NOWAIT) {
3110 /* If there are pages to writeback, return */
3111 if (filemap_range_has_page(inode->i_mapping, pos,
3112 pos + write_len - 1))
3113 return -EAGAIN;
3114 } else {
3115 written = filemap_write_and_wait_range(mapping, pos,
3116 pos + write_len - 1);
3117 if (written)
3118 goto out;
3122 * After a write we want buffered reads to be sure to go to disk to get
3123 * the new data. We invalidate clean cached page from the region we're
3124 * about to write. We do this *before* the write so that we can return
3125 * without clobbering -EIOCBQUEUED from ->direct_IO().
3127 written = invalidate_inode_pages2_range(mapping,
3128 pos >> PAGE_SHIFT, end);
3130 * If a page can not be invalidated, return 0 to fall back
3131 * to buffered write.
3133 if (written) {
3134 if (written == -EBUSY)
3135 return 0;
3136 goto out;
3139 written = mapping->a_ops->direct_IO(iocb, from);
3142 * Finally, try again to invalidate clean pages which might have been
3143 * cached by non-direct readahead, or faulted in by get_user_pages()
3144 * if the source of the write was an mmap'ed region of the file
3145 * we're writing. Either one is a pretty crazy thing to do,
3146 * so we don't support it 100%. If this invalidation
3147 * fails, tough, the write still worked...
3149 * Most of the time we do not need this since dio_complete() will do
3150 * the invalidation for us. However there are some file systems that
3151 * do not end up with dio_complete() being called, so let's not break
3152 * them by removing it completely
3154 if (mapping->nrpages)
3155 invalidate_inode_pages2_range(mapping,
3156 pos >> PAGE_SHIFT, end);
3158 if (written > 0) {
3159 pos += written;
3160 write_len -= written;
3161 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3162 i_size_write(inode, pos);
3163 mark_inode_dirty(inode);
3165 iocb->ki_pos = pos;
3167 iov_iter_revert(from, write_len - iov_iter_count(from));
3168 out:
3169 return written;
3171 EXPORT_SYMBOL(generic_file_direct_write);
3174 * Find or create a page at the given pagecache position. Return the locked
3175 * page. This function is specifically for buffered writes.
3177 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3178 pgoff_t index, unsigned flags)
3180 struct page *page;
3181 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3183 if (flags & AOP_FLAG_NOFS)
3184 fgp_flags |= FGP_NOFS;
3186 page = pagecache_get_page(mapping, index, fgp_flags,
3187 mapping_gfp_mask(mapping));
3188 if (page)
3189 wait_for_stable_page(page);
3191 return page;
3193 EXPORT_SYMBOL(grab_cache_page_write_begin);
3195 ssize_t generic_perform_write(struct file *file,
3196 struct iov_iter *i, loff_t pos)
3198 struct address_space *mapping = file->f_mapping;
3199 const struct address_space_operations *a_ops = mapping->a_ops;
3200 long status = 0;
3201 ssize_t written = 0;
3202 unsigned int flags = 0;
3204 do {
3205 struct page *page;
3206 unsigned long offset; /* Offset into pagecache page */
3207 unsigned long bytes; /* Bytes to write to page */
3208 size_t copied; /* Bytes copied from user */
3209 void *fsdata;
3211 offset = (pos & (PAGE_SIZE - 1));
3212 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3213 iov_iter_count(i));
3215 again:
3217 * Bring in the user page that we will copy from _first_.
3218 * Otherwise there's a nasty deadlock on copying from the
3219 * same page as we're writing to, without it being marked
3220 * up-to-date.
3222 * Not only is this an optimisation, but it is also required
3223 * to check that the address is actually valid, when atomic
3224 * usercopies are used, below.
3226 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3227 status = -EFAULT;
3228 break;
3231 if (fatal_signal_pending(current)) {
3232 status = -EINTR;
3233 break;
3236 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3237 &page, &fsdata);
3238 if (unlikely(status < 0))
3239 break;
3241 if (mapping_writably_mapped(mapping))
3242 flush_dcache_page(page);
3244 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3245 flush_dcache_page(page);
3247 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3248 page, fsdata);
3249 if (unlikely(status < 0))
3250 break;
3251 copied = status;
3253 cond_resched();
3255 iov_iter_advance(i, copied);
3256 if (unlikely(copied == 0)) {
3258 * If we were unable to copy any data at all, we must
3259 * fall back to a single segment length write.
3261 * If we didn't fallback here, we could livelock
3262 * because not all segments in the iov can be copied at
3263 * once without a pagefault.
3265 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3266 iov_iter_single_seg_count(i));
3267 goto again;
3269 pos += copied;
3270 written += copied;
3272 balance_dirty_pages_ratelimited(mapping);
3273 } while (iov_iter_count(i));
3275 return written ? written : status;
3277 EXPORT_SYMBOL(generic_perform_write);
3280 * __generic_file_write_iter - write data to a file
3281 * @iocb: IO state structure (file, offset, etc.)
3282 * @from: iov_iter with data to write
3284 * This function does all the work needed for actually writing data to a
3285 * file. It does all basic checks, removes SUID from the file, updates
3286 * modification times and calls proper subroutines depending on whether we
3287 * do direct IO or a standard buffered write.
3289 * It expects i_mutex to be grabbed unless we work on a block device or similar
3290 * object which does not need locking at all.
3292 * This function does *not* take care of syncing data in case of O_SYNC write.
3293 * A caller has to handle it. This is mainly due to the fact that we want to
3294 * avoid syncing under i_mutex.
3296 * Return:
3297 * * number of bytes written, even for truncated writes
3298 * * negative error code if no data has been written at all
3300 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3302 struct file *file = iocb->ki_filp;
3303 struct address_space * mapping = file->f_mapping;
3304 struct inode *inode = mapping->host;
3305 ssize_t written = 0;
3306 ssize_t err;
3307 ssize_t status;
3309 /* We can write back this queue in page reclaim */
3310 current->backing_dev_info = inode_to_bdi(inode);
3311 err = file_remove_privs(file);
3312 if (err)
3313 goto out;
3315 err = file_update_time(file);
3316 if (err)
3317 goto out;
3319 if (iocb->ki_flags & IOCB_DIRECT) {
3320 loff_t pos, endbyte;
3322 written = generic_file_direct_write(iocb, from);
3324 * If the write stopped short of completing, fall back to
3325 * buffered writes. Some filesystems do this for writes to
3326 * holes, for example. For DAX files, a buffered write will
3327 * not succeed (even if it did, DAX does not handle dirty
3328 * page-cache pages correctly).
3330 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3331 goto out;
3333 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3335 * If generic_perform_write() returned a synchronous error
3336 * then we want to return the number of bytes which were
3337 * direct-written, or the error code if that was zero. Note
3338 * that this differs from normal direct-io semantics, which
3339 * will return -EFOO even if some bytes were written.
3341 if (unlikely(status < 0)) {
3342 err = status;
3343 goto out;
3346 * We need to ensure that the page cache pages are written to
3347 * disk and invalidated to preserve the expected O_DIRECT
3348 * semantics.
3350 endbyte = pos + status - 1;
3351 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3352 if (err == 0) {
3353 iocb->ki_pos = endbyte + 1;
3354 written += status;
3355 invalidate_mapping_pages(mapping,
3356 pos >> PAGE_SHIFT,
3357 endbyte >> PAGE_SHIFT);
3358 } else {
3360 * We don't know how much we wrote, so just return
3361 * the number of bytes which were direct-written
3364 } else {
3365 written = generic_perform_write(file, from, iocb->ki_pos);
3366 if (likely(written > 0))
3367 iocb->ki_pos += written;
3369 out:
3370 current->backing_dev_info = NULL;
3371 return written ? written : err;
3373 EXPORT_SYMBOL(__generic_file_write_iter);
3376 * generic_file_write_iter - write data to a file
3377 * @iocb: IO state structure
3378 * @from: iov_iter with data to write
3380 * This is a wrapper around __generic_file_write_iter() to be used by most
3381 * filesystems. It takes care of syncing the file in case of O_SYNC file
3382 * and acquires i_mutex as needed.
3383 * Return:
3384 * * negative error code if no data has been written at all of
3385 * vfs_fsync_range() failed for a synchronous write
3386 * * number of bytes written, even for truncated writes
3388 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3390 struct file *file = iocb->ki_filp;
3391 struct inode *inode = file->f_mapping->host;
3392 ssize_t ret;
3394 inode_lock(inode);
3395 ret = generic_write_checks(iocb, from);
3396 if (ret > 0)
3397 ret = __generic_file_write_iter(iocb, from);
3398 inode_unlock(inode);
3400 if (ret > 0)
3401 ret = generic_write_sync(iocb, ret);
3402 return ret;
3404 EXPORT_SYMBOL(generic_file_write_iter);
3407 * try_to_release_page() - release old fs-specific metadata on a page
3409 * @page: the page which the kernel is trying to free
3410 * @gfp_mask: memory allocation flags (and I/O mode)
3412 * The address_space is to try to release any data against the page
3413 * (presumably at page->private).
3415 * This may also be called if PG_fscache is set on a page, indicating that the
3416 * page is known to the local caching routines.
3418 * The @gfp_mask argument specifies whether I/O may be performed to release
3419 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3421 * Return: %1 if the release was successful, otherwise return zero.
3423 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3425 struct address_space * const mapping = page->mapping;
3427 BUG_ON(!PageLocked(page));
3428 if (PageWriteback(page))
3429 return 0;
3431 if (mapping && mapping->a_ops->releasepage)
3432 return mapping->a_ops->releasepage(page, gfp_mask);
3433 return try_to_free_buffers(page);
3436 EXPORT_SYMBOL(try_to_release_page);