1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
16 #include <linux/errno.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
42 #include <asm/tlbflush.h>
47 #define DO_NUMA(x) do { (x); } while (0)
50 #define DO_NUMA(x) do { } while (0)
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
77 * * the regular nodes that keep the reverse mapping structures in a
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
83 * Internally, the regular nodes, "dups" and "chains" are represented
84 * using the same :c:type:`struct stable_node` structure.
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
93 * KSM solves this problem by several techniques:
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118 * @mm: the mm that this information is valid for
121 struct hlist_node link
;
122 struct list_head mm_list
;
123 struct rmap_item
*rmap_list
;
124 struct mm_struct
*mm
;
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
132 * @seqnr: count of completed full scans (needed when removing unstable node)
134 * There is only the one ksm_scan instance of this cursor structure.
137 struct mm_slot
*mm_slot
;
138 unsigned long address
;
139 struct rmap_item
**rmap_list
;
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148 * @list: linked into migrate_nodes, pending placement in the proper node tree
149 * @hlist: hlist head of rmap_items using this ksm page
150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
157 struct rb_node node
; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head
*head
;
161 struct hlist_node hlist_dup
;
162 struct list_head list
;
166 struct hlist_head hlist
;
169 unsigned long chain_prune_time
;
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
176 #define STABLE_NODE_CHAIN -1024
184 * struct rmap_item - reverse mapping item for virtual addresses
185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
196 struct rmap_item
*rmap_list
;
198 struct anon_vma
*anon_vma
; /* when stable */
200 int nid
; /* when node of unstable tree */
203 struct mm_struct
*mm
;
204 unsigned long address
; /* + low bits used for flags below */
205 unsigned int oldchecksum
; /* when unstable */
207 struct rb_node node
; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node
*head
;
210 struct hlist_node hlist
;
215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219 /* to mask all the flags */
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree
[1] = { RB_ROOT
};
223 static struct rb_root one_unstable_tree
[1] = { RB_ROOT
};
224 static struct rb_root
*root_stable_tree
= one_stable_tree
;
225 static struct rb_root
*root_unstable_tree
= one_unstable_tree
;
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes
);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
234 static struct mm_slot ksm_mm_head
= {
235 .mm_list
= LIST_HEAD_INIT(ksm_mm_head
.mm_list
),
237 static struct ksm_scan ksm_scan
= {
238 .mm_slot
= &ksm_mm_head
,
241 static struct kmem_cache
*rmap_item_cache
;
242 static struct kmem_cache
*stable_node_cache
;
243 static struct kmem_cache
*mm_slot_cache
;
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared
;
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing
;
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared
;
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items
;
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains
;
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups
;
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static int ksm_stable_node_chains_prune_millisecs
= 2000;
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing
= 256;
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan
= 100;
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs
= 20;
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly
;
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly
;
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes
= 1;
284 static int ksm_nr_node_ids
= 1;
286 #define ksm_merge_across_nodes 1U
287 #define ksm_nr_node_ids 1
290 #define KSM_RUN_STOP 0
291 #define KSM_RUN_MERGE 1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run
= KSM_RUN_STOP
;
295 static void wait_while_offlining(void);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait
);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait
);
299 static DEFINE_MUTEX(ksm_thread_mutex
);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock
);
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303 sizeof(struct __struct), __alignof__(struct __struct),\
306 static int __init
ksm_slab_init(void)
308 rmap_item_cache
= KSM_KMEM_CACHE(rmap_item
, 0);
309 if (!rmap_item_cache
)
312 stable_node_cache
= KSM_KMEM_CACHE(stable_node
, 0);
313 if (!stable_node_cache
)
316 mm_slot_cache
= KSM_KMEM_CACHE(mm_slot
, 0);
323 kmem_cache_destroy(stable_node_cache
);
325 kmem_cache_destroy(rmap_item_cache
);
330 static void __init
ksm_slab_free(void)
332 kmem_cache_destroy(mm_slot_cache
);
333 kmem_cache_destroy(stable_node_cache
);
334 kmem_cache_destroy(rmap_item_cache
);
335 mm_slot_cache
= NULL
;
338 static __always_inline
bool is_stable_node_chain(struct stable_node
*chain
)
340 return chain
->rmap_hlist_len
== STABLE_NODE_CHAIN
;
343 static __always_inline
bool is_stable_node_dup(struct stable_node
*dup
)
345 return dup
->head
== STABLE_NODE_DUP_HEAD
;
348 static inline void stable_node_chain_add_dup(struct stable_node
*dup
,
349 struct stable_node
*chain
)
351 VM_BUG_ON(is_stable_node_dup(dup
));
352 dup
->head
= STABLE_NODE_DUP_HEAD
;
353 VM_BUG_ON(!is_stable_node_chain(chain
));
354 hlist_add_head(&dup
->hlist_dup
, &chain
->hlist
);
355 ksm_stable_node_dups
++;
358 static inline void __stable_node_dup_del(struct stable_node
*dup
)
360 VM_BUG_ON(!is_stable_node_dup(dup
));
361 hlist_del(&dup
->hlist_dup
);
362 ksm_stable_node_dups
--;
365 static inline void stable_node_dup_del(struct stable_node
*dup
)
367 VM_BUG_ON(is_stable_node_chain(dup
));
368 if (is_stable_node_dup(dup
))
369 __stable_node_dup_del(dup
);
371 rb_erase(&dup
->node
, root_stable_tree
+ NUMA(dup
->nid
));
372 #ifdef CONFIG_DEBUG_VM
377 static inline struct rmap_item
*alloc_rmap_item(void)
379 struct rmap_item
*rmap_item
;
381 rmap_item
= kmem_cache_zalloc(rmap_item_cache
, GFP_KERNEL
|
382 __GFP_NORETRY
| __GFP_NOWARN
);
388 static inline void free_rmap_item(struct rmap_item
*rmap_item
)
391 rmap_item
->mm
= NULL
; /* debug safety */
392 kmem_cache_free(rmap_item_cache
, rmap_item
);
395 static inline struct stable_node
*alloc_stable_node(void)
398 * The allocation can take too long with GFP_KERNEL when memory is under
399 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
400 * grants access to memory reserves, helping to avoid this problem.
402 return kmem_cache_alloc(stable_node_cache
, GFP_KERNEL
| __GFP_HIGH
);
405 static inline void free_stable_node(struct stable_node
*stable_node
)
407 VM_BUG_ON(stable_node
->rmap_hlist_len
&&
408 !is_stable_node_chain(stable_node
));
409 kmem_cache_free(stable_node_cache
, stable_node
);
412 static inline struct mm_slot
*alloc_mm_slot(void)
414 if (!mm_slot_cache
) /* initialization failed */
416 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
419 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
421 kmem_cache_free(mm_slot_cache
, mm_slot
);
424 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
426 struct mm_slot
*slot
;
428 hash_for_each_possible(mm_slots_hash
, slot
, link
, (unsigned long)mm
)
435 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
436 struct mm_slot
*mm_slot
)
439 hash_add(mm_slots_hash
, &mm_slot
->link
, (unsigned long)mm
);
443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444 * page tables after it has passed through ksm_exit() - which, if necessary,
445 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
446 * a special flag: they can just back out as soon as mm_users goes to zero.
447 * ksm_test_exit() is used throughout to make this test for exit: in some
448 * places for correctness, in some places just to avoid unnecessary work.
450 static inline bool ksm_test_exit(struct mm_struct
*mm
)
452 return atomic_read(&mm
->mm_users
) == 0;
456 * We use break_ksm to break COW on a ksm page: it's a stripped down
458 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462 * in case the application has unmapped and remapped mm,addr meanwhile.
463 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467 * of the process that owns 'vma'. We also do not want to enforce
468 * protection keys here anyway.
470 static int break_ksm(struct vm_area_struct
*vma
, unsigned long addr
)
477 page
= follow_page(vma
, addr
,
478 FOLL_GET
| FOLL_MIGRATION
| FOLL_REMOTE
);
479 if (IS_ERR_OR_NULL(page
))
482 ret
= handle_mm_fault(vma
, addr
,
483 FAULT_FLAG_WRITE
| FAULT_FLAG_REMOTE
);
485 ret
= VM_FAULT_WRITE
;
487 } while (!(ret
& (VM_FAULT_WRITE
| VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
| VM_FAULT_OOM
)));
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
516 return (ret
& VM_FAULT_OOM
) ? -ENOMEM
: 0;
519 static struct vm_area_struct
*find_mergeable_vma(struct mm_struct
*mm
,
522 struct vm_area_struct
*vma
;
523 if (ksm_test_exit(mm
))
525 vma
= find_vma(mm
, addr
);
526 if (!vma
|| vma
->vm_start
> addr
)
528 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
533 static void break_cow(struct rmap_item
*rmap_item
)
535 struct mm_struct
*mm
= rmap_item
->mm
;
536 unsigned long addr
= rmap_item
->address
;
537 struct vm_area_struct
*vma
;
540 * It is not an accident that whenever we want to break COW
541 * to undo, we also need to drop a reference to the anon_vma.
543 put_anon_vma(rmap_item
->anon_vma
);
545 down_read(&mm
->mmap_sem
);
546 vma
= find_mergeable_vma(mm
, addr
);
548 break_ksm(vma
, addr
);
549 up_read(&mm
->mmap_sem
);
552 static struct page
*get_mergeable_page(struct rmap_item
*rmap_item
)
554 struct mm_struct
*mm
= rmap_item
->mm
;
555 unsigned long addr
= rmap_item
->address
;
556 struct vm_area_struct
*vma
;
559 down_read(&mm
->mmap_sem
);
560 vma
= find_mergeable_vma(mm
, addr
);
564 page
= follow_page(vma
, addr
, FOLL_GET
);
565 if (IS_ERR_OR_NULL(page
))
567 if (PageAnon(page
)) {
568 flush_anon_page(vma
, page
, addr
);
569 flush_dcache_page(page
);
575 up_read(&mm
->mmap_sem
);
580 * This helper is used for getting right index into array of tree roots.
581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583 * every node has its own stable and unstable tree.
585 static inline int get_kpfn_nid(unsigned long kpfn
)
587 return ksm_merge_across_nodes
? 0 : NUMA(pfn_to_nid(kpfn
));
590 static struct stable_node
*alloc_stable_node_chain(struct stable_node
*dup
,
591 struct rb_root
*root
)
593 struct stable_node
*chain
= alloc_stable_node();
594 VM_BUG_ON(is_stable_node_chain(dup
));
596 INIT_HLIST_HEAD(&chain
->hlist
);
597 chain
->chain_prune_time
= jiffies
;
598 chain
->rmap_hlist_len
= STABLE_NODE_CHAIN
;
599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600 chain
->nid
= NUMA_NO_NODE
; /* debug */
602 ksm_stable_node_chains
++;
605 * Put the stable node chain in the first dimension of
606 * the stable tree and at the same time remove the old
609 rb_replace_node(&dup
->node
, &chain
->node
, root
);
612 * Move the old stable node to the second dimension
613 * queued in the hlist_dup. The invariant is that all
614 * dup stable_nodes in the chain->hlist point to pages
615 * that are wrprotected and have the exact same
618 stable_node_chain_add_dup(dup
, chain
);
623 static inline void free_stable_node_chain(struct stable_node
*chain
,
624 struct rb_root
*root
)
626 rb_erase(&chain
->node
, root
);
627 free_stable_node(chain
);
628 ksm_stable_node_chains
--;
631 static void remove_node_from_stable_tree(struct stable_node
*stable_node
)
633 struct rmap_item
*rmap_item
;
635 /* check it's not STABLE_NODE_CHAIN or negative */
636 BUG_ON(stable_node
->rmap_hlist_len
< 0);
638 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
639 if (rmap_item
->hlist
.next
)
643 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
644 stable_node
->rmap_hlist_len
--;
645 put_anon_vma(rmap_item
->anon_vma
);
646 rmap_item
->address
&= PAGE_MASK
;
651 * We need the second aligned pointer of the migrate_nodes
652 * list_head to stay clear from the rb_parent_color union
653 * (aligned and different than any node) and also different
654 * from &migrate_nodes. This will verify that future list.h changes
655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
<= &migrate_nodes
);
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
>= &migrate_nodes
+ 1);
662 if (stable_node
->head
== &migrate_nodes
)
663 list_del(&stable_node
->list
);
665 stable_node_dup_del(stable_node
);
666 free_stable_node(stable_node
);
669 enum get_ksm_page_flags
{
676 * get_ksm_page: checks if the page indicated by the stable node
677 * is still its ksm page, despite having held no reference to it.
678 * In which case we can trust the content of the page, and it
679 * returns the gotten page; but if the page has now been zapped,
680 * remove the stale node from the stable tree and return NULL.
681 * But beware, the stable node's page might be being migrated.
683 * You would expect the stable_node to hold a reference to the ksm page.
684 * But if it increments the page's count, swapping out has to wait for
685 * ksmd to come around again before it can free the page, which may take
686 * seconds or even minutes: much too unresponsive. So instead we use a
687 * "keyhole reference": access to the ksm page from the stable node peeps
688 * out through its keyhole to see if that page still holds the right key,
689 * pointing back to this stable node. This relies on freeing a PageAnon
690 * page to reset its page->mapping to NULL, and relies on no other use of
691 * a page to put something that might look like our key in page->mapping.
692 * is on its way to being freed; but it is an anomaly to bear in mind.
694 static struct page
*get_ksm_page(struct stable_node
*stable_node
,
695 enum get_ksm_page_flags flags
)
698 void *expected_mapping
;
701 expected_mapping
= (void *)((unsigned long)stable_node
|
704 kpfn
= READ_ONCE(stable_node
->kpfn
); /* Address dependency. */
705 page
= pfn_to_page(kpfn
);
706 if (READ_ONCE(page
->mapping
) != expected_mapping
)
710 * We cannot do anything with the page while its refcount is 0.
711 * Usually 0 means free, or tail of a higher-order page: in which
712 * case this node is no longer referenced, and should be freed;
713 * however, it might mean that the page is under page_ref_freeze().
714 * The __remove_mapping() case is easy, again the node is now stale;
715 * the same is in reuse_ksm_page() case; but if page is swapcache
716 * in migrate_page_move_mapping(), it might still be our page,
717 * in which case it's essential to keep the node.
719 while (!get_page_unless_zero(page
)) {
721 * Another check for page->mapping != expected_mapping would
722 * work here too. We have chosen the !PageSwapCache test to
723 * optimize the common case, when the page is or is about to
724 * be freed: PageSwapCache is cleared (under spin_lock_irq)
725 * in the ref_freeze section of __remove_mapping(); but Anon
726 * page->mapping reset to NULL later, in free_pages_prepare().
728 if (!PageSwapCache(page
))
733 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
738 if (flags
== GET_KSM_PAGE_TRYLOCK
) {
739 if (!trylock_page(page
)) {
741 return ERR_PTR(-EBUSY
);
743 } else if (flags
== GET_KSM_PAGE_LOCK
)
746 if (flags
!= GET_KSM_PAGE_NOLOCK
) {
747 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
757 * We come here from above when page->mapping or !PageSwapCache
758 * suggests that the node is stale; but it might be under migration.
759 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
760 * before checking whether node->kpfn has been changed.
763 if (READ_ONCE(stable_node
->kpfn
) != kpfn
)
765 remove_node_from_stable_tree(stable_node
);
770 * Removing rmap_item from stable or unstable tree.
771 * This function will clean the information from the stable/unstable tree.
773 static void remove_rmap_item_from_tree(struct rmap_item
*rmap_item
)
775 if (rmap_item
->address
& STABLE_FLAG
) {
776 struct stable_node
*stable_node
;
779 stable_node
= rmap_item
->head
;
780 page
= get_ksm_page(stable_node
, GET_KSM_PAGE_LOCK
);
784 hlist_del(&rmap_item
->hlist
);
788 if (!hlist_empty(&stable_node
->hlist
))
792 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
793 stable_node
->rmap_hlist_len
--;
795 put_anon_vma(rmap_item
->anon_vma
);
796 rmap_item
->address
&= PAGE_MASK
;
798 } else if (rmap_item
->address
& UNSTABLE_FLAG
) {
801 * Usually ksmd can and must skip the rb_erase, because
802 * root_unstable_tree was already reset to RB_ROOT.
803 * But be careful when an mm is exiting: do the rb_erase
804 * if this rmap_item was inserted by this scan, rather
805 * than left over from before.
807 age
= (unsigned char)(ksm_scan
.seqnr
- rmap_item
->address
);
810 rb_erase(&rmap_item
->node
,
811 root_unstable_tree
+ NUMA(rmap_item
->nid
));
812 ksm_pages_unshared
--;
813 rmap_item
->address
&= PAGE_MASK
;
816 cond_resched(); /* we're called from many long loops */
819 static void remove_trailing_rmap_items(struct mm_slot
*mm_slot
,
820 struct rmap_item
**rmap_list
)
823 struct rmap_item
*rmap_item
= *rmap_list
;
824 *rmap_list
= rmap_item
->rmap_list
;
825 remove_rmap_item_from_tree(rmap_item
);
826 free_rmap_item(rmap_item
);
831 * Though it's very tempting to unmerge rmap_items from stable tree rather
832 * than check every pte of a given vma, the locking doesn't quite work for
833 * that - an rmap_item is assigned to the stable tree after inserting ksm
834 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
835 * rmap_items from parent to child at fork time (so as not to waste time
836 * if exit comes before the next scan reaches it).
838 * Similarly, although we'd like to remove rmap_items (so updating counts
839 * and freeing memory) when unmerging an area, it's easier to leave that
840 * to the next pass of ksmd - consider, for example, how ksmd might be
841 * in cmp_and_merge_page on one of the rmap_items we would be removing.
843 static int unmerge_ksm_pages(struct vm_area_struct
*vma
,
844 unsigned long start
, unsigned long end
)
849 for (addr
= start
; addr
< end
&& !err
; addr
+= PAGE_SIZE
) {
850 if (ksm_test_exit(vma
->vm_mm
))
852 if (signal_pending(current
))
855 err
= break_ksm(vma
, addr
);
860 static inline struct stable_node
*page_stable_node(struct page
*page
)
862 return PageKsm(page
) ? page_rmapping(page
) : NULL
;
865 static inline void set_page_stable_node(struct page
*page
,
866 struct stable_node
*stable_node
)
868 page
->mapping
= (void *)((unsigned long)stable_node
| PAGE_MAPPING_KSM
);
873 * Only called through the sysfs control interface:
875 static int remove_stable_node(struct stable_node
*stable_node
)
880 page
= get_ksm_page(stable_node
, GET_KSM_PAGE_LOCK
);
883 * get_ksm_page did remove_node_from_stable_tree itself.
888 if (WARN_ON_ONCE(page_mapped(page
))) {
890 * This should not happen: but if it does, just refuse to let
891 * merge_across_nodes be switched - there is no need to panic.
896 * The stable node did not yet appear stale to get_ksm_page(),
897 * since that allows for an unmapped ksm page to be recognized
898 * right up until it is freed; but the node is safe to remove.
899 * This page might be in a pagevec waiting to be freed,
900 * or it might be PageSwapCache (perhaps under writeback),
901 * or it might have been removed from swapcache a moment ago.
903 set_page_stable_node(page
, NULL
);
904 remove_node_from_stable_tree(stable_node
);
913 static int remove_stable_node_chain(struct stable_node
*stable_node
,
914 struct rb_root
*root
)
916 struct stable_node
*dup
;
917 struct hlist_node
*hlist_safe
;
919 if (!is_stable_node_chain(stable_node
)) {
920 VM_BUG_ON(is_stable_node_dup(stable_node
));
921 if (remove_stable_node(stable_node
))
927 hlist_for_each_entry_safe(dup
, hlist_safe
,
928 &stable_node
->hlist
, hlist_dup
) {
929 VM_BUG_ON(!is_stable_node_dup(dup
));
930 if (remove_stable_node(dup
))
933 BUG_ON(!hlist_empty(&stable_node
->hlist
));
934 free_stable_node_chain(stable_node
, root
);
938 static int remove_all_stable_nodes(void)
940 struct stable_node
*stable_node
, *next
;
944 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
945 while (root_stable_tree
[nid
].rb_node
) {
946 stable_node
= rb_entry(root_stable_tree
[nid
].rb_node
,
947 struct stable_node
, node
);
948 if (remove_stable_node_chain(stable_node
,
949 root_stable_tree
+ nid
)) {
951 break; /* proceed to next nid */
956 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
957 if (remove_stable_node(stable_node
))
964 static int unmerge_and_remove_all_rmap_items(void)
966 struct mm_slot
*mm_slot
;
967 struct mm_struct
*mm
;
968 struct vm_area_struct
*vma
;
971 spin_lock(&ksm_mmlist_lock
);
972 ksm_scan
.mm_slot
= list_entry(ksm_mm_head
.mm_list
.next
,
973 struct mm_slot
, mm_list
);
974 spin_unlock(&ksm_mmlist_lock
);
976 for (mm_slot
= ksm_scan
.mm_slot
;
977 mm_slot
!= &ksm_mm_head
; mm_slot
= ksm_scan
.mm_slot
) {
979 down_read(&mm
->mmap_sem
);
980 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
981 if (ksm_test_exit(mm
))
983 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
985 err
= unmerge_ksm_pages(vma
,
986 vma
->vm_start
, vma
->vm_end
);
991 remove_trailing_rmap_items(mm_slot
, &mm_slot
->rmap_list
);
992 up_read(&mm
->mmap_sem
);
994 spin_lock(&ksm_mmlist_lock
);
995 ksm_scan
.mm_slot
= list_entry(mm_slot
->mm_list
.next
,
996 struct mm_slot
, mm_list
);
997 if (ksm_test_exit(mm
)) {
998 hash_del(&mm_slot
->link
);
999 list_del(&mm_slot
->mm_list
);
1000 spin_unlock(&ksm_mmlist_lock
);
1002 free_mm_slot(mm_slot
);
1003 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
1006 spin_unlock(&ksm_mmlist_lock
);
1009 /* Clean up stable nodes, but don't worry if some are still busy */
1010 remove_all_stable_nodes();
1015 up_read(&mm
->mmap_sem
);
1016 spin_lock(&ksm_mmlist_lock
);
1017 ksm_scan
.mm_slot
= &ksm_mm_head
;
1018 spin_unlock(&ksm_mmlist_lock
);
1021 #endif /* CONFIG_SYSFS */
1023 static u32
calc_checksum(struct page
*page
)
1026 void *addr
= kmap_atomic(page
);
1027 checksum
= xxhash(addr
, PAGE_SIZE
, 0);
1028 kunmap_atomic(addr
);
1032 static int memcmp_pages(struct page
*page1
, struct page
*page2
)
1034 char *addr1
, *addr2
;
1037 addr1
= kmap_atomic(page1
);
1038 addr2
= kmap_atomic(page2
);
1039 ret
= memcmp(addr1
, addr2
, PAGE_SIZE
);
1040 kunmap_atomic(addr2
);
1041 kunmap_atomic(addr1
);
1045 static inline int pages_identical(struct page
*page1
, struct page
*page2
)
1047 return !memcmp_pages(page1
, page2
);
1050 static int write_protect_page(struct vm_area_struct
*vma
, struct page
*page
,
1053 struct mm_struct
*mm
= vma
->vm_mm
;
1054 struct page_vma_mapped_walk pvmw
= {
1060 struct mmu_notifier_range range
;
1062 pvmw
.address
= page_address_in_vma(page
, vma
);
1063 if (pvmw
.address
== -EFAULT
)
1066 BUG_ON(PageTransCompound(page
));
1068 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
1070 pvmw
.address
+ PAGE_SIZE
);
1071 mmu_notifier_invalidate_range_start(&range
);
1073 if (!page_vma_mapped_walk(&pvmw
))
1075 if (WARN_ONCE(!pvmw
.pte
, "Unexpected PMD mapping?"))
1078 if (pte_write(*pvmw
.pte
) || pte_dirty(*pvmw
.pte
) ||
1079 (pte_protnone(*pvmw
.pte
) && pte_savedwrite(*pvmw
.pte
)) ||
1080 mm_tlb_flush_pending(mm
)) {
1083 swapped
= PageSwapCache(page
);
1084 flush_cache_page(vma
, pvmw
.address
, page_to_pfn(page
));
1086 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1087 * take any lock, therefore the check that we are going to make
1088 * with the pagecount against the mapcount is racey and
1089 * O_DIRECT can happen right after the check.
1090 * So we clear the pte and flush the tlb before the check
1091 * this assure us that no O_DIRECT can happen after the check
1092 * or in the middle of the check.
1094 * No need to notify as we are downgrading page table to read
1095 * only not changing it to point to a new page.
1097 * See Documentation/vm/mmu_notifier.rst
1099 entry
= ptep_clear_flush(vma
, pvmw
.address
, pvmw
.pte
);
1101 * Check that no O_DIRECT or similar I/O is in progress on the
1104 if (page_mapcount(page
) + 1 + swapped
!= page_count(page
)) {
1105 set_pte_at(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1108 if (pte_dirty(entry
))
1109 set_page_dirty(page
);
1111 if (pte_protnone(entry
))
1112 entry
= pte_mkclean(pte_clear_savedwrite(entry
));
1114 entry
= pte_mkclean(pte_wrprotect(entry
));
1115 set_pte_at_notify(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1117 *orig_pte
= *pvmw
.pte
;
1121 page_vma_mapped_walk_done(&pvmw
);
1123 mmu_notifier_invalidate_range_end(&range
);
1129 * replace_page - replace page in vma by new ksm page
1130 * @vma: vma that holds the pte pointing to page
1131 * @page: the page we are replacing by kpage
1132 * @kpage: the ksm page we replace page by
1133 * @orig_pte: the original value of the pte
1135 * Returns 0 on success, -EFAULT on failure.
1137 static int replace_page(struct vm_area_struct
*vma
, struct page
*page
,
1138 struct page
*kpage
, pte_t orig_pte
)
1140 struct mm_struct
*mm
= vma
->vm_mm
;
1147 struct mmu_notifier_range range
;
1149 addr
= page_address_in_vma(page
, vma
);
1150 if (addr
== -EFAULT
)
1153 pmd
= mm_find_pmd(mm
, addr
);
1157 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, addr
,
1159 mmu_notifier_invalidate_range_start(&range
);
1161 ptep
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1162 if (!pte_same(*ptep
, orig_pte
)) {
1163 pte_unmap_unlock(ptep
, ptl
);
1168 * No need to check ksm_use_zero_pages here: we can only have a
1169 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1171 if (!is_zero_pfn(page_to_pfn(kpage
))) {
1173 page_add_anon_rmap(kpage
, vma
, addr
, false);
1174 newpte
= mk_pte(kpage
, vma
->vm_page_prot
);
1176 newpte
= pte_mkspecial(pfn_pte(page_to_pfn(kpage
),
1177 vma
->vm_page_prot
));
1179 * We're replacing an anonymous page with a zero page, which is
1180 * not anonymous. We need to do proper accounting otherwise we
1181 * will get wrong values in /proc, and a BUG message in dmesg
1182 * when tearing down the mm.
1184 dec_mm_counter(mm
, MM_ANONPAGES
);
1187 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
1189 * No need to notify as we are replacing a read only page with another
1190 * read only page with the same content.
1192 * See Documentation/vm/mmu_notifier.rst
1194 ptep_clear_flush(vma
, addr
, ptep
);
1195 set_pte_at_notify(mm
, addr
, ptep
, newpte
);
1197 page_remove_rmap(page
, false);
1198 if (!page_mapped(page
))
1199 try_to_free_swap(page
);
1202 pte_unmap_unlock(ptep
, ptl
);
1205 mmu_notifier_invalidate_range_end(&range
);
1211 * try_to_merge_one_page - take two pages and merge them into one
1212 * @vma: the vma that holds the pte pointing to page
1213 * @page: the PageAnon page that we want to replace with kpage
1214 * @kpage: the PageKsm page that we want to map instead of page,
1215 * or NULL the first time when we want to use page as kpage.
1217 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1219 static int try_to_merge_one_page(struct vm_area_struct
*vma
,
1220 struct page
*page
, struct page
*kpage
)
1222 pte_t orig_pte
= __pte(0);
1225 if (page
== kpage
) /* ksm page forked */
1228 if (!PageAnon(page
))
1232 * We need the page lock to read a stable PageSwapCache in
1233 * write_protect_page(). We use trylock_page() instead of
1234 * lock_page() because we don't want to wait here - we
1235 * prefer to continue scanning and merging different pages,
1236 * then come back to this page when it is unlocked.
1238 if (!trylock_page(page
))
1241 if (PageTransCompound(page
)) {
1242 if (split_huge_page(page
))
1247 * If this anonymous page is mapped only here, its pte may need
1248 * to be write-protected. If it's mapped elsewhere, all of its
1249 * ptes are necessarily already write-protected. But in either
1250 * case, we need to lock and check page_count is not raised.
1252 if (write_protect_page(vma
, page
, &orig_pte
) == 0) {
1255 * While we hold page lock, upgrade page from
1256 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1257 * stable_tree_insert() will update stable_node.
1259 set_page_stable_node(page
, NULL
);
1260 mark_page_accessed(page
);
1262 * Page reclaim just frees a clean page with no dirty
1263 * ptes: make sure that the ksm page would be swapped.
1265 if (!PageDirty(page
))
1268 } else if (pages_identical(page
, kpage
))
1269 err
= replace_page(vma
, page
, kpage
, orig_pte
);
1272 if ((vma
->vm_flags
& VM_LOCKED
) && kpage
&& !err
) {
1273 munlock_vma_page(page
);
1274 if (!PageMlocked(kpage
)) {
1277 mlock_vma_page(kpage
);
1278 page
= kpage
; /* for final unlock */
1289 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1290 * but no new kernel page is allocated: kpage must already be a ksm page.
1292 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1294 static int try_to_merge_with_ksm_page(struct rmap_item
*rmap_item
,
1295 struct page
*page
, struct page
*kpage
)
1297 struct mm_struct
*mm
= rmap_item
->mm
;
1298 struct vm_area_struct
*vma
;
1301 down_read(&mm
->mmap_sem
);
1302 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
1306 err
= try_to_merge_one_page(vma
, page
, kpage
);
1310 /* Unstable nid is in union with stable anon_vma: remove first */
1311 remove_rmap_item_from_tree(rmap_item
);
1313 /* Must get reference to anon_vma while still holding mmap_sem */
1314 rmap_item
->anon_vma
= vma
->anon_vma
;
1315 get_anon_vma(vma
->anon_vma
);
1317 up_read(&mm
->mmap_sem
);
1322 * try_to_merge_two_pages - take two identical pages and prepare them
1323 * to be merged into one page.
1325 * This function returns the kpage if we successfully merged two identical
1326 * pages into one ksm page, NULL otherwise.
1328 * Note that this function upgrades page to ksm page: if one of the pages
1329 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1331 static struct page
*try_to_merge_two_pages(struct rmap_item
*rmap_item
,
1333 struct rmap_item
*tree_rmap_item
,
1334 struct page
*tree_page
)
1338 err
= try_to_merge_with_ksm_page(rmap_item
, page
, NULL
);
1340 err
= try_to_merge_with_ksm_page(tree_rmap_item
,
1343 * If that fails, we have a ksm page with only one pte
1344 * pointing to it: so break it.
1347 break_cow(rmap_item
);
1349 return err
? NULL
: page
;
1352 static __always_inline
1353 bool __is_page_sharing_candidate(struct stable_node
*stable_node
, int offset
)
1355 VM_BUG_ON(stable_node
->rmap_hlist_len
< 0);
1357 * Check that at least one mapping still exists, otherwise
1358 * there's no much point to merge and share with this
1359 * stable_node, as the underlying tree_page of the other
1360 * sharer is going to be freed soon.
1362 return stable_node
->rmap_hlist_len
&&
1363 stable_node
->rmap_hlist_len
+ offset
< ksm_max_page_sharing
;
1366 static __always_inline
1367 bool is_page_sharing_candidate(struct stable_node
*stable_node
)
1369 return __is_page_sharing_candidate(stable_node
, 0);
1372 static struct page
*stable_node_dup(struct stable_node
**_stable_node_dup
,
1373 struct stable_node
**_stable_node
,
1374 struct rb_root
*root
,
1375 bool prune_stale_stable_nodes
)
1377 struct stable_node
*dup
, *found
= NULL
, *stable_node
= *_stable_node
;
1378 struct hlist_node
*hlist_safe
;
1379 struct page
*_tree_page
, *tree_page
= NULL
;
1381 int found_rmap_hlist_len
;
1383 if (!prune_stale_stable_nodes
||
1384 time_before(jiffies
, stable_node
->chain_prune_time
+
1386 ksm_stable_node_chains_prune_millisecs
)))
1387 prune_stale_stable_nodes
= false;
1389 stable_node
->chain_prune_time
= jiffies
;
1391 hlist_for_each_entry_safe(dup
, hlist_safe
,
1392 &stable_node
->hlist
, hlist_dup
) {
1395 * We must walk all stable_node_dup to prune the stale
1396 * stable nodes during lookup.
1398 * get_ksm_page can drop the nodes from the
1399 * stable_node->hlist if they point to freed pages
1400 * (that's why we do a _safe walk). The "dup"
1401 * stable_node parameter itself will be freed from
1402 * under us if it returns NULL.
1404 _tree_page
= get_ksm_page(dup
, GET_KSM_PAGE_NOLOCK
);
1408 if (is_page_sharing_candidate(dup
)) {
1410 dup
->rmap_hlist_len
> found_rmap_hlist_len
) {
1412 put_page(tree_page
);
1414 found_rmap_hlist_len
= found
->rmap_hlist_len
;
1415 tree_page
= _tree_page
;
1417 /* skip put_page for found dup */
1418 if (!prune_stale_stable_nodes
)
1423 put_page(_tree_page
);
1428 * nr is counting all dups in the chain only if
1429 * prune_stale_stable_nodes is true, otherwise we may
1430 * break the loop at nr == 1 even if there are
1433 if (prune_stale_stable_nodes
&& nr
== 1) {
1435 * If there's not just one entry it would
1436 * corrupt memory, better BUG_ON. In KSM
1437 * context with no lock held it's not even
1440 BUG_ON(stable_node
->hlist
.first
->next
);
1443 * There's just one entry and it is below the
1444 * deduplication limit so drop the chain.
1446 rb_replace_node(&stable_node
->node
, &found
->node
,
1448 free_stable_node(stable_node
);
1449 ksm_stable_node_chains
--;
1450 ksm_stable_node_dups
--;
1452 * NOTE: the caller depends on the stable_node
1453 * to be equal to stable_node_dup if the chain
1456 *_stable_node
= found
;
1458 * Just for robustneess as stable_node is
1459 * otherwise left as a stable pointer, the
1460 * compiler shall optimize it away at build
1464 } else if (stable_node
->hlist
.first
!= &found
->hlist_dup
&&
1465 __is_page_sharing_candidate(found
, 1)) {
1467 * If the found stable_node dup can accept one
1468 * more future merge (in addition to the one
1469 * that is underway) and is not at the head of
1470 * the chain, put it there so next search will
1471 * be quicker in the !prune_stale_stable_nodes
1474 * NOTE: it would be inaccurate to use nr > 1
1475 * instead of checking the hlist.first pointer
1476 * directly, because in the
1477 * prune_stale_stable_nodes case "nr" isn't
1478 * the position of the found dup in the chain,
1479 * but the total number of dups in the chain.
1481 hlist_del(&found
->hlist_dup
);
1482 hlist_add_head(&found
->hlist_dup
,
1483 &stable_node
->hlist
);
1487 *_stable_node_dup
= found
;
1491 static struct stable_node
*stable_node_dup_any(struct stable_node
*stable_node
,
1492 struct rb_root
*root
)
1494 if (!is_stable_node_chain(stable_node
))
1496 if (hlist_empty(&stable_node
->hlist
)) {
1497 free_stable_node_chain(stable_node
, root
);
1500 return hlist_entry(stable_node
->hlist
.first
,
1501 typeof(*stable_node
), hlist_dup
);
1505 * Like for get_ksm_page, this function can free the *_stable_node and
1506 * *_stable_node_dup if the returned tree_page is NULL.
1508 * It can also free and overwrite *_stable_node with the found
1509 * stable_node_dup if the chain is collapsed (in which case
1510 * *_stable_node will be equal to *_stable_node_dup like if the chain
1511 * never existed). It's up to the caller to verify tree_page is not
1512 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1514 * *_stable_node_dup is really a second output parameter of this
1515 * function and will be overwritten in all cases, the caller doesn't
1516 * need to initialize it.
1518 static struct page
*__stable_node_chain(struct stable_node
**_stable_node_dup
,
1519 struct stable_node
**_stable_node
,
1520 struct rb_root
*root
,
1521 bool prune_stale_stable_nodes
)
1523 struct stable_node
*stable_node
= *_stable_node
;
1524 if (!is_stable_node_chain(stable_node
)) {
1525 if (is_page_sharing_candidate(stable_node
)) {
1526 *_stable_node_dup
= stable_node
;
1527 return get_ksm_page(stable_node
, GET_KSM_PAGE_NOLOCK
);
1530 * _stable_node_dup set to NULL means the stable_node
1531 * reached the ksm_max_page_sharing limit.
1533 *_stable_node_dup
= NULL
;
1536 return stable_node_dup(_stable_node_dup
, _stable_node
, root
,
1537 prune_stale_stable_nodes
);
1540 static __always_inline
struct page
*chain_prune(struct stable_node
**s_n_d
,
1541 struct stable_node
**s_n
,
1542 struct rb_root
*root
)
1544 return __stable_node_chain(s_n_d
, s_n
, root
, true);
1547 static __always_inline
struct page
*chain(struct stable_node
**s_n_d
,
1548 struct stable_node
*s_n
,
1549 struct rb_root
*root
)
1551 struct stable_node
*old_stable_node
= s_n
;
1552 struct page
*tree_page
;
1554 tree_page
= __stable_node_chain(s_n_d
, &s_n
, root
, false);
1555 /* not pruning dups so s_n cannot have changed */
1556 VM_BUG_ON(s_n
!= old_stable_node
);
1561 * stable_tree_search - search for page inside the stable tree
1563 * This function checks if there is a page inside the stable tree
1564 * with identical content to the page that we are scanning right now.
1566 * This function returns the stable tree node of identical content if found,
1569 static struct page
*stable_tree_search(struct page
*page
)
1572 struct rb_root
*root
;
1573 struct rb_node
**new;
1574 struct rb_node
*parent
;
1575 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1576 struct stable_node
*page_node
;
1578 page_node
= page_stable_node(page
);
1579 if (page_node
&& page_node
->head
!= &migrate_nodes
) {
1580 /* ksm page forked */
1585 nid
= get_kpfn_nid(page_to_pfn(page
));
1586 root
= root_stable_tree
+ nid
;
1588 new = &root
->rb_node
;
1592 struct page
*tree_page
;
1596 stable_node
= rb_entry(*new, struct stable_node
, node
);
1597 stable_node_any
= NULL
;
1598 tree_page
= chain_prune(&stable_node_dup
, &stable_node
, root
);
1600 * NOTE: stable_node may have been freed by
1601 * chain_prune() if the returned stable_node_dup is
1602 * not NULL. stable_node_dup may have been inserted in
1603 * the rbtree instead as a regular stable_node (in
1604 * order to collapse the stable_node chain if a single
1605 * stable_node dup was found in it). In such case the
1606 * stable_node is overwritten by the calleee to point
1607 * to the stable_node_dup that was collapsed in the
1608 * stable rbtree and stable_node will be equal to
1609 * stable_node_dup like if the chain never existed.
1611 if (!stable_node_dup
) {
1613 * Either all stable_node dups were full in
1614 * this stable_node chain, or this chain was
1615 * empty and should be rb_erased.
1617 stable_node_any
= stable_node_dup_any(stable_node
,
1619 if (!stable_node_any
) {
1620 /* rb_erase just run */
1624 * Take any of the stable_node dups page of
1625 * this stable_node chain to let the tree walk
1626 * continue. All KSM pages belonging to the
1627 * stable_node dups in a stable_node chain
1628 * have the same content and they're
1629 * wrprotected at all times. Any will work
1630 * fine to continue the walk.
1632 tree_page
= get_ksm_page(stable_node_any
,
1633 GET_KSM_PAGE_NOLOCK
);
1635 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1638 * If we walked over a stale stable_node,
1639 * get_ksm_page() will call rb_erase() and it
1640 * may rebalance the tree from under us. So
1641 * restart the search from scratch. Returning
1642 * NULL would be safe too, but we'd generate
1643 * false negative insertions just because some
1644 * stable_node was stale.
1649 ret
= memcmp_pages(page
, tree_page
);
1650 put_page(tree_page
);
1654 new = &parent
->rb_left
;
1656 new = &parent
->rb_right
;
1659 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1661 * Test if the migrated page should be merged
1662 * into a stable node dup. If the mapcount is
1663 * 1 we can migrate it with another KSM page
1664 * without adding it to the chain.
1666 if (page_mapcount(page
) > 1)
1670 if (!stable_node_dup
) {
1672 * If the stable_node is a chain and
1673 * we got a payload match in memcmp
1674 * but we cannot merge the scanned
1675 * page in any of the existing
1676 * stable_node dups because they're
1677 * all full, we need to wait the
1678 * scanned page to find itself a match
1679 * in the unstable tree to create a
1680 * brand new KSM page to add later to
1681 * the dups of this stable_node.
1687 * Lock and unlock the stable_node's page (which
1688 * might already have been migrated) so that page
1689 * migration is sure to notice its raised count.
1690 * It would be more elegant to return stable_node
1691 * than kpage, but that involves more changes.
1693 tree_page
= get_ksm_page(stable_node_dup
,
1694 GET_KSM_PAGE_TRYLOCK
);
1696 if (PTR_ERR(tree_page
) == -EBUSY
)
1697 return ERR_PTR(-EBUSY
);
1699 if (unlikely(!tree_page
))
1701 * The tree may have been rebalanced,
1702 * so re-evaluate parent and new.
1705 unlock_page(tree_page
);
1707 if (get_kpfn_nid(stable_node_dup
->kpfn
) !=
1708 NUMA(stable_node_dup
->nid
)) {
1709 put_page(tree_page
);
1719 list_del(&page_node
->list
);
1720 DO_NUMA(page_node
->nid
= nid
);
1721 rb_link_node(&page_node
->node
, parent
, new);
1722 rb_insert_color(&page_node
->node
, root
);
1724 if (is_page_sharing_candidate(page_node
)) {
1732 * If stable_node was a chain and chain_prune collapsed it,
1733 * stable_node has been updated to be the new regular
1734 * stable_node. A collapse of the chain is indistinguishable
1735 * from the case there was no chain in the stable
1736 * rbtree. Otherwise stable_node is the chain and
1737 * stable_node_dup is the dup to replace.
1739 if (stable_node_dup
== stable_node
) {
1740 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1741 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1742 /* there is no chain */
1744 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1745 list_del(&page_node
->list
);
1746 DO_NUMA(page_node
->nid
= nid
);
1747 rb_replace_node(&stable_node_dup
->node
,
1750 if (is_page_sharing_candidate(page_node
))
1755 rb_erase(&stable_node_dup
->node
, root
);
1759 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1760 __stable_node_dup_del(stable_node_dup
);
1762 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1763 list_del(&page_node
->list
);
1764 DO_NUMA(page_node
->nid
= nid
);
1765 stable_node_chain_add_dup(page_node
, stable_node
);
1766 if (is_page_sharing_candidate(page_node
))
1774 stable_node_dup
->head
= &migrate_nodes
;
1775 list_add(&stable_node_dup
->list
, stable_node_dup
->head
);
1779 /* stable_node_dup could be null if it reached the limit */
1780 if (!stable_node_dup
)
1781 stable_node_dup
= stable_node_any
;
1783 * If stable_node was a chain and chain_prune collapsed it,
1784 * stable_node has been updated to be the new regular
1785 * stable_node. A collapse of the chain is indistinguishable
1786 * from the case there was no chain in the stable
1787 * rbtree. Otherwise stable_node is the chain and
1788 * stable_node_dup is the dup to replace.
1790 if (stable_node_dup
== stable_node
) {
1791 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1792 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1793 /* chain is missing so create it */
1794 stable_node
= alloc_stable_node_chain(stable_node_dup
,
1800 * Add this stable_node dup that was
1801 * migrated to the stable_node chain
1802 * of the current nid for this page
1805 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1806 VM_BUG_ON(!is_stable_node_dup(stable_node_dup
));
1807 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1808 list_del(&page_node
->list
);
1809 DO_NUMA(page_node
->nid
= nid
);
1810 stable_node_chain_add_dup(page_node
, stable_node
);
1815 * stable_tree_insert - insert stable tree node pointing to new ksm page
1816 * into the stable tree.
1818 * This function returns the stable tree node just allocated on success,
1821 static struct stable_node
*stable_tree_insert(struct page
*kpage
)
1825 struct rb_root
*root
;
1826 struct rb_node
**new;
1827 struct rb_node
*parent
;
1828 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1829 bool need_chain
= false;
1831 kpfn
= page_to_pfn(kpage
);
1832 nid
= get_kpfn_nid(kpfn
);
1833 root
= root_stable_tree
+ nid
;
1836 new = &root
->rb_node
;
1839 struct page
*tree_page
;
1843 stable_node
= rb_entry(*new, struct stable_node
, node
);
1844 stable_node_any
= NULL
;
1845 tree_page
= chain(&stable_node_dup
, stable_node
, root
);
1846 if (!stable_node_dup
) {
1848 * Either all stable_node dups were full in
1849 * this stable_node chain, or this chain was
1850 * empty and should be rb_erased.
1852 stable_node_any
= stable_node_dup_any(stable_node
,
1854 if (!stable_node_any
) {
1855 /* rb_erase just run */
1859 * Take any of the stable_node dups page of
1860 * this stable_node chain to let the tree walk
1861 * continue. All KSM pages belonging to the
1862 * stable_node dups in a stable_node chain
1863 * have the same content and they're
1864 * wrprotected at all times. Any will work
1865 * fine to continue the walk.
1867 tree_page
= get_ksm_page(stable_node_any
,
1868 GET_KSM_PAGE_NOLOCK
);
1870 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1873 * If we walked over a stale stable_node,
1874 * get_ksm_page() will call rb_erase() and it
1875 * may rebalance the tree from under us. So
1876 * restart the search from scratch. Returning
1877 * NULL would be safe too, but we'd generate
1878 * false negative insertions just because some
1879 * stable_node was stale.
1884 ret
= memcmp_pages(kpage
, tree_page
);
1885 put_page(tree_page
);
1889 new = &parent
->rb_left
;
1891 new = &parent
->rb_right
;
1898 stable_node_dup
= alloc_stable_node();
1899 if (!stable_node_dup
)
1902 INIT_HLIST_HEAD(&stable_node_dup
->hlist
);
1903 stable_node_dup
->kpfn
= kpfn
;
1904 set_page_stable_node(kpage
, stable_node_dup
);
1905 stable_node_dup
->rmap_hlist_len
= 0;
1906 DO_NUMA(stable_node_dup
->nid
= nid
);
1908 rb_link_node(&stable_node_dup
->node
, parent
, new);
1909 rb_insert_color(&stable_node_dup
->node
, root
);
1911 if (!is_stable_node_chain(stable_node
)) {
1912 struct stable_node
*orig
= stable_node
;
1913 /* chain is missing so create it */
1914 stable_node
= alloc_stable_node_chain(orig
, root
);
1916 free_stable_node(stable_node_dup
);
1920 stable_node_chain_add_dup(stable_node_dup
, stable_node
);
1923 return stable_node_dup
;
1927 * unstable_tree_search_insert - search for identical page,
1928 * else insert rmap_item into the unstable tree.
1930 * This function searches for a page in the unstable tree identical to the
1931 * page currently being scanned; and if no identical page is found in the
1932 * tree, we insert rmap_item as a new object into the unstable tree.
1934 * This function returns pointer to rmap_item found to be identical
1935 * to the currently scanned page, NULL otherwise.
1937 * This function does both searching and inserting, because they share
1938 * the same walking algorithm in an rbtree.
1941 struct rmap_item
*unstable_tree_search_insert(struct rmap_item
*rmap_item
,
1943 struct page
**tree_pagep
)
1945 struct rb_node
**new;
1946 struct rb_root
*root
;
1947 struct rb_node
*parent
= NULL
;
1950 nid
= get_kpfn_nid(page_to_pfn(page
));
1951 root
= root_unstable_tree
+ nid
;
1952 new = &root
->rb_node
;
1955 struct rmap_item
*tree_rmap_item
;
1956 struct page
*tree_page
;
1960 tree_rmap_item
= rb_entry(*new, struct rmap_item
, node
);
1961 tree_page
= get_mergeable_page(tree_rmap_item
);
1966 * Don't substitute a ksm page for a forked page.
1968 if (page
== tree_page
) {
1969 put_page(tree_page
);
1973 ret
= memcmp_pages(page
, tree_page
);
1977 put_page(tree_page
);
1978 new = &parent
->rb_left
;
1979 } else if (ret
> 0) {
1980 put_page(tree_page
);
1981 new = &parent
->rb_right
;
1982 } else if (!ksm_merge_across_nodes
&&
1983 page_to_nid(tree_page
) != nid
) {
1985 * If tree_page has been migrated to another NUMA node,
1986 * it will be flushed out and put in the right unstable
1987 * tree next time: only merge with it when across_nodes.
1989 put_page(tree_page
);
1992 *tree_pagep
= tree_page
;
1993 return tree_rmap_item
;
1997 rmap_item
->address
|= UNSTABLE_FLAG
;
1998 rmap_item
->address
|= (ksm_scan
.seqnr
& SEQNR_MASK
);
1999 DO_NUMA(rmap_item
->nid
= nid
);
2000 rb_link_node(&rmap_item
->node
, parent
, new);
2001 rb_insert_color(&rmap_item
->node
, root
);
2003 ksm_pages_unshared
++;
2008 * stable_tree_append - add another rmap_item to the linked list of
2009 * rmap_items hanging off a given node of the stable tree, all sharing
2010 * the same ksm page.
2012 static void stable_tree_append(struct rmap_item
*rmap_item
,
2013 struct stable_node
*stable_node
,
2014 bool max_page_sharing_bypass
)
2017 * rmap won't find this mapping if we don't insert the
2018 * rmap_item in the right stable_node
2019 * duplicate. page_migration could break later if rmap breaks,
2020 * so we can as well crash here. We really need to check for
2021 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2022 * for other negative values as an undeflow if detected here
2023 * for the first time (and not when decreasing rmap_hlist_len)
2024 * would be sign of memory corruption in the stable_node.
2026 BUG_ON(stable_node
->rmap_hlist_len
< 0);
2028 stable_node
->rmap_hlist_len
++;
2029 if (!max_page_sharing_bypass
)
2030 /* possibly non fatal but unexpected overflow, only warn */
2031 WARN_ON_ONCE(stable_node
->rmap_hlist_len
>
2032 ksm_max_page_sharing
);
2034 rmap_item
->head
= stable_node
;
2035 rmap_item
->address
|= STABLE_FLAG
;
2036 hlist_add_head(&rmap_item
->hlist
, &stable_node
->hlist
);
2038 if (rmap_item
->hlist
.next
)
2039 ksm_pages_sharing
++;
2045 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2046 * if not, compare checksum to previous and if it's the same, see if page can
2047 * be inserted into the unstable tree, or merged with a page already there and
2048 * both transferred to the stable tree.
2050 * @page: the page that we are searching identical page to.
2051 * @rmap_item: the reverse mapping into the virtual address of this page
2053 static void cmp_and_merge_page(struct page
*page
, struct rmap_item
*rmap_item
)
2055 struct mm_struct
*mm
= rmap_item
->mm
;
2056 struct rmap_item
*tree_rmap_item
;
2057 struct page
*tree_page
= NULL
;
2058 struct stable_node
*stable_node
;
2060 unsigned int checksum
;
2062 bool max_page_sharing_bypass
= false;
2064 stable_node
= page_stable_node(page
);
2066 if (stable_node
->head
!= &migrate_nodes
&&
2067 get_kpfn_nid(READ_ONCE(stable_node
->kpfn
)) !=
2068 NUMA(stable_node
->nid
)) {
2069 stable_node_dup_del(stable_node
);
2070 stable_node
->head
= &migrate_nodes
;
2071 list_add(&stable_node
->list
, stable_node
->head
);
2073 if (stable_node
->head
!= &migrate_nodes
&&
2074 rmap_item
->head
== stable_node
)
2077 * If it's a KSM fork, allow it to go over the sharing limit
2080 if (!is_page_sharing_candidate(stable_node
))
2081 max_page_sharing_bypass
= true;
2084 /* We first start with searching the page inside the stable tree */
2085 kpage
= stable_tree_search(page
);
2086 if (kpage
== page
&& rmap_item
->head
== stable_node
) {
2091 remove_rmap_item_from_tree(rmap_item
);
2094 if (PTR_ERR(kpage
) == -EBUSY
)
2097 err
= try_to_merge_with_ksm_page(rmap_item
, page
, kpage
);
2100 * The page was successfully merged:
2101 * add its rmap_item to the stable tree.
2104 stable_tree_append(rmap_item
, page_stable_node(kpage
),
2105 max_page_sharing_bypass
);
2113 * If the hash value of the page has changed from the last time
2114 * we calculated it, this page is changing frequently: therefore we
2115 * don't want to insert it in the unstable tree, and we don't want
2116 * to waste our time searching for something identical to it there.
2118 checksum
= calc_checksum(page
);
2119 if (rmap_item
->oldchecksum
!= checksum
) {
2120 rmap_item
->oldchecksum
= checksum
;
2125 * Same checksum as an empty page. We attempt to merge it with the
2126 * appropriate zero page if the user enabled this via sysfs.
2128 if (ksm_use_zero_pages
&& (checksum
== zero_checksum
)) {
2129 struct vm_area_struct
*vma
;
2131 down_read(&mm
->mmap_sem
);
2132 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
2133 err
= try_to_merge_one_page(vma
, page
,
2134 ZERO_PAGE(rmap_item
->address
));
2135 up_read(&mm
->mmap_sem
);
2137 * In case of failure, the page was not really empty, so we
2138 * need to continue. Otherwise we're done.
2144 unstable_tree_search_insert(rmap_item
, page
, &tree_page
);
2145 if (tree_rmap_item
) {
2148 kpage
= try_to_merge_two_pages(rmap_item
, page
,
2149 tree_rmap_item
, tree_page
);
2151 * If both pages we tried to merge belong to the same compound
2152 * page, then we actually ended up increasing the reference
2153 * count of the same compound page twice, and split_huge_page
2155 * Here we set a flag if that happened, and we use it later to
2156 * try split_huge_page again. Since we call put_page right
2157 * afterwards, the reference count will be correct and
2158 * split_huge_page should succeed.
2160 split
= PageTransCompound(page
)
2161 && compound_head(page
) == compound_head(tree_page
);
2162 put_page(tree_page
);
2165 * The pages were successfully merged: insert new
2166 * node in the stable tree and add both rmap_items.
2169 stable_node
= stable_tree_insert(kpage
);
2171 stable_tree_append(tree_rmap_item
, stable_node
,
2173 stable_tree_append(rmap_item
, stable_node
,
2179 * If we fail to insert the page into the stable tree,
2180 * we will have 2 virtual addresses that are pointing
2181 * to a ksm page left outside the stable tree,
2182 * in which case we need to break_cow on both.
2185 break_cow(tree_rmap_item
);
2186 break_cow(rmap_item
);
2190 * We are here if we tried to merge two pages and
2191 * failed because they both belonged to the same
2192 * compound page. We will split the page now, but no
2193 * merging will take place.
2194 * We do not want to add the cost of a full lock; if
2195 * the page is locked, it is better to skip it and
2196 * perhaps try again later.
2198 if (!trylock_page(page
))
2200 split_huge_page(page
);
2206 static struct rmap_item
*get_next_rmap_item(struct mm_slot
*mm_slot
,
2207 struct rmap_item
**rmap_list
,
2210 struct rmap_item
*rmap_item
;
2212 while (*rmap_list
) {
2213 rmap_item
= *rmap_list
;
2214 if ((rmap_item
->address
& PAGE_MASK
) == addr
)
2216 if (rmap_item
->address
> addr
)
2218 *rmap_list
= rmap_item
->rmap_list
;
2219 remove_rmap_item_from_tree(rmap_item
);
2220 free_rmap_item(rmap_item
);
2223 rmap_item
= alloc_rmap_item();
2225 /* It has already been zeroed */
2226 rmap_item
->mm
= mm_slot
->mm
;
2227 rmap_item
->address
= addr
;
2228 rmap_item
->rmap_list
= *rmap_list
;
2229 *rmap_list
= rmap_item
;
2234 static struct rmap_item
*scan_get_next_rmap_item(struct page
**page
)
2236 struct mm_struct
*mm
;
2237 struct mm_slot
*slot
;
2238 struct vm_area_struct
*vma
;
2239 struct rmap_item
*rmap_item
;
2242 if (list_empty(&ksm_mm_head
.mm_list
))
2245 slot
= ksm_scan
.mm_slot
;
2246 if (slot
== &ksm_mm_head
) {
2248 * A number of pages can hang around indefinitely on per-cpu
2249 * pagevecs, raised page count preventing write_protect_page
2250 * from merging them. Though it doesn't really matter much,
2251 * it is puzzling to see some stuck in pages_volatile until
2252 * other activity jostles them out, and they also prevented
2253 * LTP's KSM test from succeeding deterministically; so drain
2254 * them here (here rather than on entry to ksm_do_scan(),
2255 * so we don't IPI too often when pages_to_scan is set low).
2257 lru_add_drain_all();
2260 * Whereas stale stable_nodes on the stable_tree itself
2261 * get pruned in the regular course of stable_tree_search(),
2262 * those moved out to the migrate_nodes list can accumulate:
2263 * so prune them once before each full scan.
2265 if (!ksm_merge_across_nodes
) {
2266 struct stable_node
*stable_node
, *next
;
2269 list_for_each_entry_safe(stable_node
, next
,
2270 &migrate_nodes
, list
) {
2271 page
= get_ksm_page(stable_node
,
2272 GET_KSM_PAGE_NOLOCK
);
2279 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++)
2280 root_unstable_tree
[nid
] = RB_ROOT
;
2282 spin_lock(&ksm_mmlist_lock
);
2283 slot
= list_entry(slot
->mm_list
.next
, struct mm_slot
, mm_list
);
2284 ksm_scan
.mm_slot
= slot
;
2285 spin_unlock(&ksm_mmlist_lock
);
2287 * Although we tested list_empty() above, a racing __ksm_exit
2288 * of the last mm on the list may have removed it since then.
2290 if (slot
== &ksm_mm_head
)
2293 ksm_scan
.address
= 0;
2294 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2298 down_read(&mm
->mmap_sem
);
2299 if (ksm_test_exit(mm
))
2302 vma
= find_vma(mm
, ksm_scan
.address
);
2304 for (; vma
; vma
= vma
->vm_next
) {
2305 if (!(vma
->vm_flags
& VM_MERGEABLE
))
2307 if (ksm_scan
.address
< vma
->vm_start
)
2308 ksm_scan
.address
= vma
->vm_start
;
2310 ksm_scan
.address
= vma
->vm_end
;
2312 while (ksm_scan
.address
< vma
->vm_end
) {
2313 if (ksm_test_exit(mm
))
2315 *page
= follow_page(vma
, ksm_scan
.address
, FOLL_GET
);
2316 if (IS_ERR_OR_NULL(*page
)) {
2317 ksm_scan
.address
+= PAGE_SIZE
;
2321 if (PageAnon(*page
)) {
2322 flush_anon_page(vma
, *page
, ksm_scan
.address
);
2323 flush_dcache_page(*page
);
2324 rmap_item
= get_next_rmap_item(slot
,
2325 ksm_scan
.rmap_list
, ksm_scan
.address
);
2327 ksm_scan
.rmap_list
=
2328 &rmap_item
->rmap_list
;
2329 ksm_scan
.address
+= PAGE_SIZE
;
2332 up_read(&mm
->mmap_sem
);
2336 ksm_scan
.address
+= PAGE_SIZE
;
2341 if (ksm_test_exit(mm
)) {
2342 ksm_scan
.address
= 0;
2343 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2346 * Nuke all the rmap_items that are above this current rmap:
2347 * because there were no VM_MERGEABLE vmas with such addresses.
2349 remove_trailing_rmap_items(slot
, ksm_scan
.rmap_list
);
2351 spin_lock(&ksm_mmlist_lock
);
2352 ksm_scan
.mm_slot
= list_entry(slot
->mm_list
.next
,
2353 struct mm_slot
, mm_list
);
2354 if (ksm_scan
.address
== 0) {
2356 * We've completed a full scan of all vmas, holding mmap_sem
2357 * throughout, and found no VM_MERGEABLE: so do the same as
2358 * __ksm_exit does to remove this mm from all our lists now.
2359 * This applies either when cleaning up after __ksm_exit
2360 * (but beware: we can reach here even before __ksm_exit),
2361 * or when all VM_MERGEABLE areas have been unmapped (and
2362 * mmap_sem then protects against race with MADV_MERGEABLE).
2364 hash_del(&slot
->link
);
2365 list_del(&slot
->mm_list
);
2366 spin_unlock(&ksm_mmlist_lock
);
2369 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2370 up_read(&mm
->mmap_sem
);
2373 up_read(&mm
->mmap_sem
);
2375 * up_read(&mm->mmap_sem) first because after
2376 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2377 * already have been freed under us by __ksm_exit()
2378 * because the "mm_slot" is still hashed and
2379 * ksm_scan.mm_slot doesn't point to it anymore.
2381 spin_unlock(&ksm_mmlist_lock
);
2384 /* Repeat until we've completed scanning the whole list */
2385 slot
= ksm_scan
.mm_slot
;
2386 if (slot
!= &ksm_mm_head
)
2394 * ksm_do_scan - the ksm scanner main worker function.
2395 * @scan_npages: number of pages we want to scan before we return.
2397 static void ksm_do_scan(unsigned int scan_npages
)
2399 struct rmap_item
*rmap_item
;
2400 struct page
*uninitialized_var(page
);
2402 while (scan_npages
-- && likely(!freezing(current
))) {
2404 rmap_item
= scan_get_next_rmap_item(&page
);
2407 cmp_and_merge_page(page
, rmap_item
);
2412 static int ksmd_should_run(void)
2414 return (ksm_run
& KSM_RUN_MERGE
) && !list_empty(&ksm_mm_head
.mm_list
);
2417 static int ksm_scan_thread(void *nothing
)
2419 unsigned int sleep_ms
;
2422 set_user_nice(current
, 5);
2424 while (!kthread_should_stop()) {
2425 mutex_lock(&ksm_thread_mutex
);
2426 wait_while_offlining();
2427 if (ksmd_should_run())
2428 ksm_do_scan(ksm_thread_pages_to_scan
);
2429 mutex_unlock(&ksm_thread_mutex
);
2433 if (ksmd_should_run()) {
2434 sleep_ms
= READ_ONCE(ksm_thread_sleep_millisecs
);
2435 wait_event_interruptible_timeout(ksm_iter_wait
,
2436 sleep_ms
!= READ_ONCE(ksm_thread_sleep_millisecs
),
2437 msecs_to_jiffies(sleep_ms
));
2439 wait_event_freezable(ksm_thread_wait
,
2440 ksmd_should_run() || kthread_should_stop());
2446 int ksm_madvise(struct vm_area_struct
*vma
, unsigned long start
,
2447 unsigned long end
, int advice
, unsigned long *vm_flags
)
2449 struct mm_struct
*mm
= vma
->vm_mm
;
2453 case MADV_MERGEABLE
:
2455 * Be somewhat over-protective for now!
2457 if (*vm_flags
& (VM_MERGEABLE
| VM_SHARED
| VM_MAYSHARE
|
2458 VM_PFNMAP
| VM_IO
| VM_DONTEXPAND
|
2459 VM_HUGETLB
| VM_MIXEDMAP
))
2460 return 0; /* just ignore the advice */
2462 if (vma_is_dax(vma
))
2466 if (*vm_flags
& VM_SAO
)
2470 if (*vm_flags
& VM_SPARC_ADI
)
2474 if (!test_bit(MMF_VM_MERGEABLE
, &mm
->flags
)) {
2475 err
= __ksm_enter(mm
);
2480 *vm_flags
|= VM_MERGEABLE
;
2483 case MADV_UNMERGEABLE
:
2484 if (!(*vm_flags
& VM_MERGEABLE
))
2485 return 0; /* just ignore the advice */
2487 if (vma
->anon_vma
) {
2488 err
= unmerge_ksm_pages(vma
, start
, end
);
2493 *vm_flags
&= ~VM_MERGEABLE
;
2500 int __ksm_enter(struct mm_struct
*mm
)
2502 struct mm_slot
*mm_slot
;
2505 mm_slot
= alloc_mm_slot();
2509 /* Check ksm_run too? Would need tighter locking */
2510 needs_wakeup
= list_empty(&ksm_mm_head
.mm_list
);
2512 spin_lock(&ksm_mmlist_lock
);
2513 insert_to_mm_slots_hash(mm
, mm_slot
);
2515 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2516 * insert just behind the scanning cursor, to let the area settle
2517 * down a little; when fork is followed by immediate exec, we don't
2518 * want ksmd to waste time setting up and tearing down an rmap_list.
2520 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2521 * scanning cursor, otherwise KSM pages in newly forked mms will be
2522 * missed: then we might as well insert at the end of the list.
2524 if (ksm_run
& KSM_RUN_UNMERGE
)
2525 list_add_tail(&mm_slot
->mm_list
, &ksm_mm_head
.mm_list
);
2527 list_add_tail(&mm_slot
->mm_list
, &ksm_scan
.mm_slot
->mm_list
);
2528 spin_unlock(&ksm_mmlist_lock
);
2530 set_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2534 wake_up_interruptible(&ksm_thread_wait
);
2539 void __ksm_exit(struct mm_struct
*mm
)
2541 struct mm_slot
*mm_slot
;
2542 int easy_to_free
= 0;
2545 * This process is exiting: if it's straightforward (as is the
2546 * case when ksmd was never running), free mm_slot immediately.
2547 * But if it's at the cursor or has rmap_items linked to it, use
2548 * mmap_sem to synchronize with any break_cows before pagetables
2549 * are freed, and leave the mm_slot on the list for ksmd to free.
2550 * Beware: ksm may already have noticed it exiting and freed the slot.
2553 spin_lock(&ksm_mmlist_lock
);
2554 mm_slot
= get_mm_slot(mm
);
2555 if (mm_slot
&& ksm_scan
.mm_slot
!= mm_slot
) {
2556 if (!mm_slot
->rmap_list
) {
2557 hash_del(&mm_slot
->link
);
2558 list_del(&mm_slot
->mm_list
);
2561 list_move(&mm_slot
->mm_list
,
2562 &ksm_scan
.mm_slot
->mm_list
);
2565 spin_unlock(&ksm_mmlist_lock
);
2568 free_mm_slot(mm_slot
);
2569 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2571 } else if (mm_slot
) {
2572 down_write(&mm
->mmap_sem
);
2573 up_write(&mm
->mmap_sem
);
2577 struct page
*ksm_might_need_to_copy(struct page
*page
,
2578 struct vm_area_struct
*vma
, unsigned long address
)
2580 struct anon_vma
*anon_vma
= page_anon_vma(page
);
2581 struct page
*new_page
;
2583 if (PageKsm(page
)) {
2584 if (page_stable_node(page
) &&
2585 !(ksm_run
& KSM_RUN_UNMERGE
))
2586 return page
; /* no need to copy it */
2587 } else if (!anon_vma
) {
2588 return page
; /* no need to copy it */
2589 } else if (anon_vma
->root
== vma
->anon_vma
->root
&&
2590 page
->index
== linear_page_index(vma
, address
)) {
2591 return page
; /* still no need to copy it */
2593 if (!PageUptodate(page
))
2594 return page
; /* let do_swap_page report the error */
2596 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2598 copy_user_highpage(new_page
, page
, address
, vma
);
2600 SetPageDirty(new_page
);
2601 __SetPageUptodate(new_page
);
2602 __SetPageLocked(new_page
);
2608 void rmap_walk_ksm(struct page
*page
, struct rmap_walk_control
*rwc
)
2610 struct stable_node
*stable_node
;
2611 struct rmap_item
*rmap_item
;
2612 int search_new_forks
= 0;
2614 VM_BUG_ON_PAGE(!PageKsm(page
), page
);
2617 * Rely on the page lock to protect against concurrent modifications
2618 * to that page's node of the stable tree.
2620 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2622 stable_node
= page_stable_node(page
);
2626 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
2627 struct anon_vma
*anon_vma
= rmap_item
->anon_vma
;
2628 struct anon_vma_chain
*vmac
;
2629 struct vm_area_struct
*vma
;
2632 anon_vma_lock_read(anon_vma
);
2633 anon_vma_interval_tree_foreach(vmac
, &anon_vma
->rb_root
,
2640 /* Ignore the stable/unstable/sqnr flags */
2641 addr
= rmap_item
->address
& ~KSM_FLAG_MASK
;
2643 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2646 * Initially we examine only the vma which covers this
2647 * rmap_item; but later, if there is still work to do,
2648 * we examine covering vmas in other mms: in case they
2649 * were forked from the original since ksmd passed.
2651 if ((rmap_item
->mm
== vma
->vm_mm
) == search_new_forks
)
2654 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
2657 if (!rwc
->rmap_one(page
, vma
, addr
, rwc
->arg
)) {
2658 anon_vma_unlock_read(anon_vma
);
2661 if (rwc
->done
&& rwc
->done(page
)) {
2662 anon_vma_unlock_read(anon_vma
);
2666 anon_vma_unlock_read(anon_vma
);
2668 if (!search_new_forks
++)
2672 bool reuse_ksm_page(struct page
*page
,
2673 struct vm_area_struct
*vma
,
2674 unsigned long address
)
2676 #ifdef CONFIG_DEBUG_VM
2677 if (WARN_ON(is_zero_pfn(page_to_pfn(page
))) ||
2678 WARN_ON(!page_mapped(page
)) ||
2679 WARN_ON(!PageLocked(page
))) {
2680 dump_page(page
, "reuse_ksm_page");
2685 if (PageSwapCache(page
) || !page_stable_node(page
))
2687 /* Prohibit parallel get_ksm_page() */
2688 if (!page_ref_freeze(page
, 1))
2691 page_move_anon_rmap(page
, vma
);
2692 page
->index
= linear_page_index(vma
, address
);
2693 page_ref_unfreeze(page
, 1);
2697 #ifdef CONFIG_MIGRATION
2698 void ksm_migrate_page(struct page
*newpage
, struct page
*oldpage
)
2700 struct stable_node
*stable_node
;
2702 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
2703 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
2704 VM_BUG_ON_PAGE(newpage
->mapping
!= oldpage
->mapping
, newpage
);
2706 stable_node
= page_stable_node(newpage
);
2708 VM_BUG_ON_PAGE(stable_node
->kpfn
!= page_to_pfn(oldpage
), oldpage
);
2709 stable_node
->kpfn
= page_to_pfn(newpage
);
2711 * newpage->mapping was set in advance; now we need smp_wmb()
2712 * to make sure that the new stable_node->kpfn is visible
2713 * to get_ksm_page() before it can see that oldpage->mapping
2714 * has gone stale (or that PageSwapCache has been cleared).
2717 set_page_stable_node(oldpage
, NULL
);
2720 #endif /* CONFIG_MIGRATION */
2722 #ifdef CONFIG_MEMORY_HOTREMOVE
2723 static void wait_while_offlining(void)
2725 while (ksm_run
& KSM_RUN_OFFLINE
) {
2726 mutex_unlock(&ksm_thread_mutex
);
2727 wait_on_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
),
2728 TASK_UNINTERRUPTIBLE
);
2729 mutex_lock(&ksm_thread_mutex
);
2733 static bool stable_node_dup_remove_range(struct stable_node
*stable_node
,
2734 unsigned long start_pfn
,
2735 unsigned long end_pfn
)
2737 if (stable_node
->kpfn
>= start_pfn
&&
2738 stable_node
->kpfn
< end_pfn
) {
2740 * Don't get_ksm_page, page has already gone:
2741 * which is why we keep kpfn instead of page*
2743 remove_node_from_stable_tree(stable_node
);
2749 static bool stable_node_chain_remove_range(struct stable_node
*stable_node
,
2750 unsigned long start_pfn
,
2751 unsigned long end_pfn
,
2752 struct rb_root
*root
)
2754 struct stable_node
*dup
;
2755 struct hlist_node
*hlist_safe
;
2757 if (!is_stable_node_chain(stable_node
)) {
2758 VM_BUG_ON(is_stable_node_dup(stable_node
));
2759 return stable_node_dup_remove_range(stable_node
, start_pfn
,
2763 hlist_for_each_entry_safe(dup
, hlist_safe
,
2764 &stable_node
->hlist
, hlist_dup
) {
2765 VM_BUG_ON(!is_stable_node_dup(dup
));
2766 stable_node_dup_remove_range(dup
, start_pfn
, end_pfn
);
2768 if (hlist_empty(&stable_node
->hlist
)) {
2769 free_stable_node_chain(stable_node
, root
);
2770 return true; /* notify caller that tree was rebalanced */
2775 static void ksm_check_stable_tree(unsigned long start_pfn
,
2776 unsigned long end_pfn
)
2778 struct stable_node
*stable_node
, *next
;
2779 struct rb_node
*node
;
2782 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
2783 node
= rb_first(root_stable_tree
+ nid
);
2785 stable_node
= rb_entry(node
, struct stable_node
, node
);
2786 if (stable_node_chain_remove_range(stable_node
,
2790 node
= rb_first(root_stable_tree
+ nid
);
2792 node
= rb_next(node
);
2796 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
2797 if (stable_node
->kpfn
>= start_pfn
&&
2798 stable_node
->kpfn
< end_pfn
)
2799 remove_node_from_stable_tree(stable_node
);
2804 static int ksm_memory_callback(struct notifier_block
*self
,
2805 unsigned long action
, void *arg
)
2807 struct memory_notify
*mn
= arg
;
2810 case MEM_GOING_OFFLINE
:
2812 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2813 * and remove_all_stable_nodes() while memory is going offline:
2814 * it is unsafe for them to touch the stable tree at this time.
2815 * But unmerge_ksm_pages(), rmap lookups and other entry points
2816 * which do not need the ksm_thread_mutex are all safe.
2818 mutex_lock(&ksm_thread_mutex
);
2819 ksm_run
|= KSM_RUN_OFFLINE
;
2820 mutex_unlock(&ksm_thread_mutex
);
2825 * Most of the work is done by page migration; but there might
2826 * be a few stable_nodes left over, still pointing to struct
2827 * pages which have been offlined: prune those from the tree,
2828 * otherwise get_ksm_page() might later try to access a
2829 * non-existent struct page.
2831 ksm_check_stable_tree(mn
->start_pfn
,
2832 mn
->start_pfn
+ mn
->nr_pages
);
2835 case MEM_CANCEL_OFFLINE
:
2836 mutex_lock(&ksm_thread_mutex
);
2837 ksm_run
&= ~KSM_RUN_OFFLINE
;
2838 mutex_unlock(&ksm_thread_mutex
);
2840 smp_mb(); /* wake_up_bit advises this */
2841 wake_up_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
));
2847 static void wait_while_offlining(void)
2850 #endif /* CONFIG_MEMORY_HOTREMOVE */
2854 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2857 #define KSM_ATTR_RO(_name) \
2858 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2859 #define KSM_ATTR(_name) \
2860 static struct kobj_attribute _name##_attr = \
2861 __ATTR(_name, 0644, _name##_show, _name##_store)
2863 static ssize_t
sleep_millisecs_show(struct kobject
*kobj
,
2864 struct kobj_attribute
*attr
, char *buf
)
2866 return sprintf(buf
, "%u\n", ksm_thread_sleep_millisecs
);
2869 static ssize_t
sleep_millisecs_store(struct kobject
*kobj
,
2870 struct kobj_attribute
*attr
,
2871 const char *buf
, size_t count
)
2873 unsigned long msecs
;
2876 err
= kstrtoul(buf
, 10, &msecs
);
2877 if (err
|| msecs
> UINT_MAX
)
2880 ksm_thread_sleep_millisecs
= msecs
;
2881 wake_up_interruptible(&ksm_iter_wait
);
2885 KSM_ATTR(sleep_millisecs
);
2887 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
2888 struct kobj_attribute
*attr
, char *buf
)
2890 return sprintf(buf
, "%u\n", ksm_thread_pages_to_scan
);
2893 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
2894 struct kobj_attribute
*attr
,
2895 const char *buf
, size_t count
)
2898 unsigned long nr_pages
;
2900 err
= kstrtoul(buf
, 10, &nr_pages
);
2901 if (err
|| nr_pages
> UINT_MAX
)
2904 ksm_thread_pages_to_scan
= nr_pages
;
2908 KSM_ATTR(pages_to_scan
);
2910 static ssize_t
run_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2913 return sprintf(buf
, "%lu\n", ksm_run
);
2916 static ssize_t
run_store(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2917 const char *buf
, size_t count
)
2920 unsigned long flags
;
2922 err
= kstrtoul(buf
, 10, &flags
);
2923 if (err
|| flags
> UINT_MAX
)
2925 if (flags
> KSM_RUN_UNMERGE
)
2929 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2930 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2931 * breaking COW to free the pages_shared (but leaves mm_slots
2932 * on the list for when ksmd may be set running again).
2935 mutex_lock(&ksm_thread_mutex
);
2936 wait_while_offlining();
2937 if (ksm_run
!= flags
) {
2939 if (flags
& KSM_RUN_UNMERGE
) {
2940 set_current_oom_origin();
2941 err
= unmerge_and_remove_all_rmap_items();
2942 clear_current_oom_origin();
2944 ksm_run
= KSM_RUN_STOP
;
2949 mutex_unlock(&ksm_thread_mutex
);
2951 if (flags
& KSM_RUN_MERGE
)
2952 wake_up_interruptible(&ksm_thread_wait
);
2959 static ssize_t
merge_across_nodes_show(struct kobject
*kobj
,
2960 struct kobj_attribute
*attr
, char *buf
)
2962 return sprintf(buf
, "%u\n", ksm_merge_across_nodes
);
2965 static ssize_t
merge_across_nodes_store(struct kobject
*kobj
,
2966 struct kobj_attribute
*attr
,
2967 const char *buf
, size_t count
)
2972 err
= kstrtoul(buf
, 10, &knob
);
2978 mutex_lock(&ksm_thread_mutex
);
2979 wait_while_offlining();
2980 if (ksm_merge_across_nodes
!= knob
) {
2981 if (ksm_pages_shared
|| remove_all_stable_nodes())
2983 else if (root_stable_tree
== one_stable_tree
) {
2984 struct rb_root
*buf
;
2986 * This is the first time that we switch away from the
2987 * default of merging across nodes: must now allocate
2988 * a buffer to hold as many roots as may be needed.
2989 * Allocate stable and unstable together:
2990 * MAXSMP NODES_SHIFT 10 will use 16kB.
2992 buf
= kcalloc(nr_node_ids
+ nr_node_ids
, sizeof(*buf
),
2994 /* Let us assume that RB_ROOT is NULL is zero */
2998 root_stable_tree
= buf
;
2999 root_unstable_tree
= buf
+ nr_node_ids
;
3000 /* Stable tree is empty but not the unstable */
3001 root_unstable_tree
[0] = one_unstable_tree
[0];
3005 ksm_merge_across_nodes
= knob
;
3006 ksm_nr_node_ids
= knob
? 1 : nr_node_ids
;
3009 mutex_unlock(&ksm_thread_mutex
);
3011 return err
? err
: count
;
3013 KSM_ATTR(merge_across_nodes
);
3016 static ssize_t
use_zero_pages_show(struct kobject
*kobj
,
3017 struct kobj_attribute
*attr
, char *buf
)
3019 return sprintf(buf
, "%u\n", ksm_use_zero_pages
);
3021 static ssize_t
use_zero_pages_store(struct kobject
*kobj
,
3022 struct kobj_attribute
*attr
,
3023 const char *buf
, size_t count
)
3028 err
= kstrtobool(buf
, &value
);
3032 ksm_use_zero_pages
= value
;
3036 KSM_ATTR(use_zero_pages
);
3038 static ssize_t
max_page_sharing_show(struct kobject
*kobj
,
3039 struct kobj_attribute
*attr
, char *buf
)
3041 return sprintf(buf
, "%u\n", ksm_max_page_sharing
);
3044 static ssize_t
max_page_sharing_store(struct kobject
*kobj
,
3045 struct kobj_attribute
*attr
,
3046 const char *buf
, size_t count
)
3051 err
= kstrtoint(buf
, 10, &knob
);
3055 * When a KSM page is created it is shared by 2 mappings. This
3056 * being a signed comparison, it implicitly verifies it's not
3062 if (READ_ONCE(ksm_max_page_sharing
) == knob
)
3065 mutex_lock(&ksm_thread_mutex
);
3066 wait_while_offlining();
3067 if (ksm_max_page_sharing
!= knob
) {
3068 if (ksm_pages_shared
|| remove_all_stable_nodes())
3071 ksm_max_page_sharing
= knob
;
3073 mutex_unlock(&ksm_thread_mutex
);
3075 return err
? err
: count
;
3077 KSM_ATTR(max_page_sharing
);
3079 static ssize_t
pages_shared_show(struct kobject
*kobj
,
3080 struct kobj_attribute
*attr
, char *buf
)
3082 return sprintf(buf
, "%lu\n", ksm_pages_shared
);
3084 KSM_ATTR_RO(pages_shared
);
3086 static ssize_t
pages_sharing_show(struct kobject
*kobj
,
3087 struct kobj_attribute
*attr
, char *buf
)
3089 return sprintf(buf
, "%lu\n", ksm_pages_sharing
);
3091 KSM_ATTR_RO(pages_sharing
);
3093 static ssize_t
pages_unshared_show(struct kobject
*kobj
,
3094 struct kobj_attribute
*attr
, char *buf
)
3096 return sprintf(buf
, "%lu\n", ksm_pages_unshared
);
3098 KSM_ATTR_RO(pages_unshared
);
3100 static ssize_t
pages_volatile_show(struct kobject
*kobj
,
3101 struct kobj_attribute
*attr
, char *buf
)
3103 long ksm_pages_volatile
;
3105 ksm_pages_volatile
= ksm_rmap_items
- ksm_pages_shared
3106 - ksm_pages_sharing
- ksm_pages_unshared
;
3108 * It was not worth any locking to calculate that statistic,
3109 * but it might therefore sometimes be negative: conceal that.
3111 if (ksm_pages_volatile
< 0)
3112 ksm_pages_volatile
= 0;
3113 return sprintf(buf
, "%ld\n", ksm_pages_volatile
);
3115 KSM_ATTR_RO(pages_volatile
);
3117 static ssize_t
stable_node_dups_show(struct kobject
*kobj
,
3118 struct kobj_attribute
*attr
, char *buf
)
3120 return sprintf(buf
, "%lu\n", ksm_stable_node_dups
);
3122 KSM_ATTR_RO(stable_node_dups
);
3124 static ssize_t
stable_node_chains_show(struct kobject
*kobj
,
3125 struct kobj_attribute
*attr
, char *buf
)
3127 return sprintf(buf
, "%lu\n", ksm_stable_node_chains
);
3129 KSM_ATTR_RO(stable_node_chains
);
3132 stable_node_chains_prune_millisecs_show(struct kobject
*kobj
,
3133 struct kobj_attribute
*attr
,
3136 return sprintf(buf
, "%u\n", ksm_stable_node_chains_prune_millisecs
);
3140 stable_node_chains_prune_millisecs_store(struct kobject
*kobj
,
3141 struct kobj_attribute
*attr
,
3142 const char *buf
, size_t count
)
3144 unsigned long msecs
;
3147 err
= kstrtoul(buf
, 10, &msecs
);
3148 if (err
|| msecs
> UINT_MAX
)
3151 ksm_stable_node_chains_prune_millisecs
= msecs
;
3155 KSM_ATTR(stable_node_chains_prune_millisecs
);
3157 static ssize_t
full_scans_show(struct kobject
*kobj
,
3158 struct kobj_attribute
*attr
, char *buf
)
3160 return sprintf(buf
, "%lu\n", ksm_scan
.seqnr
);
3162 KSM_ATTR_RO(full_scans
);
3164 static struct attribute
*ksm_attrs
[] = {
3165 &sleep_millisecs_attr
.attr
,
3166 &pages_to_scan_attr
.attr
,
3168 &pages_shared_attr
.attr
,
3169 &pages_sharing_attr
.attr
,
3170 &pages_unshared_attr
.attr
,
3171 &pages_volatile_attr
.attr
,
3172 &full_scans_attr
.attr
,
3174 &merge_across_nodes_attr
.attr
,
3176 &max_page_sharing_attr
.attr
,
3177 &stable_node_chains_attr
.attr
,
3178 &stable_node_dups_attr
.attr
,
3179 &stable_node_chains_prune_millisecs_attr
.attr
,
3180 &use_zero_pages_attr
.attr
,
3184 static const struct attribute_group ksm_attr_group
= {
3188 #endif /* CONFIG_SYSFS */
3190 static int __init
ksm_init(void)
3192 struct task_struct
*ksm_thread
;
3195 /* The correct value depends on page size and endianness */
3196 zero_checksum
= calc_checksum(ZERO_PAGE(0));
3197 /* Default to false for backwards compatibility */
3198 ksm_use_zero_pages
= false;
3200 err
= ksm_slab_init();
3204 ksm_thread
= kthread_run(ksm_scan_thread
, NULL
, "ksmd");
3205 if (IS_ERR(ksm_thread
)) {
3206 pr_err("ksm: creating kthread failed\n");
3207 err
= PTR_ERR(ksm_thread
);
3212 err
= sysfs_create_group(mm_kobj
, &ksm_attr_group
);
3214 pr_err("ksm: register sysfs failed\n");
3215 kthread_stop(ksm_thread
);
3219 ksm_run
= KSM_RUN_MERGE
; /* no way for user to start it */
3221 #endif /* CONFIG_SYSFS */
3223 #ifdef CONFIG_MEMORY_HOTREMOVE
3224 /* There is no significance to this priority 100 */
3225 hotplug_memory_notifier(ksm_memory_callback
, 100);
3234 subsys_initcall(ksm_init
);