Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6/linux-2.6-arm.git] / mm / page_alloc.c
blob8e3bc949ebcca27fb999022e65cde28ff2bdc710
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION (8)
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 int _node_numa_mem_[MAX_NUMNODES];
100 #endif
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
107 DEFINE_MUTEX(pcpu_drain_mutex);
108 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
116 * Array of node states.
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
128 #endif /* NUMA */
130 EXPORT_SYMBOL(node_states);
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
141 * A cached value of the page's pageblock's migratetype, used when the page is
142 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
143 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
144 * Also the migratetype set in the page does not necessarily match the pcplist
145 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
146 * other index - this ensures that it will be put on the correct CMA freelist.
148 static inline int get_pcppage_migratetype(struct page *page)
150 return page->index;
153 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
155 page->index = migratetype;
158 #ifdef CONFIG_PM_SLEEP
160 * The following functions are used by the suspend/hibernate code to temporarily
161 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
162 * while devices are suspended. To avoid races with the suspend/hibernate code,
163 * they should always be called with system_transition_mutex held
164 * (gfp_allowed_mask also should only be modified with system_transition_mutex
165 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
166 * with that modification).
169 static gfp_t saved_gfp_mask;
171 void pm_restore_gfp_mask(void)
173 WARN_ON(!mutex_is_locked(&system_transition_mutex));
174 if (saved_gfp_mask) {
175 gfp_allowed_mask = saved_gfp_mask;
176 saved_gfp_mask = 0;
180 void pm_restrict_gfp_mask(void)
182 WARN_ON(!mutex_is_locked(&system_transition_mutex));
183 WARN_ON(saved_gfp_mask);
184 saved_gfp_mask = gfp_allowed_mask;
185 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
188 bool pm_suspended_storage(void)
190 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
191 return false;
192 return true;
194 #endif /* CONFIG_PM_SLEEP */
196 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
197 unsigned int pageblock_order __read_mostly;
198 #endif
200 static void __free_pages_ok(struct page *page, unsigned int order);
203 * results with 256, 32 in the lowmem_reserve sysctl:
204 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
205 * 1G machine -> (16M dma, 784M normal, 224M high)
206 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
207 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
208 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
210 * TBD: should special case ZONE_DMA32 machines here - in those we normally
211 * don't need any ZONE_NORMAL reservation
213 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
214 #ifdef CONFIG_ZONE_DMA
215 [ZONE_DMA] = 256,
216 #endif
217 #ifdef CONFIG_ZONE_DMA32
218 [ZONE_DMA32] = 256,
219 #endif
220 [ZONE_NORMAL] = 32,
221 #ifdef CONFIG_HIGHMEM
222 [ZONE_HIGHMEM] = 0,
223 #endif
224 [ZONE_MOVABLE] = 0,
227 EXPORT_SYMBOL(totalram_pages);
229 static char * const zone_names[MAX_NR_ZONES] = {
230 #ifdef CONFIG_ZONE_DMA
231 "DMA",
232 #endif
233 #ifdef CONFIG_ZONE_DMA32
234 "DMA32",
235 #endif
236 "Normal",
237 #ifdef CONFIG_HIGHMEM
238 "HighMem",
239 #endif
240 "Movable",
241 #ifdef CONFIG_ZONE_DEVICE
242 "Device",
243 #endif
246 const char * const migratetype_names[MIGRATE_TYPES] = {
247 "Unmovable",
248 "Movable",
249 "Reclaimable",
250 "HighAtomic",
251 #ifdef CONFIG_CMA
252 "CMA",
253 #endif
254 #ifdef CONFIG_MEMORY_ISOLATION
255 "Isolate",
256 #endif
259 compound_page_dtor * const compound_page_dtors[] = {
260 NULL,
261 free_compound_page,
262 #ifdef CONFIG_HUGETLB_PAGE
263 free_huge_page,
264 #endif
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 free_transhuge_page,
267 #endif
270 int min_free_kbytes = 1024;
271 int user_min_free_kbytes = -1;
272 #ifdef CONFIG_DISCONTIGMEM
274 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
275 * are not on separate NUMA nodes. Functionally this works but with
276 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
277 * quite small. By default, do not boost watermarks on discontigmem as in
278 * many cases very high-order allocations like THP are likely to be
279 * unsupported and the premature reclaim offsets the advantage of long-term
280 * fragmentation avoidance.
282 int watermark_boost_factor __read_mostly;
283 #else
284 int watermark_boost_factor __read_mostly = 15000;
285 #endif
286 int watermark_scale_factor = 10;
288 static unsigned long nr_kernel_pages __initdata;
289 static unsigned long nr_all_pages __initdata;
290 static unsigned long dma_reserve __initdata;
292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
293 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
294 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
295 static unsigned long required_kernelcore __initdata;
296 static unsigned long required_kernelcore_percent __initdata;
297 static unsigned long required_movablecore __initdata;
298 static unsigned long required_movablecore_percent __initdata;
299 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
300 static bool mirrored_kernelcore __meminitdata;
302 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
303 int movable_zone;
304 EXPORT_SYMBOL(movable_zone);
305 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
314 int page_group_by_mobility_disabled __read_mostly;
316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
318 * During boot we initialize deferred pages on-demand, as needed, but once
319 * page_alloc_init_late() has finished, the deferred pages are all initialized,
320 * and we can permanently disable that path.
322 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
325 * Calling kasan_free_pages() only after deferred memory initialization
326 * has completed. Poisoning pages during deferred memory init will greatly
327 * lengthen the process and cause problem in large memory systems as the
328 * deferred pages initialization is done with interrupt disabled.
330 * Assuming that there will be no reference to those newly initialized
331 * pages before they are ever allocated, this should have no effect on
332 * KASAN memory tracking as the poison will be properly inserted at page
333 * allocation time. The only corner case is when pages are allocated by
334 * on-demand allocation and then freed again before the deferred pages
335 * initialization is done, but this is not likely to happen.
337 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
339 if (!static_branch_unlikely(&deferred_pages))
340 kasan_free_pages(page, order);
343 /* Returns true if the struct page for the pfn is uninitialised */
344 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
346 int nid = early_pfn_to_nid(pfn);
348 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
349 return true;
351 return false;
355 * Returns true when the remaining initialisation should be deferred until
356 * later in the boot cycle when it can be parallelised.
358 static bool __meminit
359 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
361 static unsigned long prev_end_pfn, nr_initialised;
364 * prev_end_pfn static that contains the end of previous zone
365 * No need to protect because called very early in boot before smp_init.
367 if (prev_end_pfn != end_pfn) {
368 prev_end_pfn = end_pfn;
369 nr_initialised = 0;
372 /* Always populate low zones for address-constrained allocations */
373 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
374 return false;
377 * We start only with one section of pages, more pages are added as
378 * needed until the rest of deferred pages are initialized.
380 nr_initialised++;
381 if ((nr_initialised > PAGES_PER_SECTION) &&
382 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
383 NODE_DATA(nid)->first_deferred_pfn = pfn;
384 return true;
386 return false;
388 #else
389 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
391 static inline bool early_page_uninitialised(unsigned long pfn)
393 return false;
396 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
398 return false;
400 #endif
402 /* Return a pointer to the bitmap storing bits affecting a block of pages */
403 static inline unsigned long *get_pageblock_bitmap(struct page *page,
404 unsigned long pfn)
406 #ifdef CONFIG_SPARSEMEM
407 return __pfn_to_section(pfn)->pageblock_flags;
408 #else
409 return page_zone(page)->pageblock_flags;
410 #endif /* CONFIG_SPARSEMEM */
413 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
415 #ifdef CONFIG_SPARSEMEM
416 pfn &= (PAGES_PER_SECTION-1);
417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418 #else
419 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
420 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
421 #endif /* CONFIG_SPARSEMEM */
425 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
426 * @page: The page within the block of interest
427 * @pfn: The target page frame number
428 * @end_bitidx: The last bit of interest to retrieve
429 * @mask: mask of bits that the caller is interested in
431 * Return: pageblock_bits flags
433 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
434 unsigned long pfn,
435 unsigned long end_bitidx,
436 unsigned long mask)
438 unsigned long *bitmap;
439 unsigned long bitidx, word_bitidx;
440 unsigned long word;
442 bitmap = get_pageblock_bitmap(page, pfn);
443 bitidx = pfn_to_bitidx(page, pfn);
444 word_bitidx = bitidx / BITS_PER_LONG;
445 bitidx &= (BITS_PER_LONG-1);
447 word = bitmap[word_bitidx];
448 bitidx += end_bitidx;
449 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
452 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
456 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
459 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
461 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
465 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
466 * @page: The page within the block of interest
467 * @flags: The flags to set
468 * @pfn: The target page frame number
469 * @end_bitidx: The last bit of interest
470 * @mask: mask of bits that the caller is interested in
472 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
473 unsigned long pfn,
474 unsigned long end_bitidx,
475 unsigned long mask)
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
479 unsigned long old_word, word;
481 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
482 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
484 bitmap = get_pageblock_bitmap(page, pfn);
485 bitidx = pfn_to_bitidx(page, pfn);
486 word_bitidx = bitidx / BITS_PER_LONG;
487 bitidx &= (BITS_PER_LONG-1);
489 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
491 bitidx += end_bitidx;
492 mask <<= (BITS_PER_LONG - bitidx - 1);
493 flags <<= (BITS_PER_LONG - bitidx - 1);
495 word = READ_ONCE(bitmap[word_bitidx]);
496 for (;;) {
497 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
498 if (word == old_word)
499 break;
500 word = old_word;
504 void set_pageblock_migratetype(struct page *page, int migratetype)
506 if (unlikely(page_group_by_mobility_disabled &&
507 migratetype < MIGRATE_PCPTYPES))
508 migratetype = MIGRATE_UNMOVABLE;
510 set_pageblock_flags_group(page, (unsigned long)migratetype,
511 PB_migrate, PB_migrate_end);
514 #ifdef CONFIG_DEBUG_VM
515 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
517 int ret = 0;
518 unsigned seq;
519 unsigned long pfn = page_to_pfn(page);
520 unsigned long sp, start_pfn;
522 do {
523 seq = zone_span_seqbegin(zone);
524 start_pfn = zone->zone_start_pfn;
525 sp = zone->spanned_pages;
526 if (!zone_spans_pfn(zone, pfn))
527 ret = 1;
528 } while (zone_span_seqretry(zone, seq));
530 if (ret)
531 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
532 pfn, zone_to_nid(zone), zone->name,
533 start_pfn, start_pfn + sp);
535 return ret;
538 static int page_is_consistent(struct zone *zone, struct page *page)
540 if (!pfn_valid_within(page_to_pfn(page)))
541 return 0;
542 if (zone != page_zone(page))
543 return 0;
545 return 1;
548 * Temporary debugging check for pages not lying within a given zone.
550 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
552 if (page_outside_zone_boundaries(zone, page))
553 return 1;
554 if (!page_is_consistent(zone, page))
555 return 1;
557 return 0;
559 #else
560 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
562 return 0;
564 #endif
566 static void bad_page(struct page *page, const char *reason,
567 unsigned long bad_flags)
569 static unsigned long resume;
570 static unsigned long nr_shown;
571 static unsigned long nr_unshown;
574 * Allow a burst of 60 reports, then keep quiet for that minute;
575 * or allow a steady drip of one report per second.
577 if (nr_shown == 60) {
578 if (time_before(jiffies, resume)) {
579 nr_unshown++;
580 goto out;
582 if (nr_unshown) {
583 pr_alert(
584 "BUG: Bad page state: %lu messages suppressed\n",
585 nr_unshown);
586 nr_unshown = 0;
588 nr_shown = 0;
590 if (nr_shown++ == 0)
591 resume = jiffies + 60 * HZ;
593 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
594 current->comm, page_to_pfn(page));
595 __dump_page(page, reason);
596 bad_flags &= page->flags;
597 if (bad_flags)
598 pr_alert("bad because of flags: %#lx(%pGp)\n",
599 bad_flags, &bad_flags);
600 dump_page_owner(page);
602 print_modules();
603 dump_stack();
604 out:
605 /* Leave bad fields for debug, except PageBuddy could make trouble */
606 page_mapcount_reset(page); /* remove PageBuddy */
607 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
611 * Higher-order pages are called "compound pages". They are structured thusly:
613 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
615 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
616 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
618 * The first tail page's ->compound_dtor holds the offset in array of compound
619 * page destructors. See compound_page_dtors.
621 * The first tail page's ->compound_order holds the order of allocation.
622 * This usage means that zero-order pages may not be compound.
625 void free_compound_page(struct page *page)
627 __free_pages_ok(page, compound_order(page));
630 void prep_compound_page(struct page *page, unsigned int order)
632 int i;
633 int nr_pages = 1 << order;
635 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
636 set_compound_order(page, order);
637 __SetPageHead(page);
638 for (i = 1; i < nr_pages; i++) {
639 struct page *p = page + i;
640 set_page_count(p, 0);
641 p->mapping = TAIL_MAPPING;
642 set_compound_head(p, page);
644 atomic_set(compound_mapcount_ptr(page), -1);
647 #ifdef CONFIG_DEBUG_PAGEALLOC
648 unsigned int _debug_guardpage_minorder;
649 bool _debug_pagealloc_enabled __read_mostly
650 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
651 EXPORT_SYMBOL(_debug_pagealloc_enabled);
652 bool _debug_guardpage_enabled __read_mostly;
654 static int __init early_debug_pagealloc(char *buf)
656 if (!buf)
657 return -EINVAL;
658 return kstrtobool(buf, &_debug_pagealloc_enabled);
660 early_param("debug_pagealloc", early_debug_pagealloc);
662 static bool need_debug_guardpage(void)
664 /* If we don't use debug_pagealloc, we don't need guard page */
665 if (!debug_pagealloc_enabled())
666 return false;
668 if (!debug_guardpage_minorder())
669 return false;
671 return true;
674 static void init_debug_guardpage(void)
676 if (!debug_pagealloc_enabled())
677 return;
679 if (!debug_guardpage_minorder())
680 return;
682 _debug_guardpage_enabled = true;
685 struct page_ext_operations debug_guardpage_ops = {
686 .need = need_debug_guardpage,
687 .init = init_debug_guardpage,
690 static int __init debug_guardpage_minorder_setup(char *buf)
692 unsigned long res;
694 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
695 pr_err("Bad debug_guardpage_minorder value\n");
696 return 0;
698 _debug_guardpage_minorder = res;
699 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
700 return 0;
702 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
704 static inline bool set_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype)
707 struct page_ext *page_ext;
709 if (!debug_guardpage_enabled())
710 return false;
712 if (order >= debug_guardpage_minorder())
713 return false;
715 page_ext = lookup_page_ext(page);
716 if (unlikely(!page_ext))
717 return false;
719 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
721 INIT_LIST_HEAD(&page->lru);
722 set_page_private(page, order);
723 /* Guard pages are not available for any usage */
724 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
726 return true;
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype)
732 struct page_ext *page_ext;
734 if (!debug_guardpage_enabled())
735 return;
737 page_ext = lookup_page_ext(page);
738 if (unlikely(!page_ext))
739 return;
741 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
743 set_page_private(page, 0);
744 if (!is_migrate_isolate(migratetype))
745 __mod_zone_freepage_state(zone, (1 << order), migratetype);
747 #else
748 struct page_ext_operations debug_guardpage_ops;
749 static inline bool set_page_guard(struct zone *zone, struct page *page,
750 unsigned int order, int migratetype) { return false; }
751 static inline void clear_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype) {}
753 #endif
755 static inline void set_page_order(struct page *page, unsigned int order)
757 set_page_private(page, order);
758 __SetPageBuddy(page);
762 * This function checks whether a page is free && is the buddy
763 * we can coalesce a page and its buddy if
764 * (a) the buddy is not in a hole (check before calling!) &&
765 * (b) the buddy is in the buddy system &&
766 * (c) a page and its buddy have the same order &&
767 * (d) a page and its buddy are in the same zone.
769 * For recording whether a page is in the buddy system, we set PageBuddy.
770 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
772 * For recording page's order, we use page_private(page).
774 static inline int page_is_buddy(struct page *page, struct page *buddy,
775 unsigned int order)
777 if (page_is_guard(buddy) && page_order(buddy) == order) {
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
783 return 1;
786 if (PageBuddy(buddy) && page_order(buddy) == order) {
788 * zone check is done late to avoid uselessly
789 * calculating zone/node ids for pages that could
790 * never merge.
792 if (page_zone_id(page) != page_zone_id(buddy))
793 return 0;
795 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
797 return 1;
799 return 0;
802 #ifdef CONFIG_COMPACTION
803 static inline struct capture_control *task_capc(struct zone *zone)
805 struct capture_control *capc = current->capture_control;
807 return capc &&
808 !(current->flags & PF_KTHREAD) &&
809 !capc->page &&
810 capc->cc->zone == zone &&
811 capc->cc->direct_compaction ? capc : NULL;
814 static inline bool
815 compaction_capture(struct capture_control *capc, struct page *page,
816 int order, int migratetype)
818 if (!capc || order != capc->cc->order)
819 return false;
821 /* Do not accidentally pollute CMA or isolated regions*/
822 if (is_migrate_cma(migratetype) ||
823 is_migrate_isolate(migratetype))
824 return false;
827 * Do not let lower order allocations polluate a movable pageblock.
828 * This might let an unmovable request use a reclaimable pageblock
829 * and vice-versa but no more than normal fallback logic which can
830 * have trouble finding a high-order free page.
832 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
833 return false;
835 capc->page = page;
836 return true;
839 #else
840 static inline struct capture_control *task_capc(struct zone *zone)
842 return NULL;
845 static inline bool
846 compaction_capture(struct capture_control *capc, struct page *page,
847 int order, int migratetype)
849 return false;
851 #endif /* CONFIG_COMPACTION */
854 * Freeing function for a buddy system allocator.
856 * The concept of a buddy system is to maintain direct-mapped table
857 * (containing bit values) for memory blocks of various "orders".
858 * The bottom level table contains the map for the smallest allocatable
859 * units of memory (here, pages), and each level above it describes
860 * pairs of units from the levels below, hence, "buddies".
861 * At a high level, all that happens here is marking the table entry
862 * at the bottom level available, and propagating the changes upward
863 * as necessary, plus some accounting needed to play nicely with other
864 * parts of the VM system.
865 * At each level, we keep a list of pages, which are heads of continuous
866 * free pages of length of (1 << order) and marked with PageBuddy.
867 * Page's order is recorded in page_private(page) field.
868 * So when we are allocating or freeing one, we can derive the state of the
869 * other. That is, if we allocate a small block, and both were
870 * free, the remainder of the region must be split into blocks.
871 * If a block is freed, and its buddy is also free, then this
872 * triggers coalescing into a block of larger size.
874 * -- nyc
877 static inline void __free_one_page(struct page *page,
878 unsigned long pfn,
879 struct zone *zone, unsigned int order,
880 int migratetype)
882 unsigned long combined_pfn;
883 unsigned long uninitialized_var(buddy_pfn);
884 struct page *buddy;
885 unsigned int max_order;
886 struct capture_control *capc = task_capc(zone);
888 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
890 VM_BUG_ON(!zone_is_initialized(zone));
891 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
893 VM_BUG_ON(migratetype == -1);
894 if (likely(!is_migrate_isolate(migratetype)))
895 __mod_zone_freepage_state(zone, 1 << order, migratetype);
897 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
898 VM_BUG_ON_PAGE(bad_range(zone, page), page);
900 continue_merging:
901 while (order < max_order - 1) {
902 if (compaction_capture(capc, page, order, migratetype)) {
903 __mod_zone_freepage_state(zone, -(1 << order),
904 migratetype);
905 return;
907 buddy_pfn = __find_buddy_pfn(pfn, order);
908 buddy = page + (buddy_pfn - pfn);
910 if (!pfn_valid_within(buddy_pfn))
911 goto done_merging;
912 if (!page_is_buddy(page, buddy, order))
913 goto done_merging;
915 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
916 * merge with it and move up one order.
918 if (page_is_guard(buddy))
919 clear_page_guard(zone, buddy, order, migratetype);
920 else
921 del_page_from_free_area(buddy, &zone->free_area[order]);
922 combined_pfn = buddy_pfn & pfn;
923 page = page + (combined_pfn - pfn);
924 pfn = combined_pfn;
925 order++;
927 if (max_order < MAX_ORDER) {
928 /* If we are here, it means order is >= pageblock_order.
929 * We want to prevent merge between freepages on isolate
930 * pageblock and normal pageblock. Without this, pageblock
931 * isolation could cause incorrect freepage or CMA accounting.
933 * We don't want to hit this code for the more frequent
934 * low-order merging.
936 if (unlikely(has_isolate_pageblock(zone))) {
937 int buddy_mt;
939 buddy_pfn = __find_buddy_pfn(pfn, order);
940 buddy = page + (buddy_pfn - pfn);
941 buddy_mt = get_pageblock_migratetype(buddy);
943 if (migratetype != buddy_mt
944 && (is_migrate_isolate(migratetype) ||
945 is_migrate_isolate(buddy_mt)))
946 goto done_merging;
948 max_order++;
949 goto continue_merging;
952 done_merging:
953 set_page_order(page, order);
956 * If this is not the largest possible page, check if the buddy
957 * of the next-highest order is free. If it is, it's possible
958 * that pages are being freed that will coalesce soon. In case,
959 * that is happening, add the free page to the tail of the list
960 * so it's less likely to be used soon and more likely to be merged
961 * as a higher order page
963 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
964 && !is_shuffle_order(order)) {
965 struct page *higher_page, *higher_buddy;
966 combined_pfn = buddy_pfn & pfn;
967 higher_page = page + (combined_pfn - pfn);
968 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
969 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
970 if (pfn_valid_within(buddy_pfn) &&
971 page_is_buddy(higher_page, higher_buddy, order + 1)) {
972 add_to_free_area_tail(page, &zone->free_area[order],
973 migratetype);
974 return;
978 if (is_shuffle_order(order))
979 add_to_free_area_random(page, &zone->free_area[order],
980 migratetype);
981 else
982 add_to_free_area(page, &zone->free_area[order], migratetype);
987 * A bad page could be due to a number of fields. Instead of multiple branches,
988 * try and check multiple fields with one check. The caller must do a detailed
989 * check if necessary.
991 static inline bool page_expected_state(struct page *page,
992 unsigned long check_flags)
994 if (unlikely(atomic_read(&page->_mapcount) != -1))
995 return false;
997 if (unlikely((unsigned long)page->mapping |
998 page_ref_count(page) |
999 #ifdef CONFIG_MEMCG
1000 (unsigned long)page->mem_cgroup |
1001 #endif
1002 (page->flags & check_flags)))
1003 return false;
1005 return true;
1008 static void free_pages_check_bad(struct page *page)
1010 const char *bad_reason;
1011 unsigned long bad_flags;
1013 bad_reason = NULL;
1014 bad_flags = 0;
1016 if (unlikely(atomic_read(&page->_mapcount) != -1))
1017 bad_reason = "nonzero mapcount";
1018 if (unlikely(page->mapping != NULL))
1019 bad_reason = "non-NULL mapping";
1020 if (unlikely(page_ref_count(page) != 0))
1021 bad_reason = "nonzero _refcount";
1022 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1023 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1024 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1026 #ifdef CONFIG_MEMCG
1027 if (unlikely(page->mem_cgroup))
1028 bad_reason = "page still charged to cgroup";
1029 #endif
1030 bad_page(page, bad_reason, bad_flags);
1033 static inline int free_pages_check(struct page *page)
1035 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1036 return 0;
1038 /* Something has gone sideways, find it */
1039 free_pages_check_bad(page);
1040 return 1;
1043 static int free_tail_pages_check(struct page *head_page, struct page *page)
1045 int ret = 1;
1048 * We rely page->lru.next never has bit 0 set, unless the page
1049 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1051 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1053 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1054 ret = 0;
1055 goto out;
1057 switch (page - head_page) {
1058 case 1:
1059 /* the first tail page: ->mapping may be compound_mapcount() */
1060 if (unlikely(compound_mapcount(page))) {
1061 bad_page(page, "nonzero compound_mapcount", 0);
1062 goto out;
1064 break;
1065 case 2:
1067 * the second tail page: ->mapping is
1068 * deferred_list.next -- ignore value.
1070 break;
1071 default:
1072 if (page->mapping != TAIL_MAPPING) {
1073 bad_page(page, "corrupted mapping in tail page", 0);
1074 goto out;
1076 break;
1078 if (unlikely(!PageTail(page))) {
1079 bad_page(page, "PageTail not set", 0);
1080 goto out;
1082 if (unlikely(compound_head(page) != head_page)) {
1083 bad_page(page, "compound_head not consistent", 0);
1084 goto out;
1086 ret = 0;
1087 out:
1088 page->mapping = NULL;
1089 clear_compound_head(page);
1090 return ret;
1093 static __always_inline bool free_pages_prepare(struct page *page,
1094 unsigned int order, bool check_free)
1096 int bad = 0;
1098 VM_BUG_ON_PAGE(PageTail(page), page);
1100 trace_mm_page_free(page, order);
1103 * Check tail pages before head page information is cleared to
1104 * avoid checking PageCompound for order-0 pages.
1106 if (unlikely(order)) {
1107 bool compound = PageCompound(page);
1108 int i;
1110 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1112 if (compound)
1113 ClearPageDoubleMap(page);
1114 for (i = 1; i < (1 << order); i++) {
1115 if (compound)
1116 bad += free_tail_pages_check(page, page + i);
1117 if (unlikely(free_pages_check(page + i))) {
1118 bad++;
1119 continue;
1121 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 if (PageMappingFlags(page))
1125 page->mapping = NULL;
1126 if (memcg_kmem_enabled() && PageKmemcg(page))
1127 __memcg_kmem_uncharge(page, order);
1128 if (check_free)
1129 bad += free_pages_check(page);
1130 if (bad)
1131 return false;
1133 page_cpupid_reset_last(page);
1134 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1135 reset_page_owner(page, order);
1137 if (!PageHighMem(page)) {
1138 debug_check_no_locks_freed(page_address(page),
1139 PAGE_SIZE << order);
1140 debug_check_no_obj_freed(page_address(page),
1141 PAGE_SIZE << order);
1143 arch_free_page(page, order);
1144 kernel_poison_pages(page, 1 << order, 0);
1145 if (debug_pagealloc_enabled())
1146 kernel_map_pages(page, 1 << order, 0);
1148 kasan_free_nondeferred_pages(page, order);
1150 return true;
1153 #ifdef CONFIG_DEBUG_VM
1154 static inline bool free_pcp_prepare(struct page *page)
1156 return free_pages_prepare(page, 0, true);
1159 static inline bool bulkfree_pcp_prepare(struct page *page)
1161 return false;
1163 #else
1164 static bool free_pcp_prepare(struct page *page)
1166 return free_pages_prepare(page, 0, false);
1169 static bool bulkfree_pcp_prepare(struct page *page)
1171 return free_pages_check(page);
1173 #endif /* CONFIG_DEBUG_VM */
1175 static inline void prefetch_buddy(struct page *page)
1177 unsigned long pfn = page_to_pfn(page);
1178 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1179 struct page *buddy = page + (buddy_pfn - pfn);
1181 prefetch(buddy);
1185 * Frees a number of pages from the PCP lists
1186 * Assumes all pages on list are in same zone, and of same order.
1187 * count is the number of pages to free.
1189 * If the zone was previously in an "all pages pinned" state then look to
1190 * see if this freeing clears that state.
1192 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1193 * pinned" detection logic.
1195 static void free_pcppages_bulk(struct zone *zone, int count,
1196 struct per_cpu_pages *pcp)
1198 int migratetype = 0;
1199 int batch_free = 0;
1200 int prefetch_nr = 0;
1201 bool isolated_pageblocks;
1202 struct page *page, *tmp;
1203 LIST_HEAD(head);
1205 while (count) {
1206 struct list_head *list;
1209 * Remove pages from lists in a round-robin fashion. A
1210 * batch_free count is maintained that is incremented when an
1211 * empty list is encountered. This is so more pages are freed
1212 * off fuller lists instead of spinning excessively around empty
1213 * lists
1215 do {
1216 batch_free++;
1217 if (++migratetype == MIGRATE_PCPTYPES)
1218 migratetype = 0;
1219 list = &pcp->lists[migratetype];
1220 } while (list_empty(list));
1222 /* This is the only non-empty list. Free them all. */
1223 if (batch_free == MIGRATE_PCPTYPES)
1224 batch_free = count;
1226 do {
1227 page = list_last_entry(list, struct page, lru);
1228 /* must delete to avoid corrupting pcp list */
1229 list_del(&page->lru);
1230 pcp->count--;
1232 if (bulkfree_pcp_prepare(page))
1233 continue;
1235 list_add_tail(&page->lru, &head);
1238 * We are going to put the page back to the global
1239 * pool, prefetch its buddy to speed up later access
1240 * under zone->lock. It is believed the overhead of
1241 * an additional test and calculating buddy_pfn here
1242 * can be offset by reduced memory latency later. To
1243 * avoid excessive prefetching due to large count, only
1244 * prefetch buddy for the first pcp->batch nr of pages.
1246 if (prefetch_nr++ < pcp->batch)
1247 prefetch_buddy(page);
1248 } while (--count && --batch_free && !list_empty(list));
1251 spin_lock(&zone->lock);
1252 isolated_pageblocks = has_isolate_pageblock(zone);
1255 * Use safe version since after __free_one_page(),
1256 * page->lru.next will not point to original list.
1258 list_for_each_entry_safe(page, tmp, &head, lru) {
1259 int mt = get_pcppage_migratetype(page);
1260 /* MIGRATE_ISOLATE page should not go to pcplists */
1261 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1262 /* Pageblock could have been isolated meanwhile */
1263 if (unlikely(isolated_pageblocks))
1264 mt = get_pageblock_migratetype(page);
1266 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1267 trace_mm_page_pcpu_drain(page, 0, mt);
1269 spin_unlock(&zone->lock);
1272 static void free_one_page(struct zone *zone,
1273 struct page *page, unsigned long pfn,
1274 unsigned int order,
1275 int migratetype)
1277 spin_lock(&zone->lock);
1278 if (unlikely(has_isolate_pageblock(zone) ||
1279 is_migrate_isolate(migratetype))) {
1280 migratetype = get_pfnblock_migratetype(page, pfn);
1282 __free_one_page(page, pfn, zone, order, migratetype);
1283 spin_unlock(&zone->lock);
1286 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1287 unsigned long zone, int nid)
1289 mm_zero_struct_page(page);
1290 set_page_links(page, zone, nid, pfn);
1291 init_page_count(page);
1292 page_mapcount_reset(page);
1293 page_cpupid_reset_last(page);
1294 page_kasan_tag_reset(page);
1296 INIT_LIST_HEAD(&page->lru);
1297 #ifdef WANT_PAGE_VIRTUAL
1298 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1299 if (!is_highmem_idx(zone))
1300 set_page_address(page, __va(pfn << PAGE_SHIFT));
1301 #endif
1304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1305 static void __meminit init_reserved_page(unsigned long pfn)
1307 pg_data_t *pgdat;
1308 int nid, zid;
1310 if (!early_page_uninitialised(pfn))
1311 return;
1313 nid = early_pfn_to_nid(pfn);
1314 pgdat = NODE_DATA(nid);
1316 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1317 struct zone *zone = &pgdat->node_zones[zid];
1319 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1320 break;
1322 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1324 #else
1325 static inline void init_reserved_page(unsigned long pfn)
1328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1331 * Initialised pages do not have PageReserved set. This function is
1332 * called for each range allocated by the bootmem allocator and
1333 * marks the pages PageReserved. The remaining valid pages are later
1334 * sent to the buddy page allocator.
1336 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1338 unsigned long start_pfn = PFN_DOWN(start);
1339 unsigned long end_pfn = PFN_UP(end);
1341 for (; start_pfn < end_pfn; start_pfn++) {
1342 if (pfn_valid(start_pfn)) {
1343 struct page *page = pfn_to_page(start_pfn);
1345 init_reserved_page(start_pfn);
1347 /* Avoid false-positive PageTail() */
1348 INIT_LIST_HEAD(&page->lru);
1351 * no need for atomic set_bit because the struct
1352 * page is not visible yet so nobody should
1353 * access it yet.
1355 __SetPageReserved(page);
1360 static void __free_pages_ok(struct page *page, unsigned int order)
1362 unsigned long flags;
1363 int migratetype;
1364 unsigned long pfn = page_to_pfn(page);
1366 if (!free_pages_prepare(page, order, true))
1367 return;
1369 migratetype = get_pfnblock_migratetype(page, pfn);
1370 local_irq_save(flags);
1371 __count_vm_events(PGFREE, 1 << order);
1372 free_one_page(page_zone(page), page, pfn, order, migratetype);
1373 local_irq_restore(flags);
1376 void __free_pages_core(struct page *page, unsigned int order)
1378 unsigned int nr_pages = 1 << order;
1379 struct page *p = page;
1380 unsigned int loop;
1382 prefetchw(p);
1383 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1384 prefetchw(p + 1);
1385 __ClearPageReserved(p);
1386 set_page_count(p, 0);
1388 __ClearPageReserved(p);
1389 set_page_count(p, 0);
1391 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1392 set_page_refcounted(page);
1393 __free_pages(page, order);
1396 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1397 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1399 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1401 int __meminit early_pfn_to_nid(unsigned long pfn)
1403 static DEFINE_SPINLOCK(early_pfn_lock);
1404 int nid;
1406 spin_lock(&early_pfn_lock);
1407 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1408 if (nid < 0)
1409 nid = first_online_node;
1410 spin_unlock(&early_pfn_lock);
1412 return nid;
1414 #endif
1416 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1417 /* Only safe to use early in boot when initialisation is single-threaded */
1418 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1420 int nid;
1422 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1423 if (nid >= 0 && nid != node)
1424 return false;
1425 return true;
1428 #else
1429 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1431 return true;
1433 #endif
1436 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1437 unsigned int order)
1439 if (early_page_uninitialised(pfn))
1440 return;
1441 __free_pages_core(page, order);
1445 * Check that the whole (or subset of) a pageblock given by the interval of
1446 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1447 * with the migration of free compaction scanner. The scanners then need to
1448 * use only pfn_valid_within() check for arches that allow holes within
1449 * pageblocks.
1451 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1453 * It's possible on some configurations to have a setup like node0 node1 node0
1454 * i.e. it's possible that all pages within a zones range of pages do not
1455 * belong to a single zone. We assume that a border between node0 and node1
1456 * can occur within a single pageblock, but not a node0 node1 node0
1457 * interleaving within a single pageblock. It is therefore sufficient to check
1458 * the first and last page of a pageblock and avoid checking each individual
1459 * page in a pageblock.
1461 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1462 unsigned long end_pfn, struct zone *zone)
1464 struct page *start_page;
1465 struct page *end_page;
1467 /* end_pfn is one past the range we are checking */
1468 end_pfn--;
1470 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1471 return NULL;
1473 start_page = pfn_to_online_page(start_pfn);
1474 if (!start_page)
1475 return NULL;
1477 if (page_zone(start_page) != zone)
1478 return NULL;
1480 end_page = pfn_to_page(end_pfn);
1482 /* This gives a shorter code than deriving page_zone(end_page) */
1483 if (page_zone_id(start_page) != page_zone_id(end_page))
1484 return NULL;
1486 return start_page;
1489 void set_zone_contiguous(struct zone *zone)
1491 unsigned long block_start_pfn = zone->zone_start_pfn;
1492 unsigned long block_end_pfn;
1494 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1495 for (; block_start_pfn < zone_end_pfn(zone);
1496 block_start_pfn = block_end_pfn,
1497 block_end_pfn += pageblock_nr_pages) {
1499 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1501 if (!__pageblock_pfn_to_page(block_start_pfn,
1502 block_end_pfn, zone))
1503 return;
1506 /* We confirm that there is no hole */
1507 zone->contiguous = true;
1510 void clear_zone_contiguous(struct zone *zone)
1512 zone->contiguous = false;
1515 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1516 static void __init deferred_free_range(unsigned long pfn,
1517 unsigned long nr_pages)
1519 struct page *page;
1520 unsigned long i;
1522 if (!nr_pages)
1523 return;
1525 page = pfn_to_page(pfn);
1527 /* Free a large naturally-aligned chunk if possible */
1528 if (nr_pages == pageblock_nr_pages &&
1529 (pfn & (pageblock_nr_pages - 1)) == 0) {
1530 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1531 __free_pages_core(page, pageblock_order);
1532 return;
1535 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1536 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1537 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1538 __free_pages_core(page, 0);
1542 /* Completion tracking for deferred_init_memmap() threads */
1543 static atomic_t pgdat_init_n_undone __initdata;
1544 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1546 static inline void __init pgdat_init_report_one_done(void)
1548 if (atomic_dec_and_test(&pgdat_init_n_undone))
1549 complete(&pgdat_init_all_done_comp);
1553 * Returns true if page needs to be initialized or freed to buddy allocator.
1555 * First we check if pfn is valid on architectures where it is possible to have
1556 * holes within pageblock_nr_pages. On systems where it is not possible, this
1557 * function is optimized out.
1559 * Then, we check if a current large page is valid by only checking the validity
1560 * of the head pfn.
1562 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1564 if (!pfn_valid_within(pfn))
1565 return false;
1566 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1567 return false;
1568 return true;
1572 * Free pages to buddy allocator. Try to free aligned pages in
1573 * pageblock_nr_pages sizes.
1575 static void __init deferred_free_pages(unsigned long pfn,
1576 unsigned long end_pfn)
1578 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1579 unsigned long nr_free = 0;
1581 for (; pfn < end_pfn; pfn++) {
1582 if (!deferred_pfn_valid(pfn)) {
1583 deferred_free_range(pfn - nr_free, nr_free);
1584 nr_free = 0;
1585 } else if (!(pfn & nr_pgmask)) {
1586 deferred_free_range(pfn - nr_free, nr_free);
1587 nr_free = 1;
1588 touch_nmi_watchdog();
1589 } else {
1590 nr_free++;
1593 /* Free the last block of pages to allocator */
1594 deferred_free_range(pfn - nr_free, nr_free);
1598 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1599 * by performing it only once every pageblock_nr_pages.
1600 * Return number of pages initialized.
1602 static unsigned long __init deferred_init_pages(struct zone *zone,
1603 unsigned long pfn,
1604 unsigned long end_pfn)
1606 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1607 int nid = zone_to_nid(zone);
1608 unsigned long nr_pages = 0;
1609 int zid = zone_idx(zone);
1610 struct page *page = NULL;
1612 for (; pfn < end_pfn; pfn++) {
1613 if (!deferred_pfn_valid(pfn)) {
1614 page = NULL;
1615 continue;
1616 } else if (!page || !(pfn & nr_pgmask)) {
1617 page = pfn_to_page(pfn);
1618 touch_nmi_watchdog();
1619 } else {
1620 page++;
1622 __init_single_page(page, pfn, zid, nid);
1623 nr_pages++;
1625 return (nr_pages);
1629 * This function is meant to pre-load the iterator for the zone init.
1630 * Specifically it walks through the ranges until we are caught up to the
1631 * first_init_pfn value and exits there. If we never encounter the value we
1632 * return false indicating there are no valid ranges left.
1634 static bool __init
1635 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1636 unsigned long *spfn, unsigned long *epfn,
1637 unsigned long first_init_pfn)
1639 u64 j;
1642 * Start out by walking through the ranges in this zone that have
1643 * already been initialized. We don't need to do anything with them
1644 * so we just need to flush them out of the system.
1646 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1647 if (*epfn <= first_init_pfn)
1648 continue;
1649 if (*spfn < first_init_pfn)
1650 *spfn = first_init_pfn;
1651 *i = j;
1652 return true;
1655 return false;
1659 * Initialize and free pages. We do it in two loops: first we initialize
1660 * struct page, then free to buddy allocator, because while we are
1661 * freeing pages we can access pages that are ahead (computing buddy
1662 * page in __free_one_page()).
1664 * In order to try and keep some memory in the cache we have the loop
1665 * broken along max page order boundaries. This way we will not cause
1666 * any issues with the buddy page computation.
1668 static unsigned long __init
1669 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1670 unsigned long *end_pfn)
1672 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1673 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1674 unsigned long nr_pages = 0;
1675 u64 j = *i;
1677 /* First we loop through and initialize the page values */
1678 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1679 unsigned long t;
1681 if (mo_pfn <= *start_pfn)
1682 break;
1684 t = min(mo_pfn, *end_pfn);
1685 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1687 if (mo_pfn < *end_pfn) {
1688 *start_pfn = mo_pfn;
1689 break;
1693 /* Reset values and now loop through freeing pages as needed */
1694 swap(j, *i);
1696 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1697 unsigned long t;
1699 if (mo_pfn <= spfn)
1700 break;
1702 t = min(mo_pfn, epfn);
1703 deferred_free_pages(spfn, t);
1705 if (mo_pfn <= epfn)
1706 break;
1709 return nr_pages;
1712 /* Initialise remaining memory on a node */
1713 static int __init deferred_init_memmap(void *data)
1715 pg_data_t *pgdat = data;
1716 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1717 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1718 unsigned long first_init_pfn, flags;
1719 unsigned long start = jiffies;
1720 struct zone *zone;
1721 int zid;
1722 u64 i;
1724 /* Bind memory initialisation thread to a local node if possible */
1725 if (!cpumask_empty(cpumask))
1726 set_cpus_allowed_ptr(current, cpumask);
1728 pgdat_resize_lock(pgdat, &flags);
1729 first_init_pfn = pgdat->first_deferred_pfn;
1730 if (first_init_pfn == ULONG_MAX) {
1731 pgdat_resize_unlock(pgdat, &flags);
1732 pgdat_init_report_one_done();
1733 return 0;
1736 /* Sanity check boundaries */
1737 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1738 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1739 pgdat->first_deferred_pfn = ULONG_MAX;
1741 /* Only the highest zone is deferred so find it */
1742 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1743 zone = pgdat->node_zones + zid;
1744 if (first_init_pfn < zone_end_pfn(zone))
1745 break;
1748 /* If the zone is empty somebody else may have cleared out the zone */
1749 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1750 first_init_pfn))
1751 goto zone_empty;
1754 * Initialize and free pages in MAX_ORDER sized increments so
1755 * that we can avoid introducing any issues with the buddy
1756 * allocator.
1758 while (spfn < epfn)
1759 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1760 zone_empty:
1761 pgdat_resize_unlock(pgdat, &flags);
1763 /* Sanity check that the next zone really is unpopulated */
1764 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1766 pr_info("node %d initialised, %lu pages in %ums\n",
1767 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1769 pgdat_init_report_one_done();
1770 return 0;
1774 * If this zone has deferred pages, try to grow it by initializing enough
1775 * deferred pages to satisfy the allocation specified by order, rounded up to
1776 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1777 * of SECTION_SIZE bytes by initializing struct pages in increments of
1778 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1780 * Return true when zone was grown, otherwise return false. We return true even
1781 * when we grow less than requested, to let the caller decide if there are
1782 * enough pages to satisfy the allocation.
1784 * Note: We use noinline because this function is needed only during boot, and
1785 * it is called from a __ref function _deferred_grow_zone. This way we are
1786 * making sure that it is not inlined into permanent text section.
1788 static noinline bool __init
1789 deferred_grow_zone(struct zone *zone, unsigned int order)
1791 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1792 pg_data_t *pgdat = zone->zone_pgdat;
1793 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1794 unsigned long spfn, epfn, flags;
1795 unsigned long nr_pages = 0;
1796 u64 i;
1798 /* Only the last zone may have deferred pages */
1799 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1800 return false;
1802 pgdat_resize_lock(pgdat, &flags);
1805 * If deferred pages have been initialized while we were waiting for
1806 * the lock, return true, as the zone was grown. The caller will retry
1807 * this zone. We won't return to this function since the caller also
1808 * has this static branch.
1810 if (!static_branch_unlikely(&deferred_pages)) {
1811 pgdat_resize_unlock(pgdat, &flags);
1812 return true;
1816 * If someone grew this zone while we were waiting for spinlock, return
1817 * true, as there might be enough pages already.
1819 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1820 pgdat_resize_unlock(pgdat, &flags);
1821 return true;
1824 /* If the zone is empty somebody else may have cleared out the zone */
1825 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1826 first_deferred_pfn)) {
1827 pgdat->first_deferred_pfn = ULONG_MAX;
1828 pgdat_resize_unlock(pgdat, &flags);
1829 /* Retry only once. */
1830 return first_deferred_pfn != ULONG_MAX;
1834 * Initialize and free pages in MAX_ORDER sized increments so
1835 * that we can avoid introducing any issues with the buddy
1836 * allocator.
1838 while (spfn < epfn) {
1839 /* update our first deferred PFN for this section */
1840 first_deferred_pfn = spfn;
1842 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1844 /* We should only stop along section boundaries */
1845 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1846 continue;
1848 /* If our quota has been met we can stop here */
1849 if (nr_pages >= nr_pages_needed)
1850 break;
1853 pgdat->first_deferred_pfn = spfn;
1854 pgdat_resize_unlock(pgdat, &flags);
1856 return nr_pages > 0;
1860 * deferred_grow_zone() is __init, but it is called from
1861 * get_page_from_freelist() during early boot until deferred_pages permanently
1862 * disables this call. This is why we have refdata wrapper to avoid warning,
1863 * and to ensure that the function body gets unloaded.
1865 static bool __ref
1866 _deferred_grow_zone(struct zone *zone, unsigned int order)
1868 return deferred_grow_zone(zone, order);
1871 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1873 void __init page_alloc_init_late(void)
1875 struct zone *zone;
1876 int nid;
1878 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1880 /* There will be num_node_state(N_MEMORY) threads */
1881 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1882 for_each_node_state(nid, N_MEMORY) {
1883 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1886 /* Block until all are initialised */
1887 wait_for_completion(&pgdat_init_all_done_comp);
1890 * We initialized the rest of the deferred pages. Permanently disable
1891 * on-demand struct page initialization.
1893 static_branch_disable(&deferred_pages);
1895 /* Reinit limits that are based on free pages after the kernel is up */
1896 files_maxfiles_init();
1897 #endif
1899 /* Discard memblock private memory */
1900 memblock_discard();
1902 for_each_node_state(nid, N_MEMORY)
1903 shuffle_free_memory(NODE_DATA(nid));
1905 for_each_populated_zone(zone)
1906 set_zone_contiguous(zone);
1909 #ifdef CONFIG_CMA
1910 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1911 void __init init_cma_reserved_pageblock(struct page *page)
1913 unsigned i = pageblock_nr_pages;
1914 struct page *p = page;
1916 do {
1917 __ClearPageReserved(p);
1918 set_page_count(p, 0);
1919 } while (++p, --i);
1921 set_pageblock_migratetype(page, MIGRATE_CMA);
1923 if (pageblock_order >= MAX_ORDER) {
1924 i = pageblock_nr_pages;
1925 p = page;
1926 do {
1927 set_page_refcounted(p);
1928 __free_pages(p, MAX_ORDER - 1);
1929 p += MAX_ORDER_NR_PAGES;
1930 } while (i -= MAX_ORDER_NR_PAGES);
1931 } else {
1932 set_page_refcounted(page);
1933 __free_pages(page, pageblock_order);
1936 adjust_managed_page_count(page, pageblock_nr_pages);
1938 #endif
1941 * The order of subdivision here is critical for the IO subsystem.
1942 * Please do not alter this order without good reasons and regression
1943 * testing. Specifically, as large blocks of memory are subdivided,
1944 * the order in which smaller blocks are delivered depends on the order
1945 * they're subdivided in this function. This is the primary factor
1946 * influencing the order in which pages are delivered to the IO
1947 * subsystem according to empirical testing, and this is also justified
1948 * by considering the behavior of a buddy system containing a single
1949 * large block of memory acted on by a series of small allocations.
1950 * This behavior is a critical factor in sglist merging's success.
1952 * -- nyc
1954 static inline void expand(struct zone *zone, struct page *page,
1955 int low, int high, struct free_area *area,
1956 int migratetype)
1958 unsigned long size = 1 << high;
1960 while (high > low) {
1961 area--;
1962 high--;
1963 size >>= 1;
1964 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1967 * Mark as guard pages (or page), that will allow to
1968 * merge back to allocator when buddy will be freed.
1969 * Corresponding page table entries will not be touched,
1970 * pages will stay not present in virtual address space
1972 if (set_page_guard(zone, &page[size], high, migratetype))
1973 continue;
1975 add_to_free_area(&page[size], area, migratetype);
1976 set_page_order(&page[size], high);
1980 static void check_new_page_bad(struct page *page)
1982 const char *bad_reason = NULL;
1983 unsigned long bad_flags = 0;
1985 if (unlikely(atomic_read(&page->_mapcount) != -1))
1986 bad_reason = "nonzero mapcount";
1987 if (unlikely(page->mapping != NULL))
1988 bad_reason = "non-NULL mapping";
1989 if (unlikely(page_ref_count(page) != 0))
1990 bad_reason = "nonzero _refcount";
1991 if (unlikely(page->flags & __PG_HWPOISON)) {
1992 bad_reason = "HWPoisoned (hardware-corrupted)";
1993 bad_flags = __PG_HWPOISON;
1994 /* Don't complain about hwpoisoned pages */
1995 page_mapcount_reset(page); /* remove PageBuddy */
1996 return;
1998 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1999 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2000 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2002 #ifdef CONFIG_MEMCG
2003 if (unlikely(page->mem_cgroup))
2004 bad_reason = "page still charged to cgroup";
2005 #endif
2006 bad_page(page, bad_reason, bad_flags);
2010 * This page is about to be returned from the page allocator
2012 static inline int check_new_page(struct page *page)
2014 if (likely(page_expected_state(page,
2015 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2016 return 0;
2018 check_new_page_bad(page);
2019 return 1;
2022 static inline bool free_pages_prezeroed(void)
2024 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2025 page_poisoning_enabled();
2028 #ifdef CONFIG_DEBUG_VM
2029 static bool check_pcp_refill(struct page *page)
2031 return false;
2034 static bool check_new_pcp(struct page *page)
2036 return check_new_page(page);
2038 #else
2039 static bool check_pcp_refill(struct page *page)
2041 return check_new_page(page);
2043 static bool check_new_pcp(struct page *page)
2045 return false;
2047 #endif /* CONFIG_DEBUG_VM */
2049 static bool check_new_pages(struct page *page, unsigned int order)
2051 int i;
2052 for (i = 0; i < (1 << order); i++) {
2053 struct page *p = page + i;
2055 if (unlikely(check_new_page(p)))
2056 return true;
2059 return false;
2062 inline void post_alloc_hook(struct page *page, unsigned int order,
2063 gfp_t gfp_flags)
2065 set_page_private(page, 0);
2066 set_page_refcounted(page);
2068 arch_alloc_page(page, order);
2069 if (debug_pagealloc_enabled())
2070 kernel_map_pages(page, 1 << order, 1);
2071 kasan_alloc_pages(page, order);
2072 kernel_poison_pages(page, 1 << order, 1);
2073 set_page_owner(page, order, gfp_flags);
2076 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2077 unsigned int alloc_flags)
2079 int i;
2081 post_alloc_hook(page, order, gfp_flags);
2083 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2084 for (i = 0; i < (1 << order); i++)
2085 clear_highpage(page + i);
2087 if (order && (gfp_flags & __GFP_COMP))
2088 prep_compound_page(page, order);
2091 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2092 * allocate the page. The expectation is that the caller is taking
2093 * steps that will free more memory. The caller should avoid the page
2094 * being used for !PFMEMALLOC purposes.
2096 if (alloc_flags & ALLOC_NO_WATERMARKS)
2097 set_page_pfmemalloc(page);
2098 else
2099 clear_page_pfmemalloc(page);
2103 * Go through the free lists for the given migratetype and remove
2104 * the smallest available page from the freelists
2106 static __always_inline
2107 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2108 int migratetype)
2110 unsigned int current_order;
2111 struct free_area *area;
2112 struct page *page;
2114 /* Find a page of the appropriate size in the preferred list */
2115 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2116 area = &(zone->free_area[current_order]);
2117 page = get_page_from_free_area(area, migratetype);
2118 if (!page)
2119 continue;
2120 del_page_from_free_area(page, area);
2121 expand(zone, page, order, current_order, area, migratetype);
2122 set_pcppage_migratetype(page, migratetype);
2123 return page;
2126 return NULL;
2131 * This array describes the order lists are fallen back to when
2132 * the free lists for the desirable migrate type are depleted
2134 static int fallbacks[MIGRATE_TYPES][4] = {
2135 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2136 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2137 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2138 #ifdef CONFIG_CMA
2139 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2140 #endif
2141 #ifdef CONFIG_MEMORY_ISOLATION
2142 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2143 #endif
2146 #ifdef CONFIG_CMA
2147 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2148 unsigned int order)
2150 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2152 #else
2153 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2154 unsigned int order) { return NULL; }
2155 #endif
2158 * Move the free pages in a range to the free lists of the requested type.
2159 * Note that start_page and end_pages are not aligned on a pageblock
2160 * boundary. If alignment is required, use move_freepages_block()
2162 static int move_freepages(struct zone *zone,
2163 struct page *start_page, struct page *end_page,
2164 int migratetype, int *num_movable)
2166 struct page *page;
2167 unsigned int order;
2168 int pages_moved = 0;
2170 #ifndef CONFIG_HOLES_IN_ZONE
2172 * page_zone is not safe to call in this context when
2173 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2174 * anyway as we check zone boundaries in move_freepages_block().
2175 * Remove at a later date when no bug reports exist related to
2176 * grouping pages by mobility
2178 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2179 pfn_valid(page_to_pfn(end_page)) &&
2180 page_zone(start_page) != page_zone(end_page));
2181 #endif
2182 for (page = start_page; page <= end_page;) {
2183 if (!pfn_valid_within(page_to_pfn(page))) {
2184 page++;
2185 continue;
2188 /* Make sure we are not inadvertently changing nodes */
2189 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2191 if (!PageBuddy(page)) {
2193 * We assume that pages that could be isolated for
2194 * migration are movable. But we don't actually try
2195 * isolating, as that would be expensive.
2197 if (num_movable &&
2198 (PageLRU(page) || __PageMovable(page)))
2199 (*num_movable)++;
2201 page++;
2202 continue;
2205 order = page_order(page);
2206 move_to_free_area(page, &zone->free_area[order], migratetype);
2207 page += 1 << order;
2208 pages_moved += 1 << order;
2211 return pages_moved;
2214 int move_freepages_block(struct zone *zone, struct page *page,
2215 int migratetype, int *num_movable)
2217 unsigned long start_pfn, end_pfn;
2218 struct page *start_page, *end_page;
2220 if (num_movable)
2221 *num_movable = 0;
2223 start_pfn = page_to_pfn(page);
2224 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2225 start_page = pfn_to_page(start_pfn);
2226 end_page = start_page + pageblock_nr_pages - 1;
2227 end_pfn = start_pfn + pageblock_nr_pages - 1;
2229 /* Do not cross zone boundaries */
2230 if (!zone_spans_pfn(zone, start_pfn))
2231 start_page = page;
2232 if (!zone_spans_pfn(zone, end_pfn))
2233 return 0;
2235 return move_freepages(zone, start_page, end_page, migratetype,
2236 num_movable);
2239 static void change_pageblock_range(struct page *pageblock_page,
2240 int start_order, int migratetype)
2242 int nr_pageblocks = 1 << (start_order - pageblock_order);
2244 while (nr_pageblocks--) {
2245 set_pageblock_migratetype(pageblock_page, migratetype);
2246 pageblock_page += pageblock_nr_pages;
2251 * When we are falling back to another migratetype during allocation, try to
2252 * steal extra free pages from the same pageblocks to satisfy further
2253 * allocations, instead of polluting multiple pageblocks.
2255 * If we are stealing a relatively large buddy page, it is likely there will
2256 * be more free pages in the pageblock, so try to steal them all. For
2257 * reclaimable and unmovable allocations, we steal regardless of page size,
2258 * as fragmentation caused by those allocations polluting movable pageblocks
2259 * is worse than movable allocations stealing from unmovable and reclaimable
2260 * pageblocks.
2262 static bool can_steal_fallback(unsigned int order, int start_mt)
2265 * Leaving this order check is intended, although there is
2266 * relaxed order check in next check. The reason is that
2267 * we can actually steal whole pageblock if this condition met,
2268 * but, below check doesn't guarantee it and that is just heuristic
2269 * so could be changed anytime.
2271 if (order >= pageblock_order)
2272 return true;
2274 if (order >= pageblock_order / 2 ||
2275 start_mt == MIGRATE_RECLAIMABLE ||
2276 start_mt == MIGRATE_UNMOVABLE ||
2277 page_group_by_mobility_disabled)
2278 return true;
2280 return false;
2283 static inline void boost_watermark(struct zone *zone)
2285 unsigned long max_boost;
2287 if (!watermark_boost_factor)
2288 return;
2290 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2291 watermark_boost_factor, 10000);
2294 * high watermark may be uninitialised if fragmentation occurs
2295 * very early in boot so do not boost. We do not fall
2296 * through and boost by pageblock_nr_pages as failing
2297 * allocations that early means that reclaim is not going
2298 * to help and it may even be impossible to reclaim the
2299 * boosted watermark resulting in a hang.
2301 if (!max_boost)
2302 return;
2304 max_boost = max(pageblock_nr_pages, max_boost);
2306 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2307 max_boost);
2311 * This function implements actual steal behaviour. If order is large enough,
2312 * we can steal whole pageblock. If not, we first move freepages in this
2313 * pageblock to our migratetype and determine how many already-allocated pages
2314 * are there in the pageblock with a compatible migratetype. If at least half
2315 * of pages are free or compatible, we can change migratetype of the pageblock
2316 * itself, so pages freed in the future will be put on the correct free list.
2318 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2319 unsigned int alloc_flags, int start_type, bool whole_block)
2321 unsigned int current_order = page_order(page);
2322 struct free_area *area;
2323 int free_pages, movable_pages, alike_pages;
2324 int old_block_type;
2326 old_block_type = get_pageblock_migratetype(page);
2329 * This can happen due to races and we want to prevent broken
2330 * highatomic accounting.
2332 if (is_migrate_highatomic(old_block_type))
2333 goto single_page;
2335 /* Take ownership for orders >= pageblock_order */
2336 if (current_order >= pageblock_order) {
2337 change_pageblock_range(page, current_order, start_type);
2338 goto single_page;
2342 * Boost watermarks to increase reclaim pressure to reduce the
2343 * likelihood of future fallbacks. Wake kswapd now as the node
2344 * may be balanced overall and kswapd will not wake naturally.
2346 boost_watermark(zone);
2347 if (alloc_flags & ALLOC_KSWAPD)
2348 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2350 /* We are not allowed to try stealing from the whole block */
2351 if (!whole_block)
2352 goto single_page;
2354 free_pages = move_freepages_block(zone, page, start_type,
2355 &movable_pages);
2357 * Determine how many pages are compatible with our allocation.
2358 * For movable allocation, it's the number of movable pages which
2359 * we just obtained. For other types it's a bit more tricky.
2361 if (start_type == MIGRATE_MOVABLE) {
2362 alike_pages = movable_pages;
2363 } else {
2365 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2366 * to MOVABLE pageblock, consider all non-movable pages as
2367 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2368 * vice versa, be conservative since we can't distinguish the
2369 * exact migratetype of non-movable pages.
2371 if (old_block_type == MIGRATE_MOVABLE)
2372 alike_pages = pageblock_nr_pages
2373 - (free_pages + movable_pages);
2374 else
2375 alike_pages = 0;
2378 /* moving whole block can fail due to zone boundary conditions */
2379 if (!free_pages)
2380 goto single_page;
2383 * If a sufficient number of pages in the block are either free or of
2384 * comparable migratability as our allocation, claim the whole block.
2386 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2387 page_group_by_mobility_disabled)
2388 set_pageblock_migratetype(page, start_type);
2390 return;
2392 single_page:
2393 area = &zone->free_area[current_order];
2394 move_to_free_area(page, area, start_type);
2398 * Check whether there is a suitable fallback freepage with requested order.
2399 * If only_stealable is true, this function returns fallback_mt only if
2400 * we can steal other freepages all together. This would help to reduce
2401 * fragmentation due to mixed migratetype pages in one pageblock.
2403 int find_suitable_fallback(struct free_area *area, unsigned int order,
2404 int migratetype, bool only_stealable, bool *can_steal)
2406 int i;
2407 int fallback_mt;
2409 if (area->nr_free == 0)
2410 return -1;
2412 *can_steal = false;
2413 for (i = 0;; i++) {
2414 fallback_mt = fallbacks[migratetype][i];
2415 if (fallback_mt == MIGRATE_TYPES)
2416 break;
2418 if (free_area_empty(area, fallback_mt))
2419 continue;
2421 if (can_steal_fallback(order, migratetype))
2422 *can_steal = true;
2424 if (!only_stealable)
2425 return fallback_mt;
2427 if (*can_steal)
2428 return fallback_mt;
2431 return -1;
2435 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2436 * there are no empty page blocks that contain a page with a suitable order
2438 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2439 unsigned int alloc_order)
2441 int mt;
2442 unsigned long max_managed, flags;
2445 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2446 * Check is race-prone but harmless.
2448 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2449 if (zone->nr_reserved_highatomic >= max_managed)
2450 return;
2452 spin_lock_irqsave(&zone->lock, flags);
2454 /* Recheck the nr_reserved_highatomic limit under the lock */
2455 if (zone->nr_reserved_highatomic >= max_managed)
2456 goto out_unlock;
2458 /* Yoink! */
2459 mt = get_pageblock_migratetype(page);
2460 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2461 && !is_migrate_cma(mt)) {
2462 zone->nr_reserved_highatomic += pageblock_nr_pages;
2463 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2464 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2467 out_unlock:
2468 spin_unlock_irqrestore(&zone->lock, flags);
2472 * Used when an allocation is about to fail under memory pressure. This
2473 * potentially hurts the reliability of high-order allocations when under
2474 * intense memory pressure but failed atomic allocations should be easier
2475 * to recover from than an OOM.
2477 * If @force is true, try to unreserve a pageblock even though highatomic
2478 * pageblock is exhausted.
2480 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2481 bool force)
2483 struct zonelist *zonelist = ac->zonelist;
2484 unsigned long flags;
2485 struct zoneref *z;
2486 struct zone *zone;
2487 struct page *page;
2488 int order;
2489 bool ret;
2491 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2492 ac->nodemask) {
2494 * Preserve at least one pageblock unless memory pressure
2495 * is really high.
2497 if (!force && zone->nr_reserved_highatomic <=
2498 pageblock_nr_pages)
2499 continue;
2501 spin_lock_irqsave(&zone->lock, flags);
2502 for (order = 0; order < MAX_ORDER; order++) {
2503 struct free_area *area = &(zone->free_area[order]);
2505 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2506 if (!page)
2507 continue;
2510 * In page freeing path, migratetype change is racy so
2511 * we can counter several free pages in a pageblock
2512 * in this loop althoug we changed the pageblock type
2513 * from highatomic to ac->migratetype. So we should
2514 * adjust the count once.
2516 if (is_migrate_highatomic_page(page)) {
2518 * It should never happen but changes to
2519 * locking could inadvertently allow a per-cpu
2520 * drain to add pages to MIGRATE_HIGHATOMIC
2521 * while unreserving so be safe and watch for
2522 * underflows.
2524 zone->nr_reserved_highatomic -= min(
2525 pageblock_nr_pages,
2526 zone->nr_reserved_highatomic);
2530 * Convert to ac->migratetype and avoid the normal
2531 * pageblock stealing heuristics. Minimally, the caller
2532 * is doing the work and needs the pages. More
2533 * importantly, if the block was always converted to
2534 * MIGRATE_UNMOVABLE or another type then the number
2535 * of pageblocks that cannot be completely freed
2536 * may increase.
2538 set_pageblock_migratetype(page, ac->migratetype);
2539 ret = move_freepages_block(zone, page, ac->migratetype,
2540 NULL);
2541 if (ret) {
2542 spin_unlock_irqrestore(&zone->lock, flags);
2543 return ret;
2546 spin_unlock_irqrestore(&zone->lock, flags);
2549 return false;
2553 * Try finding a free buddy page on the fallback list and put it on the free
2554 * list of requested migratetype, possibly along with other pages from the same
2555 * block, depending on fragmentation avoidance heuristics. Returns true if
2556 * fallback was found so that __rmqueue_smallest() can grab it.
2558 * The use of signed ints for order and current_order is a deliberate
2559 * deviation from the rest of this file, to make the for loop
2560 * condition simpler.
2562 static __always_inline bool
2563 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2564 unsigned int alloc_flags)
2566 struct free_area *area;
2567 int current_order;
2568 int min_order = order;
2569 struct page *page;
2570 int fallback_mt;
2571 bool can_steal;
2574 * Do not steal pages from freelists belonging to other pageblocks
2575 * i.e. orders < pageblock_order. If there are no local zones free,
2576 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2578 if (alloc_flags & ALLOC_NOFRAGMENT)
2579 min_order = pageblock_order;
2582 * Find the largest available free page in the other list. This roughly
2583 * approximates finding the pageblock with the most free pages, which
2584 * would be too costly to do exactly.
2586 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2587 --current_order) {
2588 area = &(zone->free_area[current_order]);
2589 fallback_mt = find_suitable_fallback(area, current_order,
2590 start_migratetype, false, &can_steal);
2591 if (fallback_mt == -1)
2592 continue;
2595 * We cannot steal all free pages from the pageblock and the
2596 * requested migratetype is movable. In that case it's better to
2597 * steal and split the smallest available page instead of the
2598 * largest available page, because even if the next movable
2599 * allocation falls back into a different pageblock than this
2600 * one, it won't cause permanent fragmentation.
2602 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2603 && current_order > order)
2604 goto find_smallest;
2606 goto do_steal;
2609 return false;
2611 find_smallest:
2612 for (current_order = order; current_order < MAX_ORDER;
2613 current_order++) {
2614 area = &(zone->free_area[current_order]);
2615 fallback_mt = find_suitable_fallback(area, current_order,
2616 start_migratetype, false, &can_steal);
2617 if (fallback_mt != -1)
2618 break;
2622 * This should not happen - we already found a suitable fallback
2623 * when looking for the largest page.
2625 VM_BUG_ON(current_order == MAX_ORDER);
2627 do_steal:
2628 page = get_page_from_free_area(area, fallback_mt);
2630 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2631 can_steal);
2633 trace_mm_page_alloc_extfrag(page, order, current_order,
2634 start_migratetype, fallback_mt);
2636 return true;
2641 * Do the hard work of removing an element from the buddy allocator.
2642 * Call me with the zone->lock already held.
2644 static __always_inline struct page *
2645 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2646 unsigned int alloc_flags)
2648 struct page *page;
2650 retry:
2651 page = __rmqueue_smallest(zone, order, migratetype);
2652 if (unlikely(!page)) {
2653 if (migratetype == MIGRATE_MOVABLE)
2654 page = __rmqueue_cma_fallback(zone, order);
2656 if (!page && __rmqueue_fallback(zone, order, migratetype,
2657 alloc_flags))
2658 goto retry;
2661 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2662 return page;
2666 * Obtain a specified number of elements from the buddy allocator, all under
2667 * a single hold of the lock, for efficiency. Add them to the supplied list.
2668 * Returns the number of new pages which were placed at *list.
2670 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2671 unsigned long count, struct list_head *list,
2672 int migratetype, unsigned int alloc_flags)
2674 int i, alloced = 0;
2676 spin_lock(&zone->lock);
2677 for (i = 0; i < count; ++i) {
2678 struct page *page = __rmqueue(zone, order, migratetype,
2679 alloc_flags);
2680 if (unlikely(page == NULL))
2681 break;
2683 if (unlikely(check_pcp_refill(page)))
2684 continue;
2687 * Split buddy pages returned by expand() are received here in
2688 * physical page order. The page is added to the tail of
2689 * caller's list. From the callers perspective, the linked list
2690 * is ordered by page number under some conditions. This is
2691 * useful for IO devices that can forward direction from the
2692 * head, thus also in the physical page order. This is useful
2693 * for IO devices that can merge IO requests if the physical
2694 * pages are ordered properly.
2696 list_add_tail(&page->lru, list);
2697 alloced++;
2698 if (is_migrate_cma(get_pcppage_migratetype(page)))
2699 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2700 -(1 << order));
2704 * i pages were removed from the buddy list even if some leak due
2705 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2706 * on i. Do not confuse with 'alloced' which is the number of
2707 * pages added to the pcp list.
2709 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2710 spin_unlock(&zone->lock);
2711 return alloced;
2714 #ifdef CONFIG_NUMA
2716 * Called from the vmstat counter updater to drain pagesets of this
2717 * currently executing processor on remote nodes after they have
2718 * expired.
2720 * Note that this function must be called with the thread pinned to
2721 * a single processor.
2723 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2725 unsigned long flags;
2726 int to_drain, batch;
2728 local_irq_save(flags);
2729 batch = READ_ONCE(pcp->batch);
2730 to_drain = min(pcp->count, batch);
2731 if (to_drain > 0)
2732 free_pcppages_bulk(zone, to_drain, pcp);
2733 local_irq_restore(flags);
2735 #endif
2738 * Drain pcplists of the indicated processor and zone.
2740 * The processor must either be the current processor and the
2741 * thread pinned to the current processor or a processor that
2742 * is not online.
2744 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2746 unsigned long flags;
2747 struct per_cpu_pageset *pset;
2748 struct per_cpu_pages *pcp;
2750 local_irq_save(flags);
2751 pset = per_cpu_ptr(zone->pageset, cpu);
2753 pcp = &pset->pcp;
2754 if (pcp->count)
2755 free_pcppages_bulk(zone, pcp->count, pcp);
2756 local_irq_restore(flags);
2760 * Drain pcplists of all zones on the indicated processor.
2762 * The processor must either be the current processor and the
2763 * thread pinned to the current processor or a processor that
2764 * is not online.
2766 static void drain_pages(unsigned int cpu)
2768 struct zone *zone;
2770 for_each_populated_zone(zone) {
2771 drain_pages_zone(cpu, zone);
2776 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2778 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2779 * the single zone's pages.
2781 void drain_local_pages(struct zone *zone)
2783 int cpu = smp_processor_id();
2785 if (zone)
2786 drain_pages_zone(cpu, zone);
2787 else
2788 drain_pages(cpu);
2791 static void drain_local_pages_wq(struct work_struct *work)
2793 struct pcpu_drain *drain;
2795 drain = container_of(work, struct pcpu_drain, work);
2798 * drain_all_pages doesn't use proper cpu hotplug protection so
2799 * we can race with cpu offline when the WQ can move this from
2800 * a cpu pinned worker to an unbound one. We can operate on a different
2801 * cpu which is allright but we also have to make sure to not move to
2802 * a different one.
2804 preempt_disable();
2805 drain_local_pages(drain->zone);
2806 preempt_enable();
2810 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2812 * When zone parameter is non-NULL, spill just the single zone's pages.
2814 * Note that this can be extremely slow as the draining happens in a workqueue.
2816 void drain_all_pages(struct zone *zone)
2818 int cpu;
2821 * Allocate in the BSS so we wont require allocation in
2822 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2824 static cpumask_t cpus_with_pcps;
2827 * Make sure nobody triggers this path before mm_percpu_wq is fully
2828 * initialized.
2830 if (WARN_ON_ONCE(!mm_percpu_wq))
2831 return;
2834 * Do not drain if one is already in progress unless it's specific to
2835 * a zone. Such callers are primarily CMA and memory hotplug and need
2836 * the drain to be complete when the call returns.
2838 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2839 if (!zone)
2840 return;
2841 mutex_lock(&pcpu_drain_mutex);
2845 * We don't care about racing with CPU hotplug event
2846 * as offline notification will cause the notified
2847 * cpu to drain that CPU pcps and on_each_cpu_mask
2848 * disables preemption as part of its processing
2850 for_each_online_cpu(cpu) {
2851 struct per_cpu_pageset *pcp;
2852 struct zone *z;
2853 bool has_pcps = false;
2855 if (zone) {
2856 pcp = per_cpu_ptr(zone->pageset, cpu);
2857 if (pcp->pcp.count)
2858 has_pcps = true;
2859 } else {
2860 for_each_populated_zone(z) {
2861 pcp = per_cpu_ptr(z->pageset, cpu);
2862 if (pcp->pcp.count) {
2863 has_pcps = true;
2864 break;
2869 if (has_pcps)
2870 cpumask_set_cpu(cpu, &cpus_with_pcps);
2871 else
2872 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2875 for_each_cpu(cpu, &cpus_with_pcps) {
2876 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2878 drain->zone = zone;
2879 INIT_WORK(&drain->work, drain_local_pages_wq);
2880 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2882 for_each_cpu(cpu, &cpus_with_pcps)
2883 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2885 mutex_unlock(&pcpu_drain_mutex);
2888 #ifdef CONFIG_HIBERNATION
2891 * Touch the watchdog for every WD_PAGE_COUNT pages.
2893 #define WD_PAGE_COUNT (128*1024)
2895 void mark_free_pages(struct zone *zone)
2897 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2898 unsigned long flags;
2899 unsigned int order, t;
2900 struct page *page;
2902 if (zone_is_empty(zone))
2903 return;
2905 spin_lock_irqsave(&zone->lock, flags);
2907 max_zone_pfn = zone_end_pfn(zone);
2908 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2909 if (pfn_valid(pfn)) {
2910 page = pfn_to_page(pfn);
2912 if (!--page_count) {
2913 touch_nmi_watchdog();
2914 page_count = WD_PAGE_COUNT;
2917 if (page_zone(page) != zone)
2918 continue;
2920 if (!swsusp_page_is_forbidden(page))
2921 swsusp_unset_page_free(page);
2924 for_each_migratetype_order(order, t) {
2925 list_for_each_entry(page,
2926 &zone->free_area[order].free_list[t], lru) {
2927 unsigned long i;
2929 pfn = page_to_pfn(page);
2930 for (i = 0; i < (1UL << order); i++) {
2931 if (!--page_count) {
2932 touch_nmi_watchdog();
2933 page_count = WD_PAGE_COUNT;
2935 swsusp_set_page_free(pfn_to_page(pfn + i));
2939 spin_unlock_irqrestore(&zone->lock, flags);
2941 #endif /* CONFIG_PM */
2943 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2945 int migratetype;
2947 if (!free_pcp_prepare(page))
2948 return false;
2950 migratetype = get_pfnblock_migratetype(page, pfn);
2951 set_pcppage_migratetype(page, migratetype);
2952 return true;
2955 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2957 struct zone *zone = page_zone(page);
2958 struct per_cpu_pages *pcp;
2959 int migratetype;
2961 migratetype = get_pcppage_migratetype(page);
2962 __count_vm_event(PGFREE);
2965 * We only track unmovable, reclaimable and movable on pcp lists.
2966 * Free ISOLATE pages back to the allocator because they are being
2967 * offlined but treat HIGHATOMIC as movable pages so we can get those
2968 * areas back if necessary. Otherwise, we may have to free
2969 * excessively into the page allocator
2971 if (migratetype >= MIGRATE_PCPTYPES) {
2972 if (unlikely(is_migrate_isolate(migratetype))) {
2973 free_one_page(zone, page, pfn, 0, migratetype);
2974 return;
2976 migratetype = MIGRATE_MOVABLE;
2979 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2980 list_add(&page->lru, &pcp->lists[migratetype]);
2981 pcp->count++;
2982 if (pcp->count >= pcp->high) {
2983 unsigned long batch = READ_ONCE(pcp->batch);
2984 free_pcppages_bulk(zone, batch, pcp);
2989 * Free a 0-order page
2991 void free_unref_page(struct page *page)
2993 unsigned long flags;
2994 unsigned long pfn = page_to_pfn(page);
2996 if (!free_unref_page_prepare(page, pfn))
2997 return;
2999 local_irq_save(flags);
3000 free_unref_page_commit(page, pfn);
3001 local_irq_restore(flags);
3005 * Free a list of 0-order pages
3007 void free_unref_page_list(struct list_head *list)
3009 struct page *page, *next;
3010 unsigned long flags, pfn;
3011 int batch_count = 0;
3013 /* Prepare pages for freeing */
3014 list_for_each_entry_safe(page, next, list, lru) {
3015 pfn = page_to_pfn(page);
3016 if (!free_unref_page_prepare(page, pfn))
3017 list_del(&page->lru);
3018 set_page_private(page, pfn);
3021 local_irq_save(flags);
3022 list_for_each_entry_safe(page, next, list, lru) {
3023 unsigned long pfn = page_private(page);
3025 set_page_private(page, 0);
3026 trace_mm_page_free_batched(page);
3027 free_unref_page_commit(page, pfn);
3030 * Guard against excessive IRQ disabled times when we get
3031 * a large list of pages to free.
3033 if (++batch_count == SWAP_CLUSTER_MAX) {
3034 local_irq_restore(flags);
3035 batch_count = 0;
3036 local_irq_save(flags);
3039 local_irq_restore(flags);
3043 * split_page takes a non-compound higher-order page, and splits it into
3044 * n (1<<order) sub-pages: page[0..n]
3045 * Each sub-page must be freed individually.
3047 * Note: this is probably too low level an operation for use in drivers.
3048 * Please consult with lkml before using this in your driver.
3050 void split_page(struct page *page, unsigned int order)
3052 int i;
3054 VM_BUG_ON_PAGE(PageCompound(page), page);
3055 VM_BUG_ON_PAGE(!page_count(page), page);
3057 for (i = 1; i < (1 << order); i++)
3058 set_page_refcounted(page + i);
3059 split_page_owner(page, order);
3061 EXPORT_SYMBOL_GPL(split_page);
3063 int __isolate_free_page(struct page *page, unsigned int order)
3065 struct free_area *area = &page_zone(page)->free_area[order];
3066 unsigned long watermark;
3067 struct zone *zone;
3068 int mt;
3070 BUG_ON(!PageBuddy(page));
3072 zone = page_zone(page);
3073 mt = get_pageblock_migratetype(page);
3075 if (!is_migrate_isolate(mt)) {
3077 * Obey watermarks as if the page was being allocated. We can
3078 * emulate a high-order watermark check with a raised order-0
3079 * watermark, because we already know our high-order page
3080 * exists.
3082 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3083 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3084 return 0;
3086 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3089 /* Remove page from free list */
3091 del_page_from_free_area(page, area);
3094 * Set the pageblock if the isolated page is at least half of a
3095 * pageblock
3097 if (order >= pageblock_order - 1) {
3098 struct page *endpage = page + (1 << order) - 1;
3099 for (; page < endpage; page += pageblock_nr_pages) {
3100 int mt = get_pageblock_migratetype(page);
3101 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3102 && !is_migrate_highatomic(mt))
3103 set_pageblock_migratetype(page,
3104 MIGRATE_MOVABLE);
3109 return 1UL << order;
3113 * Update NUMA hit/miss statistics
3115 * Must be called with interrupts disabled.
3117 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3119 #ifdef CONFIG_NUMA
3120 enum numa_stat_item local_stat = NUMA_LOCAL;
3122 /* skip numa counters update if numa stats is disabled */
3123 if (!static_branch_likely(&vm_numa_stat_key))
3124 return;
3126 if (zone_to_nid(z) != numa_node_id())
3127 local_stat = NUMA_OTHER;
3129 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3130 __inc_numa_state(z, NUMA_HIT);
3131 else {
3132 __inc_numa_state(z, NUMA_MISS);
3133 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3135 __inc_numa_state(z, local_stat);
3136 #endif
3139 /* Remove page from the per-cpu list, caller must protect the list */
3140 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3141 unsigned int alloc_flags,
3142 struct per_cpu_pages *pcp,
3143 struct list_head *list)
3145 struct page *page;
3147 do {
3148 if (list_empty(list)) {
3149 pcp->count += rmqueue_bulk(zone, 0,
3150 pcp->batch, list,
3151 migratetype, alloc_flags);
3152 if (unlikely(list_empty(list)))
3153 return NULL;
3156 page = list_first_entry(list, struct page, lru);
3157 list_del(&page->lru);
3158 pcp->count--;
3159 } while (check_new_pcp(page));
3161 return page;
3164 /* Lock and remove page from the per-cpu list */
3165 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3166 struct zone *zone, gfp_t gfp_flags,
3167 int migratetype, unsigned int alloc_flags)
3169 struct per_cpu_pages *pcp;
3170 struct list_head *list;
3171 struct page *page;
3172 unsigned long flags;
3174 local_irq_save(flags);
3175 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3176 list = &pcp->lists[migratetype];
3177 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3178 if (page) {
3179 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3180 zone_statistics(preferred_zone, zone);
3182 local_irq_restore(flags);
3183 return page;
3187 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3189 static inline
3190 struct page *rmqueue(struct zone *preferred_zone,
3191 struct zone *zone, unsigned int order,
3192 gfp_t gfp_flags, unsigned int alloc_flags,
3193 int migratetype)
3195 unsigned long flags;
3196 struct page *page;
3198 if (likely(order == 0)) {
3199 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3200 migratetype, alloc_flags);
3201 goto out;
3205 * We most definitely don't want callers attempting to
3206 * allocate greater than order-1 page units with __GFP_NOFAIL.
3208 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3209 spin_lock_irqsave(&zone->lock, flags);
3211 do {
3212 page = NULL;
3213 if (alloc_flags & ALLOC_HARDER) {
3214 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3215 if (page)
3216 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3218 if (!page)
3219 page = __rmqueue(zone, order, migratetype, alloc_flags);
3220 } while (page && check_new_pages(page, order));
3221 spin_unlock(&zone->lock);
3222 if (!page)
3223 goto failed;
3224 __mod_zone_freepage_state(zone, -(1 << order),
3225 get_pcppage_migratetype(page));
3227 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3228 zone_statistics(preferred_zone, zone);
3229 local_irq_restore(flags);
3231 out:
3232 /* Separate test+clear to avoid unnecessary atomics */
3233 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3234 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3235 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3238 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3239 return page;
3241 failed:
3242 local_irq_restore(flags);
3243 return NULL;
3246 #ifdef CONFIG_FAIL_PAGE_ALLOC
3248 static struct {
3249 struct fault_attr attr;
3251 bool ignore_gfp_highmem;
3252 bool ignore_gfp_reclaim;
3253 u32 min_order;
3254 } fail_page_alloc = {
3255 .attr = FAULT_ATTR_INITIALIZER,
3256 .ignore_gfp_reclaim = true,
3257 .ignore_gfp_highmem = true,
3258 .min_order = 1,
3261 static int __init setup_fail_page_alloc(char *str)
3263 return setup_fault_attr(&fail_page_alloc.attr, str);
3265 __setup("fail_page_alloc=", setup_fail_page_alloc);
3267 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3269 if (order < fail_page_alloc.min_order)
3270 return false;
3271 if (gfp_mask & __GFP_NOFAIL)
3272 return false;
3273 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3274 return false;
3275 if (fail_page_alloc.ignore_gfp_reclaim &&
3276 (gfp_mask & __GFP_DIRECT_RECLAIM))
3277 return false;
3279 return should_fail(&fail_page_alloc.attr, 1 << order);
3282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3284 static int __init fail_page_alloc_debugfs(void)
3286 umode_t mode = S_IFREG | 0600;
3287 struct dentry *dir;
3289 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3290 &fail_page_alloc.attr);
3292 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3293 &fail_page_alloc.ignore_gfp_reclaim);
3294 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3295 &fail_page_alloc.ignore_gfp_highmem);
3296 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3298 return 0;
3301 late_initcall(fail_page_alloc_debugfs);
3303 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3305 #else /* CONFIG_FAIL_PAGE_ALLOC */
3307 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3309 return false;
3312 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3314 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3316 return __should_fail_alloc_page(gfp_mask, order);
3318 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3321 * Return true if free base pages are above 'mark'. For high-order checks it
3322 * will return true of the order-0 watermark is reached and there is at least
3323 * one free page of a suitable size. Checking now avoids taking the zone lock
3324 * to check in the allocation paths if no pages are free.
3326 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3327 int classzone_idx, unsigned int alloc_flags,
3328 long free_pages)
3330 long min = mark;
3331 int o;
3332 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3334 /* free_pages may go negative - that's OK */
3335 free_pages -= (1 << order) - 1;
3337 if (alloc_flags & ALLOC_HIGH)
3338 min -= min / 2;
3341 * If the caller does not have rights to ALLOC_HARDER then subtract
3342 * the high-atomic reserves. This will over-estimate the size of the
3343 * atomic reserve but it avoids a search.
3345 if (likely(!alloc_harder)) {
3346 free_pages -= z->nr_reserved_highatomic;
3347 } else {
3349 * OOM victims can try even harder than normal ALLOC_HARDER
3350 * users on the grounds that it's definitely going to be in
3351 * the exit path shortly and free memory. Any allocation it
3352 * makes during the free path will be small and short-lived.
3354 if (alloc_flags & ALLOC_OOM)
3355 min -= min / 2;
3356 else
3357 min -= min / 4;
3361 #ifdef CONFIG_CMA
3362 /* If allocation can't use CMA areas don't use free CMA pages */
3363 if (!(alloc_flags & ALLOC_CMA))
3364 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3365 #endif
3368 * Check watermarks for an order-0 allocation request. If these
3369 * are not met, then a high-order request also cannot go ahead
3370 * even if a suitable page happened to be free.
3372 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3373 return false;
3375 /* If this is an order-0 request then the watermark is fine */
3376 if (!order)
3377 return true;
3379 /* For a high-order request, check at least one suitable page is free */
3380 for (o = order; o < MAX_ORDER; o++) {
3381 struct free_area *area = &z->free_area[o];
3382 int mt;
3384 if (!area->nr_free)
3385 continue;
3387 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3388 if (!free_area_empty(area, mt))
3389 return true;
3392 #ifdef CONFIG_CMA
3393 if ((alloc_flags & ALLOC_CMA) &&
3394 !free_area_empty(area, MIGRATE_CMA)) {
3395 return true;
3397 #endif
3398 if (alloc_harder &&
3399 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3400 return true;
3402 return false;
3405 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3406 int classzone_idx, unsigned int alloc_flags)
3408 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3409 zone_page_state(z, NR_FREE_PAGES));
3412 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3413 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3415 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3416 long cma_pages = 0;
3418 #ifdef CONFIG_CMA
3419 /* If allocation can't use CMA areas don't use free CMA pages */
3420 if (!(alloc_flags & ALLOC_CMA))
3421 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3422 #endif
3425 * Fast check for order-0 only. If this fails then the reserves
3426 * need to be calculated. There is a corner case where the check
3427 * passes but only the high-order atomic reserve are free. If
3428 * the caller is !atomic then it'll uselessly search the free
3429 * list. That corner case is then slower but it is harmless.
3431 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3432 return true;
3434 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3435 free_pages);
3438 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3439 unsigned long mark, int classzone_idx)
3441 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3443 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3444 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3446 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3447 free_pages);
3450 #ifdef CONFIG_NUMA
3451 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3453 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3454 RECLAIM_DISTANCE;
3456 #else /* CONFIG_NUMA */
3457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3459 return true;
3461 #endif /* CONFIG_NUMA */
3464 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3465 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3466 * premature use of a lower zone may cause lowmem pressure problems that
3467 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3468 * probably too small. It only makes sense to spread allocations to avoid
3469 * fragmentation between the Normal and DMA32 zones.
3471 static inline unsigned int
3472 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3474 unsigned int alloc_flags = 0;
3476 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3477 alloc_flags |= ALLOC_KSWAPD;
3479 #ifdef CONFIG_ZONE_DMA32
3480 if (!zone)
3481 return alloc_flags;
3483 if (zone_idx(zone) != ZONE_NORMAL)
3484 return alloc_flags;
3487 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3488 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3489 * on UMA that if Normal is populated then so is DMA32.
3491 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3492 if (nr_online_nodes > 1 && !populated_zone(--zone))
3493 return alloc_flags;
3495 alloc_flags |= ALLOC_NOFRAGMENT;
3496 #endif /* CONFIG_ZONE_DMA32 */
3497 return alloc_flags;
3501 * get_page_from_freelist goes through the zonelist trying to allocate
3502 * a page.
3504 static struct page *
3505 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3506 const struct alloc_context *ac)
3508 struct zoneref *z;
3509 struct zone *zone;
3510 struct pglist_data *last_pgdat_dirty_limit = NULL;
3511 bool no_fallback;
3513 retry:
3515 * Scan zonelist, looking for a zone with enough free.
3516 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3518 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3519 z = ac->preferred_zoneref;
3520 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3521 ac->nodemask) {
3522 struct page *page;
3523 unsigned long mark;
3525 if (cpusets_enabled() &&
3526 (alloc_flags & ALLOC_CPUSET) &&
3527 !__cpuset_zone_allowed(zone, gfp_mask))
3528 continue;
3530 * When allocating a page cache page for writing, we
3531 * want to get it from a node that is within its dirty
3532 * limit, such that no single node holds more than its
3533 * proportional share of globally allowed dirty pages.
3534 * The dirty limits take into account the node's
3535 * lowmem reserves and high watermark so that kswapd
3536 * should be able to balance it without having to
3537 * write pages from its LRU list.
3539 * XXX: For now, allow allocations to potentially
3540 * exceed the per-node dirty limit in the slowpath
3541 * (spread_dirty_pages unset) before going into reclaim,
3542 * which is important when on a NUMA setup the allowed
3543 * nodes are together not big enough to reach the
3544 * global limit. The proper fix for these situations
3545 * will require awareness of nodes in the
3546 * dirty-throttling and the flusher threads.
3548 if (ac->spread_dirty_pages) {
3549 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3550 continue;
3552 if (!node_dirty_ok(zone->zone_pgdat)) {
3553 last_pgdat_dirty_limit = zone->zone_pgdat;
3554 continue;
3558 if (no_fallback && nr_online_nodes > 1 &&
3559 zone != ac->preferred_zoneref->zone) {
3560 int local_nid;
3563 * If moving to a remote node, retry but allow
3564 * fragmenting fallbacks. Locality is more important
3565 * than fragmentation avoidance.
3567 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3568 if (zone_to_nid(zone) != local_nid) {
3569 alloc_flags &= ~ALLOC_NOFRAGMENT;
3570 goto retry;
3574 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3575 if (!zone_watermark_fast(zone, order, mark,
3576 ac_classzone_idx(ac), alloc_flags)) {
3577 int ret;
3579 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3581 * Watermark failed for this zone, but see if we can
3582 * grow this zone if it contains deferred pages.
3584 if (static_branch_unlikely(&deferred_pages)) {
3585 if (_deferred_grow_zone(zone, order))
3586 goto try_this_zone;
3588 #endif
3589 /* Checked here to keep the fast path fast */
3590 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3591 if (alloc_flags & ALLOC_NO_WATERMARKS)
3592 goto try_this_zone;
3594 if (node_reclaim_mode == 0 ||
3595 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3596 continue;
3598 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3599 switch (ret) {
3600 case NODE_RECLAIM_NOSCAN:
3601 /* did not scan */
3602 continue;
3603 case NODE_RECLAIM_FULL:
3604 /* scanned but unreclaimable */
3605 continue;
3606 default:
3607 /* did we reclaim enough */
3608 if (zone_watermark_ok(zone, order, mark,
3609 ac_classzone_idx(ac), alloc_flags))
3610 goto try_this_zone;
3612 continue;
3616 try_this_zone:
3617 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3618 gfp_mask, alloc_flags, ac->migratetype);
3619 if (page) {
3620 prep_new_page(page, order, gfp_mask, alloc_flags);
3623 * If this is a high-order atomic allocation then check
3624 * if the pageblock should be reserved for the future
3626 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3627 reserve_highatomic_pageblock(page, zone, order);
3629 return page;
3630 } else {
3631 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3632 /* Try again if zone has deferred pages */
3633 if (static_branch_unlikely(&deferred_pages)) {
3634 if (_deferred_grow_zone(zone, order))
3635 goto try_this_zone;
3637 #endif
3642 * It's possible on a UMA machine to get through all zones that are
3643 * fragmented. If avoiding fragmentation, reset and try again.
3645 if (no_fallback) {
3646 alloc_flags &= ~ALLOC_NOFRAGMENT;
3647 goto retry;
3650 return NULL;
3653 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3655 unsigned int filter = SHOW_MEM_FILTER_NODES;
3656 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3658 if (!__ratelimit(&show_mem_rs))
3659 return;
3662 * This documents exceptions given to allocations in certain
3663 * contexts that are allowed to allocate outside current's set
3664 * of allowed nodes.
3666 if (!(gfp_mask & __GFP_NOMEMALLOC))
3667 if (tsk_is_oom_victim(current) ||
3668 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3669 filter &= ~SHOW_MEM_FILTER_NODES;
3670 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3671 filter &= ~SHOW_MEM_FILTER_NODES;
3673 show_mem(filter, nodemask);
3676 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3678 struct va_format vaf;
3679 va_list args;
3680 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3681 DEFAULT_RATELIMIT_BURST);
3683 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3684 return;
3686 va_start(args, fmt);
3687 vaf.fmt = fmt;
3688 vaf.va = &args;
3689 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3690 current->comm, &vaf, gfp_mask, &gfp_mask,
3691 nodemask_pr_args(nodemask));
3692 va_end(args);
3694 cpuset_print_current_mems_allowed();
3695 pr_cont("\n");
3696 dump_stack();
3697 warn_alloc_show_mem(gfp_mask, nodemask);
3700 static inline struct page *
3701 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3702 unsigned int alloc_flags,
3703 const struct alloc_context *ac)
3705 struct page *page;
3707 page = get_page_from_freelist(gfp_mask, order,
3708 alloc_flags|ALLOC_CPUSET, ac);
3710 * fallback to ignore cpuset restriction if our nodes
3711 * are depleted
3713 if (!page)
3714 page = get_page_from_freelist(gfp_mask, order,
3715 alloc_flags, ac);
3717 return page;
3720 static inline struct page *
3721 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3722 const struct alloc_context *ac, unsigned long *did_some_progress)
3724 struct oom_control oc = {
3725 .zonelist = ac->zonelist,
3726 .nodemask = ac->nodemask,
3727 .memcg = NULL,
3728 .gfp_mask = gfp_mask,
3729 .order = order,
3731 struct page *page;
3733 *did_some_progress = 0;
3736 * Acquire the oom lock. If that fails, somebody else is
3737 * making progress for us.
3739 if (!mutex_trylock(&oom_lock)) {
3740 *did_some_progress = 1;
3741 schedule_timeout_uninterruptible(1);
3742 return NULL;
3746 * Go through the zonelist yet one more time, keep very high watermark
3747 * here, this is only to catch a parallel oom killing, we must fail if
3748 * we're still under heavy pressure. But make sure that this reclaim
3749 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3750 * allocation which will never fail due to oom_lock already held.
3752 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3753 ~__GFP_DIRECT_RECLAIM, order,
3754 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3755 if (page)
3756 goto out;
3758 /* Coredumps can quickly deplete all memory reserves */
3759 if (current->flags & PF_DUMPCORE)
3760 goto out;
3761 /* The OOM killer will not help higher order allocs */
3762 if (order > PAGE_ALLOC_COSTLY_ORDER)
3763 goto out;
3765 * We have already exhausted all our reclaim opportunities without any
3766 * success so it is time to admit defeat. We will skip the OOM killer
3767 * because it is very likely that the caller has a more reasonable
3768 * fallback than shooting a random task.
3770 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3771 goto out;
3772 /* The OOM killer does not needlessly kill tasks for lowmem */
3773 if (ac->high_zoneidx < ZONE_NORMAL)
3774 goto out;
3775 if (pm_suspended_storage())
3776 goto out;
3778 * XXX: GFP_NOFS allocations should rather fail than rely on
3779 * other request to make a forward progress.
3780 * We are in an unfortunate situation where out_of_memory cannot
3781 * do much for this context but let's try it to at least get
3782 * access to memory reserved if the current task is killed (see
3783 * out_of_memory). Once filesystems are ready to handle allocation
3784 * failures more gracefully we should just bail out here.
3787 /* The OOM killer may not free memory on a specific node */
3788 if (gfp_mask & __GFP_THISNODE)
3789 goto out;
3791 /* Exhausted what can be done so it's blame time */
3792 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3793 *did_some_progress = 1;
3796 * Help non-failing allocations by giving them access to memory
3797 * reserves
3799 if (gfp_mask & __GFP_NOFAIL)
3800 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3801 ALLOC_NO_WATERMARKS, ac);
3803 out:
3804 mutex_unlock(&oom_lock);
3805 return page;
3809 * Maximum number of compaction retries wit a progress before OOM
3810 * killer is consider as the only way to move forward.
3812 #define MAX_COMPACT_RETRIES 16
3814 #ifdef CONFIG_COMPACTION
3815 /* Try memory compaction for high-order allocations before reclaim */
3816 static struct page *
3817 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3818 unsigned int alloc_flags, const struct alloc_context *ac,
3819 enum compact_priority prio, enum compact_result *compact_result)
3821 struct page *page = NULL;
3822 unsigned long pflags;
3823 unsigned int noreclaim_flag;
3825 if (!order)
3826 return NULL;
3828 psi_memstall_enter(&pflags);
3829 noreclaim_flag = memalloc_noreclaim_save();
3831 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3832 prio, &page);
3834 memalloc_noreclaim_restore(noreclaim_flag);
3835 psi_memstall_leave(&pflags);
3838 * At least in one zone compaction wasn't deferred or skipped, so let's
3839 * count a compaction stall
3841 count_vm_event(COMPACTSTALL);
3843 /* Prep a captured page if available */
3844 if (page)
3845 prep_new_page(page, order, gfp_mask, alloc_flags);
3847 /* Try get a page from the freelist if available */
3848 if (!page)
3849 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3851 if (page) {
3852 struct zone *zone = page_zone(page);
3854 zone->compact_blockskip_flush = false;
3855 compaction_defer_reset(zone, order, true);
3856 count_vm_event(COMPACTSUCCESS);
3857 return page;
3861 * It's bad if compaction run occurs and fails. The most likely reason
3862 * is that pages exist, but not enough to satisfy watermarks.
3864 count_vm_event(COMPACTFAIL);
3866 cond_resched();
3868 return NULL;
3871 static inline bool
3872 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3873 enum compact_result compact_result,
3874 enum compact_priority *compact_priority,
3875 int *compaction_retries)
3877 int max_retries = MAX_COMPACT_RETRIES;
3878 int min_priority;
3879 bool ret = false;
3880 int retries = *compaction_retries;
3881 enum compact_priority priority = *compact_priority;
3883 if (!order)
3884 return false;
3886 if (compaction_made_progress(compact_result))
3887 (*compaction_retries)++;
3890 * compaction considers all the zone as desperately out of memory
3891 * so it doesn't really make much sense to retry except when the
3892 * failure could be caused by insufficient priority
3894 if (compaction_failed(compact_result))
3895 goto check_priority;
3898 * make sure the compaction wasn't deferred or didn't bail out early
3899 * due to locks contention before we declare that we should give up.
3900 * But do not retry if the given zonelist is not suitable for
3901 * compaction.
3903 if (compaction_withdrawn(compact_result)) {
3904 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3905 goto out;
3909 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3910 * costly ones because they are de facto nofail and invoke OOM
3911 * killer to move on while costly can fail and users are ready
3912 * to cope with that. 1/4 retries is rather arbitrary but we
3913 * would need much more detailed feedback from compaction to
3914 * make a better decision.
3916 if (order > PAGE_ALLOC_COSTLY_ORDER)
3917 max_retries /= 4;
3918 if (*compaction_retries <= max_retries) {
3919 ret = true;
3920 goto out;
3924 * Make sure there are attempts at the highest priority if we exhausted
3925 * all retries or failed at the lower priorities.
3927 check_priority:
3928 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3929 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3931 if (*compact_priority > min_priority) {
3932 (*compact_priority)--;
3933 *compaction_retries = 0;
3934 ret = true;
3936 out:
3937 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3938 return ret;
3940 #else
3941 static inline struct page *
3942 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3943 unsigned int alloc_flags, const struct alloc_context *ac,
3944 enum compact_priority prio, enum compact_result *compact_result)
3946 *compact_result = COMPACT_SKIPPED;
3947 return NULL;
3950 static inline bool
3951 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3952 enum compact_result compact_result,
3953 enum compact_priority *compact_priority,
3954 int *compaction_retries)
3956 struct zone *zone;
3957 struct zoneref *z;
3959 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3960 return false;
3963 * There are setups with compaction disabled which would prefer to loop
3964 * inside the allocator rather than hit the oom killer prematurely.
3965 * Let's give them a good hope and keep retrying while the order-0
3966 * watermarks are OK.
3968 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3969 ac->nodemask) {
3970 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3971 ac_classzone_idx(ac), alloc_flags))
3972 return true;
3974 return false;
3976 #endif /* CONFIG_COMPACTION */
3978 #ifdef CONFIG_LOCKDEP
3979 static struct lockdep_map __fs_reclaim_map =
3980 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3982 static bool __need_fs_reclaim(gfp_t gfp_mask)
3984 gfp_mask = current_gfp_context(gfp_mask);
3986 /* no reclaim without waiting on it */
3987 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3988 return false;
3990 /* this guy won't enter reclaim */
3991 if (current->flags & PF_MEMALLOC)
3992 return false;
3994 /* We're only interested __GFP_FS allocations for now */
3995 if (!(gfp_mask & __GFP_FS))
3996 return false;
3998 if (gfp_mask & __GFP_NOLOCKDEP)
3999 return false;
4001 return true;
4004 void __fs_reclaim_acquire(void)
4006 lock_map_acquire(&__fs_reclaim_map);
4009 void __fs_reclaim_release(void)
4011 lock_map_release(&__fs_reclaim_map);
4014 void fs_reclaim_acquire(gfp_t gfp_mask)
4016 if (__need_fs_reclaim(gfp_mask))
4017 __fs_reclaim_acquire();
4019 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4021 void fs_reclaim_release(gfp_t gfp_mask)
4023 if (__need_fs_reclaim(gfp_mask))
4024 __fs_reclaim_release();
4026 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4027 #endif
4029 /* Perform direct synchronous page reclaim */
4030 static int
4031 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4032 const struct alloc_context *ac)
4034 struct reclaim_state reclaim_state;
4035 int progress;
4036 unsigned int noreclaim_flag;
4037 unsigned long pflags;
4039 cond_resched();
4041 /* We now go into synchronous reclaim */
4042 cpuset_memory_pressure_bump();
4043 psi_memstall_enter(&pflags);
4044 fs_reclaim_acquire(gfp_mask);
4045 noreclaim_flag = memalloc_noreclaim_save();
4046 reclaim_state.reclaimed_slab = 0;
4047 current->reclaim_state = &reclaim_state;
4049 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4050 ac->nodemask);
4052 current->reclaim_state = NULL;
4053 memalloc_noreclaim_restore(noreclaim_flag);
4054 fs_reclaim_release(gfp_mask);
4055 psi_memstall_leave(&pflags);
4057 cond_resched();
4059 return progress;
4062 /* The really slow allocator path where we enter direct reclaim */
4063 static inline struct page *
4064 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4065 unsigned int alloc_flags, const struct alloc_context *ac,
4066 unsigned long *did_some_progress)
4068 struct page *page = NULL;
4069 bool drained = false;
4071 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4072 if (unlikely(!(*did_some_progress)))
4073 return NULL;
4075 retry:
4076 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4079 * If an allocation failed after direct reclaim, it could be because
4080 * pages are pinned on the per-cpu lists or in high alloc reserves.
4081 * Shrink them them and try again
4083 if (!page && !drained) {
4084 unreserve_highatomic_pageblock(ac, false);
4085 drain_all_pages(NULL);
4086 drained = true;
4087 goto retry;
4090 return page;
4093 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4094 const struct alloc_context *ac)
4096 struct zoneref *z;
4097 struct zone *zone;
4098 pg_data_t *last_pgdat = NULL;
4099 enum zone_type high_zoneidx = ac->high_zoneidx;
4101 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4102 ac->nodemask) {
4103 if (last_pgdat != zone->zone_pgdat)
4104 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4105 last_pgdat = zone->zone_pgdat;
4109 static inline unsigned int
4110 gfp_to_alloc_flags(gfp_t gfp_mask)
4112 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4114 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4115 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4118 * The caller may dip into page reserves a bit more if the caller
4119 * cannot run direct reclaim, or if the caller has realtime scheduling
4120 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4121 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4123 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4125 if (gfp_mask & __GFP_ATOMIC) {
4127 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4128 * if it can't schedule.
4130 if (!(gfp_mask & __GFP_NOMEMALLOC))
4131 alloc_flags |= ALLOC_HARDER;
4133 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4134 * comment for __cpuset_node_allowed().
4136 alloc_flags &= ~ALLOC_CPUSET;
4137 } else if (unlikely(rt_task(current)) && !in_interrupt())
4138 alloc_flags |= ALLOC_HARDER;
4140 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4141 alloc_flags |= ALLOC_KSWAPD;
4143 #ifdef CONFIG_CMA
4144 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4145 alloc_flags |= ALLOC_CMA;
4146 #endif
4147 return alloc_flags;
4150 static bool oom_reserves_allowed(struct task_struct *tsk)
4152 if (!tsk_is_oom_victim(tsk))
4153 return false;
4156 * !MMU doesn't have oom reaper so give access to memory reserves
4157 * only to the thread with TIF_MEMDIE set
4159 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4160 return false;
4162 return true;
4166 * Distinguish requests which really need access to full memory
4167 * reserves from oom victims which can live with a portion of it
4169 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4171 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4172 return 0;
4173 if (gfp_mask & __GFP_MEMALLOC)
4174 return ALLOC_NO_WATERMARKS;
4175 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4176 return ALLOC_NO_WATERMARKS;
4177 if (!in_interrupt()) {
4178 if (current->flags & PF_MEMALLOC)
4179 return ALLOC_NO_WATERMARKS;
4180 else if (oom_reserves_allowed(current))
4181 return ALLOC_OOM;
4184 return 0;
4187 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4189 return !!__gfp_pfmemalloc_flags(gfp_mask);
4193 * Checks whether it makes sense to retry the reclaim to make a forward progress
4194 * for the given allocation request.
4196 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4197 * without success, or when we couldn't even meet the watermark if we
4198 * reclaimed all remaining pages on the LRU lists.
4200 * Returns true if a retry is viable or false to enter the oom path.
4202 static inline bool
4203 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4204 struct alloc_context *ac, int alloc_flags,
4205 bool did_some_progress, int *no_progress_loops)
4207 struct zone *zone;
4208 struct zoneref *z;
4209 bool ret = false;
4212 * Costly allocations might have made a progress but this doesn't mean
4213 * their order will become available due to high fragmentation so
4214 * always increment the no progress counter for them
4216 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4217 *no_progress_loops = 0;
4218 else
4219 (*no_progress_loops)++;
4222 * Make sure we converge to OOM if we cannot make any progress
4223 * several times in the row.
4225 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4226 /* Before OOM, exhaust highatomic_reserve */
4227 return unreserve_highatomic_pageblock(ac, true);
4231 * Keep reclaiming pages while there is a chance this will lead
4232 * somewhere. If none of the target zones can satisfy our allocation
4233 * request even if all reclaimable pages are considered then we are
4234 * screwed and have to go OOM.
4236 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4237 ac->nodemask) {
4238 unsigned long available;
4239 unsigned long reclaimable;
4240 unsigned long min_wmark = min_wmark_pages(zone);
4241 bool wmark;
4243 available = reclaimable = zone_reclaimable_pages(zone);
4244 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4247 * Would the allocation succeed if we reclaimed all
4248 * reclaimable pages?
4250 wmark = __zone_watermark_ok(zone, order, min_wmark,
4251 ac_classzone_idx(ac), alloc_flags, available);
4252 trace_reclaim_retry_zone(z, order, reclaimable,
4253 available, min_wmark, *no_progress_loops, wmark);
4254 if (wmark) {
4256 * If we didn't make any progress and have a lot of
4257 * dirty + writeback pages then we should wait for
4258 * an IO to complete to slow down the reclaim and
4259 * prevent from pre mature OOM
4261 if (!did_some_progress) {
4262 unsigned long write_pending;
4264 write_pending = zone_page_state_snapshot(zone,
4265 NR_ZONE_WRITE_PENDING);
4267 if (2 * write_pending > reclaimable) {
4268 congestion_wait(BLK_RW_ASYNC, HZ/10);
4269 return true;
4273 ret = true;
4274 goto out;
4278 out:
4280 * Memory allocation/reclaim might be called from a WQ context and the
4281 * current implementation of the WQ concurrency control doesn't
4282 * recognize that a particular WQ is congested if the worker thread is
4283 * looping without ever sleeping. Therefore we have to do a short sleep
4284 * here rather than calling cond_resched().
4286 if (current->flags & PF_WQ_WORKER)
4287 schedule_timeout_uninterruptible(1);
4288 else
4289 cond_resched();
4290 return ret;
4293 static inline bool
4294 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4297 * It's possible that cpuset's mems_allowed and the nodemask from
4298 * mempolicy don't intersect. This should be normally dealt with by
4299 * policy_nodemask(), but it's possible to race with cpuset update in
4300 * such a way the check therein was true, and then it became false
4301 * before we got our cpuset_mems_cookie here.
4302 * This assumes that for all allocations, ac->nodemask can come only
4303 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4304 * when it does not intersect with the cpuset restrictions) or the
4305 * caller can deal with a violated nodemask.
4307 if (cpusets_enabled() && ac->nodemask &&
4308 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4309 ac->nodemask = NULL;
4310 return true;
4314 * When updating a task's mems_allowed or mempolicy nodemask, it is
4315 * possible to race with parallel threads in such a way that our
4316 * allocation can fail while the mask is being updated. If we are about
4317 * to fail, check if the cpuset changed during allocation and if so,
4318 * retry.
4320 if (read_mems_allowed_retry(cpuset_mems_cookie))
4321 return true;
4323 return false;
4326 static inline struct page *
4327 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4328 struct alloc_context *ac)
4330 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4331 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4332 struct page *page = NULL;
4333 unsigned int alloc_flags;
4334 unsigned long did_some_progress;
4335 enum compact_priority compact_priority;
4336 enum compact_result compact_result;
4337 int compaction_retries;
4338 int no_progress_loops;
4339 unsigned int cpuset_mems_cookie;
4340 int reserve_flags;
4343 * We also sanity check to catch abuse of atomic reserves being used by
4344 * callers that are not in atomic context.
4346 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4347 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4348 gfp_mask &= ~__GFP_ATOMIC;
4350 retry_cpuset:
4351 compaction_retries = 0;
4352 no_progress_loops = 0;
4353 compact_priority = DEF_COMPACT_PRIORITY;
4354 cpuset_mems_cookie = read_mems_allowed_begin();
4357 * The fast path uses conservative alloc_flags to succeed only until
4358 * kswapd needs to be woken up, and to avoid the cost of setting up
4359 * alloc_flags precisely. So we do that now.
4361 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4364 * We need to recalculate the starting point for the zonelist iterator
4365 * because we might have used different nodemask in the fast path, or
4366 * there was a cpuset modification and we are retrying - otherwise we
4367 * could end up iterating over non-eligible zones endlessly.
4369 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4370 ac->high_zoneidx, ac->nodemask);
4371 if (!ac->preferred_zoneref->zone)
4372 goto nopage;
4374 if (alloc_flags & ALLOC_KSWAPD)
4375 wake_all_kswapds(order, gfp_mask, ac);
4378 * The adjusted alloc_flags might result in immediate success, so try
4379 * that first
4381 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4382 if (page)
4383 goto got_pg;
4386 * For costly allocations, try direct compaction first, as it's likely
4387 * that we have enough base pages and don't need to reclaim. For non-
4388 * movable high-order allocations, do that as well, as compaction will
4389 * try prevent permanent fragmentation by migrating from blocks of the
4390 * same migratetype.
4391 * Don't try this for allocations that are allowed to ignore
4392 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4394 if (can_direct_reclaim &&
4395 (costly_order ||
4396 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4397 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4398 page = __alloc_pages_direct_compact(gfp_mask, order,
4399 alloc_flags, ac,
4400 INIT_COMPACT_PRIORITY,
4401 &compact_result);
4402 if (page)
4403 goto got_pg;
4406 * Checks for costly allocations with __GFP_NORETRY, which
4407 * includes THP page fault allocations
4409 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4411 * If compaction is deferred for high-order allocations,
4412 * it is because sync compaction recently failed. If
4413 * this is the case and the caller requested a THP
4414 * allocation, we do not want to heavily disrupt the
4415 * system, so we fail the allocation instead of entering
4416 * direct reclaim.
4418 if (compact_result == COMPACT_DEFERRED)
4419 goto nopage;
4422 * Looks like reclaim/compaction is worth trying, but
4423 * sync compaction could be very expensive, so keep
4424 * using async compaction.
4426 compact_priority = INIT_COMPACT_PRIORITY;
4430 retry:
4431 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4432 if (alloc_flags & ALLOC_KSWAPD)
4433 wake_all_kswapds(order, gfp_mask, ac);
4435 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4436 if (reserve_flags)
4437 alloc_flags = reserve_flags;
4440 * Reset the nodemask and zonelist iterators if memory policies can be
4441 * ignored. These allocations are high priority and system rather than
4442 * user oriented.
4444 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4445 ac->nodemask = NULL;
4446 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4447 ac->high_zoneidx, ac->nodemask);
4450 /* Attempt with potentially adjusted zonelist and alloc_flags */
4451 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4452 if (page)
4453 goto got_pg;
4455 /* Caller is not willing to reclaim, we can't balance anything */
4456 if (!can_direct_reclaim)
4457 goto nopage;
4459 /* Avoid recursion of direct reclaim */
4460 if (current->flags & PF_MEMALLOC)
4461 goto nopage;
4463 /* Try direct reclaim and then allocating */
4464 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4465 &did_some_progress);
4466 if (page)
4467 goto got_pg;
4469 /* Try direct compaction and then allocating */
4470 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4471 compact_priority, &compact_result);
4472 if (page)
4473 goto got_pg;
4475 /* Do not loop if specifically requested */
4476 if (gfp_mask & __GFP_NORETRY)
4477 goto nopage;
4480 * Do not retry costly high order allocations unless they are
4481 * __GFP_RETRY_MAYFAIL
4483 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4484 goto nopage;
4486 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4487 did_some_progress > 0, &no_progress_loops))
4488 goto retry;
4491 * It doesn't make any sense to retry for the compaction if the order-0
4492 * reclaim is not able to make any progress because the current
4493 * implementation of the compaction depends on the sufficient amount
4494 * of free memory (see __compaction_suitable)
4496 if (did_some_progress > 0 &&
4497 should_compact_retry(ac, order, alloc_flags,
4498 compact_result, &compact_priority,
4499 &compaction_retries))
4500 goto retry;
4503 /* Deal with possible cpuset update races before we start OOM killing */
4504 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4505 goto retry_cpuset;
4507 /* Reclaim has failed us, start killing things */
4508 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4509 if (page)
4510 goto got_pg;
4512 /* Avoid allocations with no watermarks from looping endlessly */
4513 if (tsk_is_oom_victim(current) &&
4514 (alloc_flags == ALLOC_OOM ||
4515 (gfp_mask & __GFP_NOMEMALLOC)))
4516 goto nopage;
4518 /* Retry as long as the OOM killer is making progress */
4519 if (did_some_progress) {
4520 no_progress_loops = 0;
4521 goto retry;
4524 nopage:
4525 /* Deal with possible cpuset update races before we fail */
4526 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4527 goto retry_cpuset;
4530 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4531 * we always retry
4533 if (gfp_mask & __GFP_NOFAIL) {
4535 * All existing users of the __GFP_NOFAIL are blockable, so warn
4536 * of any new users that actually require GFP_NOWAIT
4538 if (WARN_ON_ONCE(!can_direct_reclaim))
4539 goto fail;
4542 * PF_MEMALLOC request from this context is rather bizarre
4543 * because we cannot reclaim anything and only can loop waiting
4544 * for somebody to do a work for us
4546 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4549 * non failing costly orders are a hard requirement which we
4550 * are not prepared for much so let's warn about these users
4551 * so that we can identify them and convert them to something
4552 * else.
4554 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4557 * Help non-failing allocations by giving them access to memory
4558 * reserves but do not use ALLOC_NO_WATERMARKS because this
4559 * could deplete whole memory reserves which would just make
4560 * the situation worse
4562 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4563 if (page)
4564 goto got_pg;
4566 cond_resched();
4567 goto retry;
4569 fail:
4570 warn_alloc(gfp_mask, ac->nodemask,
4571 "page allocation failure: order:%u", order);
4572 got_pg:
4573 return page;
4576 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4577 int preferred_nid, nodemask_t *nodemask,
4578 struct alloc_context *ac, gfp_t *alloc_mask,
4579 unsigned int *alloc_flags)
4581 ac->high_zoneidx = gfp_zone(gfp_mask);
4582 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4583 ac->nodemask = nodemask;
4584 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4586 if (cpusets_enabled()) {
4587 *alloc_mask |= __GFP_HARDWALL;
4588 if (!ac->nodemask)
4589 ac->nodemask = &cpuset_current_mems_allowed;
4590 else
4591 *alloc_flags |= ALLOC_CPUSET;
4594 fs_reclaim_acquire(gfp_mask);
4595 fs_reclaim_release(gfp_mask);
4597 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4599 if (should_fail_alloc_page(gfp_mask, order))
4600 return false;
4602 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4603 *alloc_flags |= ALLOC_CMA;
4605 return true;
4608 /* Determine whether to spread dirty pages and what the first usable zone */
4609 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4611 /* Dirty zone balancing only done in the fast path */
4612 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4615 * The preferred zone is used for statistics but crucially it is
4616 * also used as the starting point for the zonelist iterator. It
4617 * may get reset for allocations that ignore memory policies.
4619 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4620 ac->high_zoneidx, ac->nodemask);
4624 * This is the 'heart' of the zoned buddy allocator.
4626 struct page *
4627 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4628 nodemask_t *nodemask)
4630 struct page *page;
4631 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4632 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4633 struct alloc_context ac = { };
4636 * There are several places where we assume that the order value is sane
4637 * so bail out early if the request is out of bound.
4639 if (unlikely(order >= MAX_ORDER)) {
4640 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4641 return NULL;
4644 gfp_mask &= gfp_allowed_mask;
4645 alloc_mask = gfp_mask;
4646 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4647 return NULL;
4649 finalise_ac(gfp_mask, &ac);
4652 * Forbid the first pass from falling back to types that fragment
4653 * memory until all local zones are considered.
4655 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4657 /* First allocation attempt */
4658 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4659 if (likely(page))
4660 goto out;
4663 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4664 * resp. GFP_NOIO which has to be inherited for all allocation requests
4665 * from a particular context which has been marked by
4666 * memalloc_no{fs,io}_{save,restore}.
4668 alloc_mask = current_gfp_context(gfp_mask);
4669 ac.spread_dirty_pages = false;
4672 * Restore the original nodemask if it was potentially replaced with
4673 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4675 if (unlikely(ac.nodemask != nodemask))
4676 ac.nodemask = nodemask;
4678 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4680 out:
4681 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4682 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4683 __free_pages(page, order);
4684 page = NULL;
4687 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4689 return page;
4691 EXPORT_SYMBOL(__alloc_pages_nodemask);
4694 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4695 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4696 * you need to access high mem.
4698 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4700 struct page *page;
4702 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4703 if (!page)
4704 return 0;
4705 return (unsigned long) page_address(page);
4707 EXPORT_SYMBOL(__get_free_pages);
4709 unsigned long get_zeroed_page(gfp_t gfp_mask)
4711 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4713 EXPORT_SYMBOL(get_zeroed_page);
4715 static inline void free_the_page(struct page *page, unsigned int order)
4717 if (order == 0) /* Via pcp? */
4718 free_unref_page(page);
4719 else
4720 __free_pages_ok(page, order);
4723 void __free_pages(struct page *page, unsigned int order)
4725 if (put_page_testzero(page))
4726 free_the_page(page, order);
4728 EXPORT_SYMBOL(__free_pages);
4730 void free_pages(unsigned long addr, unsigned int order)
4732 if (addr != 0) {
4733 VM_BUG_ON(!virt_addr_valid((void *)addr));
4734 __free_pages(virt_to_page((void *)addr), order);
4738 EXPORT_SYMBOL(free_pages);
4741 * Page Fragment:
4742 * An arbitrary-length arbitrary-offset area of memory which resides
4743 * within a 0 or higher order page. Multiple fragments within that page
4744 * are individually refcounted, in the page's reference counter.
4746 * The page_frag functions below provide a simple allocation framework for
4747 * page fragments. This is used by the network stack and network device
4748 * drivers to provide a backing region of memory for use as either an
4749 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4751 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4752 gfp_t gfp_mask)
4754 struct page *page = NULL;
4755 gfp_t gfp = gfp_mask;
4757 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4758 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4759 __GFP_NOMEMALLOC;
4760 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4761 PAGE_FRAG_CACHE_MAX_ORDER);
4762 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4763 #endif
4764 if (unlikely(!page))
4765 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4767 nc->va = page ? page_address(page) : NULL;
4769 return page;
4772 void __page_frag_cache_drain(struct page *page, unsigned int count)
4774 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4776 if (page_ref_sub_and_test(page, count))
4777 free_the_page(page, compound_order(page));
4779 EXPORT_SYMBOL(__page_frag_cache_drain);
4781 void *page_frag_alloc(struct page_frag_cache *nc,
4782 unsigned int fragsz, gfp_t gfp_mask)
4784 unsigned int size = PAGE_SIZE;
4785 struct page *page;
4786 int offset;
4788 if (unlikely(!nc->va)) {
4789 refill:
4790 page = __page_frag_cache_refill(nc, gfp_mask);
4791 if (!page)
4792 return NULL;
4794 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4795 /* if size can vary use size else just use PAGE_SIZE */
4796 size = nc->size;
4797 #endif
4798 /* Even if we own the page, we do not use atomic_set().
4799 * This would break get_page_unless_zero() users.
4801 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4803 /* reset page count bias and offset to start of new frag */
4804 nc->pfmemalloc = page_is_pfmemalloc(page);
4805 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4806 nc->offset = size;
4809 offset = nc->offset - fragsz;
4810 if (unlikely(offset < 0)) {
4811 page = virt_to_page(nc->va);
4813 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4814 goto refill;
4816 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4817 /* if size can vary use size else just use PAGE_SIZE */
4818 size = nc->size;
4819 #endif
4820 /* OK, page count is 0, we can safely set it */
4821 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4823 /* reset page count bias and offset to start of new frag */
4824 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4825 offset = size - fragsz;
4828 nc->pagecnt_bias--;
4829 nc->offset = offset;
4831 return nc->va + offset;
4833 EXPORT_SYMBOL(page_frag_alloc);
4836 * Frees a page fragment allocated out of either a compound or order 0 page.
4838 void page_frag_free(void *addr)
4840 struct page *page = virt_to_head_page(addr);
4842 if (unlikely(put_page_testzero(page)))
4843 free_the_page(page, compound_order(page));
4845 EXPORT_SYMBOL(page_frag_free);
4847 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4848 size_t size)
4850 if (addr) {
4851 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4852 unsigned long used = addr + PAGE_ALIGN(size);
4854 split_page(virt_to_page((void *)addr), order);
4855 while (used < alloc_end) {
4856 free_page(used);
4857 used += PAGE_SIZE;
4860 return (void *)addr;
4864 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4865 * @size: the number of bytes to allocate
4866 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4868 * This function is similar to alloc_pages(), except that it allocates the
4869 * minimum number of pages to satisfy the request. alloc_pages() can only
4870 * allocate memory in power-of-two pages.
4872 * This function is also limited by MAX_ORDER.
4874 * Memory allocated by this function must be released by free_pages_exact().
4876 * Return: pointer to the allocated area or %NULL in case of error.
4878 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4880 unsigned int order = get_order(size);
4881 unsigned long addr;
4883 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4884 gfp_mask &= ~__GFP_COMP;
4886 addr = __get_free_pages(gfp_mask, order);
4887 return make_alloc_exact(addr, order, size);
4889 EXPORT_SYMBOL(alloc_pages_exact);
4892 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4893 * pages on a node.
4894 * @nid: the preferred node ID where memory should be allocated
4895 * @size: the number of bytes to allocate
4896 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4898 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4899 * back.
4901 * Return: pointer to the allocated area or %NULL in case of error.
4903 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4905 unsigned int order = get_order(size);
4906 struct page *p;
4908 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4909 gfp_mask &= ~__GFP_COMP;
4911 p = alloc_pages_node(nid, gfp_mask, order);
4912 if (!p)
4913 return NULL;
4914 return make_alloc_exact((unsigned long)page_address(p), order, size);
4918 * free_pages_exact - release memory allocated via alloc_pages_exact()
4919 * @virt: the value returned by alloc_pages_exact.
4920 * @size: size of allocation, same value as passed to alloc_pages_exact().
4922 * Release the memory allocated by a previous call to alloc_pages_exact.
4924 void free_pages_exact(void *virt, size_t size)
4926 unsigned long addr = (unsigned long)virt;
4927 unsigned long end = addr + PAGE_ALIGN(size);
4929 while (addr < end) {
4930 free_page(addr);
4931 addr += PAGE_SIZE;
4934 EXPORT_SYMBOL(free_pages_exact);
4937 * nr_free_zone_pages - count number of pages beyond high watermark
4938 * @offset: The zone index of the highest zone
4940 * nr_free_zone_pages() counts the number of pages which are beyond the
4941 * high watermark within all zones at or below a given zone index. For each
4942 * zone, the number of pages is calculated as:
4944 * nr_free_zone_pages = managed_pages - high_pages
4946 * Return: number of pages beyond high watermark.
4948 static unsigned long nr_free_zone_pages(int offset)
4950 struct zoneref *z;
4951 struct zone *zone;
4953 /* Just pick one node, since fallback list is circular */
4954 unsigned long sum = 0;
4956 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4958 for_each_zone_zonelist(zone, z, zonelist, offset) {
4959 unsigned long size = zone_managed_pages(zone);
4960 unsigned long high = high_wmark_pages(zone);
4961 if (size > high)
4962 sum += size - high;
4965 return sum;
4969 * nr_free_buffer_pages - count number of pages beyond high watermark
4971 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4972 * watermark within ZONE_DMA and ZONE_NORMAL.
4974 * Return: number of pages beyond high watermark within ZONE_DMA and
4975 * ZONE_NORMAL.
4977 unsigned long nr_free_buffer_pages(void)
4979 return nr_free_zone_pages(gfp_zone(GFP_USER));
4981 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4984 * nr_free_pagecache_pages - count number of pages beyond high watermark
4986 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4987 * high watermark within all zones.
4989 * Return: number of pages beyond high watermark within all zones.
4991 unsigned long nr_free_pagecache_pages(void)
4993 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4996 static inline void show_node(struct zone *zone)
4998 if (IS_ENABLED(CONFIG_NUMA))
4999 printk("Node %d ", zone_to_nid(zone));
5002 long si_mem_available(void)
5004 long available;
5005 unsigned long pagecache;
5006 unsigned long wmark_low = 0;
5007 unsigned long pages[NR_LRU_LISTS];
5008 unsigned long reclaimable;
5009 struct zone *zone;
5010 int lru;
5012 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5013 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5015 for_each_zone(zone)
5016 wmark_low += low_wmark_pages(zone);
5019 * Estimate the amount of memory available for userspace allocations,
5020 * without causing swapping.
5022 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5025 * Not all the page cache can be freed, otherwise the system will
5026 * start swapping. Assume at least half of the page cache, or the
5027 * low watermark worth of cache, needs to stay.
5029 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5030 pagecache -= min(pagecache / 2, wmark_low);
5031 available += pagecache;
5034 * Part of the reclaimable slab and other kernel memory consists of
5035 * items that are in use, and cannot be freed. Cap this estimate at the
5036 * low watermark.
5038 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5039 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5040 available += reclaimable - min(reclaimable / 2, wmark_low);
5042 if (available < 0)
5043 available = 0;
5044 return available;
5046 EXPORT_SYMBOL_GPL(si_mem_available);
5048 void si_meminfo(struct sysinfo *val)
5050 val->totalram = totalram_pages();
5051 val->sharedram = global_node_page_state(NR_SHMEM);
5052 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5053 val->bufferram = nr_blockdev_pages();
5054 val->totalhigh = totalhigh_pages();
5055 val->freehigh = nr_free_highpages();
5056 val->mem_unit = PAGE_SIZE;
5059 EXPORT_SYMBOL(si_meminfo);
5061 #ifdef CONFIG_NUMA
5062 void si_meminfo_node(struct sysinfo *val, int nid)
5064 int zone_type; /* needs to be signed */
5065 unsigned long managed_pages = 0;
5066 unsigned long managed_highpages = 0;
5067 unsigned long free_highpages = 0;
5068 pg_data_t *pgdat = NODE_DATA(nid);
5070 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5071 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5072 val->totalram = managed_pages;
5073 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5074 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5075 #ifdef CONFIG_HIGHMEM
5076 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5077 struct zone *zone = &pgdat->node_zones[zone_type];
5079 if (is_highmem(zone)) {
5080 managed_highpages += zone_managed_pages(zone);
5081 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5084 val->totalhigh = managed_highpages;
5085 val->freehigh = free_highpages;
5086 #else
5087 val->totalhigh = managed_highpages;
5088 val->freehigh = free_highpages;
5089 #endif
5090 val->mem_unit = PAGE_SIZE;
5092 #endif
5095 * Determine whether the node should be displayed or not, depending on whether
5096 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5098 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5100 if (!(flags & SHOW_MEM_FILTER_NODES))
5101 return false;
5104 * no node mask - aka implicit memory numa policy. Do not bother with
5105 * the synchronization - read_mems_allowed_begin - because we do not
5106 * have to be precise here.
5108 if (!nodemask)
5109 nodemask = &cpuset_current_mems_allowed;
5111 return !node_isset(nid, *nodemask);
5114 #define K(x) ((x) << (PAGE_SHIFT-10))
5116 static void show_migration_types(unsigned char type)
5118 static const char types[MIGRATE_TYPES] = {
5119 [MIGRATE_UNMOVABLE] = 'U',
5120 [MIGRATE_MOVABLE] = 'M',
5121 [MIGRATE_RECLAIMABLE] = 'E',
5122 [MIGRATE_HIGHATOMIC] = 'H',
5123 #ifdef CONFIG_CMA
5124 [MIGRATE_CMA] = 'C',
5125 #endif
5126 #ifdef CONFIG_MEMORY_ISOLATION
5127 [MIGRATE_ISOLATE] = 'I',
5128 #endif
5130 char tmp[MIGRATE_TYPES + 1];
5131 char *p = tmp;
5132 int i;
5134 for (i = 0; i < MIGRATE_TYPES; i++) {
5135 if (type & (1 << i))
5136 *p++ = types[i];
5139 *p = '\0';
5140 printk(KERN_CONT "(%s) ", tmp);
5144 * Show free area list (used inside shift_scroll-lock stuff)
5145 * We also calculate the percentage fragmentation. We do this by counting the
5146 * memory on each free list with the exception of the first item on the list.
5148 * Bits in @filter:
5149 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5150 * cpuset.
5152 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5154 unsigned long free_pcp = 0;
5155 int cpu;
5156 struct zone *zone;
5157 pg_data_t *pgdat;
5159 for_each_populated_zone(zone) {
5160 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5161 continue;
5163 for_each_online_cpu(cpu)
5164 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5167 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5168 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5169 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5170 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5171 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5172 " free:%lu free_pcp:%lu free_cma:%lu\n",
5173 global_node_page_state(NR_ACTIVE_ANON),
5174 global_node_page_state(NR_INACTIVE_ANON),
5175 global_node_page_state(NR_ISOLATED_ANON),
5176 global_node_page_state(NR_ACTIVE_FILE),
5177 global_node_page_state(NR_INACTIVE_FILE),
5178 global_node_page_state(NR_ISOLATED_FILE),
5179 global_node_page_state(NR_UNEVICTABLE),
5180 global_node_page_state(NR_FILE_DIRTY),
5181 global_node_page_state(NR_WRITEBACK),
5182 global_node_page_state(NR_UNSTABLE_NFS),
5183 global_node_page_state(NR_SLAB_RECLAIMABLE),
5184 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5185 global_node_page_state(NR_FILE_MAPPED),
5186 global_node_page_state(NR_SHMEM),
5187 global_zone_page_state(NR_PAGETABLE),
5188 global_zone_page_state(NR_BOUNCE),
5189 global_zone_page_state(NR_FREE_PAGES),
5190 free_pcp,
5191 global_zone_page_state(NR_FREE_CMA_PAGES));
5193 for_each_online_pgdat(pgdat) {
5194 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5195 continue;
5197 printk("Node %d"
5198 " active_anon:%lukB"
5199 " inactive_anon:%lukB"
5200 " active_file:%lukB"
5201 " inactive_file:%lukB"
5202 " unevictable:%lukB"
5203 " isolated(anon):%lukB"
5204 " isolated(file):%lukB"
5205 " mapped:%lukB"
5206 " dirty:%lukB"
5207 " writeback:%lukB"
5208 " shmem:%lukB"
5209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5210 " shmem_thp: %lukB"
5211 " shmem_pmdmapped: %lukB"
5212 " anon_thp: %lukB"
5213 #endif
5214 " writeback_tmp:%lukB"
5215 " unstable:%lukB"
5216 " all_unreclaimable? %s"
5217 "\n",
5218 pgdat->node_id,
5219 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5220 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5221 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5222 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5223 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5224 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5225 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5226 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5227 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5228 K(node_page_state(pgdat, NR_WRITEBACK)),
5229 K(node_page_state(pgdat, NR_SHMEM)),
5230 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5231 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5232 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5233 * HPAGE_PMD_NR),
5234 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5235 #endif
5236 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5237 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5238 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5239 "yes" : "no");
5242 for_each_populated_zone(zone) {
5243 int i;
5245 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5246 continue;
5248 free_pcp = 0;
5249 for_each_online_cpu(cpu)
5250 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5252 show_node(zone);
5253 printk(KERN_CONT
5254 "%s"
5255 " free:%lukB"
5256 " min:%lukB"
5257 " low:%lukB"
5258 " high:%lukB"
5259 " active_anon:%lukB"
5260 " inactive_anon:%lukB"
5261 " active_file:%lukB"
5262 " inactive_file:%lukB"
5263 " unevictable:%lukB"
5264 " writepending:%lukB"
5265 " present:%lukB"
5266 " managed:%lukB"
5267 " mlocked:%lukB"
5268 " kernel_stack:%lukB"
5269 " pagetables:%lukB"
5270 " bounce:%lukB"
5271 " free_pcp:%lukB"
5272 " local_pcp:%ukB"
5273 " free_cma:%lukB"
5274 "\n",
5275 zone->name,
5276 K(zone_page_state(zone, NR_FREE_PAGES)),
5277 K(min_wmark_pages(zone)),
5278 K(low_wmark_pages(zone)),
5279 K(high_wmark_pages(zone)),
5280 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5281 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5282 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5283 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5284 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5285 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5286 K(zone->present_pages),
5287 K(zone_managed_pages(zone)),
5288 K(zone_page_state(zone, NR_MLOCK)),
5289 zone_page_state(zone, NR_KERNEL_STACK_KB),
5290 K(zone_page_state(zone, NR_PAGETABLE)),
5291 K(zone_page_state(zone, NR_BOUNCE)),
5292 K(free_pcp),
5293 K(this_cpu_read(zone->pageset->pcp.count)),
5294 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5295 printk("lowmem_reserve[]:");
5296 for (i = 0; i < MAX_NR_ZONES; i++)
5297 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5298 printk(KERN_CONT "\n");
5301 for_each_populated_zone(zone) {
5302 unsigned int order;
5303 unsigned long nr[MAX_ORDER], flags, total = 0;
5304 unsigned char types[MAX_ORDER];
5306 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5307 continue;
5308 show_node(zone);
5309 printk(KERN_CONT "%s: ", zone->name);
5311 spin_lock_irqsave(&zone->lock, flags);
5312 for (order = 0; order < MAX_ORDER; order++) {
5313 struct free_area *area = &zone->free_area[order];
5314 int type;
5316 nr[order] = area->nr_free;
5317 total += nr[order] << order;
5319 types[order] = 0;
5320 for (type = 0; type < MIGRATE_TYPES; type++) {
5321 if (!free_area_empty(area, type))
5322 types[order] |= 1 << type;
5325 spin_unlock_irqrestore(&zone->lock, flags);
5326 for (order = 0; order < MAX_ORDER; order++) {
5327 printk(KERN_CONT "%lu*%lukB ",
5328 nr[order], K(1UL) << order);
5329 if (nr[order])
5330 show_migration_types(types[order]);
5332 printk(KERN_CONT "= %lukB\n", K(total));
5335 hugetlb_show_meminfo();
5337 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5339 show_swap_cache_info();
5342 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5344 zoneref->zone = zone;
5345 zoneref->zone_idx = zone_idx(zone);
5349 * Builds allocation fallback zone lists.
5351 * Add all populated zones of a node to the zonelist.
5353 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5355 struct zone *zone;
5356 enum zone_type zone_type = MAX_NR_ZONES;
5357 int nr_zones = 0;
5359 do {
5360 zone_type--;
5361 zone = pgdat->node_zones + zone_type;
5362 if (managed_zone(zone)) {
5363 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5364 check_highest_zone(zone_type);
5366 } while (zone_type);
5368 return nr_zones;
5371 #ifdef CONFIG_NUMA
5373 static int __parse_numa_zonelist_order(char *s)
5376 * We used to support different zonlists modes but they turned
5377 * out to be just not useful. Let's keep the warning in place
5378 * if somebody still use the cmd line parameter so that we do
5379 * not fail it silently
5381 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5382 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5383 return -EINVAL;
5385 return 0;
5388 static __init int setup_numa_zonelist_order(char *s)
5390 if (!s)
5391 return 0;
5393 return __parse_numa_zonelist_order(s);
5395 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5397 char numa_zonelist_order[] = "Node";
5400 * sysctl handler for numa_zonelist_order
5402 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5403 void __user *buffer, size_t *length,
5404 loff_t *ppos)
5406 char *str;
5407 int ret;
5409 if (!write)
5410 return proc_dostring(table, write, buffer, length, ppos);
5411 str = memdup_user_nul(buffer, 16);
5412 if (IS_ERR(str))
5413 return PTR_ERR(str);
5415 ret = __parse_numa_zonelist_order(str);
5416 kfree(str);
5417 return ret;
5421 #define MAX_NODE_LOAD (nr_online_nodes)
5422 static int node_load[MAX_NUMNODES];
5425 * find_next_best_node - find the next node that should appear in a given node's fallback list
5426 * @node: node whose fallback list we're appending
5427 * @used_node_mask: nodemask_t of already used nodes
5429 * We use a number of factors to determine which is the next node that should
5430 * appear on a given node's fallback list. The node should not have appeared
5431 * already in @node's fallback list, and it should be the next closest node
5432 * according to the distance array (which contains arbitrary distance values
5433 * from each node to each node in the system), and should also prefer nodes
5434 * with no CPUs, since presumably they'll have very little allocation pressure
5435 * on them otherwise.
5437 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5439 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5441 int n, val;
5442 int min_val = INT_MAX;
5443 int best_node = NUMA_NO_NODE;
5444 const struct cpumask *tmp = cpumask_of_node(0);
5446 /* Use the local node if we haven't already */
5447 if (!node_isset(node, *used_node_mask)) {
5448 node_set(node, *used_node_mask);
5449 return node;
5452 for_each_node_state(n, N_MEMORY) {
5454 /* Don't want a node to appear more than once */
5455 if (node_isset(n, *used_node_mask))
5456 continue;
5458 /* Use the distance array to find the distance */
5459 val = node_distance(node, n);
5461 /* Penalize nodes under us ("prefer the next node") */
5462 val += (n < node);
5464 /* Give preference to headless and unused nodes */
5465 tmp = cpumask_of_node(n);
5466 if (!cpumask_empty(tmp))
5467 val += PENALTY_FOR_NODE_WITH_CPUS;
5469 /* Slight preference for less loaded node */
5470 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5471 val += node_load[n];
5473 if (val < min_val) {
5474 min_val = val;
5475 best_node = n;
5479 if (best_node >= 0)
5480 node_set(best_node, *used_node_mask);
5482 return best_node;
5487 * Build zonelists ordered by node and zones within node.
5488 * This results in maximum locality--normal zone overflows into local
5489 * DMA zone, if any--but risks exhausting DMA zone.
5491 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5492 unsigned nr_nodes)
5494 struct zoneref *zonerefs;
5495 int i;
5497 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5499 for (i = 0; i < nr_nodes; i++) {
5500 int nr_zones;
5502 pg_data_t *node = NODE_DATA(node_order[i]);
5504 nr_zones = build_zonerefs_node(node, zonerefs);
5505 zonerefs += nr_zones;
5507 zonerefs->zone = NULL;
5508 zonerefs->zone_idx = 0;
5512 * Build gfp_thisnode zonelists
5514 static void build_thisnode_zonelists(pg_data_t *pgdat)
5516 struct zoneref *zonerefs;
5517 int nr_zones;
5519 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5520 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5521 zonerefs += nr_zones;
5522 zonerefs->zone = NULL;
5523 zonerefs->zone_idx = 0;
5527 * Build zonelists ordered by zone and nodes within zones.
5528 * This results in conserving DMA zone[s] until all Normal memory is
5529 * exhausted, but results in overflowing to remote node while memory
5530 * may still exist in local DMA zone.
5533 static void build_zonelists(pg_data_t *pgdat)
5535 static int node_order[MAX_NUMNODES];
5536 int node, load, nr_nodes = 0;
5537 nodemask_t used_mask;
5538 int local_node, prev_node;
5540 /* NUMA-aware ordering of nodes */
5541 local_node = pgdat->node_id;
5542 load = nr_online_nodes;
5543 prev_node = local_node;
5544 nodes_clear(used_mask);
5546 memset(node_order, 0, sizeof(node_order));
5547 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5549 * We don't want to pressure a particular node.
5550 * So adding penalty to the first node in same
5551 * distance group to make it round-robin.
5553 if (node_distance(local_node, node) !=
5554 node_distance(local_node, prev_node))
5555 node_load[node] = load;
5557 node_order[nr_nodes++] = node;
5558 prev_node = node;
5559 load--;
5562 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5563 build_thisnode_zonelists(pgdat);
5566 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5568 * Return node id of node used for "local" allocations.
5569 * I.e., first node id of first zone in arg node's generic zonelist.
5570 * Used for initializing percpu 'numa_mem', which is used primarily
5571 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5573 int local_memory_node(int node)
5575 struct zoneref *z;
5577 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5578 gfp_zone(GFP_KERNEL),
5579 NULL);
5580 return zone_to_nid(z->zone);
5582 #endif
5584 static void setup_min_unmapped_ratio(void);
5585 static void setup_min_slab_ratio(void);
5586 #else /* CONFIG_NUMA */
5588 static void build_zonelists(pg_data_t *pgdat)
5590 int node, local_node;
5591 struct zoneref *zonerefs;
5592 int nr_zones;
5594 local_node = pgdat->node_id;
5596 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5597 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5598 zonerefs += nr_zones;
5601 * Now we build the zonelist so that it contains the zones
5602 * of all the other nodes.
5603 * We don't want to pressure a particular node, so when
5604 * building the zones for node N, we make sure that the
5605 * zones coming right after the local ones are those from
5606 * node N+1 (modulo N)
5608 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5609 if (!node_online(node))
5610 continue;
5611 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5612 zonerefs += nr_zones;
5614 for (node = 0; node < local_node; node++) {
5615 if (!node_online(node))
5616 continue;
5617 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5618 zonerefs += nr_zones;
5621 zonerefs->zone = NULL;
5622 zonerefs->zone_idx = 0;
5625 #endif /* CONFIG_NUMA */
5628 * Boot pageset table. One per cpu which is going to be used for all
5629 * zones and all nodes. The parameters will be set in such a way
5630 * that an item put on a list will immediately be handed over to
5631 * the buddy list. This is safe since pageset manipulation is done
5632 * with interrupts disabled.
5634 * The boot_pagesets must be kept even after bootup is complete for
5635 * unused processors and/or zones. They do play a role for bootstrapping
5636 * hotplugged processors.
5638 * zoneinfo_show() and maybe other functions do
5639 * not check if the processor is online before following the pageset pointer.
5640 * Other parts of the kernel may not check if the zone is available.
5642 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5643 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5644 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5646 static void __build_all_zonelists(void *data)
5648 int nid;
5649 int __maybe_unused cpu;
5650 pg_data_t *self = data;
5651 static DEFINE_SPINLOCK(lock);
5653 spin_lock(&lock);
5655 #ifdef CONFIG_NUMA
5656 memset(node_load, 0, sizeof(node_load));
5657 #endif
5660 * This node is hotadded and no memory is yet present. So just
5661 * building zonelists is fine - no need to touch other nodes.
5663 if (self && !node_online(self->node_id)) {
5664 build_zonelists(self);
5665 } else {
5666 for_each_online_node(nid) {
5667 pg_data_t *pgdat = NODE_DATA(nid);
5669 build_zonelists(pgdat);
5672 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5674 * We now know the "local memory node" for each node--
5675 * i.e., the node of the first zone in the generic zonelist.
5676 * Set up numa_mem percpu variable for on-line cpus. During
5677 * boot, only the boot cpu should be on-line; we'll init the
5678 * secondary cpus' numa_mem as they come on-line. During
5679 * node/memory hotplug, we'll fixup all on-line cpus.
5681 for_each_online_cpu(cpu)
5682 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5683 #endif
5686 spin_unlock(&lock);
5689 static noinline void __init
5690 build_all_zonelists_init(void)
5692 int cpu;
5694 __build_all_zonelists(NULL);
5697 * Initialize the boot_pagesets that are going to be used
5698 * for bootstrapping processors. The real pagesets for
5699 * each zone will be allocated later when the per cpu
5700 * allocator is available.
5702 * boot_pagesets are used also for bootstrapping offline
5703 * cpus if the system is already booted because the pagesets
5704 * are needed to initialize allocators on a specific cpu too.
5705 * F.e. the percpu allocator needs the page allocator which
5706 * needs the percpu allocator in order to allocate its pagesets
5707 * (a chicken-egg dilemma).
5709 for_each_possible_cpu(cpu)
5710 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5712 mminit_verify_zonelist();
5713 cpuset_init_current_mems_allowed();
5717 * unless system_state == SYSTEM_BOOTING.
5719 * __ref due to call of __init annotated helper build_all_zonelists_init
5720 * [protected by SYSTEM_BOOTING].
5722 void __ref build_all_zonelists(pg_data_t *pgdat)
5724 if (system_state == SYSTEM_BOOTING) {
5725 build_all_zonelists_init();
5726 } else {
5727 __build_all_zonelists(pgdat);
5728 /* cpuset refresh routine should be here */
5730 vm_total_pages = nr_free_pagecache_pages();
5732 * Disable grouping by mobility if the number of pages in the
5733 * system is too low to allow the mechanism to work. It would be
5734 * more accurate, but expensive to check per-zone. This check is
5735 * made on memory-hotadd so a system can start with mobility
5736 * disabled and enable it later
5738 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5739 page_group_by_mobility_disabled = 1;
5740 else
5741 page_group_by_mobility_disabled = 0;
5743 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5744 nr_online_nodes,
5745 page_group_by_mobility_disabled ? "off" : "on",
5746 vm_total_pages);
5747 #ifdef CONFIG_NUMA
5748 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5749 #endif
5752 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5753 static bool __meminit
5754 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5756 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5757 static struct memblock_region *r;
5759 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5760 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5761 for_each_memblock(memory, r) {
5762 if (*pfn < memblock_region_memory_end_pfn(r))
5763 break;
5766 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5767 memblock_is_mirror(r)) {
5768 *pfn = memblock_region_memory_end_pfn(r);
5769 return true;
5772 #endif
5773 return false;
5777 * Initially all pages are reserved - free ones are freed
5778 * up by memblock_free_all() once the early boot process is
5779 * done. Non-atomic initialization, single-pass.
5781 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5782 unsigned long start_pfn, enum memmap_context context,
5783 struct vmem_altmap *altmap)
5785 unsigned long pfn, end_pfn = start_pfn + size;
5786 struct page *page;
5788 if (highest_memmap_pfn < end_pfn - 1)
5789 highest_memmap_pfn = end_pfn - 1;
5791 #ifdef CONFIG_ZONE_DEVICE
5793 * Honor reservation requested by the driver for this ZONE_DEVICE
5794 * memory. We limit the total number of pages to initialize to just
5795 * those that might contain the memory mapping. We will defer the
5796 * ZONE_DEVICE page initialization until after we have released
5797 * the hotplug lock.
5799 if (zone == ZONE_DEVICE) {
5800 if (!altmap)
5801 return;
5803 if (start_pfn == altmap->base_pfn)
5804 start_pfn += altmap->reserve;
5805 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5807 #endif
5809 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5811 * There can be holes in boot-time mem_map[]s handed to this
5812 * function. They do not exist on hotplugged memory.
5814 if (context == MEMMAP_EARLY) {
5815 if (!early_pfn_valid(pfn))
5816 continue;
5817 if (!early_pfn_in_nid(pfn, nid))
5818 continue;
5819 if (overlap_memmap_init(zone, &pfn))
5820 continue;
5821 if (defer_init(nid, pfn, end_pfn))
5822 break;
5825 page = pfn_to_page(pfn);
5826 __init_single_page(page, pfn, zone, nid);
5827 if (context == MEMMAP_HOTPLUG)
5828 __SetPageReserved(page);
5831 * Mark the block movable so that blocks are reserved for
5832 * movable at startup. This will force kernel allocations
5833 * to reserve their blocks rather than leaking throughout
5834 * the address space during boot when many long-lived
5835 * kernel allocations are made.
5837 * bitmap is created for zone's valid pfn range. but memmap
5838 * can be created for invalid pages (for alignment)
5839 * check here not to call set_pageblock_migratetype() against
5840 * pfn out of zone.
5842 if (!(pfn & (pageblock_nr_pages - 1))) {
5843 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5844 cond_resched();
5849 #ifdef CONFIG_ZONE_DEVICE
5850 void __ref memmap_init_zone_device(struct zone *zone,
5851 unsigned long start_pfn,
5852 unsigned long size,
5853 struct dev_pagemap *pgmap)
5855 unsigned long pfn, end_pfn = start_pfn + size;
5856 struct pglist_data *pgdat = zone->zone_pgdat;
5857 unsigned long zone_idx = zone_idx(zone);
5858 unsigned long start = jiffies;
5859 int nid = pgdat->node_id;
5861 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5862 return;
5865 * The call to memmap_init_zone should have already taken care
5866 * of the pages reserved for the memmap, so we can just jump to
5867 * the end of that region and start processing the device pages.
5869 if (pgmap->altmap_valid) {
5870 struct vmem_altmap *altmap = &pgmap->altmap;
5872 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5873 size = end_pfn - start_pfn;
5876 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5877 struct page *page = pfn_to_page(pfn);
5879 __init_single_page(page, pfn, zone_idx, nid);
5882 * Mark page reserved as it will need to wait for onlining
5883 * phase for it to be fully associated with a zone.
5885 * We can use the non-atomic __set_bit operation for setting
5886 * the flag as we are still initializing the pages.
5888 __SetPageReserved(page);
5891 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5892 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5893 * page is ever freed or placed on a driver-private list.
5895 page->pgmap = pgmap;
5896 page->hmm_data = 0;
5899 * Mark the block movable so that blocks are reserved for
5900 * movable at startup. This will force kernel allocations
5901 * to reserve their blocks rather than leaking throughout
5902 * the address space during boot when many long-lived
5903 * kernel allocations are made.
5905 * bitmap is created for zone's valid pfn range. but memmap
5906 * can be created for invalid pages (for alignment)
5907 * check here not to call set_pageblock_migratetype() against
5908 * pfn out of zone.
5910 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5911 * because this is done early in sparse_add_one_section
5913 if (!(pfn & (pageblock_nr_pages - 1))) {
5914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5915 cond_resched();
5919 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5920 size, jiffies_to_msecs(jiffies - start));
5923 #endif
5924 static void __meminit zone_init_free_lists(struct zone *zone)
5926 unsigned int order, t;
5927 for_each_migratetype_order(order, t) {
5928 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5929 zone->free_area[order].nr_free = 0;
5933 void __meminit __weak memmap_init(unsigned long size, int nid,
5934 unsigned long zone, unsigned long start_pfn)
5936 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5939 static int zone_batchsize(struct zone *zone)
5941 #ifdef CONFIG_MMU
5942 int batch;
5945 * The per-cpu-pages pools are set to around 1000th of the
5946 * size of the zone.
5948 batch = zone_managed_pages(zone) / 1024;
5949 /* But no more than a meg. */
5950 if (batch * PAGE_SIZE > 1024 * 1024)
5951 batch = (1024 * 1024) / PAGE_SIZE;
5952 batch /= 4; /* We effectively *= 4 below */
5953 if (batch < 1)
5954 batch = 1;
5957 * Clamp the batch to a 2^n - 1 value. Having a power
5958 * of 2 value was found to be more likely to have
5959 * suboptimal cache aliasing properties in some cases.
5961 * For example if 2 tasks are alternately allocating
5962 * batches of pages, one task can end up with a lot
5963 * of pages of one half of the possible page colors
5964 * and the other with pages of the other colors.
5966 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5968 return batch;
5970 #else
5971 /* The deferral and batching of frees should be suppressed under NOMMU
5972 * conditions.
5974 * The problem is that NOMMU needs to be able to allocate large chunks
5975 * of contiguous memory as there's no hardware page translation to
5976 * assemble apparent contiguous memory from discontiguous pages.
5978 * Queueing large contiguous runs of pages for batching, however,
5979 * causes the pages to actually be freed in smaller chunks. As there
5980 * can be a significant delay between the individual batches being
5981 * recycled, this leads to the once large chunks of space being
5982 * fragmented and becoming unavailable for high-order allocations.
5984 return 0;
5985 #endif
5989 * pcp->high and pcp->batch values are related and dependent on one another:
5990 * ->batch must never be higher then ->high.
5991 * The following function updates them in a safe manner without read side
5992 * locking.
5994 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5995 * those fields changing asynchronously (acording the the above rule).
5997 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5998 * outside of boot time (or some other assurance that no concurrent updaters
5999 * exist).
6001 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6002 unsigned long batch)
6004 /* start with a fail safe value for batch */
6005 pcp->batch = 1;
6006 smp_wmb();
6008 /* Update high, then batch, in order */
6009 pcp->high = high;
6010 smp_wmb();
6012 pcp->batch = batch;
6015 /* a companion to pageset_set_high() */
6016 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6018 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6021 static void pageset_init(struct per_cpu_pageset *p)
6023 struct per_cpu_pages *pcp;
6024 int migratetype;
6026 memset(p, 0, sizeof(*p));
6028 pcp = &p->pcp;
6029 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6030 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6033 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6035 pageset_init(p);
6036 pageset_set_batch(p, batch);
6040 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6041 * to the value high for the pageset p.
6043 static void pageset_set_high(struct per_cpu_pageset *p,
6044 unsigned long high)
6046 unsigned long batch = max(1UL, high / 4);
6047 if ((high / 4) > (PAGE_SHIFT * 8))
6048 batch = PAGE_SHIFT * 8;
6050 pageset_update(&p->pcp, high, batch);
6053 static void pageset_set_high_and_batch(struct zone *zone,
6054 struct per_cpu_pageset *pcp)
6056 if (percpu_pagelist_fraction)
6057 pageset_set_high(pcp,
6058 (zone_managed_pages(zone) /
6059 percpu_pagelist_fraction));
6060 else
6061 pageset_set_batch(pcp, zone_batchsize(zone));
6064 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6066 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6068 pageset_init(pcp);
6069 pageset_set_high_and_batch(zone, pcp);
6072 void __meminit setup_zone_pageset(struct zone *zone)
6074 int cpu;
6075 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6076 for_each_possible_cpu(cpu)
6077 zone_pageset_init(zone, cpu);
6081 * Allocate per cpu pagesets and initialize them.
6082 * Before this call only boot pagesets were available.
6084 void __init setup_per_cpu_pageset(void)
6086 struct pglist_data *pgdat;
6087 struct zone *zone;
6089 for_each_populated_zone(zone)
6090 setup_zone_pageset(zone);
6092 for_each_online_pgdat(pgdat)
6093 pgdat->per_cpu_nodestats =
6094 alloc_percpu(struct per_cpu_nodestat);
6097 static __meminit void zone_pcp_init(struct zone *zone)
6100 * per cpu subsystem is not up at this point. The following code
6101 * relies on the ability of the linker to provide the
6102 * offset of a (static) per cpu variable into the per cpu area.
6104 zone->pageset = &boot_pageset;
6106 if (populated_zone(zone))
6107 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6108 zone->name, zone->present_pages,
6109 zone_batchsize(zone));
6112 void __meminit init_currently_empty_zone(struct zone *zone,
6113 unsigned long zone_start_pfn,
6114 unsigned long size)
6116 struct pglist_data *pgdat = zone->zone_pgdat;
6117 int zone_idx = zone_idx(zone) + 1;
6119 if (zone_idx > pgdat->nr_zones)
6120 pgdat->nr_zones = zone_idx;
6122 zone->zone_start_pfn = zone_start_pfn;
6124 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6125 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6126 pgdat->node_id,
6127 (unsigned long)zone_idx(zone),
6128 zone_start_pfn, (zone_start_pfn + size));
6130 zone_init_free_lists(zone);
6131 zone->initialized = 1;
6134 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6135 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6138 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6140 int __meminit __early_pfn_to_nid(unsigned long pfn,
6141 struct mminit_pfnnid_cache *state)
6143 unsigned long start_pfn, end_pfn;
6144 int nid;
6146 if (state->last_start <= pfn && pfn < state->last_end)
6147 return state->last_nid;
6149 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6150 if (nid != NUMA_NO_NODE) {
6151 state->last_start = start_pfn;
6152 state->last_end = end_pfn;
6153 state->last_nid = nid;
6156 return nid;
6158 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6161 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6162 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6163 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6165 * If an architecture guarantees that all ranges registered contain no holes
6166 * and may be freed, this this function may be used instead of calling
6167 * memblock_free_early_nid() manually.
6169 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6171 unsigned long start_pfn, end_pfn;
6172 int i, this_nid;
6174 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6175 start_pfn = min(start_pfn, max_low_pfn);
6176 end_pfn = min(end_pfn, max_low_pfn);
6178 if (start_pfn < end_pfn)
6179 memblock_free_early_nid(PFN_PHYS(start_pfn),
6180 (end_pfn - start_pfn) << PAGE_SHIFT,
6181 this_nid);
6186 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6187 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6189 * If an architecture guarantees that all ranges registered contain no holes and may
6190 * be freed, this function may be used instead of calling memory_present() manually.
6192 void __init sparse_memory_present_with_active_regions(int nid)
6194 unsigned long start_pfn, end_pfn;
6195 int i, this_nid;
6197 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6198 memory_present(this_nid, start_pfn, end_pfn);
6202 * get_pfn_range_for_nid - Return the start and end page frames for a node
6203 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6204 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6205 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6207 * It returns the start and end page frame of a node based on information
6208 * provided by memblock_set_node(). If called for a node
6209 * with no available memory, a warning is printed and the start and end
6210 * PFNs will be 0.
6212 void __init get_pfn_range_for_nid(unsigned int nid,
6213 unsigned long *start_pfn, unsigned long *end_pfn)
6215 unsigned long this_start_pfn, this_end_pfn;
6216 int i;
6218 *start_pfn = -1UL;
6219 *end_pfn = 0;
6221 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6222 *start_pfn = min(*start_pfn, this_start_pfn);
6223 *end_pfn = max(*end_pfn, this_end_pfn);
6226 if (*start_pfn == -1UL)
6227 *start_pfn = 0;
6231 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6232 * assumption is made that zones within a node are ordered in monotonic
6233 * increasing memory addresses so that the "highest" populated zone is used
6235 static void __init find_usable_zone_for_movable(void)
6237 int zone_index;
6238 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6239 if (zone_index == ZONE_MOVABLE)
6240 continue;
6242 if (arch_zone_highest_possible_pfn[zone_index] >
6243 arch_zone_lowest_possible_pfn[zone_index])
6244 break;
6247 VM_BUG_ON(zone_index == -1);
6248 movable_zone = zone_index;
6252 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6253 * because it is sized independent of architecture. Unlike the other zones,
6254 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6255 * in each node depending on the size of each node and how evenly kernelcore
6256 * is distributed. This helper function adjusts the zone ranges
6257 * provided by the architecture for a given node by using the end of the
6258 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6259 * zones within a node are in order of monotonic increases memory addresses
6261 static void __init adjust_zone_range_for_zone_movable(int nid,
6262 unsigned long zone_type,
6263 unsigned long node_start_pfn,
6264 unsigned long node_end_pfn,
6265 unsigned long *zone_start_pfn,
6266 unsigned long *zone_end_pfn)
6268 /* Only adjust if ZONE_MOVABLE is on this node */
6269 if (zone_movable_pfn[nid]) {
6270 /* Size ZONE_MOVABLE */
6271 if (zone_type == ZONE_MOVABLE) {
6272 *zone_start_pfn = zone_movable_pfn[nid];
6273 *zone_end_pfn = min(node_end_pfn,
6274 arch_zone_highest_possible_pfn[movable_zone]);
6276 /* Adjust for ZONE_MOVABLE starting within this range */
6277 } else if (!mirrored_kernelcore &&
6278 *zone_start_pfn < zone_movable_pfn[nid] &&
6279 *zone_end_pfn > zone_movable_pfn[nid]) {
6280 *zone_end_pfn = zone_movable_pfn[nid];
6282 /* Check if this whole range is within ZONE_MOVABLE */
6283 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6284 *zone_start_pfn = *zone_end_pfn;
6289 * Return the number of pages a zone spans in a node, including holes
6290 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6292 static unsigned long __init zone_spanned_pages_in_node(int nid,
6293 unsigned long zone_type,
6294 unsigned long node_start_pfn,
6295 unsigned long node_end_pfn,
6296 unsigned long *zone_start_pfn,
6297 unsigned long *zone_end_pfn,
6298 unsigned long *ignored)
6300 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6301 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6302 /* When hotadd a new node from cpu_up(), the node should be empty */
6303 if (!node_start_pfn && !node_end_pfn)
6304 return 0;
6306 /* Get the start and end of the zone */
6307 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6308 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6309 adjust_zone_range_for_zone_movable(nid, zone_type,
6310 node_start_pfn, node_end_pfn,
6311 zone_start_pfn, zone_end_pfn);
6313 /* Check that this node has pages within the zone's required range */
6314 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6315 return 0;
6317 /* Move the zone boundaries inside the node if necessary */
6318 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6319 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6321 /* Return the spanned pages */
6322 return *zone_end_pfn - *zone_start_pfn;
6326 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6327 * then all holes in the requested range will be accounted for.
6329 unsigned long __init __absent_pages_in_range(int nid,
6330 unsigned long range_start_pfn,
6331 unsigned long range_end_pfn)
6333 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6334 unsigned long start_pfn, end_pfn;
6335 int i;
6337 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6338 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6339 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6340 nr_absent -= end_pfn - start_pfn;
6342 return nr_absent;
6346 * absent_pages_in_range - Return number of page frames in holes within a range
6347 * @start_pfn: The start PFN to start searching for holes
6348 * @end_pfn: The end PFN to stop searching for holes
6350 * Return: the number of pages frames in memory holes within a range.
6352 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6353 unsigned long end_pfn)
6355 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6358 /* Return the number of page frames in holes in a zone on a node */
6359 static unsigned long __init zone_absent_pages_in_node(int nid,
6360 unsigned long zone_type,
6361 unsigned long node_start_pfn,
6362 unsigned long node_end_pfn,
6363 unsigned long *ignored)
6365 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6366 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6367 unsigned long zone_start_pfn, zone_end_pfn;
6368 unsigned long nr_absent;
6370 /* When hotadd a new node from cpu_up(), the node should be empty */
6371 if (!node_start_pfn && !node_end_pfn)
6372 return 0;
6374 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6375 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6377 adjust_zone_range_for_zone_movable(nid, zone_type,
6378 node_start_pfn, node_end_pfn,
6379 &zone_start_pfn, &zone_end_pfn);
6380 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6383 * ZONE_MOVABLE handling.
6384 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6385 * and vice versa.
6387 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6388 unsigned long start_pfn, end_pfn;
6389 struct memblock_region *r;
6391 for_each_memblock(memory, r) {
6392 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6393 zone_start_pfn, zone_end_pfn);
6394 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6395 zone_start_pfn, zone_end_pfn);
6397 if (zone_type == ZONE_MOVABLE &&
6398 memblock_is_mirror(r))
6399 nr_absent += end_pfn - start_pfn;
6401 if (zone_type == ZONE_NORMAL &&
6402 !memblock_is_mirror(r))
6403 nr_absent += end_pfn - start_pfn;
6407 return nr_absent;
6410 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6411 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6412 unsigned long zone_type,
6413 unsigned long node_start_pfn,
6414 unsigned long node_end_pfn,
6415 unsigned long *zone_start_pfn,
6416 unsigned long *zone_end_pfn,
6417 unsigned long *zones_size)
6419 unsigned int zone;
6421 *zone_start_pfn = node_start_pfn;
6422 for (zone = 0; zone < zone_type; zone++)
6423 *zone_start_pfn += zones_size[zone];
6425 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6427 return zones_size[zone_type];
6430 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6431 unsigned long zone_type,
6432 unsigned long node_start_pfn,
6433 unsigned long node_end_pfn,
6434 unsigned long *zholes_size)
6436 if (!zholes_size)
6437 return 0;
6439 return zholes_size[zone_type];
6442 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6444 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6445 unsigned long node_start_pfn,
6446 unsigned long node_end_pfn,
6447 unsigned long *zones_size,
6448 unsigned long *zholes_size)
6450 unsigned long realtotalpages = 0, totalpages = 0;
6451 enum zone_type i;
6453 for (i = 0; i < MAX_NR_ZONES; i++) {
6454 struct zone *zone = pgdat->node_zones + i;
6455 unsigned long zone_start_pfn, zone_end_pfn;
6456 unsigned long size, real_size;
6458 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6459 node_start_pfn,
6460 node_end_pfn,
6461 &zone_start_pfn,
6462 &zone_end_pfn,
6463 zones_size);
6464 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6465 node_start_pfn, node_end_pfn,
6466 zholes_size);
6467 if (size)
6468 zone->zone_start_pfn = zone_start_pfn;
6469 else
6470 zone->zone_start_pfn = 0;
6471 zone->spanned_pages = size;
6472 zone->present_pages = real_size;
6474 totalpages += size;
6475 realtotalpages += real_size;
6478 pgdat->node_spanned_pages = totalpages;
6479 pgdat->node_present_pages = realtotalpages;
6480 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6481 realtotalpages);
6484 #ifndef CONFIG_SPARSEMEM
6486 * Calculate the size of the zone->blockflags rounded to an unsigned long
6487 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6488 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6489 * round what is now in bits to nearest long in bits, then return it in
6490 * bytes.
6492 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6494 unsigned long usemapsize;
6496 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6497 usemapsize = roundup(zonesize, pageblock_nr_pages);
6498 usemapsize = usemapsize >> pageblock_order;
6499 usemapsize *= NR_PAGEBLOCK_BITS;
6500 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6502 return usemapsize / 8;
6505 static void __ref setup_usemap(struct pglist_data *pgdat,
6506 struct zone *zone,
6507 unsigned long zone_start_pfn,
6508 unsigned long zonesize)
6510 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6511 zone->pageblock_flags = NULL;
6512 if (usemapsize) {
6513 zone->pageblock_flags =
6514 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6515 pgdat->node_id);
6516 if (!zone->pageblock_flags)
6517 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6518 usemapsize, zone->name, pgdat->node_id);
6521 #else
6522 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6523 unsigned long zone_start_pfn, unsigned long zonesize) {}
6524 #endif /* CONFIG_SPARSEMEM */
6526 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6528 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6529 void __init set_pageblock_order(void)
6531 unsigned int order;
6533 /* Check that pageblock_nr_pages has not already been setup */
6534 if (pageblock_order)
6535 return;
6537 if (HPAGE_SHIFT > PAGE_SHIFT)
6538 order = HUGETLB_PAGE_ORDER;
6539 else
6540 order = MAX_ORDER - 1;
6543 * Assume the largest contiguous order of interest is a huge page.
6544 * This value may be variable depending on boot parameters on IA64 and
6545 * powerpc.
6547 pageblock_order = order;
6549 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6552 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6553 * is unused as pageblock_order is set at compile-time. See
6554 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6555 * the kernel config
6557 void __init set_pageblock_order(void)
6561 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6563 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6564 unsigned long present_pages)
6566 unsigned long pages = spanned_pages;
6569 * Provide a more accurate estimation if there are holes within
6570 * the zone and SPARSEMEM is in use. If there are holes within the
6571 * zone, each populated memory region may cost us one or two extra
6572 * memmap pages due to alignment because memmap pages for each
6573 * populated regions may not be naturally aligned on page boundary.
6574 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6576 if (spanned_pages > present_pages + (present_pages >> 4) &&
6577 IS_ENABLED(CONFIG_SPARSEMEM))
6578 pages = present_pages;
6580 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6584 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6586 spin_lock_init(&pgdat->split_queue_lock);
6587 INIT_LIST_HEAD(&pgdat->split_queue);
6588 pgdat->split_queue_len = 0;
6590 #else
6591 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6592 #endif
6594 #ifdef CONFIG_COMPACTION
6595 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6597 init_waitqueue_head(&pgdat->kcompactd_wait);
6599 #else
6600 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6601 #endif
6603 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6605 pgdat_resize_init(pgdat);
6607 pgdat_init_split_queue(pgdat);
6608 pgdat_init_kcompactd(pgdat);
6610 init_waitqueue_head(&pgdat->kswapd_wait);
6611 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6613 pgdat_page_ext_init(pgdat);
6614 spin_lock_init(&pgdat->lru_lock);
6615 lruvec_init(node_lruvec(pgdat));
6618 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6619 unsigned long remaining_pages)
6621 atomic_long_set(&zone->managed_pages, remaining_pages);
6622 zone_set_nid(zone, nid);
6623 zone->name = zone_names[idx];
6624 zone->zone_pgdat = NODE_DATA(nid);
6625 spin_lock_init(&zone->lock);
6626 zone_seqlock_init(zone);
6627 zone_pcp_init(zone);
6631 * Set up the zone data structures
6632 * - init pgdat internals
6633 * - init all zones belonging to this node
6635 * NOTE: this function is only called during memory hotplug
6637 #ifdef CONFIG_MEMORY_HOTPLUG
6638 void __ref free_area_init_core_hotplug(int nid)
6640 enum zone_type z;
6641 pg_data_t *pgdat = NODE_DATA(nid);
6643 pgdat_init_internals(pgdat);
6644 for (z = 0; z < MAX_NR_ZONES; z++)
6645 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6647 #endif
6650 * Set up the zone data structures:
6651 * - mark all pages reserved
6652 * - mark all memory queues empty
6653 * - clear the memory bitmaps
6655 * NOTE: pgdat should get zeroed by caller.
6656 * NOTE: this function is only called during early init.
6658 static void __init free_area_init_core(struct pglist_data *pgdat)
6660 enum zone_type j;
6661 int nid = pgdat->node_id;
6663 pgdat_init_internals(pgdat);
6664 pgdat->per_cpu_nodestats = &boot_nodestats;
6666 for (j = 0; j < MAX_NR_ZONES; j++) {
6667 struct zone *zone = pgdat->node_zones + j;
6668 unsigned long size, freesize, memmap_pages;
6669 unsigned long zone_start_pfn = zone->zone_start_pfn;
6671 size = zone->spanned_pages;
6672 freesize = zone->present_pages;
6675 * Adjust freesize so that it accounts for how much memory
6676 * is used by this zone for memmap. This affects the watermark
6677 * and per-cpu initialisations
6679 memmap_pages = calc_memmap_size(size, freesize);
6680 if (!is_highmem_idx(j)) {
6681 if (freesize >= memmap_pages) {
6682 freesize -= memmap_pages;
6683 if (memmap_pages)
6684 printk(KERN_DEBUG
6685 " %s zone: %lu pages used for memmap\n",
6686 zone_names[j], memmap_pages);
6687 } else
6688 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6689 zone_names[j], memmap_pages, freesize);
6692 /* Account for reserved pages */
6693 if (j == 0 && freesize > dma_reserve) {
6694 freesize -= dma_reserve;
6695 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6696 zone_names[0], dma_reserve);
6699 if (!is_highmem_idx(j))
6700 nr_kernel_pages += freesize;
6701 /* Charge for highmem memmap if there are enough kernel pages */
6702 else if (nr_kernel_pages > memmap_pages * 2)
6703 nr_kernel_pages -= memmap_pages;
6704 nr_all_pages += freesize;
6707 * Set an approximate value for lowmem here, it will be adjusted
6708 * when the bootmem allocator frees pages into the buddy system.
6709 * And all highmem pages will be managed by the buddy system.
6711 zone_init_internals(zone, j, nid, freesize);
6713 if (!size)
6714 continue;
6716 set_pageblock_order();
6717 setup_usemap(pgdat, zone, zone_start_pfn, size);
6718 init_currently_empty_zone(zone, zone_start_pfn, size);
6719 memmap_init(size, nid, j, zone_start_pfn);
6723 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6724 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6726 unsigned long __maybe_unused start = 0;
6727 unsigned long __maybe_unused offset = 0;
6729 /* Skip empty nodes */
6730 if (!pgdat->node_spanned_pages)
6731 return;
6733 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6734 offset = pgdat->node_start_pfn - start;
6735 /* ia64 gets its own node_mem_map, before this, without bootmem */
6736 if (!pgdat->node_mem_map) {
6737 unsigned long size, end;
6738 struct page *map;
6741 * The zone's endpoints aren't required to be MAX_ORDER
6742 * aligned but the node_mem_map endpoints must be in order
6743 * for the buddy allocator to function correctly.
6745 end = pgdat_end_pfn(pgdat);
6746 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6747 size = (end - start) * sizeof(struct page);
6748 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6749 pgdat->node_id);
6750 if (!map)
6751 panic("Failed to allocate %ld bytes for node %d memory map\n",
6752 size, pgdat->node_id);
6753 pgdat->node_mem_map = map + offset;
6755 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6756 __func__, pgdat->node_id, (unsigned long)pgdat,
6757 (unsigned long)pgdat->node_mem_map);
6758 #ifndef CONFIG_NEED_MULTIPLE_NODES
6760 * With no DISCONTIG, the global mem_map is just set as node 0's
6762 if (pgdat == NODE_DATA(0)) {
6763 mem_map = NODE_DATA(0)->node_mem_map;
6764 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6765 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6766 mem_map -= offset;
6767 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6769 #endif
6771 #else
6772 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6773 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6775 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6776 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6778 pgdat->first_deferred_pfn = ULONG_MAX;
6780 #else
6781 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6782 #endif
6784 void __init free_area_init_node(int nid, unsigned long *zones_size,
6785 unsigned long node_start_pfn,
6786 unsigned long *zholes_size)
6788 pg_data_t *pgdat = NODE_DATA(nid);
6789 unsigned long start_pfn = 0;
6790 unsigned long end_pfn = 0;
6792 /* pg_data_t should be reset to zero when it's allocated */
6793 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6795 pgdat->node_id = nid;
6796 pgdat->node_start_pfn = node_start_pfn;
6797 pgdat->per_cpu_nodestats = NULL;
6798 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6799 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6800 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6801 (u64)start_pfn << PAGE_SHIFT,
6802 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6803 #else
6804 start_pfn = node_start_pfn;
6805 #endif
6806 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6807 zones_size, zholes_size);
6809 alloc_node_mem_map(pgdat);
6810 pgdat_set_deferred_range(pgdat);
6812 free_area_init_core(pgdat);
6815 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6817 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6818 * pages zeroed
6820 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6822 unsigned long pfn;
6823 u64 pgcnt = 0;
6825 for (pfn = spfn; pfn < epfn; pfn++) {
6826 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6827 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6828 + pageblock_nr_pages - 1;
6829 continue;
6831 mm_zero_struct_page(pfn_to_page(pfn));
6832 pgcnt++;
6835 return pgcnt;
6839 * Only struct pages that are backed by physical memory are zeroed and
6840 * initialized by going through __init_single_page(). But, there are some
6841 * struct pages which are reserved in memblock allocator and their fields
6842 * may be accessed (for example page_to_pfn() on some configuration accesses
6843 * flags). We must explicitly zero those struct pages.
6845 * This function also addresses a similar issue where struct pages are left
6846 * uninitialized because the physical address range is not covered by
6847 * memblock.memory or memblock.reserved. That could happen when memblock
6848 * layout is manually configured via memmap=.
6850 void __init zero_resv_unavail(void)
6852 phys_addr_t start, end;
6853 u64 i, pgcnt;
6854 phys_addr_t next = 0;
6857 * Loop through unavailable ranges not covered by memblock.memory.
6859 pgcnt = 0;
6860 for_each_mem_range(i, &memblock.memory, NULL,
6861 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6862 if (next < start)
6863 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6864 next = end;
6866 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6869 * Struct pages that do not have backing memory. This could be because
6870 * firmware is using some of this memory, or for some other reasons.
6872 if (pgcnt)
6873 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6875 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6877 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6879 #if MAX_NUMNODES > 1
6881 * Figure out the number of possible node ids.
6883 void __init setup_nr_node_ids(void)
6885 unsigned int highest;
6887 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6888 nr_node_ids = highest + 1;
6890 #endif
6893 * node_map_pfn_alignment - determine the maximum internode alignment
6895 * This function should be called after node map is populated and sorted.
6896 * It calculates the maximum power of two alignment which can distinguish
6897 * all the nodes.
6899 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6900 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6901 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6902 * shifted, 1GiB is enough and this function will indicate so.
6904 * This is used to test whether pfn -> nid mapping of the chosen memory
6905 * model has fine enough granularity to avoid incorrect mapping for the
6906 * populated node map.
6908 * Return: the determined alignment in pfn's. 0 if there is no alignment
6909 * requirement (single node).
6911 unsigned long __init node_map_pfn_alignment(void)
6913 unsigned long accl_mask = 0, last_end = 0;
6914 unsigned long start, end, mask;
6915 int last_nid = NUMA_NO_NODE;
6916 int i, nid;
6918 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6919 if (!start || last_nid < 0 || last_nid == nid) {
6920 last_nid = nid;
6921 last_end = end;
6922 continue;
6926 * Start with a mask granular enough to pin-point to the
6927 * start pfn and tick off bits one-by-one until it becomes
6928 * too coarse to separate the current node from the last.
6930 mask = ~((1 << __ffs(start)) - 1);
6931 while (mask && last_end <= (start & (mask << 1)))
6932 mask <<= 1;
6934 /* accumulate all internode masks */
6935 accl_mask |= mask;
6938 /* convert mask to number of pages */
6939 return ~accl_mask + 1;
6942 /* Find the lowest pfn for a node */
6943 static unsigned long __init find_min_pfn_for_node(int nid)
6945 unsigned long min_pfn = ULONG_MAX;
6946 unsigned long start_pfn;
6947 int i;
6949 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6950 min_pfn = min(min_pfn, start_pfn);
6952 if (min_pfn == ULONG_MAX) {
6953 pr_warn("Could not find start_pfn for node %d\n", nid);
6954 return 0;
6957 return min_pfn;
6961 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6963 * Return: the minimum PFN based on information provided via
6964 * memblock_set_node().
6966 unsigned long __init find_min_pfn_with_active_regions(void)
6968 return find_min_pfn_for_node(MAX_NUMNODES);
6972 * early_calculate_totalpages()
6973 * Sum pages in active regions for movable zone.
6974 * Populate N_MEMORY for calculating usable_nodes.
6976 static unsigned long __init early_calculate_totalpages(void)
6978 unsigned long totalpages = 0;
6979 unsigned long start_pfn, end_pfn;
6980 int i, nid;
6982 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6983 unsigned long pages = end_pfn - start_pfn;
6985 totalpages += pages;
6986 if (pages)
6987 node_set_state(nid, N_MEMORY);
6989 return totalpages;
6993 * Find the PFN the Movable zone begins in each node. Kernel memory
6994 * is spread evenly between nodes as long as the nodes have enough
6995 * memory. When they don't, some nodes will have more kernelcore than
6996 * others
6998 static void __init find_zone_movable_pfns_for_nodes(void)
7000 int i, nid;
7001 unsigned long usable_startpfn;
7002 unsigned long kernelcore_node, kernelcore_remaining;
7003 /* save the state before borrow the nodemask */
7004 nodemask_t saved_node_state = node_states[N_MEMORY];
7005 unsigned long totalpages = early_calculate_totalpages();
7006 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7007 struct memblock_region *r;
7009 /* Need to find movable_zone earlier when movable_node is specified. */
7010 find_usable_zone_for_movable();
7013 * If movable_node is specified, ignore kernelcore and movablecore
7014 * options.
7016 if (movable_node_is_enabled()) {
7017 for_each_memblock(memory, r) {
7018 if (!memblock_is_hotpluggable(r))
7019 continue;
7021 nid = r->nid;
7023 usable_startpfn = PFN_DOWN(r->base);
7024 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7025 min(usable_startpfn, zone_movable_pfn[nid]) :
7026 usable_startpfn;
7029 goto out2;
7033 * If kernelcore=mirror is specified, ignore movablecore option
7035 if (mirrored_kernelcore) {
7036 bool mem_below_4gb_not_mirrored = false;
7038 for_each_memblock(memory, r) {
7039 if (memblock_is_mirror(r))
7040 continue;
7042 nid = r->nid;
7044 usable_startpfn = memblock_region_memory_base_pfn(r);
7046 if (usable_startpfn < 0x100000) {
7047 mem_below_4gb_not_mirrored = true;
7048 continue;
7051 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7052 min(usable_startpfn, zone_movable_pfn[nid]) :
7053 usable_startpfn;
7056 if (mem_below_4gb_not_mirrored)
7057 pr_warn("This configuration results in unmirrored kernel memory.");
7059 goto out2;
7063 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7064 * amount of necessary memory.
7066 if (required_kernelcore_percent)
7067 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7068 10000UL;
7069 if (required_movablecore_percent)
7070 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7071 10000UL;
7074 * If movablecore= was specified, calculate what size of
7075 * kernelcore that corresponds so that memory usable for
7076 * any allocation type is evenly spread. If both kernelcore
7077 * and movablecore are specified, then the value of kernelcore
7078 * will be used for required_kernelcore if it's greater than
7079 * what movablecore would have allowed.
7081 if (required_movablecore) {
7082 unsigned long corepages;
7085 * Round-up so that ZONE_MOVABLE is at least as large as what
7086 * was requested by the user
7088 required_movablecore =
7089 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7090 required_movablecore = min(totalpages, required_movablecore);
7091 corepages = totalpages - required_movablecore;
7093 required_kernelcore = max(required_kernelcore, corepages);
7097 * If kernelcore was not specified or kernelcore size is larger
7098 * than totalpages, there is no ZONE_MOVABLE.
7100 if (!required_kernelcore || required_kernelcore >= totalpages)
7101 goto out;
7103 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7104 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7106 restart:
7107 /* Spread kernelcore memory as evenly as possible throughout nodes */
7108 kernelcore_node = required_kernelcore / usable_nodes;
7109 for_each_node_state(nid, N_MEMORY) {
7110 unsigned long start_pfn, end_pfn;
7113 * Recalculate kernelcore_node if the division per node
7114 * now exceeds what is necessary to satisfy the requested
7115 * amount of memory for the kernel
7117 if (required_kernelcore < kernelcore_node)
7118 kernelcore_node = required_kernelcore / usable_nodes;
7121 * As the map is walked, we track how much memory is usable
7122 * by the kernel using kernelcore_remaining. When it is
7123 * 0, the rest of the node is usable by ZONE_MOVABLE
7125 kernelcore_remaining = kernelcore_node;
7127 /* Go through each range of PFNs within this node */
7128 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7129 unsigned long size_pages;
7131 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7132 if (start_pfn >= end_pfn)
7133 continue;
7135 /* Account for what is only usable for kernelcore */
7136 if (start_pfn < usable_startpfn) {
7137 unsigned long kernel_pages;
7138 kernel_pages = min(end_pfn, usable_startpfn)
7139 - start_pfn;
7141 kernelcore_remaining -= min(kernel_pages,
7142 kernelcore_remaining);
7143 required_kernelcore -= min(kernel_pages,
7144 required_kernelcore);
7146 /* Continue if range is now fully accounted */
7147 if (end_pfn <= usable_startpfn) {
7150 * Push zone_movable_pfn to the end so
7151 * that if we have to rebalance
7152 * kernelcore across nodes, we will
7153 * not double account here
7155 zone_movable_pfn[nid] = end_pfn;
7156 continue;
7158 start_pfn = usable_startpfn;
7162 * The usable PFN range for ZONE_MOVABLE is from
7163 * start_pfn->end_pfn. Calculate size_pages as the
7164 * number of pages used as kernelcore
7166 size_pages = end_pfn - start_pfn;
7167 if (size_pages > kernelcore_remaining)
7168 size_pages = kernelcore_remaining;
7169 zone_movable_pfn[nid] = start_pfn + size_pages;
7172 * Some kernelcore has been met, update counts and
7173 * break if the kernelcore for this node has been
7174 * satisfied
7176 required_kernelcore -= min(required_kernelcore,
7177 size_pages);
7178 kernelcore_remaining -= size_pages;
7179 if (!kernelcore_remaining)
7180 break;
7185 * If there is still required_kernelcore, we do another pass with one
7186 * less node in the count. This will push zone_movable_pfn[nid] further
7187 * along on the nodes that still have memory until kernelcore is
7188 * satisfied
7190 usable_nodes--;
7191 if (usable_nodes && required_kernelcore > usable_nodes)
7192 goto restart;
7194 out2:
7195 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7196 for (nid = 0; nid < MAX_NUMNODES; nid++)
7197 zone_movable_pfn[nid] =
7198 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7200 out:
7201 /* restore the node_state */
7202 node_states[N_MEMORY] = saved_node_state;
7205 /* Any regular or high memory on that node ? */
7206 static void check_for_memory(pg_data_t *pgdat, int nid)
7208 enum zone_type zone_type;
7210 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7211 struct zone *zone = &pgdat->node_zones[zone_type];
7212 if (populated_zone(zone)) {
7213 if (IS_ENABLED(CONFIG_HIGHMEM))
7214 node_set_state(nid, N_HIGH_MEMORY);
7215 if (zone_type <= ZONE_NORMAL)
7216 node_set_state(nid, N_NORMAL_MEMORY);
7217 break;
7223 * free_area_init_nodes - Initialise all pg_data_t and zone data
7224 * @max_zone_pfn: an array of max PFNs for each zone
7226 * This will call free_area_init_node() for each active node in the system.
7227 * Using the page ranges provided by memblock_set_node(), the size of each
7228 * zone in each node and their holes is calculated. If the maximum PFN
7229 * between two adjacent zones match, it is assumed that the zone is empty.
7230 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7231 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7232 * starts where the previous one ended. For example, ZONE_DMA32 starts
7233 * at arch_max_dma_pfn.
7235 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7237 unsigned long start_pfn, end_pfn;
7238 int i, nid;
7240 /* Record where the zone boundaries are */
7241 memset(arch_zone_lowest_possible_pfn, 0,
7242 sizeof(arch_zone_lowest_possible_pfn));
7243 memset(arch_zone_highest_possible_pfn, 0,
7244 sizeof(arch_zone_highest_possible_pfn));
7246 start_pfn = find_min_pfn_with_active_regions();
7248 for (i = 0; i < MAX_NR_ZONES; i++) {
7249 if (i == ZONE_MOVABLE)
7250 continue;
7252 end_pfn = max(max_zone_pfn[i], start_pfn);
7253 arch_zone_lowest_possible_pfn[i] = start_pfn;
7254 arch_zone_highest_possible_pfn[i] = end_pfn;
7256 start_pfn = end_pfn;
7259 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7260 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7261 find_zone_movable_pfns_for_nodes();
7263 /* Print out the zone ranges */
7264 pr_info("Zone ranges:\n");
7265 for (i = 0; i < MAX_NR_ZONES; i++) {
7266 if (i == ZONE_MOVABLE)
7267 continue;
7268 pr_info(" %-8s ", zone_names[i]);
7269 if (arch_zone_lowest_possible_pfn[i] ==
7270 arch_zone_highest_possible_pfn[i])
7271 pr_cont("empty\n");
7272 else
7273 pr_cont("[mem %#018Lx-%#018Lx]\n",
7274 (u64)arch_zone_lowest_possible_pfn[i]
7275 << PAGE_SHIFT,
7276 ((u64)arch_zone_highest_possible_pfn[i]
7277 << PAGE_SHIFT) - 1);
7280 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7281 pr_info("Movable zone start for each node\n");
7282 for (i = 0; i < MAX_NUMNODES; i++) {
7283 if (zone_movable_pfn[i])
7284 pr_info(" Node %d: %#018Lx\n", i,
7285 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7288 /* Print out the early node map */
7289 pr_info("Early memory node ranges\n");
7290 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7291 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7292 (u64)start_pfn << PAGE_SHIFT,
7293 ((u64)end_pfn << PAGE_SHIFT) - 1);
7295 /* Initialise every node */
7296 mminit_verify_pageflags_layout();
7297 setup_nr_node_ids();
7298 zero_resv_unavail();
7299 for_each_online_node(nid) {
7300 pg_data_t *pgdat = NODE_DATA(nid);
7301 free_area_init_node(nid, NULL,
7302 find_min_pfn_for_node(nid), NULL);
7304 /* Any memory on that node */
7305 if (pgdat->node_present_pages)
7306 node_set_state(nid, N_MEMORY);
7307 check_for_memory(pgdat, nid);
7311 static int __init cmdline_parse_core(char *p, unsigned long *core,
7312 unsigned long *percent)
7314 unsigned long long coremem;
7315 char *endptr;
7317 if (!p)
7318 return -EINVAL;
7320 /* Value may be a percentage of total memory, otherwise bytes */
7321 coremem = simple_strtoull(p, &endptr, 0);
7322 if (*endptr == '%') {
7323 /* Paranoid check for percent values greater than 100 */
7324 WARN_ON(coremem > 100);
7326 *percent = coremem;
7327 } else {
7328 coremem = memparse(p, &p);
7329 /* Paranoid check that UL is enough for the coremem value */
7330 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7332 *core = coremem >> PAGE_SHIFT;
7333 *percent = 0UL;
7335 return 0;
7339 * kernelcore=size sets the amount of memory for use for allocations that
7340 * cannot be reclaimed or migrated.
7342 static int __init cmdline_parse_kernelcore(char *p)
7344 /* parse kernelcore=mirror */
7345 if (parse_option_str(p, "mirror")) {
7346 mirrored_kernelcore = true;
7347 return 0;
7350 return cmdline_parse_core(p, &required_kernelcore,
7351 &required_kernelcore_percent);
7355 * movablecore=size sets the amount of memory for use for allocations that
7356 * can be reclaimed or migrated.
7358 static int __init cmdline_parse_movablecore(char *p)
7360 return cmdline_parse_core(p, &required_movablecore,
7361 &required_movablecore_percent);
7364 early_param("kernelcore", cmdline_parse_kernelcore);
7365 early_param("movablecore", cmdline_parse_movablecore);
7367 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7369 void adjust_managed_page_count(struct page *page, long count)
7371 atomic_long_add(count, &page_zone(page)->managed_pages);
7372 totalram_pages_add(count);
7373 #ifdef CONFIG_HIGHMEM
7374 if (PageHighMem(page))
7375 totalhigh_pages_add(count);
7376 #endif
7378 EXPORT_SYMBOL(adjust_managed_page_count);
7380 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7382 void *pos;
7383 unsigned long pages = 0;
7385 start = (void *)PAGE_ALIGN((unsigned long)start);
7386 end = (void *)((unsigned long)end & PAGE_MASK);
7387 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7388 struct page *page = virt_to_page(pos);
7389 void *direct_map_addr;
7392 * 'direct_map_addr' might be different from 'pos'
7393 * because some architectures' virt_to_page()
7394 * work with aliases. Getting the direct map
7395 * address ensures that we get a _writeable_
7396 * alias for the memset().
7398 direct_map_addr = page_address(page);
7399 if ((unsigned int)poison <= 0xFF)
7400 memset(direct_map_addr, poison, PAGE_SIZE);
7402 free_reserved_page(page);
7405 if (pages && s)
7406 pr_info("Freeing %s memory: %ldK\n",
7407 s, pages << (PAGE_SHIFT - 10));
7409 return pages;
7412 #ifdef CONFIG_HIGHMEM
7413 void free_highmem_page(struct page *page)
7415 __free_reserved_page(page);
7416 totalram_pages_inc();
7417 atomic_long_inc(&page_zone(page)->managed_pages);
7418 totalhigh_pages_inc();
7420 #endif
7423 void __init mem_init_print_info(const char *str)
7425 unsigned long physpages, codesize, datasize, rosize, bss_size;
7426 unsigned long init_code_size, init_data_size;
7428 physpages = get_num_physpages();
7429 codesize = _etext - _stext;
7430 datasize = _edata - _sdata;
7431 rosize = __end_rodata - __start_rodata;
7432 bss_size = __bss_stop - __bss_start;
7433 init_data_size = __init_end - __init_begin;
7434 init_code_size = _einittext - _sinittext;
7437 * Detect special cases and adjust section sizes accordingly:
7438 * 1) .init.* may be embedded into .data sections
7439 * 2) .init.text.* may be out of [__init_begin, __init_end],
7440 * please refer to arch/tile/kernel/vmlinux.lds.S.
7441 * 3) .rodata.* may be embedded into .text or .data sections.
7443 #define adj_init_size(start, end, size, pos, adj) \
7444 do { \
7445 if (start <= pos && pos < end && size > adj) \
7446 size -= adj; \
7447 } while (0)
7449 adj_init_size(__init_begin, __init_end, init_data_size,
7450 _sinittext, init_code_size);
7451 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7452 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7453 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7454 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7456 #undef adj_init_size
7458 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7459 #ifdef CONFIG_HIGHMEM
7460 ", %luK highmem"
7461 #endif
7462 "%s%s)\n",
7463 nr_free_pages() << (PAGE_SHIFT - 10),
7464 physpages << (PAGE_SHIFT - 10),
7465 codesize >> 10, datasize >> 10, rosize >> 10,
7466 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7467 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7468 totalcma_pages << (PAGE_SHIFT - 10),
7469 #ifdef CONFIG_HIGHMEM
7470 totalhigh_pages() << (PAGE_SHIFT - 10),
7471 #endif
7472 str ? ", " : "", str ? str : "");
7476 * set_dma_reserve - set the specified number of pages reserved in the first zone
7477 * @new_dma_reserve: The number of pages to mark reserved
7479 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7480 * In the DMA zone, a significant percentage may be consumed by kernel image
7481 * and other unfreeable allocations which can skew the watermarks badly. This
7482 * function may optionally be used to account for unfreeable pages in the
7483 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7484 * smaller per-cpu batchsize.
7486 void __init set_dma_reserve(unsigned long new_dma_reserve)
7488 dma_reserve = new_dma_reserve;
7491 void __init free_area_init(unsigned long *zones_size)
7493 zero_resv_unavail();
7494 free_area_init_node(0, zones_size,
7495 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7498 static int page_alloc_cpu_dead(unsigned int cpu)
7501 lru_add_drain_cpu(cpu);
7502 drain_pages(cpu);
7505 * Spill the event counters of the dead processor
7506 * into the current processors event counters.
7507 * This artificially elevates the count of the current
7508 * processor.
7510 vm_events_fold_cpu(cpu);
7513 * Zero the differential counters of the dead processor
7514 * so that the vm statistics are consistent.
7516 * This is only okay since the processor is dead and cannot
7517 * race with what we are doing.
7519 cpu_vm_stats_fold(cpu);
7520 return 0;
7523 void __init page_alloc_init(void)
7525 int ret;
7527 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7528 "mm/page_alloc:dead", NULL,
7529 page_alloc_cpu_dead);
7530 WARN_ON(ret < 0);
7534 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7535 * or min_free_kbytes changes.
7537 static void calculate_totalreserve_pages(void)
7539 struct pglist_data *pgdat;
7540 unsigned long reserve_pages = 0;
7541 enum zone_type i, j;
7543 for_each_online_pgdat(pgdat) {
7545 pgdat->totalreserve_pages = 0;
7547 for (i = 0; i < MAX_NR_ZONES; i++) {
7548 struct zone *zone = pgdat->node_zones + i;
7549 long max = 0;
7550 unsigned long managed_pages = zone_managed_pages(zone);
7552 /* Find valid and maximum lowmem_reserve in the zone */
7553 for (j = i; j < MAX_NR_ZONES; j++) {
7554 if (zone->lowmem_reserve[j] > max)
7555 max = zone->lowmem_reserve[j];
7558 /* we treat the high watermark as reserved pages. */
7559 max += high_wmark_pages(zone);
7561 if (max > managed_pages)
7562 max = managed_pages;
7564 pgdat->totalreserve_pages += max;
7566 reserve_pages += max;
7569 totalreserve_pages = reserve_pages;
7573 * setup_per_zone_lowmem_reserve - called whenever
7574 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7575 * has a correct pages reserved value, so an adequate number of
7576 * pages are left in the zone after a successful __alloc_pages().
7578 static void setup_per_zone_lowmem_reserve(void)
7580 struct pglist_data *pgdat;
7581 enum zone_type j, idx;
7583 for_each_online_pgdat(pgdat) {
7584 for (j = 0; j < MAX_NR_ZONES; j++) {
7585 struct zone *zone = pgdat->node_zones + j;
7586 unsigned long managed_pages = zone_managed_pages(zone);
7588 zone->lowmem_reserve[j] = 0;
7590 idx = j;
7591 while (idx) {
7592 struct zone *lower_zone;
7594 idx--;
7595 lower_zone = pgdat->node_zones + idx;
7597 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7598 sysctl_lowmem_reserve_ratio[idx] = 0;
7599 lower_zone->lowmem_reserve[j] = 0;
7600 } else {
7601 lower_zone->lowmem_reserve[j] =
7602 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7604 managed_pages += zone_managed_pages(lower_zone);
7609 /* update totalreserve_pages */
7610 calculate_totalreserve_pages();
7613 static void __setup_per_zone_wmarks(void)
7615 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7616 unsigned long lowmem_pages = 0;
7617 struct zone *zone;
7618 unsigned long flags;
7620 /* Calculate total number of !ZONE_HIGHMEM pages */
7621 for_each_zone(zone) {
7622 if (!is_highmem(zone))
7623 lowmem_pages += zone_managed_pages(zone);
7626 for_each_zone(zone) {
7627 u64 tmp;
7629 spin_lock_irqsave(&zone->lock, flags);
7630 tmp = (u64)pages_min * zone_managed_pages(zone);
7631 do_div(tmp, lowmem_pages);
7632 if (is_highmem(zone)) {
7634 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7635 * need highmem pages, so cap pages_min to a small
7636 * value here.
7638 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7639 * deltas control async page reclaim, and so should
7640 * not be capped for highmem.
7642 unsigned long min_pages;
7644 min_pages = zone_managed_pages(zone) / 1024;
7645 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7646 zone->_watermark[WMARK_MIN] = min_pages;
7647 } else {
7649 * If it's a lowmem zone, reserve a number of pages
7650 * proportionate to the zone's size.
7652 zone->_watermark[WMARK_MIN] = tmp;
7656 * Set the kswapd watermarks distance according to the
7657 * scale factor in proportion to available memory, but
7658 * ensure a minimum size on small systems.
7660 tmp = max_t(u64, tmp >> 2,
7661 mult_frac(zone_managed_pages(zone),
7662 watermark_scale_factor, 10000));
7664 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7665 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7666 zone->watermark_boost = 0;
7668 spin_unlock_irqrestore(&zone->lock, flags);
7671 /* update totalreserve_pages */
7672 calculate_totalreserve_pages();
7676 * setup_per_zone_wmarks - called when min_free_kbytes changes
7677 * or when memory is hot-{added|removed}
7679 * Ensures that the watermark[min,low,high] values for each zone are set
7680 * correctly with respect to min_free_kbytes.
7682 void setup_per_zone_wmarks(void)
7684 static DEFINE_SPINLOCK(lock);
7686 spin_lock(&lock);
7687 __setup_per_zone_wmarks();
7688 spin_unlock(&lock);
7692 * Initialise min_free_kbytes.
7694 * For small machines we want it small (128k min). For large machines
7695 * we want it large (64MB max). But it is not linear, because network
7696 * bandwidth does not increase linearly with machine size. We use
7698 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7699 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7701 * which yields
7703 * 16MB: 512k
7704 * 32MB: 724k
7705 * 64MB: 1024k
7706 * 128MB: 1448k
7707 * 256MB: 2048k
7708 * 512MB: 2896k
7709 * 1024MB: 4096k
7710 * 2048MB: 5792k
7711 * 4096MB: 8192k
7712 * 8192MB: 11584k
7713 * 16384MB: 16384k
7715 int __meminit init_per_zone_wmark_min(void)
7717 unsigned long lowmem_kbytes;
7718 int new_min_free_kbytes;
7720 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7721 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7723 if (new_min_free_kbytes > user_min_free_kbytes) {
7724 min_free_kbytes = new_min_free_kbytes;
7725 if (min_free_kbytes < 128)
7726 min_free_kbytes = 128;
7727 if (min_free_kbytes > 65536)
7728 min_free_kbytes = 65536;
7729 } else {
7730 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7731 new_min_free_kbytes, user_min_free_kbytes);
7733 setup_per_zone_wmarks();
7734 refresh_zone_stat_thresholds();
7735 setup_per_zone_lowmem_reserve();
7737 #ifdef CONFIG_NUMA
7738 setup_min_unmapped_ratio();
7739 setup_min_slab_ratio();
7740 #endif
7742 return 0;
7744 core_initcall(init_per_zone_wmark_min)
7747 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7748 * that we can call two helper functions whenever min_free_kbytes
7749 * changes.
7751 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7752 void __user *buffer, size_t *length, loff_t *ppos)
7754 int rc;
7756 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7757 if (rc)
7758 return rc;
7760 if (write) {
7761 user_min_free_kbytes = min_free_kbytes;
7762 setup_per_zone_wmarks();
7764 return 0;
7767 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7768 void __user *buffer, size_t *length, loff_t *ppos)
7770 int rc;
7772 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7773 if (rc)
7774 return rc;
7776 return 0;
7779 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7780 void __user *buffer, size_t *length, loff_t *ppos)
7782 int rc;
7784 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7785 if (rc)
7786 return rc;
7788 if (write)
7789 setup_per_zone_wmarks();
7791 return 0;
7794 #ifdef CONFIG_NUMA
7795 static void setup_min_unmapped_ratio(void)
7797 pg_data_t *pgdat;
7798 struct zone *zone;
7800 for_each_online_pgdat(pgdat)
7801 pgdat->min_unmapped_pages = 0;
7803 for_each_zone(zone)
7804 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7805 sysctl_min_unmapped_ratio) / 100;
7809 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7810 void __user *buffer, size_t *length, loff_t *ppos)
7812 int rc;
7814 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7815 if (rc)
7816 return rc;
7818 setup_min_unmapped_ratio();
7820 return 0;
7823 static void setup_min_slab_ratio(void)
7825 pg_data_t *pgdat;
7826 struct zone *zone;
7828 for_each_online_pgdat(pgdat)
7829 pgdat->min_slab_pages = 0;
7831 for_each_zone(zone)
7832 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7833 sysctl_min_slab_ratio) / 100;
7836 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7837 void __user *buffer, size_t *length, loff_t *ppos)
7839 int rc;
7841 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7842 if (rc)
7843 return rc;
7845 setup_min_slab_ratio();
7847 return 0;
7849 #endif
7852 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7853 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7854 * whenever sysctl_lowmem_reserve_ratio changes.
7856 * The reserve ratio obviously has absolutely no relation with the
7857 * minimum watermarks. The lowmem reserve ratio can only make sense
7858 * if in function of the boot time zone sizes.
7860 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7861 void __user *buffer, size_t *length, loff_t *ppos)
7863 proc_dointvec_minmax(table, write, buffer, length, ppos);
7864 setup_per_zone_lowmem_reserve();
7865 return 0;
7869 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7870 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7871 * pagelist can have before it gets flushed back to buddy allocator.
7873 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7874 void __user *buffer, size_t *length, loff_t *ppos)
7876 struct zone *zone;
7877 int old_percpu_pagelist_fraction;
7878 int ret;
7880 mutex_lock(&pcp_batch_high_lock);
7881 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7883 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7884 if (!write || ret < 0)
7885 goto out;
7887 /* Sanity checking to avoid pcp imbalance */
7888 if (percpu_pagelist_fraction &&
7889 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7890 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7891 ret = -EINVAL;
7892 goto out;
7895 /* No change? */
7896 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7897 goto out;
7899 for_each_populated_zone(zone) {
7900 unsigned int cpu;
7902 for_each_possible_cpu(cpu)
7903 pageset_set_high_and_batch(zone,
7904 per_cpu_ptr(zone->pageset, cpu));
7906 out:
7907 mutex_unlock(&pcp_batch_high_lock);
7908 return ret;
7911 #ifdef CONFIG_NUMA
7912 int hashdist = HASHDIST_DEFAULT;
7914 static int __init set_hashdist(char *str)
7916 if (!str)
7917 return 0;
7918 hashdist = simple_strtoul(str, &str, 0);
7919 return 1;
7921 __setup("hashdist=", set_hashdist);
7922 #endif
7924 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7926 * Returns the number of pages that arch has reserved but
7927 * is not known to alloc_large_system_hash().
7929 static unsigned long __init arch_reserved_kernel_pages(void)
7931 return 0;
7933 #endif
7936 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7937 * machines. As memory size is increased the scale is also increased but at
7938 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7939 * quadruples the scale is increased by one, which means the size of hash table
7940 * only doubles, instead of quadrupling as well.
7941 * Because 32-bit systems cannot have large physical memory, where this scaling
7942 * makes sense, it is disabled on such platforms.
7944 #if __BITS_PER_LONG > 32
7945 #define ADAPT_SCALE_BASE (64ul << 30)
7946 #define ADAPT_SCALE_SHIFT 2
7947 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7948 #endif
7951 * allocate a large system hash table from bootmem
7952 * - it is assumed that the hash table must contain an exact power-of-2
7953 * quantity of entries
7954 * - limit is the number of hash buckets, not the total allocation size
7956 void *__init alloc_large_system_hash(const char *tablename,
7957 unsigned long bucketsize,
7958 unsigned long numentries,
7959 int scale,
7960 int flags,
7961 unsigned int *_hash_shift,
7962 unsigned int *_hash_mask,
7963 unsigned long low_limit,
7964 unsigned long high_limit)
7966 unsigned long long max = high_limit;
7967 unsigned long log2qty, size;
7968 void *table = NULL;
7969 gfp_t gfp_flags;
7971 /* allow the kernel cmdline to have a say */
7972 if (!numentries) {
7973 /* round applicable memory size up to nearest megabyte */
7974 numentries = nr_kernel_pages;
7975 numentries -= arch_reserved_kernel_pages();
7977 /* It isn't necessary when PAGE_SIZE >= 1MB */
7978 if (PAGE_SHIFT < 20)
7979 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7981 #if __BITS_PER_LONG > 32
7982 if (!high_limit) {
7983 unsigned long adapt;
7985 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7986 adapt <<= ADAPT_SCALE_SHIFT)
7987 scale++;
7989 #endif
7991 /* limit to 1 bucket per 2^scale bytes of low memory */
7992 if (scale > PAGE_SHIFT)
7993 numentries >>= (scale - PAGE_SHIFT);
7994 else
7995 numentries <<= (PAGE_SHIFT - scale);
7997 /* Make sure we've got at least a 0-order allocation.. */
7998 if (unlikely(flags & HASH_SMALL)) {
7999 /* Makes no sense without HASH_EARLY */
8000 WARN_ON(!(flags & HASH_EARLY));
8001 if (!(numentries >> *_hash_shift)) {
8002 numentries = 1UL << *_hash_shift;
8003 BUG_ON(!numentries);
8005 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8006 numentries = PAGE_SIZE / bucketsize;
8008 numentries = roundup_pow_of_two(numentries);
8010 /* limit allocation size to 1/16 total memory by default */
8011 if (max == 0) {
8012 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8013 do_div(max, bucketsize);
8015 max = min(max, 0x80000000ULL);
8017 if (numentries < low_limit)
8018 numentries = low_limit;
8019 if (numentries > max)
8020 numentries = max;
8022 log2qty = ilog2(numentries);
8024 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8025 do {
8026 size = bucketsize << log2qty;
8027 if (flags & HASH_EARLY) {
8028 if (flags & HASH_ZERO)
8029 table = memblock_alloc(size, SMP_CACHE_BYTES);
8030 else
8031 table = memblock_alloc_raw(size,
8032 SMP_CACHE_BYTES);
8033 } else if (hashdist) {
8034 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8035 } else {
8037 * If bucketsize is not a power-of-two, we may free
8038 * some pages at the end of hash table which
8039 * alloc_pages_exact() automatically does
8041 if (get_order(size) < MAX_ORDER) {
8042 table = alloc_pages_exact(size, gfp_flags);
8043 kmemleak_alloc(table, size, 1, gfp_flags);
8046 } while (!table && size > PAGE_SIZE && --log2qty);
8048 if (!table)
8049 panic("Failed to allocate %s hash table\n", tablename);
8051 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8052 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8054 if (_hash_shift)
8055 *_hash_shift = log2qty;
8056 if (_hash_mask)
8057 *_hash_mask = (1 << log2qty) - 1;
8059 return table;
8063 * This function checks whether pageblock includes unmovable pages or not.
8064 * If @count is not zero, it is okay to include less @count unmovable pages
8066 * PageLRU check without isolation or lru_lock could race so that
8067 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8068 * check without lock_page also may miss some movable non-lru pages at
8069 * race condition. So you can't expect this function should be exact.
8071 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8072 int migratetype, int flags)
8074 unsigned long found;
8075 unsigned long iter = 0;
8076 unsigned long pfn = page_to_pfn(page);
8077 const char *reason = "unmovable page";
8080 * TODO we could make this much more efficient by not checking every
8081 * page in the range if we know all of them are in MOVABLE_ZONE and
8082 * that the movable zone guarantees that pages are migratable but
8083 * the later is not the case right now unfortunatelly. E.g. movablecore
8084 * can still lead to having bootmem allocations in zone_movable.
8087 if (is_migrate_cma_page(page)) {
8089 * CMA allocations (alloc_contig_range) really need to mark
8090 * isolate CMA pageblocks even when they are not movable in fact
8091 * so consider them movable here.
8093 if (is_migrate_cma(migratetype))
8094 return false;
8096 reason = "CMA page";
8097 goto unmovable;
8100 for (found = 0; iter < pageblock_nr_pages; iter++) {
8101 unsigned long check = pfn + iter;
8103 if (!pfn_valid_within(check))
8104 continue;
8106 page = pfn_to_page(check);
8108 if (PageReserved(page))
8109 goto unmovable;
8112 * If the zone is movable and we have ruled out all reserved
8113 * pages then it should be reasonably safe to assume the rest
8114 * is movable.
8116 if (zone_idx(zone) == ZONE_MOVABLE)
8117 continue;
8120 * Hugepages are not in LRU lists, but they're movable.
8121 * We need not scan over tail pages because we don't
8122 * handle each tail page individually in migration.
8124 if (PageHuge(page)) {
8125 struct page *head = compound_head(page);
8126 unsigned int skip_pages;
8128 if (!hugepage_migration_supported(page_hstate(head)))
8129 goto unmovable;
8131 skip_pages = (1 << compound_order(head)) - (page - head);
8132 iter += skip_pages - 1;
8133 continue;
8137 * We can't use page_count without pin a page
8138 * because another CPU can free compound page.
8139 * This check already skips compound tails of THP
8140 * because their page->_refcount is zero at all time.
8142 if (!page_ref_count(page)) {
8143 if (PageBuddy(page))
8144 iter += (1 << page_order(page)) - 1;
8145 continue;
8149 * The HWPoisoned page may be not in buddy system, and
8150 * page_count() is not 0.
8152 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8153 continue;
8155 if (__PageMovable(page))
8156 continue;
8158 if (!PageLRU(page))
8159 found++;
8161 * If there are RECLAIMABLE pages, we need to check
8162 * it. But now, memory offline itself doesn't call
8163 * shrink_node_slabs() and it still to be fixed.
8166 * If the page is not RAM, page_count()should be 0.
8167 * we don't need more check. This is an _used_ not-movable page.
8169 * The problematic thing here is PG_reserved pages. PG_reserved
8170 * is set to both of a memory hole page and a _used_ kernel
8171 * page at boot.
8173 if (found > count)
8174 goto unmovable;
8176 return false;
8177 unmovable:
8178 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8179 if (flags & REPORT_FAILURE)
8180 dump_page(pfn_to_page(pfn + iter), reason);
8181 return true;
8184 #ifdef CONFIG_CONTIG_ALLOC
8185 static unsigned long pfn_max_align_down(unsigned long pfn)
8187 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8188 pageblock_nr_pages) - 1);
8191 static unsigned long pfn_max_align_up(unsigned long pfn)
8193 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8194 pageblock_nr_pages));
8197 /* [start, end) must belong to a single zone. */
8198 static int __alloc_contig_migrate_range(struct compact_control *cc,
8199 unsigned long start, unsigned long end)
8201 /* This function is based on compact_zone() from compaction.c. */
8202 unsigned long nr_reclaimed;
8203 unsigned long pfn = start;
8204 unsigned int tries = 0;
8205 int ret = 0;
8207 migrate_prep();
8209 while (pfn < end || !list_empty(&cc->migratepages)) {
8210 if (fatal_signal_pending(current)) {
8211 ret = -EINTR;
8212 break;
8215 if (list_empty(&cc->migratepages)) {
8216 cc->nr_migratepages = 0;
8217 pfn = isolate_migratepages_range(cc, pfn, end);
8218 if (!pfn) {
8219 ret = -EINTR;
8220 break;
8222 tries = 0;
8223 } else if (++tries == 5) {
8224 ret = ret < 0 ? ret : -EBUSY;
8225 break;
8228 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8229 &cc->migratepages);
8230 cc->nr_migratepages -= nr_reclaimed;
8232 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8233 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8235 if (ret < 0) {
8236 putback_movable_pages(&cc->migratepages);
8237 return ret;
8239 return 0;
8243 * alloc_contig_range() -- tries to allocate given range of pages
8244 * @start: start PFN to allocate
8245 * @end: one-past-the-last PFN to allocate
8246 * @migratetype: migratetype of the underlaying pageblocks (either
8247 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8248 * in range must have the same migratetype and it must
8249 * be either of the two.
8250 * @gfp_mask: GFP mask to use during compaction
8252 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8253 * aligned. The PFN range must belong to a single zone.
8255 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8256 * pageblocks in the range. Once isolated, the pageblocks should not
8257 * be modified by others.
8259 * Return: zero on success or negative error code. On success all
8260 * pages which PFN is in [start, end) are allocated for the caller and
8261 * need to be freed with free_contig_range().
8263 int alloc_contig_range(unsigned long start, unsigned long end,
8264 unsigned migratetype, gfp_t gfp_mask)
8266 unsigned long outer_start, outer_end;
8267 unsigned int order;
8268 int ret = 0;
8270 struct compact_control cc = {
8271 .nr_migratepages = 0,
8272 .order = -1,
8273 .zone = page_zone(pfn_to_page(start)),
8274 .mode = MIGRATE_SYNC,
8275 .ignore_skip_hint = true,
8276 .no_set_skip_hint = true,
8277 .gfp_mask = current_gfp_context(gfp_mask),
8279 INIT_LIST_HEAD(&cc.migratepages);
8282 * What we do here is we mark all pageblocks in range as
8283 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8284 * have different sizes, and due to the way page allocator
8285 * work, we align the range to biggest of the two pages so
8286 * that page allocator won't try to merge buddies from
8287 * different pageblocks and change MIGRATE_ISOLATE to some
8288 * other migration type.
8290 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8291 * migrate the pages from an unaligned range (ie. pages that
8292 * we are interested in). This will put all the pages in
8293 * range back to page allocator as MIGRATE_ISOLATE.
8295 * When this is done, we take the pages in range from page
8296 * allocator removing them from the buddy system. This way
8297 * page allocator will never consider using them.
8299 * This lets us mark the pageblocks back as
8300 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8301 * aligned range but not in the unaligned, original range are
8302 * put back to page allocator so that buddy can use them.
8305 ret = start_isolate_page_range(pfn_max_align_down(start),
8306 pfn_max_align_up(end), migratetype, 0);
8307 if (ret < 0)
8308 return ret;
8311 * In case of -EBUSY, we'd like to know which page causes problem.
8312 * So, just fall through. test_pages_isolated() has a tracepoint
8313 * which will report the busy page.
8315 * It is possible that busy pages could become available before
8316 * the call to test_pages_isolated, and the range will actually be
8317 * allocated. So, if we fall through be sure to clear ret so that
8318 * -EBUSY is not accidentally used or returned to caller.
8320 ret = __alloc_contig_migrate_range(&cc, start, end);
8321 if (ret && ret != -EBUSY)
8322 goto done;
8323 ret =0;
8326 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8327 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8328 * more, all pages in [start, end) are free in page allocator.
8329 * What we are going to do is to allocate all pages from
8330 * [start, end) (that is remove them from page allocator).
8332 * The only problem is that pages at the beginning and at the
8333 * end of interesting range may be not aligned with pages that
8334 * page allocator holds, ie. they can be part of higher order
8335 * pages. Because of this, we reserve the bigger range and
8336 * once this is done free the pages we are not interested in.
8338 * We don't have to hold zone->lock here because the pages are
8339 * isolated thus they won't get removed from buddy.
8342 lru_add_drain_all();
8344 order = 0;
8345 outer_start = start;
8346 while (!PageBuddy(pfn_to_page(outer_start))) {
8347 if (++order >= MAX_ORDER) {
8348 outer_start = start;
8349 break;
8351 outer_start &= ~0UL << order;
8354 if (outer_start != start) {
8355 order = page_order(pfn_to_page(outer_start));
8358 * outer_start page could be small order buddy page and
8359 * it doesn't include start page. Adjust outer_start
8360 * in this case to report failed page properly
8361 * on tracepoint in test_pages_isolated()
8363 if (outer_start + (1UL << order) <= start)
8364 outer_start = start;
8367 /* Make sure the range is really isolated. */
8368 if (test_pages_isolated(outer_start, end, false)) {
8369 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8370 __func__, outer_start, end);
8371 ret = -EBUSY;
8372 goto done;
8375 /* Grab isolated pages from freelists. */
8376 outer_end = isolate_freepages_range(&cc, outer_start, end);
8377 if (!outer_end) {
8378 ret = -EBUSY;
8379 goto done;
8382 /* Free head and tail (if any) */
8383 if (start != outer_start)
8384 free_contig_range(outer_start, start - outer_start);
8385 if (end != outer_end)
8386 free_contig_range(end, outer_end - end);
8388 done:
8389 undo_isolate_page_range(pfn_max_align_down(start),
8390 pfn_max_align_up(end), migratetype);
8391 return ret;
8393 #endif /* CONFIG_CONTIG_ALLOC */
8395 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8397 unsigned int count = 0;
8399 for (; nr_pages--; pfn++) {
8400 struct page *page = pfn_to_page(pfn);
8402 count += page_count(page) != 1;
8403 __free_page(page);
8405 WARN(count != 0, "%d pages are still in use!\n", count);
8408 #ifdef CONFIG_MEMORY_HOTPLUG
8410 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8411 * page high values need to be recalulated.
8413 void __meminit zone_pcp_update(struct zone *zone)
8415 unsigned cpu;
8416 mutex_lock(&pcp_batch_high_lock);
8417 for_each_possible_cpu(cpu)
8418 pageset_set_high_and_batch(zone,
8419 per_cpu_ptr(zone->pageset, cpu));
8420 mutex_unlock(&pcp_batch_high_lock);
8422 #endif
8424 void zone_pcp_reset(struct zone *zone)
8426 unsigned long flags;
8427 int cpu;
8428 struct per_cpu_pageset *pset;
8430 /* avoid races with drain_pages() */
8431 local_irq_save(flags);
8432 if (zone->pageset != &boot_pageset) {
8433 for_each_online_cpu(cpu) {
8434 pset = per_cpu_ptr(zone->pageset, cpu);
8435 drain_zonestat(zone, pset);
8437 free_percpu(zone->pageset);
8438 zone->pageset = &boot_pageset;
8440 local_irq_restore(flags);
8443 #ifdef CONFIG_MEMORY_HOTREMOVE
8445 * All pages in the range must be in a single zone and isolated
8446 * before calling this.
8448 unsigned long
8449 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8451 struct page *page;
8452 struct zone *zone;
8453 unsigned int order, i;
8454 unsigned long pfn;
8455 unsigned long flags;
8456 unsigned long offlined_pages = 0;
8458 /* find the first valid pfn */
8459 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8460 if (pfn_valid(pfn))
8461 break;
8462 if (pfn == end_pfn)
8463 return offlined_pages;
8465 offline_mem_sections(pfn, end_pfn);
8466 zone = page_zone(pfn_to_page(pfn));
8467 spin_lock_irqsave(&zone->lock, flags);
8468 pfn = start_pfn;
8469 while (pfn < end_pfn) {
8470 if (!pfn_valid(pfn)) {
8471 pfn++;
8472 continue;
8474 page = pfn_to_page(pfn);
8476 * The HWPoisoned page may be not in buddy system, and
8477 * page_count() is not 0.
8479 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8480 pfn++;
8481 SetPageReserved(page);
8482 offlined_pages++;
8483 continue;
8486 BUG_ON(page_count(page));
8487 BUG_ON(!PageBuddy(page));
8488 order = page_order(page);
8489 offlined_pages += 1 << order;
8490 #ifdef CONFIG_DEBUG_VM
8491 pr_info("remove from free list %lx %d %lx\n",
8492 pfn, 1 << order, end_pfn);
8493 #endif
8494 del_page_from_free_area(page, &zone->free_area[order]);
8495 for (i = 0; i < (1 << order); i++)
8496 SetPageReserved((page+i));
8497 pfn += (1 << order);
8499 spin_unlock_irqrestore(&zone->lock, flags);
8501 return offlined_pages;
8503 #endif
8505 bool is_free_buddy_page(struct page *page)
8507 struct zone *zone = page_zone(page);
8508 unsigned long pfn = page_to_pfn(page);
8509 unsigned long flags;
8510 unsigned int order;
8512 spin_lock_irqsave(&zone->lock, flags);
8513 for (order = 0; order < MAX_ORDER; order++) {
8514 struct page *page_head = page - (pfn & ((1 << order) - 1));
8516 if (PageBuddy(page_head) && page_order(page_head) >= order)
8517 break;
8519 spin_unlock_irqrestore(&zone->lock, flags);
8521 return order < MAX_ORDER;
8524 #ifdef CONFIG_MEMORY_FAILURE
8526 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8527 * test is performed under the zone lock to prevent a race against page
8528 * allocation.
8530 bool set_hwpoison_free_buddy_page(struct page *page)
8532 struct zone *zone = page_zone(page);
8533 unsigned long pfn = page_to_pfn(page);
8534 unsigned long flags;
8535 unsigned int order;
8536 bool hwpoisoned = false;
8538 spin_lock_irqsave(&zone->lock, flags);
8539 for (order = 0; order < MAX_ORDER; order++) {
8540 struct page *page_head = page - (pfn & ((1 << order) - 1));
8542 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8543 if (!TestSetPageHWPoison(page))
8544 hwpoisoned = true;
8545 break;
8548 spin_unlock_irqrestore(&zone->lock, flags);
8550 return hwpoisoned;
8552 #endif