1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
23 #include <linux/memcontrol.h>
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/kmem.h>
30 enum slab_state slab_state
;
31 LIST_HEAD(slab_caches
);
32 DEFINE_MUTEX(slab_mutex
);
33 struct kmem_cache
*kmem_cache
;
35 #ifdef CONFIG_HARDENED_USERCOPY
36 bool usercopy_fallback __ro_after_init
=
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK
);
38 module_param(usercopy_fallback
, bool, 0400);
39 MODULE_PARM_DESC(usercopy_fallback
,
40 "WARN instead of reject usercopy whitelist violations");
43 static LIST_HEAD(slab_caches_to_rcu_destroy
);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work
,
46 slab_caches_to_rcu_destroy_workfn
);
49 * Set of flags that will prevent slab merging
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 SLAB_FAILSLAB | SLAB_KASAN)
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
59 * Merge control. If this is set then no merging of slab caches will occur.
61 static bool slab_nomerge
= !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT
);
63 static int __init
setup_slab_nomerge(char *str
)
70 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
73 __setup("slab_nomerge", setup_slab_nomerge
);
76 * Determine the size of a slab object
78 unsigned int kmem_cache_size(struct kmem_cache
*s
)
80 return s
->object_size
;
82 EXPORT_SYMBOL(kmem_cache_size
);
84 #ifdef CONFIG_DEBUG_VM
85 static int kmem_cache_sanity_check(const char *name
, unsigned int size
)
87 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
88 size
> KMALLOC_MAX_SIZE
) {
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
93 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
97 static inline int kmem_cache_sanity_check(const char *name
, unsigned int size
)
103 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
107 for (i
= 0; i
< nr
; i
++) {
109 kmem_cache_free(s
, p
[i
]);
115 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
120 for (i
= 0; i
< nr
; i
++) {
121 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
123 __kmem_cache_free_bulk(s
, i
, p
);
130 #ifdef CONFIG_MEMCG_KMEM
132 LIST_HEAD(slab_root_caches
);
134 void slab_init_memcg_params(struct kmem_cache
*s
)
136 s
->memcg_params
.root_cache
= NULL
;
137 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
138 INIT_LIST_HEAD(&s
->memcg_params
.children
);
139 s
->memcg_params
.dying
= false;
142 static int init_memcg_params(struct kmem_cache
*s
,
143 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
145 struct memcg_cache_array
*arr
;
148 s
->memcg_params
.root_cache
= root_cache
;
149 s
->memcg_params
.memcg
= memcg
;
150 INIT_LIST_HEAD(&s
->memcg_params
.children_node
);
151 INIT_LIST_HEAD(&s
->memcg_params
.kmem_caches_node
);
155 slab_init_memcg_params(s
);
157 if (!memcg_nr_cache_ids
)
160 arr
= kvzalloc(sizeof(struct memcg_cache_array
) +
161 memcg_nr_cache_ids
* sizeof(void *),
166 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
170 static void destroy_memcg_params(struct kmem_cache
*s
)
172 if (is_root_cache(s
))
173 kvfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
176 static void free_memcg_params(struct rcu_head
*rcu
)
178 struct memcg_cache_array
*old
;
180 old
= container_of(rcu
, struct memcg_cache_array
, rcu
);
184 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
186 struct memcg_cache_array
*old
, *new;
188 new = kvzalloc(sizeof(struct memcg_cache_array
) +
189 new_array_size
* sizeof(void *), GFP_KERNEL
);
193 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
194 lockdep_is_held(&slab_mutex
));
196 memcpy(new->entries
, old
->entries
,
197 memcg_nr_cache_ids
* sizeof(void *));
199 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
201 call_rcu(&old
->rcu
, free_memcg_params
);
205 int memcg_update_all_caches(int num_memcgs
)
207 struct kmem_cache
*s
;
210 mutex_lock(&slab_mutex
);
211 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
212 ret
= update_memcg_params(s
, num_memcgs
);
214 * Instead of freeing the memory, we'll just leave the caches
215 * up to this point in an updated state.
220 mutex_unlock(&slab_mutex
);
224 void memcg_link_cache(struct kmem_cache
*s
)
226 if (is_root_cache(s
)) {
227 list_add(&s
->root_caches_node
, &slab_root_caches
);
229 list_add(&s
->memcg_params
.children_node
,
230 &s
->memcg_params
.root_cache
->memcg_params
.children
);
231 list_add(&s
->memcg_params
.kmem_caches_node
,
232 &s
->memcg_params
.memcg
->kmem_caches
);
236 static void memcg_unlink_cache(struct kmem_cache
*s
)
238 if (is_root_cache(s
)) {
239 list_del(&s
->root_caches_node
);
241 list_del(&s
->memcg_params
.children_node
);
242 list_del(&s
->memcg_params
.kmem_caches_node
);
246 static inline int init_memcg_params(struct kmem_cache
*s
,
247 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
252 static inline void destroy_memcg_params(struct kmem_cache
*s
)
256 static inline void memcg_unlink_cache(struct kmem_cache
*s
)
259 #endif /* CONFIG_MEMCG_KMEM */
262 * Figure out what the alignment of the objects will be given a set of
263 * flags, a user specified alignment and the size of the objects.
265 static unsigned int calculate_alignment(slab_flags_t flags
,
266 unsigned int align
, unsigned int size
)
269 * If the user wants hardware cache aligned objects then follow that
270 * suggestion if the object is sufficiently large.
272 * The hardware cache alignment cannot override the specified
273 * alignment though. If that is greater then use it.
275 if (flags
& SLAB_HWCACHE_ALIGN
) {
278 ralign
= cache_line_size();
279 while (size
<= ralign
/ 2)
281 align
= max(align
, ralign
);
284 if (align
< ARCH_SLAB_MINALIGN
)
285 align
= ARCH_SLAB_MINALIGN
;
287 return ALIGN(align
, sizeof(void *));
291 * Find a mergeable slab cache
293 int slab_unmergeable(struct kmem_cache
*s
)
295 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
298 if (!is_root_cache(s
))
308 * We may have set a slab to be unmergeable during bootstrap.
316 struct kmem_cache
*find_mergeable(unsigned int size
, unsigned int align
,
317 slab_flags_t flags
, const char *name
, void (*ctor
)(void *))
319 struct kmem_cache
*s
;
327 size
= ALIGN(size
, sizeof(void *));
328 align
= calculate_alignment(flags
, align
, size
);
329 size
= ALIGN(size
, align
);
330 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
332 if (flags
& SLAB_NEVER_MERGE
)
335 list_for_each_entry_reverse(s
, &slab_root_caches
, root_caches_node
) {
336 if (slab_unmergeable(s
))
342 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
345 * Check if alignment is compatible.
346 * Courtesy of Adrian Drzewiecki
348 if ((s
->size
& ~(align
- 1)) != s
->size
)
351 if (s
->size
- size
>= sizeof(void *))
354 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
355 (align
> s
->align
|| s
->align
% align
))
363 static struct kmem_cache
*create_cache(const char *name
,
364 unsigned int object_size
, unsigned int align
,
365 slab_flags_t flags
, unsigned int useroffset
,
366 unsigned int usersize
, void (*ctor
)(void *),
367 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
369 struct kmem_cache
*s
;
372 if (WARN_ON(useroffset
+ usersize
> object_size
))
373 useroffset
= usersize
= 0;
376 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
381 s
->size
= s
->object_size
= object_size
;
384 s
->useroffset
= useroffset
;
385 s
->usersize
= usersize
;
387 err
= init_memcg_params(s
, memcg
, root_cache
);
391 err
= __kmem_cache_create(s
, flags
);
396 list_add(&s
->list
, &slab_caches
);
404 destroy_memcg_params(s
);
405 kmem_cache_free(kmem_cache
, s
);
410 * kmem_cache_create_usercopy - Create a cache with a region suitable
411 * for copying to userspace
412 * @name: A string which is used in /proc/slabinfo to identify this cache.
413 * @size: The size of objects to be created in this cache.
414 * @align: The required alignment for the objects.
416 * @useroffset: Usercopy region offset
417 * @usersize: Usercopy region size
418 * @ctor: A constructor for the objects.
420 * Cannot be called within a interrupt, but can be interrupted.
421 * The @ctor is run when new pages are allocated by the cache.
425 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
426 * to catch references to uninitialised memory.
428 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
429 * for buffer overruns.
431 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
432 * cacheline. This can be beneficial if you're counting cycles as closely
435 * Return: a pointer to the cache on success, NULL on failure.
438 kmem_cache_create_usercopy(const char *name
,
439 unsigned int size
, unsigned int align
,
441 unsigned int useroffset
, unsigned int usersize
,
442 void (*ctor
)(void *))
444 struct kmem_cache
*s
= NULL
;
445 const char *cache_name
;
450 memcg_get_cache_ids();
452 mutex_lock(&slab_mutex
);
454 err
= kmem_cache_sanity_check(name
, size
);
459 /* Refuse requests with allocator specific flags */
460 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
466 * Some allocators will constraint the set of valid flags to a subset
467 * of all flags. We expect them to define CACHE_CREATE_MASK in this
468 * case, and we'll just provide them with a sanitized version of the
471 flags
&= CACHE_CREATE_MASK
;
473 /* Fail closed on bad usersize of useroffset values. */
474 if (WARN_ON(!usersize
&& useroffset
) ||
475 WARN_ON(size
< usersize
|| size
- usersize
< useroffset
))
476 usersize
= useroffset
= 0;
479 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
483 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
489 s
= create_cache(cache_name
, size
,
490 calculate_alignment(flags
, align
, size
),
491 flags
, useroffset
, usersize
, ctor
, NULL
, NULL
);
494 kfree_const(cache_name
);
498 mutex_unlock(&slab_mutex
);
500 memcg_put_cache_ids();
505 if (flags
& SLAB_PANIC
)
506 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
509 pr_warn("kmem_cache_create(%s) failed with error %d\n",
517 EXPORT_SYMBOL(kmem_cache_create_usercopy
);
520 * kmem_cache_create - Create a cache.
521 * @name: A string which is used in /proc/slabinfo to identify this cache.
522 * @size: The size of objects to be created in this cache.
523 * @align: The required alignment for the objects.
525 * @ctor: A constructor for the objects.
527 * Cannot be called within a interrupt, but can be interrupted.
528 * The @ctor is run when new pages are allocated by the cache.
532 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
533 * to catch references to uninitialised memory.
535 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
536 * for buffer overruns.
538 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
539 * cacheline. This can be beneficial if you're counting cycles as closely
542 * Return: a pointer to the cache on success, NULL on failure.
545 kmem_cache_create(const char *name
, unsigned int size
, unsigned int align
,
546 slab_flags_t flags
, void (*ctor
)(void *))
548 return kmem_cache_create_usercopy(name
, size
, align
, flags
, 0, 0,
551 EXPORT_SYMBOL(kmem_cache_create
);
553 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
)
555 LIST_HEAD(to_destroy
);
556 struct kmem_cache
*s
, *s2
;
559 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
560 * @slab_caches_to_rcu_destroy list. The slab pages are freed
561 * through RCU and and the associated kmem_cache are dereferenced
562 * while freeing the pages, so the kmem_caches should be freed only
563 * after the pending RCU operations are finished. As rcu_barrier()
564 * is a pretty slow operation, we batch all pending destructions
567 mutex_lock(&slab_mutex
);
568 list_splice_init(&slab_caches_to_rcu_destroy
, &to_destroy
);
569 mutex_unlock(&slab_mutex
);
571 if (list_empty(&to_destroy
))
576 list_for_each_entry_safe(s
, s2
, &to_destroy
, list
) {
577 #ifdef SLAB_SUPPORTS_SYSFS
578 sysfs_slab_release(s
);
580 slab_kmem_cache_release(s
);
585 static int shutdown_cache(struct kmem_cache
*s
)
587 /* free asan quarantined objects */
588 kasan_cache_shutdown(s
);
590 if (__kmem_cache_shutdown(s
) != 0)
593 memcg_unlink_cache(s
);
596 if (s
->flags
& SLAB_TYPESAFE_BY_RCU
) {
597 #ifdef SLAB_SUPPORTS_SYSFS
598 sysfs_slab_unlink(s
);
600 list_add_tail(&s
->list
, &slab_caches_to_rcu_destroy
);
601 schedule_work(&slab_caches_to_rcu_destroy_work
);
603 #ifdef SLAB_SUPPORTS_SYSFS
604 sysfs_slab_unlink(s
);
605 sysfs_slab_release(s
);
607 slab_kmem_cache_release(s
);
614 #ifdef CONFIG_MEMCG_KMEM
616 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
617 * @memcg: The memory cgroup the new cache is for.
618 * @root_cache: The parent of the new cache.
620 * This function attempts to create a kmem cache that will serve allocation
621 * requests going from @memcg to @root_cache. The new cache inherits properties
624 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
625 struct kmem_cache
*root_cache
)
627 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
628 struct cgroup_subsys_state
*css
= &memcg
->css
;
629 struct memcg_cache_array
*arr
;
630 struct kmem_cache
*s
= NULL
;
637 mutex_lock(&slab_mutex
);
640 * The memory cgroup could have been offlined while the cache
641 * creation work was pending.
643 if (memcg
->kmem_state
!= KMEM_ONLINE
|| root_cache
->memcg_params
.dying
)
646 idx
= memcg_cache_id(memcg
);
647 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
648 lockdep_is_held(&slab_mutex
));
651 * Since per-memcg caches are created asynchronously on first
652 * allocation (see memcg_kmem_get_cache()), several threads can try to
653 * create the same cache, but only one of them may succeed.
655 if (arr
->entries
[idx
])
658 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
659 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
660 css
->serial_nr
, memcg_name_buf
);
664 s
= create_cache(cache_name
, root_cache
->object_size
,
666 root_cache
->flags
& CACHE_CREATE_MASK
,
667 root_cache
->useroffset
, root_cache
->usersize
,
668 root_cache
->ctor
, memcg
, root_cache
);
670 * If we could not create a memcg cache, do not complain, because
671 * that's not critical at all as we can always proceed with the root
680 * Since readers won't lock (see cache_from_memcg_idx()), we need a
681 * barrier here to ensure nobody will see the kmem_cache partially
685 arr
->entries
[idx
] = s
;
688 mutex_unlock(&slab_mutex
);
694 static void kmemcg_deactivate_workfn(struct work_struct
*work
)
696 struct kmem_cache
*s
= container_of(work
, struct kmem_cache
,
697 memcg_params
.deact_work
);
702 mutex_lock(&slab_mutex
);
704 s
->memcg_params
.deact_fn(s
);
706 mutex_unlock(&slab_mutex
);
711 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
712 css_put(&s
->memcg_params
.memcg
->css
);
715 static void kmemcg_deactivate_rcufn(struct rcu_head
*head
)
717 struct kmem_cache
*s
= container_of(head
, struct kmem_cache
,
718 memcg_params
.deact_rcu_head
);
721 * We need to grab blocking locks. Bounce to ->deact_work. The
722 * work item shares the space with the RCU head and can't be
723 * initialized eariler.
725 INIT_WORK(&s
->memcg_params
.deact_work
, kmemcg_deactivate_workfn
);
726 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.deact_work
);
730 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
731 * sched RCU grace period
732 * @s: target kmem_cache
733 * @deact_fn: deactivation function to call
735 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
736 * held after a sched RCU grace period. The slab is guaranteed to stay
737 * alive until @deact_fn is finished. This is to be used from
738 * __kmemcg_cache_deactivate().
740 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache
*s
,
741 void (*deact_fn
)(struct kmem_cache
*))
743 if (WARN_ON_ONCE(is_root_cache(s
)) ||
744 WARN_ON_ONCE(s
->memcg_params
.deact_fn
))
747 if (s
->memcg_params
.root_cache
->memcg_params
.dying
)
750 /* pin memcg so that @s doesn't get destroyed in the middle */
751 css_get(&s
->memcg_params
.memcg
->css
);
753 s
->memcg_params
.deact_fn
= deact_fn
;
754 call_rcu(&s
->memcg_params
.deact_rcu_head
, kmemcg_deactivate_rcufn
);
757 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
760 struct memcg_cache_array
*arr
;
761 struct kmem_cache
*s
, *c
;
763 idx
= memcg_cache_id(memcg
);
768 mutex_lock(&slab_mutex
);
769 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
770 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
771 lockdep_is_held(&slab_mutex
));
772 c
= arr
->entries
[idx
];
776 __kmemcg_cache_deactivate(c
);
777 arr
->entries
[idx
] = NULL
;
779 mutex_unlock(&slab_mutex
);
785 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
787 struct kmem_cache
*s
, *s2
;
792 mutex_lock(&slab_mutex
);
793 list_for_each_entry_safe(s
, s2
, &memcg
->kmem_caches
,
794 memcg_params
.kmem_caches_node
) {
796 * The cgroup is about to be freed and therefore has no charges
797 * left. Hence, all its caches must be empty by now.
799 BUG_ON(shutdown_cache(s
));
801 mutex_unlock(&slab_mutex
);
807 static int shutdown_memcg_caches(struct kmem_cache
*s
)
809 struct memcg_cache_array
*arr
;
810 struct kmem_cache
*c
, *c2
;
814 BUG_ON(!is_root_cache(s
));
817 * First, shutdown active caches, i.e. caches that belong to online
820 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
821 lockdep_is_held(&slab_mutex
));
822 for_each_memcg_cache_index(i
) {
826 if (shutdown_cache(c
))
828 * The cache still has objects. Move it to a temporary
829 * list so as not to try to destroy it for a second
830 * time while iterating over inactive caches below.
832 list_move(&c
->memcg_params
.children_node
, &busy
);
835 * The cache is empty and will be destroyed soon. Clear
836 * the pointer to it in the memcg_caches array so that
837 * it will never be accessed even if the root cache
840 arr
->entries
[i
] = NULL
;
844 * Second, shutdown all caches left from memory cgroups that are now
847 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.children
,
848 memcg_params
.children_node
)
851 list_splice(&busy
, &s
->memcg_params
.children
);
854 * A cache being destroyed must be empty. In particular, this means
855 * that all per memcg caches attached to it must be empty too.
857 if (!list_empty(&s
->memcg_params
.children
))
862 static void flush_memcg_workqueue(struct kmem_cache
*s
)
864 mutex_lock(&slab_mutex
);
865 s
->memcg_params
.dying
= true;
866 mutex_unlock(&slab_mutex
);
869 * SLUB deactivates the kmem_caches through call_rcu. Make
870 * sure all registered rcu callbacks have been invoked.
872 if (IS_ENABLED(CONFIG_SLUB
))
876 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
877 * deactivates the memcg kmem_caches through workqueue. Make sure all
878 * previous workitems on workqueue are processed.
880 flush_workqueue(memcg_kmem_cache_wq
);
883 static inline int shutdown_memcg_caches(struct kmem_cache
*s
)
888 static inline void flush_memcg_workqueue(struct kmem_cache
*s
)
891 #endif /* CONFIG_MEMCG_KMEM */
893 void slab_kmem_cache_release(struct kmem_cache
*s
)
895 __kmem_cache_release(s
);
896 destroy_memcg_params(s
);
897 kfree_const(s
->name
);
898 kmem_cache_free(kmem_cache
, s
);
901 void kmem_cache_destroy(struct kmem_cache
*s
)
908 flush_memcg_workqueue(s
);
913 mutex_lock(&slab_mutex
);
919 err
= shutdown_memcg_caches(s
);
921 err
= shutdown_cache(s
);
924 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
929 mutex_unlock(&slab_mutex
);
934 EXPORT_SYMBOL(kmem_cache_destroy
);
937 * kmem_cache_shrink - Shrink a cache.
938 * @cachep: The cache to shrink.
940 * Releases as many slabs as possible for a cache.
941 * To help debugging, a zero exit status indicates all slabs were released.
943 * Return: %0 if all slabs were released, non-zero otherwise
945 int kmem_cache_shrink(struct kmem_cache
*cachep
)
951 kasan_cache_shrink(cachep
);
952 ret
= __kmem_cache_shrink(cachep
);
957 EXPORT_SYMBOL(kmem_cache_shrink
);
959 bool slab_is_available(void)
961 return slab_state
>= UP
;
965 /* Create a cache during boot when no slab services are available yet */
966 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
,
967 unsigned int size
, slab_flags_t flags
,
968 unsigned int useroffset
, unsigned int usersize
)
973 s
->size
= s
->object_size
= size
;
974 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
975 s
->useroffset
= useroffset
;
976 s
->usersize
= usersize
;
978 slab_init_memcg_params(s
);
980 err
= __kmem_cache_create(s
, flags
);
983 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
986 s
->refcount
= -1; /* Exempt from merging for now */
989 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
990 unsigned int size
, slab_flags_t flags
,
991 unsigned int useroffset
, unsigned int usersize
)
993 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
996 panic("Out of memory when creating slab %s\n", name
);
998 create_boot_cache(s
, name
, size
, flags
, useroffset
, usersize
);
999 list_add(&s
->list
, &slab_caches
);
1000 memcg_link_cache(s
);
1006 kmalloc_caches
[NR_KMALLOC_TYPES
][KMALLOC_SHIFT_HIGH
+ 1] __ro_after_init
;
1007 EXPORT_SYMBOL(kmalloc_caches
);
1010 * Conversion table for small slabs sizes / 8 to the index in the
1011 * kmalloc array. This is necessary for slabs < 192 since we have non power
1012 * of two cache sizes there. The size of larger slabs can be determined using
1015 static u8 size_index
[24] __ro_after_init
= {
1042 static inline unsigned int size_index_elem(unsigned int bytes
)
1044 return (bytes
- 1) / 8;
1048 * Find the kmem_cache structure that serves a given size of
1051 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
1057 return ZERO_SIZE_PTR
;
1059 index
= size_index
[size_index_elem(size
)];
1061 if (WARN_ON_ONCE(size
> KMALLOC_MAX_CACHE_SIZE
))
1063 index
= fls(size
- 1);
1066 return kmalloc_caches
[kmalloc_type(flags
)][index
];
1070 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1071 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1074 const struct kmalloc_info_struct kmalloc_info
[] __initconst
= {
1075 {NULL
, 0}, {"kmalloc-96", 96},
1076 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1077 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1078 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1079 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1080 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1081 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1082 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1083 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1084 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1085 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1086 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1087 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1088 {"kmalloc-64M", 67108864}
1092 * Patch up the size_index table if we have strange large alignment
1093 * requirements for the kmalloc array. This is only the case for
1094 * MIPS it seems. The standard arches will not generate any code here.
1096 * Largest permitted alignment is 256 bytes due to the way we
1097 * handle the index determination for the smaller caches.
1099 * Make sure that nothing crazy happens if someone starts tinkering
1100 * around with ARCH_KMALLOC_MINALIGN
1102 void __init
setup_kmalloc_cache_index_table(void)
1106 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
1107 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
1109 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
1110 unsigned int elem
= size_index_elem(i
);
1112 if (elem
>= ARRAY_SIZE(size_index
))
1114 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
1117 if (KMALLOC_MIN_SIZE
>= 64) {
1119 * The 96 byte size cache is not used if the alignment
1122 for (i
= 64 + 8; i
<= 96; i
+= 8)
1123 size_index
[size_index_elem(i
)] = 7;
1127 if (KMALLOC_MIN_SIZE
>= 128) {
1129 * The 192 byte sized cache is not used if the alignment
1130 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1133 for (i
= 128 + 8; i
<= 192; i
+= 8)
1134 size_index
[size_index_elem(i
)] = 8;
1139 kmalloc_cache_name(const char *prefix
, unsigned int size
)
1142 static const char units
[3] = "\0kM";
1145 while (size
>= 1024 && (size
% 1024 == 0)) {
1150 return kasprintf(GFP_NOWAIT
, "%s-%u%c", prefix
, size
, units
[idx
]);
1154 new_kmalloc_cache(int idx
, int type
, slab_flags_t flags
)
1158 if (type
== KMALLOC_RECLAIM
) {
1159 flags
|= SLAB_RECLAIM_ACCOUNT
;
1160 name
= kmalloc_cache_name("kmalloc-rcl",
1161 kmalloc_info
[idx
].size
);
1164 name
= kmalloc_info
[idx
].name
;
1167 kmalloc_caches
[type
][idx
] = create_kmalloc_cache(name
,
1168 kmalloc_info
[idx
].size
, flags
, 0,
1169 kmalloc_info
[idx
].size
);
1173 * Create the kmalloc array. Some of the regular kmalloc arrays
1174 * may already have been created because they were needed to
1175 * enable allocations for slab creation.
1177 void __init
create_kmalloc_caches(slab_flags_t flags
)
1181 for (type
= KMALLOC_NORMAL
; type
<= KMALLOC_RECLAIM
; type
++) {
1182 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1183 if (!kmalloc_caches
[type
][i
])
1184 new_kmalloc_cache(i
, type
, flags
);
1187 * Caches that are not of the two-to-the-power-of size.
1188 * These have to be created immediately after the
1189 * earlier power of two caches
1191 if (KMALLOC_MIN_SIZE
<= 32 && i
== 6 &&
1192 !kmalloc_caches
[type
][1])
1193 new_kmalloc_cache(1, type
, flags
);
1194 if (KMALLOC_MIN_SIZE
<= 64 && i
== 7 &&
1195 !kmalloc_caches
[type
][2])
1196 new_kmalloc_cache(2, type
, flags
);
1200 /* Kmalloc array is now usable */
1203 #ifdef CONFIG_ZONE_DMA
1204 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1205 struct kmem_cache
*s
= kmalloc_caches
[KMALLOC_NORMAL
][i
];
1208 unsigned int size
= kmalloc_size(i
);
1209 const char *n
= kmalloc_cache_name("dma-kmalloc", size
);
1212 kmalloc_caches
[KMALLOC_DMA
][i
] = create_kmalloc_cache(
1213 n
, size
, SLAB_CACHE_DMA
| flags
, 0, 0);
1218 #endif /* !CONFIG_SLOB */
1221 * To avoid unnecessary overhead, we pass through large allocation requests
1222 * directly to the page allocator. We use __GFP_COMP, because we will need to
1223 * know the allocation order to free the pages properly in kfree.
1225 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1230 flags
|= __GFP_COMP
;
1231 page
= alloc_pages(flags
, order
);
1232 ret
= page
? page_address(page
) : NULL
;
1233 ret
= kasan_kmalloc_large(ret
, size
, flags
);
1234 /* As ret might get tagged, call kmemleak hook after KASAN. */
1235 kmemleak_alloc(ret
, size
, 1, flags
);
1238 EXPORT_SYMBOL(kmalloc_order
);
1240 #ifdef CONFIG_TRACING
1241 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1243 void *ret
= kmalloc_order(size
, flags
, order
);
1244 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1247 EXPORT_SYMBOL(kmalloc_order_trace
);
1250 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1251 /* Randomize a generic freelist */
1252 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1258 for (i
= 0; i
< count
; i
++)
1261 /* Fisher-Yates shuffle */
1262 for (i
= count
- 1; i
> 0; i
--) {
1263 rand
= prandom_u32_state(state
);
1265 swap(list
[i
], list
[rand
]);
1269 /* Create a random sequence per cache */
1270 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1273 struct rnd_state state
;
1275 if (count
< 2 || cachep
->random_seq
)
1278 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1279 if (!cachep
->random_seq
)
1282 /* Get best entropy at this stage of boot */
1283 prandom_seed_state(&state
, get_random_long());
1285 freelist_randomize(&state
, cachep
->random_seq
, count
);
1289 /* Destroy the per-cache random freelist sequence */
1290 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1292 kfree(cachep
->random_seq
);
1293 cachep
->random_seq
= NULL
;
1295 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1297 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1299 #define SLABINFO_RIGHTS (0600)
1301 #define SLABINFO_RIGHTS (0400)
1304 static void print_slabinfo_header(struct seq_file
*m
)
1307 * Output format version, so at least we can change it
1308 * without _too_ many complaints.
1310 #ifdef CONFIG_DEBUG_SLAB
1311 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1313 seq_puts(m
, "slabinfo - version: 2.1\n");
1315 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1316 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1317 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1318 #ifdef CONFIG_DEBUG_SLAB
1319 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1320 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1325 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1327 mutex_lock(&slab_mutex
);
1328 return seq_list_start(&slab_root_caches
, *pos
);
1331 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1333 return seq_list_next(p
, &slab_root_caches
, pos
);
1336 void slab_stop(struct seq_file
*m
, void *p
)
1338 mutex_unlock(&slab_mutex
);
1342 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1344 struct kmem_cache
*c
;
1345 struct slabinfo sinfo
;
1347 if (!is_root_cache(s
))
1350 for_each_memcg_cache(c
, s
) {
1351 memset(&sinfo
, 0, sizeof(sinfo
));
1352 get_slabinfo(c
, &sinfo
);
1354 info
->active_slabs
+= sinfo
.active_slabs
;
1355 info
->num_slabs
+= sinfo
.num_slabs
;
1356 info
->shared_avail
+= sinfo
.shared_avail
;
1357 info
->active_objs
+= sinfo
.active_objs
;
1358 info
->num_objs
+= sinfo
.num_objs
;
1362 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1364 struct slabinfo sinfo
;
1366 memset(&sinfo
, 0, sizeof(sinfo
));
1367 get_slabinfo(s
, &sinfo
);
1369 memcg_accumulate_slabinfo(s
, &sinfo
);
1371 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1372 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1373 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1375 seq_printf(m
, " : tunables %4u %4u %4u",
1376 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1377 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1378 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1379 slabinfo_show_stats(m
, s
);
1383 static int slab_show(struct seq_file
*m
, void *p
)
1385 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, root_caches_node
);
1387 if (p
== slab_root_caches
.next
)
1388 print_slabinfo_header(m
);
1393 void dump_unreclaimable_slab(void)
1395 struct kmem_cache
*s
, *s2
;
1396 struct slabinfo sinfo
;
1399 * Here acquiring slab_mutex is risky since we don't prefer to get
1400 * sleep in oom path. But, without mutex hold, it may introduce a
1402 * Use mutex_trylock to protect the list traverse, dump nothing
1403 * without acquiring the mutex.
1405 if (!mutex_trylock(&slab_mutex
)) {
1406 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1410 pr_info("Unreclaimable slab info:\n");
1411 pr_info("Name Used Total\n");
1413 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
1414 if (!is_root_cache(s
) || (s
->flags
& SLAB_RECLAIM_ACCOUNT
))
1417 get_slabinfo(s
, &sinfo
);
1419 if (sinfo
.num_objs
> 0)
1420 pr_info("%-17s %10luKB %10luKB\n", cache_name(s
),
1421 (sinfo
.active_objs
* s
->size
) / 1024,
1422 (sinfo
.num_objs
* s
->size
) / 1024);
1424 mutex_unlock(&slab_mutex
);
1427 #if defined(CONFIG_MEMCG)
1428 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
)
1430 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
1432 mutex_lock(&slab_mutex
);
1433 return seq_list_start(&memcg
->kmem_caches
, *pos
);
1436 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1438 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
1440 return seq_list_next(p
, &memcg
->kmem_caches
, pos
);
1443 void memcg_slab_stop(struct seq_file
*m
, void *p
)
1445 mutex_unlock(&slab_mutex
);
1448 int memcg_slab_show(struct seq_file
*m
, void *p
)
1450 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
,
1451 memcg_params
.kmem_caches_node
);
1452 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
1454 if (p
== memcg
->kmem_caches
.next
)
1455 print_slabinfo_header(m
);
1462 * slabinfo_op - iterator that generates /proc/slabinfo
1471 * num-pages-per-slab
1472 * + further values on SMP and with statistics enabled
1474 static const struct seq_operations slabinfo_op
= {
1475 .start
= slab_start
,
1481 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1483 return seq_open(file
, &slabinfo_op
);
1486 static const struct file_operations proc_slabinfo_operations
= {
1487 .open
= slabinfo_open
,
1489 .write
= slabinfo_write
,
1490 .llseek
= seq_lseek
,
1491 .release
= seq_release
,
1494 static int __init
slab_proc_init(void)
1496 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1497 &proc_slabinfo_operations
);
1500 module_init(slab_proc_init
);
1501 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1503 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1512 if (ks
>= new_size
) {
1513 p
= kasan_krealloc((void *)p
, new_size
, flags
);
1517 ret
= kmalloc_track_caller(new_size
, flags
);
1525 * __krealloc - like krealloc() but don't free @p.
1526 * @p: object to reallocate memory for.
1527 * @new_size: how many bytes of memory are required.
1528 * @flags: the type of memory to allocate.
1530 * This function is like krealloc() except it never frees the originally
1531 * allocated buffer. Use this if you don't want to free the buffer immediately
1532 * like, for example, with RCU.
1534 * Return: pointer to the allocated memory or %NULL in case of error
1536 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1538 if (unlikely(!new_size
))
1539 return ZERO_SIZE_PTR
;
1541 return __do_krealloc(p
, new_size
, flags
);
1544 EXPORT_SYMBOL(__krealloc
);
1547 * krealloc - reallocate memory. The contents will remain unchanged.
1548 * @p: object to reallocate memory for.
1549 * @new_size: how many bytes of memory are required.
1550 * @flags: the type of memory to allocate.
1552 * The contents of the object pointed to are preserved up to the
1553 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1554 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1555 * %NULL pointer, the object pointed to is freed.
1557 * Return: pointer to the allocated memory or %NULL in case of error
1559 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1563 if (unlikely(!new_size
)) {
1565 return ZERO_SIZE_PTR
;
1568 ret
= __do_krealloc(p
, new_size
, flags
);
1569 if (ret
&& kasan_reset_tag(p
) != kasan_reset_tag(ret
))
1574 EXPORT_SYMBOL(krealloc
);
1577 * kzfree - like kfree but zero memory
1578 * @p: object to free memory of
1580 * The memory of the object @p points to is zeroed before freed.
1581 * If @p is %NULL, kzfree() does nothing.
1583 * Note: this function zeroes the whole allocated buffer which can be a good
1584 * deal bigger than the requested buffer size passed to kmalloc(). So be
1585 * careful when using this function in performance sensitive code.
1587 void kzfree(const void *p
)
1590 void *mem
= (void *)p
;
1592 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1598 EXPORT_SYMBOL(kzfree
);
1600 /* Tracepoints definitions. */
1601 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1602 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1603 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1604 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1605 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1606 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);
1608 int should_failslab(struct kmem_cache
*s
, gfp_t gfpflags
)
1610 if (__should_failslab(s
, gfpflags
))
1614 ALLOW_ERROR_INJECTION(should_failslab
, ERRNO
);