1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
12 #include <linux/vmalloc.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
44 struct vfree_deferred
{
45 struct llist_head list
;
46 struct work_struct wq
;
48 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
50 static void __vunmap(const void *, int);
52 static void free_work(struct work_struct
*w
)
54 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
55 struct llist_node
*t
, *llnode
;
57 llist_for_each_safe(llnode
, t
, llist_del_all(&p
->list
))
58 __vunmap((void *)llnode
, 1);
61 /*** Page table manipulation functions ***/
63 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
67 pte
= pte_offset_kernel(pmd
, addr
);
69 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
70 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
71 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
74 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
79 pmd
= pmd_offset(pud
, addr
);
81 next
= pmd_addr_end(addr
, end
);
82 if (pmd_clear_huge(pmd
))
84 if (pmd_none_or_clear_bad(pmd
))
86 vunmap_pte_range(pmd
, addr
, next
);
87 } while (pmd
++, addr
= next
, addr
!= end
);
90 static void vunmap_pud_range(p4d_t
*p4d
, unsigned long addr
, unsigned long end
)
95 pud
= pud_offset(p4d
, addr
);
97 next
= pud_addr_end(addr
, end
);
98 if (pud_clear_huge(pud
))
100 if (pud_none_or_clear_bad(pud
))
102 vunmap_pmd_range(pud
, addr
, next
);
103 } while (pud
++, addr
= next
, addr
!= end
);
106 static void vunmap_p4d_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
111 p4d
= p4d_offset(pgd
, addr
);
113 next
= p4d_addr_end(addr
, end
);
114 if (p4d_clear_huge(p4d
))
116 if (p4d_none_or_clear_bad(p4d
))
118 vunmap_pud_range(p4d
, addr
, next
);
119 } while (p4d
++, addr
= next
, addr
!= end
);
122 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
128 pgd
= pgd_offset_k(addr
);
130 next
= pgd_addr_end(addr
, end
);
131 if (pgd_none_or_clear_bad(pgd
))
133 vunmap_p4d_range(pgd
, addr
, next
);
134 } while (pgd
++, addr
= next
, addr
!= end
);
137 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
138 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
147 pte
= pte_alloc_kernel(pmd
, addr
);
151 struct page
*page
= pages
[*nr
];
153 if (WARN_ON(!pte_none(*pte
)))
157 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
159 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
163 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
164 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
169 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
173 next
= pmd_addr_end(addr
, end
);
174 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
176 } while (pmd
++, addr
= next
, addr
!= end
);
180 static int vmap_pud_range(p4d_t
*p4d
, unsigned long addr
,
181 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
186 pud
= pud_alloc(&init_mm
, p4d
, addr
);
190 next
= pud_addr_end(addr
, end
);
191 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
193 } while (pud
++, addr
= next
, addr
!= end
);
197 static int vmap_p4d_range(pgd_t
*pgd
, unsigned long addr
,
198 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
203 p4d
= p4d_alloc(&init_mm
, pgd
, addr
);
207 next
= p4d_addr_end(addr
, end
);
208 if (vmap_pud_range(p4d
, addr
, next
, prot
, pages
, nr
))
210 } while (p4d
++, addr
= next
, addr
!= end
);
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
220 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
221 pgprot_t prot
, struct page
**pages
)
225 unsigned long addr
= start
;
230 pgd
= pgd_offset_k(addr
);
232 next
= pgd_addr_end(addr
, end
);
233 err
= vmap_p4d_range(pgd
, addr
, next
, prot
, pages
, &nr
);
236 } while (pgd
++, addr
= next
, addr
!= end
);
241 static int vmap_page_range(unsigned long start
, unsigned long end
,
242 pgprot_t prot
, struct page
**pages
)
246 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
247 flush_cache_vmap(start
, end
);
251 int is_vmalloc_or_module_addr(const void *x
)
254 * ARM, x86-64 and sparc64 put modules in a special place,
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr
= (unsigned long)x
;
260 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
263 return is_vmalloc_addr(x
);
267 * Walk a vmap address to the struct page it maps.
269 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
271 unsigned long addr
= (unsigned long) vmalloc_addr
;
272 struct page
*page
= NULL
;
273 pgd_t
*pgd
= pgd_offset_k(addr
);
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
287 p4d
= p4d_offset(pgd
, addr
);
290 pud
= pud_offset(p4d
, addr
);
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
300 WARN_ON_ONCE(pud_bad(*pud
));
301 if (pud_none(*pud
) || pud_bad(*pud
))
303 pmd
= pmd_offset(pud
, addr
);
304 WARN_ON_ONCE(pmd_bad(*pmd
));
305 if (pmd_none(*pmd
) || pmd_bad(*pmd
))
308 ptep
= pte_offset_map(pmd
, addr
);
310 if (pte_present(pte
))
311 page
= pte_page(pte
);
315 EXPORT_SYMBOL(vmalloc_to_page
);
318 * Map a vmalloc()-space virtual address to the physical page frame number.
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
322 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
324 EXPORT_SYMBOL(vmalloc_to_pfn
);
327 /*** Global kva allocator ***/
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
332 #define VM_LAZY_FREE 0x02
333 #define VM_VM_AREA 0x04
335 static DEFINE_SPINLOCK(vmap_area_lock
);
336 /* Export for kexec only */
337 LIST_HEAD(vmap_area_list
);
338 static LLIST_HEAD(vmap_purge_list
);
339 static struct rb_root vmap_area_root
= RB_ROOT
;
340 static bool vmap_initialized __read_mostly
;
343 * This kmem_cache is used for vmap_area objects. Instead of
344 * allocating from slab we reuse an object from this cache to
345 * make things faster. Especially in "no edge" splitting of
348 static struct kmem_cache
*vmap_area_cachep
;
351 * This linked list is used in pair with free_vmap_area_root.
352 * It gives O(1) access to prev/next to perform fast coalescing.
354 static LIST_HEAD(free_vmap_area_list
);
357 * This augment red-black tree represents the free vmap space.
358 * All vmap_area objects in this tree are sorted by va->va_start
359 * address. It is used for allocation and merging when a vmap
360 * object is released.
362 * Each vmap_area node contains a maximum available free block
363 * of its sub-tree, right or left. Therefore it is possible to
364 * find a lowest match of free area.
366 static struct rb_root free_vmap_area_root
= RB_ROOT
;
368 static __always_inline
unsigned long
369 va_size(struct vmap_area
*va
)
371 return (va
->va_end
- va
->va_start
);
374 static __always_inline
unsigned long
375 get_subtree_max_size(struct rb_node
*node
)
377 struct vmap_area
*va
;
379 va
= rb_entry_safe(node
, struct vmap_area
, rb_node
);
380 return va
? va
->subtree_max_size
: 0;
384 * Gets called when remove the node and rotate.
386 static __always_inline
unsigned long
387 compute_subtree_max_size(struct vmap_area
*va
)
389 return max3(va_size(va
),
390 get_subtree_max_size(va
->rb_node
.rb_left
),
391 get_subtree_max_size(va
->rb_node
.rb_right
));
394 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb
,
395 struct vmap_area
, rb_node
, unsigned long, subtree_max_size
,
396 compute_subtree_max_size
)
398 static void purge_vmap_area_lazy(void);
399 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
400 static unsigned long lazy_max_pages(void);
402 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
404 struct rb_node
*n
= vmap_area_root
.rb_node
;
407 struct vmap_area
*va
;
409 va
= rb_entry(n
, struct vmap_area
, rb_node
);
410 if (addr
< va
->va_start
)
412 else if (addr
>= va
->va_end
)
422 * This function returns back addresses of parent node
423 * and its left or right link for further processing.
425 static __always_inline
struct rb_node
**
426 find_va_links(struct vmap_area
*va
,
427 struct rb_root
*root
, struct rb_node
*from
,
428 struct rb_node
**parent
)
430 struct vmap_area
*tmp_va
;
431 struct rb_node
**link
;
434 link
= &root
->rb_node
;
435 if (unlikely(!*link
)) {
444 * Go to the bottom of the tree. When we hit the last point
445 * we end up with parent rb_node and correct direction, i name
446 * it link, where the new va->rb_node will be attached to.
449 tmp_va
= rb_entry(*link
, struct vmap_area
, rb_node
);
452 * During the traversal we also do some sanity check.
453 * Trigger the BUG() if there are sides(left/right)
456 if (va
->va_start
< tmp_va
->va_end
&&
457 va
->va_end
<= tmp_va
->va_start
)
458 link
= &(*link
)->rb_left
;
459 else if (va
->va_end
> tmp_va
->va_start
&&
460 va
->va_start
>= tmp_va
->va_end
)
461 link
= &(*link
)->rb_right
;
466 *parent
= &tmp_va
->rb_node
;
470 static __always_inline
struct list_head
*
471 get_va_next_sibling(struct rb_node
*parent
, struct rb_node
**link
)
473 struct list_head
*list
;
475 if (unlikely(!parent
))
477 * The red-black tree where we try to find VA neighbors
478 * before merging or inserting is empty, i.e. it means
479 * there is no free vmap space. Normally it does not
480 * happen but we handle this case anyway.
484 list
= &rb_entry(parent
, struct vmap_area
, rb_node
)->list
;
485 return (&parent
->rb_right
== link
? list
->next
: list
);
488 static __always_inline
void
489 link_va(struct vmap_area
*va
, struct rb_root
*root
,
490 struct rb_node
*parent
, struct rb_node
**link
, struct list_head
*head
)
493 * VA is still not in the list, but we can
494 * identify its future previous list_head node.
496 if (likely(parent
)) {
497 head
= &rb_entry(parent
, struct vmap_area
, rb_node
)->list
;
498 if (&parent
->rb_right
!= link
)
502 /* Insert to the rb-tree */
503 rb_link_node(&va
->rb_node
, parent
, link
);
504 if (root
== &free_vmap_area_root
) {
506 * Some explanation here. Just perform simple insertion
507 * to the tree. We do not set va->subtree_max_size to
508 * its current size before calling rb_insert_augmented().
509 * It is because of we populate the tree from the bottom
510 * to parent levels when the node _is_ in the tree.
512 * Therefore we set subtree_max_size to zero after insertion,
513 * to let __augment_tree_propagate_from() puts everything to
514 * the correct order later on.
516 rb_insert_augmented(&va
->rb_node
,
517 root
, &free_vmap_area_rb_augment_cb
);
518 va
->subtree_max_size
= 0;
520 rb_insert_color(&va
->rb_node
, root
);
523 /* Address-sort this list */
524 list_add(&va
->list
, head
);
527 static __always_inline
void
528 unlink_va(struct vmap_area
*va
, struct rb_root
*root
)
531 * During merging a VA node can be empty, therefore
532 * not linked with the tree nor list. Just check it.
534 if (!RB_EMPTY_NODE(&va
->rb_node
)) {
535 if (root
== &free_vmap_area_root
)
536 rb_erase_augmented(&va
->rb_node
,
537 root
, &free_vmap_area_rb_augment_cb
);
539 rb_erase(&va
->rb_node
, root
);
542 RB_CLEAR_NODE(&va
->rb_node
);
546 #if DEBUG_AUGMENT_PROPAGATE_CHECK
548 augment_tree_propagate_check(struct rb_node
*n
)
550 struct vmap_area
*va
;
551 struct rb_node
*node
;
558 va
= rb_entry(n
, struct vmap_area
, rb_node
);
559 size
= va
->subtree_max_size
;
563 va
= rb_entry(node
, struct vmap_area
, rb_node
);
565 if (get_subtree_max_size(node
->rb_left
) == size
) {
566 node
= node
->rb_left
;
568 if (va_size(va
) == size
) {
573 node
= node
->rb_right
;
578 va
= rb_entry(n
, struct vmap_area
, rb_node
);
579 pr_emerg("tree is corrupted: %lu, %lu\n",
580 va_size(va
), va
->subtree_max_size
);
583 augment_tree_propagate_check(n
->rb_left
);
584 augment_tree_propagate_check(n
->rb_right
);
589 * This function populates subtree_max_size from bottom to upper
590 * levels starting from VA point. The propagation must be done
591 * when VA size is modified by changing its va_start/va_end. Or
592 * in case of newly inserting of VA to the tree.
594 * It means that __augment_tree_propagate_from() must be called:
595 * - After VA has been inserted to the tree(free path);
596 * - After VA has been shrunk(allocation path);
597 * - After VA has been increased(merging path).
599 * Please note that, it does not mean that upper parent nodes
600 * and their subtree_max_size are recalculated all the time up
609 * For example if we modify the node 4, shrinking it to 2, then
610 * no any modification is required. If we shrink the node 2 to 1
611 * its subtree_max_size is updated only, and set to 1. If we shrink
612 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
615 static __always_inline
void
616 augment_tree_propagate_from(struct vmap_area
*va
)
618 struct rb_node
*node
= &va
->rb_node
;
619 unsigned long new_va_sub_max_size
;
622 va
= rb_entry(node
, struct vmap_area
, rb_node
);
623 new_va_sub_max_size
= compute_subtree_max_size(va
);
626 * If the newly calculated maximum available size of the
627 * subtree is equal to the current one, then it means that
628 * the tree is propagated correctly. So we have to stop at
629 * this point to save cycles.
631 if (va
->subtree_max_size
== new_va_sub_max_size
)
634 va
->subtree_max_size
= new_va_sub_max_size
;
635 node
= rb_parent(&va
->rb_node
);
638 #if DEBUG_AUGMENT_PROPAGATE_CHECK
639 augment_tree_propagate_check(free_vmap_area_root
.rb_node
);
644 insert_vmap_area(struct vmap_area
*va
,
645 struct rb_root
*root
, struct list_head
*head
)
647 struct rb_node
**link
;
648 struct rb_node
*parent
;
650 link
= find_va_links(va
, root
, NULL
, &parent
);
651 link_va(va
, root
, parent
, link
, head
);
655 insert_vmap_area_augment(struct vmap_area
*va
,
656 struct rb_node
*from
, struct rb_root
*root
,
657 struct list_head
*head
)
659 struct rb_node
**link
;
660 struct rb_node
*parent
;
663 link
= find_va_links(va
, NULL
, from
, &parent
);
665 link
= find_va_links(va
, root
, NULL
, &parent
);
667 link_va(va
, root
, parent
, link
, head
);
668 augment_tree_propagate_from(va
);
672 * Merge de-allocated chunk of VA memory with previous
673 * and next free blocks. If coalesce is not done a new
674 * free area is inserted. If VA has been merged, it is
677 static __always_inline
void
678 merge_or_add_vmap_area(struct vmap_area
*va
,
679 struct rb_root
*root
, struct list_head
*head
)
681 struct vmap_area
*sibling
;
682 struct list_head
*next
;
683 struct rb_node
**link
;
684 struct rb_node
*parent
;
688 * Find a place in the tree where VA potentially will be
689 * inserted, unless it is merged with its sibling/siblings.
691 link
= find_va_links(va
, root
, NULL
, &parent
);
694 * Get next node of VA to check if merging can be done.
696 next
= get_va_next_sibling(parent
, link
);
697 if (unlikely(next
== NULL
))
703 * |<------VA------>|<-----Next----->|
708 sibling
= list_entry(next
, struct vmap_area
, list
);
709 if (sibling
->va_start
== va
->va_end
) {
710 sibling
->va_start
= va
->va_start
;
712 /* Check and update the tree if needed. */
713 augment_tree_propagate_from(sibling
);
715 /* Remove this VA, it has been merged. */
718 /* Free vmap_area object. */
719 kmem_cache_free(vmap_area_cachep
, va
);
721 /* Point to the new merged area. */
730 * |<-----Prev----->|<------VA------>|
734 if (next
->prev
!= head
) {
735 sibling
= list_entry(next
->prev
, struct vmap_area
, list
);
736 if (sibling
->va_end
== va
->va_start
) {
737 sibling
->va_end
= va
->va_end
;
739 /* Check and update the tree if needed. */
740 augment_tree_propagate_from(sibling
);
742 /* Remove this VA, it has been merged. */
745 /* Free vmap_area object. */
746 kmem_cache_free(vmap_area_cachep
, va
);
754 link_va(va
, root
, parent
, link
, head
);
755 augment_tree_propagate_from(va
);
759 static __always_inline
bool
760 is_within_this_va(struct vmap_area
*va
, unsigned long size
,
761 unsigned long align
, unsigned long vstart
)
763 unsigned long nva_start_addr
;
765 if (va
->va_start
> vstart
)
766 nva_start_addr
= ALIGN(va
->va_start
, align
);
768 nva_start_addr
= ALIGN(vstart
, align
);
770 /* Can be overflowed due to big size or alignment. */
771 if (nva_start_addr
+ size
< nva_start_addr
||
772 nva_start_addr
< vstart
)
775 return (nva_start_addr
+ size
<= va
->va_end
);
779 * Find the first free block(lowest start address) in the tree,
780 * that will accomplish the request corresponding to passing
783 static __always_inline
struct vmap_area
*
784 find_vmap_lowest_match(unsigned long size
,
785 unsigned long align
, unsigned long vstart
)
787 struct vmap_area
*va
;
788 struct rb_node
*node
;
789 unsigned long length
;
791 /* Start from the root. */
792 node
= free_vmap_area_root
.rb_node
;
794 /* Adjust the search size for alignment overhead. */
795 length
= size
+ align
- 1;
798 va
= rb_entry(node
, struct vmap_area
, rb_node
);
800 if (get_subtree_max_size(node
->rb_left
) >= length
&&
801 vstart
< va
->va_start
) {
802 node
= node
->rb_left
;
804 if (is_within_this_va(va
, size
, align
, vstart
))
808 * Does not make sense to go deeper towards the right
809 * sub-tree if it does not have a free block that is
810 * equal or bigger to the requested search length.
812 if (get_subtree_max_size(node
->rb_right
) >= length
) {
813 node
= node
->rb_right
;
818 * OK. We roll back and find the first right sub-tree,
819 * that will satisfy the search criteria. It can happen
820 * only once due to "vstart" restriction.
822 while ((node
= rb_parent(node
))) {
823 va
= rb_entry(node
, struct vmap_area
, rb_node
);
824 if (is_within_this_va(va
, size
, align
, vstart
))
827 if (get_subtree_max_size(node
->rb_right
) >= length
&&
828 vstart
<= va
->va_start
) {
829 node
= node
->rb_right
;
839 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
840 #include <linux/random.h>
842 static struct vmap_area
*
843 find_vmap_lowest_linear_match(unsigned long size
,
844 unsigned long align
, unsigned long vstart
)
846 struct vmap_area
*va
;
848 list_for_each_entry(va
, &free_vmap_area_list
, list
) {
849 if (!is_within_this_va(va
, size
, align
, vstart
))
859 find_vmap_lowest_match_check(unsigned long size
)
861 struct vmap_area
*va_1
, *va_2
;
862 unsigned long vstart
;
865 get_random_bytes(&rnd
, sizeof(rnd
));
866 vstart
= VMALLOC_START
+ rnd
;
868 va_1
= find_vmap_lowest_match(size
, 1, vstart
);
869 va_2
= find_vmap_lowest_linear_match(size
, 1, vstart
);
872 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
879 FL_FIT_TYPE
= 1, /* full fit */
880 LE_FIT_TYPE
= 2, /* left edge fit */
881 RE_FIT_TYPE
= 3, /* right edge fit */
882 NE_FIT_TYPE
= 4 /* no edge fit */
885 static __always_inline
enum fit_type
886 classify_va_fit_type(struct vmap_area
*va
,
887 unsigned long nva_start_addr
, unsigned long size
)
891 /* Check if it is within VA. */
892 if (nva_start_addr
< va
->va_start
||
893 nva_start_addr
+ size
> va
->va_end
)
897 if (va
->va_start
== nva_start_addr
) {
898 if (va
->va_end
== nva_start_addr
+ size
)
902 } else if (va
->va_end
== nva_start_addr
+ size
) {
911 static __always_inline
int
912 adjust_va_to_fit_type(struct vmap_area
*va
,
913 unsigned long nva_start_addr
, unsigned long size
,
916 struct vmap_area
*lva
= NULL
;
918 if (type
== FL_FIT_TYPE
) {
920 * No need to split VA, it fully fits.
926 unlink_va(va
, &free_vmap_area_root
);
927 kmem_cache_free(vmap_area_cachep
, va
);
928 } else if (type
== LE_FIT_TYPE
) {
930 * Split left edge of fit VA.
936 va
->va_start
+= size
;
937 } else if (type
== RE_FIT_TYPE
) {
939 * Split right edge of fit VA.
945 va
->va_end
= nva_start_addr
;
946 } else if (type
== NE_FIT_TYPE
) {
948 * Split no edge of fit VA.
954 lva
= kmem_cache_alloc(vmap_area_cachep
, GFP_NOWAIT
);
959 * Build the remainder.
961 lva
->va_start
= va
->va_start
;
962 lva
->va_end
= nva_start_addr
;
965 * Shrink this VA to remaining size.
967 va
->va_start
= nva_start_addr
+ size
;
972 if (type
!= FL_FIT_TYPE
) {
973 augment_tree_propagate_from(va
);
975 if (lva
) /* type == NE_FIT_TYPE */
976 insert_vmap_area_augment(lva
, &va
->rb_node
,
977 &free_vmap_area_root
, &free_vmap_area_list
);
984 * Returns a start address of the newly allocated area, if success.
985 * Otherwise a vend is returned that indicates failure.
987 static __always_inline
unsigned long
988 __alloc_vmap_area(unsigned long size
, unsigned long align
,
989 unsigned long vstart
, unsigned long vend
, int node
)
991 unsigned long nva_start_addr
;
992 struct vmap_area
*va
;
996 va
= find_vmap_lowest_match(size
, align
, vstart
);
1000 if (va
->va_start
> vstart
)
1001 nva_start_addr
= ALIGN(va
->va_start
, align
);
1003 nva_start_addr
= ALIGN(vstart
, align
);
1005 /* Check the "vend" restriction. */
1006 if (nva_start_addr
+ size
> vend
)
1009 /* Classify what we have found. */
1010 type
= classify_va_fit_type(va
, nva_start_addr
, size
);
1011 if (WARN_ON_ONCE(type
== NOTHING_FIT
))
1014 /* Update the free vmap_area. */
1015 ret
= adjust_va_to_fit_type(va
, nva_start_addr
, size
, type
);
1019 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1020 find_vmap_lowest_match_check(size
);
1023 return nva_start_addr
;
1027 * Allocate a region of KVA of the specified size and alignment, within the
1030 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
1031 unsigned long align
,
1032 unsigned long vstart
, unsigned long vend
,
1033 int node
, gfp_t gfp_mask
)
1035 struct vmap_area
*va
;
1040 BUG_ON(offset_in_page(size
));
1041 BUG_ON(!is_power_of_2(align
));
1043 if (unlikely(!vmap_initialized
))
1044 return ERR_PTR(-EBUSY
);
1048 va
= kmem_cache_alloc_node(vmap_area_cachep
,
1049 gfp_mask
& GFP_RECLAIM_MASK
, node
);
1051 return ERR_PTR(-ENOMEM
);
1054 * Only scan the relevant parts containing pointers to other objects
1055 * to avoid false negatives.
1057 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
1060 spin_lock(&vmap_area_lock
);
1063 * If an allocation fails, the "vend" address is
1064 * returned. Therefore trigger the overflow path.
1066 addr
= __alloc_vmap_area(size
, align
, vstart
, vend
, node
);
1067 if (unlikely(addr
== vend
))
1070 va
->va_start
= addr
;
1071 va
->va_end
= addr
+ size
;
1073 insert_vmap_area(va
, &vmap_area_root
, &vmap_area_list
);
1075 spin_unlock(&vmap_area_lock
);
1077 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
1078 BUG_ON(va
->va_start
< vstart
);
1079 BUG_ON(va
->va_end
> vend
);
1084 spin_unlock(&vmap_area_lock
);
1086 purge_vmap_area_lazy();
1091 if (gfpflags_allow_blocking(gfp_mask
)) {
1092 unsigned long freed
= 0;
1093 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
1100 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit())
1101 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1104 kmem_cache_free(vmap_area_cachep
, va
);
1105 return ERR_PTR(-EBUSY
);
1108 int register_vmap_purge_notifier(struct notifier_block
*nb
)
1110 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
1112 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
1114 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
1116 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
1118 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
1120 static void __free_vmap_area(struct vmap_area
*va
)
1122 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
1125 * Remove from the busy tree/list.
1127 unlink_va(va
, &vmap_area_root
);
1130 * Merge VA with its neighbors, otherwise just add it.
1132 merge_or_add_vmap_area(va
,
1133 &free_vmap_area_root
, &free_vmap_area_list
);
1137 * Free a region of KVA allocated by alloc_vmap_area
1139 static void free_vmap_area(struct vmap_area
*va
)
1141 spin_lock(&vmap_area_lock
);
1142 __free_vmap_area(va
);
1143 spin_unlock(&vmap_area_lock
);
1147 * Clear the pagetable entries of a given vmap_area
1149 static void unmap_vmap_area(struct vmap_area
*va
)
1151 vunmap_page_range(va
->va_start
, va
->va_end
);
1155 * lazy_max_pages is the maximum amount of virtual address space we gather up
1156 * before attempting to purge with a TLB flush.
1158 * There is a tradeoff here: a larger number will cover more kernel page tables
1159 * and take slightly longer to purge, but it will linearly reduce the number of
1160 * global TLB flushes that must be performed. It would seem natural to scale
1161 * this number up linearly with the number of CPUs (because vmapping activity
1162 * could also scale linearly with the number of CPUs), however it is likely
1163 * that in practice, workloads might be constrained in other ways that mean
1164 * vmap activity will not scale linearly with CPUs. Also, I want to be
1165 * conservative and not introduce a big latency on huge systems, so go with
1166 * a less aggressive log scale. It will still be an improvement over the old
1167 * code, and it will be simple to change the scale factor if we find that it
1168 * becomes a problem on bigger systems.
1170 static unsigned long lazy_max_pages(void)
1174 log
= fls(num_online_cpus());
1176 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
1179 static atomic_long_t vmap_lazy_nr
= ATOMIC_LONG_INIT(0);
1182 * Serialize vmap purging. There is no actual criticial section protected
1183 * by this look, but we want to avoid concurrent calls for performance
1184 * reasons and to make the pcpu_get_vm_areas more deterministic.
1186 static DEFINE_MUTEX(vmap_purge_lock
);
1188 /* for per-CPU blocks */
1189 static void purge_fragmented_blocks_allcpus(void);
1192 * called before a call to iounmap() if the caller wants vm_area_struct's
1193 * immediately freed.
1195 void set_iounmap_nonlazy(void)
1197 atomic_long_set(&vmap_lazy_nr
, lazy_max_pages()+1);
1201 * Purges all lazily-freed vmap areas.
1203 static bool __purge_vmap_area_lazy(unsigned long start
, unsigned long end
)
1205 unsigned long resched_threshold
;
1206 struct llist_node
*valist
;
1207 struct vmap_area
*va
;
1208 struct vmap_area
*n_va
;
1210 lockdep_assert_held(&vmap_purge_lock
);
1212 valist
= llist_del_all(&vmap_purge_list
);
1213 if (unlikely(valist
== NULL
))
1217 * TODO: to calculate a flush range without looping.
1218 * The list can be up to lazy_max_pages() elements.
1220 llist_for_each_entry(va
, valist
, purge_list
) {
1221 if (va
->va_start
< start
)
1222 start
= va
->va_start
;
1223 if (va
->va_end
> end
)
1227 flush_tlb_kernel_range(start
, end
);
1228 resched_threshold
= lazy_max_pages() << 1;
1230 spin_lock(&vmap_area_lock
);
1231 llist_for_each_entry_safe(va
, n_va
, valist
, purge_list
) {
1232 unsigned long nr
= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
1234 __free_vmap_area(va
);
1235 atomic_long_sub(nr
, &vmap_lazy_nr
);
1237 if (atomic_long_read(&vmap_lazy_nr
) < resched_threshold
)
1238 cond_resched_lock(&vmap_area_lock
);
1240 spin_unlock(&vmap_area_lock
);
1245 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1246 * is already purging.
1248 static void try_purge_vmap_area_lazy(void)
1250 if (mutex_trylock(&vmap_purge_lock
)) {
1251 __purge_vmap_area_lazy(ULONG_MAX
, 0);
1252 mutex_unlock(&vmap_purge_lock
);
1257 * Kick off a purge of the outstanding lazy areas.
1259 static void purge_vmap_area_lazy(void)
1261 mutex_lock(&vmap_purge_lock
);
1262 purge_fragmented_blocks_allcpus();
1263 __purge_vmap_area_lazy(ULONG_MAX
, 0);
1264 mutex_unlock(&vmap_purge_lock
);
1268 * Free a vmap area, caller ensuring that the area has been unmapped
1269 * and flush_cache_vunmap had been called for the correct range
1272 static void free_vmap_area_noflush(struct vmap_area
*va
)
1274 unsigned long nr_lazy
;
1276 nr_lazy
= atomic_long_add_return((va
->va_end
- va
->va_start
) >>
1277 PAGE_SHIFT
, &vmap_lazy_nr
);
1279 /* After this point, we may free va at any time */
1280 llist_add(&va
->purge_list
, &vmap_purge_list
);
1282 if (unlikely(nr_lazy
> lazy_max_pages()))
1283 try_purge_vmap_area_lazy();
1287 * Free and unmap a vmap area
1289 static void free_unmap_vmap_area(struct vmap_area
*va
)
1291 flush_cache_vunmap(va
->va_start
, va
->va_end
);
1292 unmap_vmap_area(va
);
1293 if (debug_pagealloc_enabled())
1294 flush_tlb_kernel_range(va
->va_start
, va
->va_end
);
1296 free_vmap_area_noflush(va
);
1299 static struct vmap_area
*find_vmap_area(unsigned long addr
)
1301 struct vmap_area
*va
;
1303 spin_lock(&vmap_area_lock
);
1304 va
= __find_vmap_area(addr
);
1305 spin_unlock(&vmap_area_lock
);
1310 /*** Per cpu kva allocator ***/
1313 * vmap space is limited especially on 32 bit architectures. Ensure there is
1314 * room for at least 16 percpu vmap blocks per CPU.
1317 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1318 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1319 * instead (we just need a rough idea)
1321 #if BITS_PER_LONG == 32
1322 #define VMALLOC_SPACE (128UL*1024*1024)
1324 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1327 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1328 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1329 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1330 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1331 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1332 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1333 #define VMAP_BBMAP_BITS \
1334 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1335 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1336 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1338 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1340 struct vmap_block_queue
{
1342 struct list_head free
;
1347 struct vmap_area
*va
;
1348 unsigned long free
, dirty
;
1349 unsigned long dirty_min
, dirty_max
; /*< dirty range */
1350 struct list_head free_list
;
1351 struct rcu_head rcu_head
;
1352 struct list_head purge
;
1355 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1356 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
1359 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1360 * in the free path. Could get rid of this if we change the API to return a
1361 * "cookie" from alloc, to be passed to free. But no big deal yet.
1363 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
1364 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
1367 * We should probably have a fallback mechanism to allocate virtual memory
1368 * out of partially filled vmap blocks. However vmap block sizing should be
1369 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1373 static unsigned long addr_to_vb_idx(unsigned long addr
)
1375 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
1376 addr
/= VMAP_BLOCK_SIZE
;
1380 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
1384 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
1385 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
1386 return (void *)addr
;
1390 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1391 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1392 * @order: how many 2^order pages should be occupied in newly allocated block
1393 * @gfp_mask: flags for the page level allocator
1395 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1397 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
1399 struct vmap_block_queue
*vbq
;
1400 struct vmap_block
*vb
;
1401 struct vmap_area
*va
;
1402 unsigned long vb_idx
;
1406 node
= numa_node_id();
1408 vb
= kmalloc_node(sizeof(struct vmap_block
),
1409 gfp_mask
& GFP_RECLAIM_MASK
, node
);
1411 return ERR_PTR(-ENOMEM
);
1413 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
1414 VMALLOC_START
, VMALLOC_END
,
1418 return ERR_CAST(va
);
1421 err
= radix_tree_preload(gfp_mask
);
1422 if (unlikely(err
)) {
1425 return ERR_PTR(err
);
1428 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
1429 spin_lock_init(&vb
->lock
);
1431 /* At least something should be left free */
1432 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
1433 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
1435 vb
->dirty_min
= VMAP_BBMAP_BITS
;
1437 INIT_LIST_HEAD(&vb
->free_list
);
1439 vb_idx
= addr_to_vb_idx(va
->va_start
);
1440 spin_lock(&vmap_block_tree_lock
);
1441 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
1442 spin_unlock(&vmap_block_tree_lock
);
1444 radix_tree_preload_end();
1446 vbq
= &get_cpu_var(vmap_block_queue
);
1447 spin_lock(&vbq
->lock
);
1448 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
1449 spin_unlock(&vbq
->lock
);
1450 put_cpu_var(vmap_block_queue
);
1455 static void free_vmap_block(struct vmap_block
*vb
)
1457 struct vmap_block
*tmp
;
1458 unsigned long vb_idx
;
1460 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
1461 spin_lock(&vmap_block_tree_lock
);
1462 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
1463 spin_unlock(&vmap_block_tree_lock
);
1466 free_vmap_area_noflush(vb
->va
);
1467 kfree_rcu(vb
, rcu_head
);
1470 static void purge_fragmented_blocks(int cpu
)
1473 struct vmap_block
*vb
;
1474 struct vmap_block
*n_vb
;
1475 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1478 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1480 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
1483 spin_lock(&vb
->lock
);
1484 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
1485 vb
->free
= 0; /* prevent further allocs after releasing lock */
1486 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
1488 vb
->dirty_max
= VMAP_BBMAP_BITS
;
1489 spin_lock(&vbq
->lock
);
1490 list_del_rcu(&vb
->free_list
);
1491 spin_unlock(&vbq
->lock
);
1492 spin_unlock(&vb
->lock
);
1493 list_add_tail(&vb
->purge
, &purge
);
1495 spin_unlock(&vb
->lock
);
1499 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
1500 list_del(&vb
->purge
);
1501 free_vmap_block(vb
);
1505 static void purge_fragmented_blocks_allcpus(void)
1509 for_each_possible_cpu(cpu
)
1510 purge_fragmented_blocks(cpu
);
1513 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
1515 struct vmap_block_queue
*vbq
;
1516 struct vmap_block
*vb
;
1520 BUG_ON(offset_in_page(size
));
1521 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1522 if (WARN_ON(size
== 0)) {
1524 * Allocating 0 bytes isn't what caller wants since
1525 * get_order(0) returns funny result. Just warn and terminate
1530 order
= get_order(size
);
1533 vbq
= &get_cpu_var(vmap_block_queue
);
1534 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1535 unsigned long pages_off
;
1537 spin_lock(&vb
->lock
);
1538 if (vb
->free
< (1UL << order
)) {
1539 spin_unlock(&vb
->lock
);
1543 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
1544 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
1545 vb
->free
-= 1UL << order
;
1546 if (vb
->free
== 0) {
1547 spin_lock(&vbq
->lock
);
1548 list_del_rcu(&vb
->free_list
);
1549 spin_unlock(&vbq
->lock
);
1552 spin_unlock(&vb
->lock
);
1556 put_cpu_var(vmap_block_queue
);
1559 /* Allocate new block if nothing was found */
1561 vaddr
= new_vmap_block(order
, gfp_mask
);
1566 static void vb_free(const void *addr
, unsigned long size
)
1568 unsigned long offset
;
1569 unsigned long vb_idx
;
1571 struct vmap_block
*vb
;
1573 BUG_ON(offset_in_page(size
));
1574 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1576 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
1578 order
= get_order(size
);
1580 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1581 offset
>>= PAGE_SHIFT
;
1583 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1585 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1589 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1591 if (debug_pagealloc_enabled())
1592 flush_tlb_kernel_range((unsigned long)addr
,
1593 (unsigned long)addr
+ size
);
1595 spin_lock(&vb
->lock
);
1597 /* Expand dirty range */
1598 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1599 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1601 vb
->dirty
+= 1UL << order
;
1602 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1604 spin_unlock(&vb
->lock
);
1605 free_vmap_block(vb
);
1607 spin_unlock(&vb
->lock
);
1610 static void _vm_unmap_aliases(unsigned long start
, unsigned long end
, int flush
)
1614 if (unlikely(!vmap_initialized
))
1619 for_each_possible_cpu(cpu
) {
1620 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1621 struct vmap_block
*vb
;
1624 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1625 spin_lock(&vb
->lock
);
1627 unsigned long va_start
= vb
->va
->va_start
;
1630 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1631 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1633 start
= min(s
, start
);
1638 spin_unlock(&vb
->lock
);
1643 mutex_lock(&vmap_purge_lock
);
1644 purge_fragmented_blocks_allcpus();
1645 if (!__purge_vmap_area_lazy(start
, end
) && flush
)
1646 flush_tlb_kernel_range(start
, end
);
1647 mutex_unlock(&vmap_purge_lock
);
1651 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1653 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1654 * to amortize TLB flushing overheads. What this means is that any page you
1655 * have now, may, in a former life, have been mapped into kernel virtual
1656 * address by the vmap layer and so there might be some CPUs with TLB entries
1657 * still referencing that page (additional to the regular 1:1 kernel mapping).
1659 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1660 * be sure that none of the pages we have control over will have any aliases
1661 * from the vmap layer.
1663 void vm_unmap_aliases(void)
1665 unsigned long start
= ULONG_MAX
, end
= 0;
1668 _vm_unmap_aliases(start
, end
, flush
);
1670 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1673 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1674 * @mem: the pointer returned by vm_map_ram
1675 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1677 void vm_unmap_ram(const void *mem
, unsigned int count
)
1679 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1680 unsigned long addr
= (unsigned long)mem
;
1681 struct vmap_area
*va
;
1685 BUG_ON(addr
< VMALLOC_START
);
1686 BUG_ON(addr
> VMALLOC_END
);
1687 BUG_ON(!PAGE_ALIGNED(addr
));
1689 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1690 debug_check_no_locks_freed(mem
, size
);
1695 va
= find_vmap_area(addr
);
1697 debug_check_no_locks_freed((void *)va
->va_start
,
1698 (va
->va_end
- va
->va_start
));
1699 free_unmap_vmap_area(va
);
1701 EXPORT_SYMBOL(vm_unmap_ram
);
1704 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1705 * @pages: an array of pointers to the pages to be mapped
1706 * @count: number of pages
1707 * @node: prefer to allocate data structures on this node
1708 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1710 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1711 * faster than vmap so it's good. But if you mix long-life and short-life
1712 * objects with vm_map_ram(), it could consume lots of address space through
1713 * fragmentation (especially on a 32bit machine). You could see failures in
1714 * the end. Please use this function for short-lived objects.
1716 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1718 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1720 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1724 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1725 mem
= vb_alloc(size
, GFP_KERNEL
);
1728 addr
= (unsigned long)mem
;
1730 struct vmap_area
*va
;
1731 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1732 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1736 addr
= va
->va_start
;
1739 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1740 vm_unmap_ram(mem
, count
);
1745 EXPORT_SYMBOL(vm_map_ram
);
1747 static struct vm_struct
*vmlist __initdata
;
1750 * vm_area_add_early - add vmap area early during boot
1751 * @vm: vm_struct to add
1753 * This function is used to add fixed kernel vm area to vmlist before
1754 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1755 * should contain proper values and the other fields should be zero.
1757 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1759 void __init
vm_area_add_early(struct vm_struct
*vm
)
1761 struct vm_struct
*tmp
, **p
;
1763 BUG_ON(vmap_initialized
);
1764 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1765 if (tmp
->addr
>= vm
->addr
) {
1766 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1769 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1776 * vm_area_register_early - register vmap area early during boot
1777 * @vm: vm_struct to register
1778 * @align: requested alignment
1780 * This function is used to register kernel vm area before
1781 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1782 * proper values on entry and other fields should be zero. On return,
1783 * vm->addr contains the allocated address.
1785 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1787 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1789 static size_t vm_init_off __initdata
;
1792 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1793 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1795 vm
->addr
= (void *)addr
;
1797 vm_area_add_early(vm
);
1800 static void vmap_init_free_space(void)
1802 unsigned long vmap_start
= 1;
1803 const unsigned long vmap_end
= ULONG_MAX
;
1804 struct vmap_area
*busy
, *free
;
1808 * -|-----|.....|-----|-----|-----|.....|-
1810 * |<--------------------------------->|
1812 list_for_each_entry(busy
, &vmap_area_list
, list
) {
1813 if (busy
->va_start
- vmap_start
> 0) {
1814 free
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
1815 if (!WARN_ON_ONCE(!free
)) {
1816 free
->va_start
= vmap_start
;
1817 free
->va_end
= busy
->va_start
;
1819 insert_vmap_area_augment(free
, NULL
,
1820 &free_vmap_area_root
,
1821 &free_vmap_area_list
);
1825 vmap_start
= busy
->va_end
;
1828 if (vmap_end
- vmap_start
> 0) {
1829 free
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
1830 if (!WARN_ON_ONCE(!free
)) {
1831 free
->va_start
= vmap_start
;
1832 free
->va_end
= vmap_end
;
1834 insert_vmap_area_augment(free
, NULL
,
1835 &free_vmap_area_root
,
1836 &free_vmap_area_list
);
1841 void __init
vmalloc_init(void)
1843 struct vmap_area
*va
;
1844 struct vm_struct
*tmp
;
1848 * Create the cache for vmap_area objects.
1850 vmap_area_cachep
= KMEM_CACHE(vmap_area
, SLAB_PANIC
);
1852 for_each_possible_cpu(i
) {
1853 struct vmap_block_queue
*vbq
;
1854 struct vfree_deferred
*p
;
1856 vbq
= &per_cpu(vmap_block_queue
, i
);
1857 spin_lock_init(&vbq
->lock
);
1858 INIT_LIST_HEAD(&vbq
->free
);
1859 p
= &per_cpu(vfree_deferred
, i
);
1860 init_llist_head(&p
->list
);
1861 INIT_WORK(&p
->wq
, free_work
);
1864 /* Import existing vmlist entries. */
1865 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1866 va
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
1867 if (WARN_ON_ONCE(!va
))
1870 va
->flags
= VM_VM_AREA
;
1871 va
->va_start
= (unsigned long)tmp
->addr
;
1872 va
->va_end
= va
->va_start
+ tmp
->size
;
1874 insert_vmap_area(va
, &vmap_area_root
, &vmap_area_list
);
1878 * Now we can initialize a free vmap space.
1880 vmap_init_free_space();
1881 vmap_initialized
= true;
1885 * map_kernel_range_noflush - map kernel VM area with the specified pages
1886 * @addr: start of the VM area to map
1887 * @size: size of the VM area to map
1888 * @prot: page protection flags to use
1889 * @pages: pages to map
1891 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1892 * specify should have been allocated using get_vm_area() and its
1896 * This function does NOT do any cache flushing. The caller is
1897 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1898 * before calling this function.
1901 * The number of pages mapped on success, -errno on failure.
1903 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1904 pgprot_t prot
, struct page
**pages
)
1906 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1910 * unmap_kernel_range_noflush - unmap kernel VM area
1911 * @addr: start of the VM area to unmap
1912 * @size: size of the VM area to unmap
1914 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1915 * specify should have been allocated using get_vm_area() and its
1919 * This function does NOT do any cache flushing. The caller is
1920 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1921 * before calling this function and flush_tlb_kernel_range() after.
1923 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1925 vunmap_page_range(addr
, addr
+ size
);
1927 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1930 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1931 * @addr: start of the VM area to unmap
1932 * @size: size of the VM area to unmap
1934 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1935 * the unmapping and tlb after.
1937 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1939 unsigned long end
= addr
+ size
;
1941 flush_cache_vunmap(addr
, end
);
1942 vunmap_page_range(addr
, end
);
1943 flush_tlb_kernel_range(addr
, end
);
1945 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1947 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1949 unsigned long addr
= (unsigned long)area
->addr
;
1950 unsigned long end
= addr
+ get_vm_area_size(area
);
1953 err
= vmap_page_range(addr
, end
, prot
, pages
);
1955 return err
> 0 ? 0 : err
;
1957 EXPORT_SYMBOL_GPL(map_vm_area
);
1959 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1960 unsigned long flags
, const void *caller
)
1962 spin_lock(&vmap_area_lock
);
1964 vm
->addr
= (void *)va
->va_start
;
1965 vm
->size
= va
->va_end
- va
->va_start
;
1966 vm
->caller
= caller
;
1968 va
->flags
|= VM_VM_AREA
;
1969 spin_unlock(&vmap_area_lock
);
1972 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1975 * Before removing VM_UNINITIALIZED,
1976 * we should make sure that vm has proper values.
1977 * Pair with smp_rmb() in show_numa_info().
1980 vm
->flags
&= ~VM_UNINITIALIZED
;
1983 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1984 unsigned long align
, unsigned long flags
, unsigned long start
,
1985 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1987 struct vmap_area
*va
;
1988 struct vm_struct
*area
;
1990 BUG_ON(in_interrupt());
1991 size
= PAGE_ALIGN(size
);
1992 if (unlikely(!size
))
1995 if (flags
& VM_IOREMAP
)
1996 align
= 1ul << clamp_t(int, get_count_order_long(size
),
1997 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1999 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
2000 if (unlikely(!area
))
2003 if (!(flags
& VM_NO_GUARD
))
2006 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
2012 setup_vmalloc_vm(area
, va
, flags
, caller
);
2017 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
2018 unsigned long start
, unsigned long end
)
2020 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
2021 GFP_KERNEL
, __builtin_return_address(0));
2023 EXPORT_SYMBOL_GPL(__get_vm_area
);
2025 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
2026 unsigned long start
, unsigned long end
,
2029 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
2030 GFP_KERNEL
, caller
);
2034 * get_vm_area - reserve a contiguous kernel virtual area
2035 * @size: size of the area
2036 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2038 * Search an area of @size in the kernel virtual mapping area,
2039 * and reserved it for out purposes. Returns the area descriptor
2040 * on success or %NULL on failure.
2042 * Return: the area descriptor on success or %NULL on failure.
2044 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
2046 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
2047 NUMA_NO_NODE
, GFP_KERNEL
,
2048 __builtin_return_address(0));
2051 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
2054 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
2055 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
2059 * find_vm_area - find a continuous kernel virtual area
2060 * @addr: base address
2062 * Search for the kernel VM area starting at @addr, and return it.
2063 * It is up to the caller to do all required locking to keep the returned
2066 * Return: pointer to the found area or %NULL on faulure
2068 struct vm_struct
*find_vm_area(const void *addr
)
2070 struct vmap_area
*va
;
2072 va
= find_vmap_area((unsigned long)addr
);
2073 if (va
&& va
->flags
& VM_VM_AREA
)
2080 * remove_vm_area - find and remove a continuous kernel virtual area
2081 * @addr: base address
2083 * Search for the kernel VM area starting at @addr, and remove it.
2084 * This function returns the found VM area, but using it is NOT safe
2085 * on SMP machines, except for its size or flags.
2087 * Return: pointer to the found area or %NULL on faulure
2089 struct vm_struct
*remove_vm_area(const void *addr
)
2091 struct vmap_area
*va
;
2095 va
= find_vmap_area((unsigned long)addr
);
2096 if (va
&& va
->flags
& VM_VM_AREA
) {
2097 struct vm_struct
*vm
= va
->vm
;
2099 spin_lock(&vmap_area_lock
);
2101 va
->flags
&= ~VM_VM_AREA
;
2102 va
->flags
|= VM_LAZY_FREE
;
2103 spin_unlock(&vmap_area_lock
);
2105 kasan_free_shadow(vm
);
2106 free_unmap_vmap_area(va
);
2113 static inline void set_area_direct_map(const struct vm_struct
*area
,
2114 int (*set_direct_map
)(struct page
*page
))
2118 for (i
= 0; i
< area
->nr_pages
; i
++)
2119 if (page_address(area
->pages
[i
]))
2120 set_direct_map(area
->pages
[i
]);
2123 /* Handle removing and resetting vm mappings related to the vm_struct. */
2124 static void vm_remove_mappings(struct vm_struct
*area
, int deallocate_pages
)
2126 unsigned long start
= ULONG_MAX
, end
= 0;
2127 int flush_reset
= area
->flags
& VM_FLUSH_RESET_PERMS
;
2132 * The below block can be removed when all architectures that have
2133 * direct map permissions also have set_direct_map_() implementations.
2134 * This is concerned with resetting the direct map any an vm alias with
2135 * execute permissions, without leaving a RW+X window.
2137 if (flush_reset
&& !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP
)) {
2138 set_memory_nx((unsigned long)area
->addr
, area
->nr_pages
);
2139 set_memory_rw((unsigned long)area
->addr
, area
->nr_pages
);
2142 remove_vm_area(area
->addr
);
2144 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2149 * If not deallocating pages, just do the flush of the VM area and
2152 if (!deallocate_pages
) {
2158 * If execution gets here, flush the vm mapping and reset the direct
2159 * map. Find the start and end range of the direct mappings to make sure
2160 * the vm_unmap_aliases() flush includes the direct map.
2162 for (i
= 0; i
< area
->nr_pages
; i
++) {
2163 unsigned long addr
= (unsigned long)page_address(area
->pages
[i
]);
2165 start
= min(addr
, start
);
2166 end
= max(addr
+ PAGE_SIZE
, end
);
2172 * Set direct map to something invalid so that it won't be cached if
2173 * there are any accesses after the TLB flush, then flush the TLB and
2174 * reset the direct map permissions to the default.
2176 set_area_direct_map(area
, set_direct_map_invalid_noflush
);
2177 _vm_unmap_aliases(start
, end
, flush_dmap
);
2178 set_area_direct_map(area
, set_direct_map_default_noflush
);
2181 static void __vunmap(const void *addr
, int deallocate_pages
)
2183 struct vm_struct
*area
;
2188 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
2192 area
= find_vm_area(addr
);
2193 if (unlikely(!area
)) {
2194 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
2199 debug_check_no_locks_freed(area
->addr
, get_vm_area_size(area
));
2200 debug_check_no_obj_freed(area
->addr
, get_vm_area_size(area
));
2202 vm_remove_mappings(area
, deallocate_pages
);
2204 if (deallocate_pages
) {
2207 for (i
= 0; i
< area
->nr_pages
; i
++) {
2208 struct page
*page
= area
->pages
[i
];
2211 __free_pages(page
, 0);
2214 kvfree(area
->pages
);
2221 static inline void __vfree_deferred(const void *addr
)
2224 * Use raw_cpu_ptr() because this can be called from preemptible
2225 * context. Preemption is absolutely fine here, because the llist_add()
2226 * implementation is lockless, so it works even if we are adding to
2227 * nother cpu's list. schedule_work() should be fine with this too.
2229 struct vfree_deferred
*p
= raw_cpu_ptr(&vfree_deferred
);
2231 if (llist_add((struct llist_node
*)addr
, &p
->list
))
2232 schedule_work(&p
->wq
);
2236 * vfree_atomic - release memory allocated by vmalloc()
2237 * @addr: memory base address
2239 * This one is just like vfree() but can be called in any atomic context
2242 void vfree_atomic(const void *addr
)
2246 kmemleak_free(addr
);
2250 __vfree_deferred(addr
);
2253 static void __vfree(const void *addr
)
2255 if (unlikely(in_interrupt()))
2256 __vfree_deferred(addr
);
2262 * vfree - release memory allocated by vmalloc()
2263 * @addr: memory base address
2265 * Free the virtually continuous memory area starting at @addr, as
2266 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2267 * NULL, no operation is performed.
2269 * Must not be called in NMI context (strictly speaking, only if we don't
2270 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2271 * conventions for vfree() arch-depenedent would be a really bad idea)
2273 * May sleep if called *not* from interrupt context.
2275 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2277 void vfree(const void *addr
)
2281 kmemleak_free(addr
);
2283 might_sleep_if(!in_interrupt());
2290 EXPORT_SYMBOL(vfree
);
2293 * vunmap - release virtual mapping obtained by vmap()
2294 * @addr: memory base address
2296 * Free the virtually contiguous memory area starting at @addr,
2297 * which was created from the page array passed to vmap().
2299 * Must not be called in interrupt context.
2301 void vunmap(const void *addr
)
2303 BUG_ON(in_interrupt());
2308 EXPORT_SYMBOL(vunmap
);
2311 * vmap - map an array of pages into virtually contiguous space
2312 * @pages: array of page pointers
2313 * @count: number of pages to map
2314 * @flags: vm_area->flags
2315 * @prot: page protection for the mapping
2317 * Maps @count pages from @pages into contiguous kernel virtual
2320 * Return: the address of the area or %NULL on failure
2322 void *vmap(struct page
**pages
, unsigned int count
,
2323 unsigned long flags
, pgprot_t prot
)
2325 struct vm_struct
*area
;
2326 unsigned long size
; /* In bytes */
2330 if (count
> totalram_pages())
2333 size
= (unsigned long)count
<< PAGE_SHIFT
;
2334 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
2338 if (map_vm_area(area
, prot
, pages
)) {
2345 EXPORT_SYMBOL(vmap
);
2347 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
2348 gfp_t gfp_mask
, pgprot_t prot
,
2349 int node
, const void *caller
);
2350 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
2351 pgprot_t prot
, int node
)
2353 struct page
**pages
;
2354 unsigned int nr_pages
, array_size
, i
;
2355 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
2356 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
2357 const gfp_t highmem_mask
= (gfp_mask
& (GFP_DMA
| GFP_DMA32
)) ?
2361 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
2362 array_size
= (nr_pages
* sizeof(struct page
*));
2364 area
->nr_pages
= nr_pages
;
2365 /* Please note that the recursion is strictly bounded. */
2366 if (array_size
> PAGE_SIZE
) {
2367 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|highmem_mask
,
2368 PAGE_KERNEL
, node
, area
->caller
);
2370 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
2372 area
->pages
= pages
;
2374 remove_vm_area(area
->addr
);
2379 for (i
= 0; i
< area
->nr_pages
; i
++) {
2382 if (node
== NUMA_NO_NODE
)
2383 page
= alloc_page(alloc_mask
|highmem_mask
);
2385 page
= alloc_pages_node(node
, alloc_mask
|highmem_mask
, 0);
2387 if (unlikely(!page
)) {
2388 /* Successfully allocated i pages, free them in __vunmap() */
2392 area
->pages
[i
] = page
;
2393 if (gfpflags_allow_blocking(gfp_mask
|highmem_mask
))
2397 if (map_vm_area(area
, prot
, pages
))
2402 warn_alloc(gfp_mask
, NULL
,
2403 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2404 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
2405 __vfree(area
->addr
);
2410 * __vmalloc_node_range - allocate virtually contiguous memory
2411 * @size: allocation size
2412 * @align: desired alignment
2413 * @start: vm area range start
2414 * @end: vm area range end
2415 * @gfp_mask: flags for the page level allocator
2416 * @prot: protection mask for the allocated pages
2417 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2418 * @node: node to use for allocation or NUMA_NO_NODE
2419 * @caller: caller's return address
2421 * Allocate enough pages to cover @size from the page level
2422 * allocator with @gfp_mask flags. Map them into contiguous
2423 * kernel virtual space, using a pagetable protection of @prot.
2425 * Return: the address of the area or %NULL on failure
2427 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
2428 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
2429 pgprot_t prot
, unsigned long vm_flags
, int node
,
2432 struct vm_struct
*area
;
2434 unsigned long real_size
= size
;
2436 size
= PAGE_ALIGN(size
);
2437 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages())
2440 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
2441 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
2445 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
2450 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2451 * flag. It means that vm_struct is not fully initialized.
2452 * Now, it is fully initialized, so remove this flag here.
2454 clear_vm_uninitialized_flag(area
);
2456 kmemleak_vmalloc(area
, size
, gfp_mask
);
2461 warn_alloc(gfp_mask
, NULL
,
2462 "vmalloc: allocation failure: %lu bytes", real_size
);
2467 * This is only for performance analysis of vmalloc and stress purpose.
2468 * It is required by vmalloc test module, therefore do not use it other
2471 #ifdef CONFIG_TEST_VMALLOC_MODULE
2472 EXPORT_SYMBOL_GPL(__vmalloc_node_range
);
2476 * __vmalloc_node - allocate virtually contiguous memory
2477 * @size: allocation size
2478 * @align: desired alignment
2479 * @gfp_mask: flags for the page level allocator
2480 * @prot: protection mask for the allocated pages
2481 * @node: node to use for allocation or NUMA_NO_NODE
2482 * @caller: caller's return address
2484 * Allocate enough pages to cover @size from the page level
2485 * allocator with @gfp_mask flags. Map them into contiguous
2486 * kernel virtual space, using a pagetable protection of @prot.
2488 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2489 * and __GFP_NOFAIL are not supported
2491 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2494 * Return: pointer to the allocated memory or %NULL on error
2496 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
2497 gfp_t gfp_mask
, pgprot_t prot
,
2498 int node
, const void *caller
)
2500 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
2501 gfp_mask
, prot
, 0, node
, caller
);
2504 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
2506 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
2507 __builtin_return_address(0));
2509 EXPORT_SYMBOL(__vmalloc
);
2511 static inline void *__vmalloc_node_flags(unsigned long size
,
2512 int node
, gfp_t flags
)
2514 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
2515 node
, __builtin_return_address(0));
2519 void *__vmalloc_node_flags_caller(unsigned long size
, int node
, gfp_t flags
,
2522 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
, node
, caller
);
2526 * vmalloc - allocate virtually contiguous memory
2527 * @size: allocation size
2529 * Allocate enough pages to cover @size from the page level
2530 * allocator and map them into contiguous kernel virtual space.
2532 * For tight control over page level allocator and protection flags
2533 * use __vmalloc() instead.
2535 * Return: pointer to the allocated memory or %NULL on error
2537 void *vmalloc(unsigned long size
)
2539 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
2542 EXPORT_SYMBOL(vmalloc
);
2545 * vzalloc - allocate virtually contiguous memory with zero fill
2546 * @size: allocation size
2548 * Allocate enough pages to cover @size from the page level
2549 * allocator and map them into contiguous kernel virtual space.
2550 * The memory allocated is set to zero.
2552 * For tight control over page level allocator and protection flags
2553 * use __vmalloc() instead.
2555 * Return: pointer to the allocated memory or %NULL on error
2557 void *vzalloc(unsigned long size
)
2559 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
2560 GFP_KERNEL
| __GFP_ZERO
);
2562 EXPORT_SYMBOL(vzalloc
);
2565 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2566 * @size: allocation size
2568 * The resulting memory area is zeroed so it can be mapped to userspace
2569 * without leaking data.
2571 * Return: pointer to the allocated memory or %NULL on error
2573 void *vmalloc_user(unsigned long size
)
2575 return __vmalloc_node_range(size
, SHMLBA
, VMALLOC_START
, VMALLOC_END
,
2576 GFP_KERNEL
| __GFP_ZERO
, PAGE_KERNEL
,
2577 VM_USERMAP
, NUMA_NO_NODE
,
2578 __builtin_return_address(0));
2580 EXPORT_SYMBOL(vmalloc_user
);
2583 * vmalloc_node - allocate memory on a specific node
2584 * @size: allocation size
2587 * Allocate enough pages to cover @size from the page level
2588 * allocator and map them into contiguous kernel virtual space.
2590 * For tight control over page level allocator and protection flags
2591 * use __vmalloc() instead.
2593 * Return: pointer to the allocated memory or %NULL on error
2595 void *vmalloc_node(unsigned long size
, int node
)
2597 return __vmalloc_node(size
, 1, GFP_KERNEL
, PAGE_KERNEL
,
2598 node
, __builtin_return_address(0));
2600 EXPORT_SYMBOL(vmalloc_node
);
2603 * vzalloc_node - allocate memory on a specific node with zero fill
2604 * @size: allocation size
2607 * Allocate enough pages to cover @size from the page level
2608 * allocator and map them into contiguous kernel virtual space.
2609 * The memory allocated is set to zero.
2611 * For tight control over page level allocator and protection flags
2612 * use __vmalloc_node() instead.
2614 * Return: pointer to the allocated memory or %NULL on error
2616 void *vzalloc_node(unsigned long size
, int node
)
2618 return __vmalloc_node_flags(size
, node
,
2619 GFP_KERNEL
| __GFP_ZERO
);
2621 EXPORT_SYMBOL(vzalloc_node
);
2624 * vmalloc_exec - allocate virtually contiguous, executable memory
2625 * @size: allocation size
2627 * Kernel-internal function to allocate enough pages to cover @size
2628 * the page level allocator and map them into contiguous and
2629 * executable kernel virtual space.
2631 * For tight control over page level allocator and protection flags
2632 * use __vmalloc() instead.
2634 * Return: pointer to the allocated memory or %NULL on error
2636 void *vmalloc_exec(unsigned long size
)
2638 return __vmalloc_node_range(size
, 1, VMALLOC_START
, VMALLOC_END
,
2639 GFP_KERNEL
, PAGE_KERNEL_EXEC
, VM_FLUSH_RESET_PERMS
,
2640 NUMA_NO_NODE
, __builtin_return_address(0));
2643 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2644 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2645 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2646 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2649 * 64b systems should always have either DMA or DMA32 zones. For others
2650 * GFP_DMA32 should do the right thing and use the normal zone.
2652 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2656 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2657 * @size: allocation size
2659 * Allocate enough 32bit PA addressable pages to cover @size from the
2660 * page level allocator and map them into contiguous kernel virtual space.
2662 * Return: pointer to the allocated memory or %NULL on error
2664 void *vmalloc_32(unsigned long size
)
2666 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
2667 NUMA_NO_NODE
, __builtin_return_address(0));
2669 EXPORT_SYMBOL(vmalloc_32
);
2672 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2673 * @size: allocation size
2675 * The resulting memory area is 32bit addressable and zeroed so it can be
2676 * mapped to userspace without leaking data.
2678 * Return: pointer to the allocated memory or %NULL on error
2680 void *vmalloc_32_user(unsigned long size
)
2682 return __vmalloc_node_range(size
, SHMLBA
, VMALLOC_START
, VMALLOC_END
,
2683 GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
2684 VM_USERMAP
, NUMA_NO_NODE
,
2685 __builtin_return_address(0));
2687 EXPORT_SYMBOL(vmalloc_32_user
);
2690 * small helper routine , copy contents to buf from addr.
2691 * If the page is not present, fill zero.
2694 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
2700 unsigned long offset
, length
;
2702 offset
= offset_in_page(addr
);
2703 length
= PAGE_SIZE
- offset
;
2706 p
= vmalloc_to_page(addr
);
2708 * To do safe access to this _mapped_ area, we need
2709 * lock. But adding lock here means that we need to add
2710 * overhead of vmalloc()/vfree() calles for this _debug_
2711 * interface, rarely used. Instead of that, we'll use
2712 * kmap() and get small overhead in this access function.
2716 * we can expect USER0 is not used (see vread/vwrite's
2717 * function description)
2719 void *map
= kmap_atomic(p
);
2720 memcpy(buf
, map
+ offset
, length
);
2723 memset(buf
, 0, length
);
2733 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
2739 unsigned long offset
, length
;
2741 offset
= offset_in_page(addr
);
2742 length
= PAGE_SIZE
- offset
;
2745 p
= vmalloc_to_page(addr
);
2747 * To do safe access to this _mapped_ area, we need
2748 * lock. But adding lock here means that we need to add
2749 * overhead of vmalloc()/vfree() calles for this _debug_
2750 * interface, rarely used. Instead of that, we'll use
2751 * kmap() and get small overhead in this access function.
2755 * we can expect USER0 is not used (see vread/vwrite's
2756 * function description)
2758 void *map
= kmap_atomic(p
);
2759 memcpy(map
+ offset
, buf
, length
);
2771 * vread() - read vmalloc area in a safe way.
2772 * @buf: buffer for reading data
2773 * @addr: vm address.
2774 * @count: number of bytes to be read.
2776 * This function checks that addr is a valid vmalloc'ed area, and
2777 * copy data from that area to a given buffer. If the given memory range
2778 * of [addr...addr+count) includes some valid address, data is copied to
2779 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2780 * IOREMAP area is treated as memory hole and no copy is done.
2782 * If [addr...addr+count) doesn't includes any intersects with alive
2783 * vm_struct area, returns 0. @buf should be kernel's buffer.
2785 * Note: In usual ops, vread() is never necessary because the caller
2786 * should know vmalloc() area is valid and can use memcpy().
2787 * This is for routines which have to access vmalloc area without
2788 * any informaion, as /dev/kmem.
2790 * Return: number of bytes for which addr and buf should be increased
2791 * (same number as @count) or %0 if [addr...addr+count) doesn't
2792 * include any intersection with valid vmalloc area
2794 long vread(char *buf
, char *addr
, unsigned long count
)
2796 struct vmap_area
*va
;
2797 struct vm_struct
*vm
;
2798 char *vaddr
, *buf_start
= buf
;
2799 unsigned long buflen
= count
;
2802 /* Don't allow overflow */
2803 if ((unsigned long) addr
+ count
< count
)
2804 count
= -(unsigned long) addr
;
2806 spin_lock(&vmap_area_lock
);
2807 list_for_each_entry(va
, &vmap_area_list
, list
) {
2811 if (!(va
->flags
& VM_VM_AREA
))
2815 vaddr
= (char *) vm
->addr
;
2816 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2818 while (addr
< vaddr
) {
2826 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2829 if (!(vm
->flags
& VM_IOREMAP
))
2830 aligned_vread(buf
, addr
, n
);
2831 else /* IOREMAP area is treated as memory hole */
2838 spin_unlock(&vmap_area_lock
);
2840 if (buf
== buf_start
)
2842 /* zero-fill memory holes */
2843 if (buf
!= buf_start
+ buflen
)
2844 memset(buf
, 0, buflen
- (buf
- buf_start
));
2850 * vwrite() - write vmalloc area in a safe way.
2851 * @buf: buffer for source data
2852 * @addr: vm address.
2853 * @count: number of bytes to be read.
2855 * This function checks that addr is a valid vmalloc'ed area, and
2856 * copy data from a buffer to the given addr. If specified range of
2857 * [addr...addr+count) includes some valid address, data is copied from
2858 * proper area of @buf. If there are memory holes, no copy to hole.
2859 * IOREMAP area is treated as memory hole and no copy is done.
2861 * If [addr...addr+count) doesn't includes any intersects with alive
2862 * vm_struct area, returns 0. @buf should be kernel's buffer.
2864 * Note: In usual ops, vwrite() is never necessary because the caller
2865 * should know vmalloc() area is valid and can use memcpy().
2866 * This is for routines which have to access vmalloc area without
2867 * any informaion, as /dev/kmem.
2869 * Return: number of bytes for which addr and buf should be
2870 * increased (same number as @count) or %0 if [addr...addr+count)
2871 * doesn't include any intersection with valid vmalloc area
2873 long vwrite(char *buf
, char *addr
, unsigned long count
)
2875 struct vmap_area
*va
;
2876 struct vm_struct
*vm
;
2878 unsigned long n
, buflen
;
2881 /* Don't allow overflow */
2882 if ((unsigned long) addr
+ count
< count
)
2883 count
= -(unsigned long) addr
;
2886 spin_lock(&vmap_area_lock
);
2887 list_for_each_entry(va
, &vmap_area_list
, list
) {
2891 if (!(va
->flags
& VM_VM_AREA
))
2895 vaddr
= (char *) vm
->addr
;
2896 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2898 while (addr
< vaddr
) {
2905 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2908 if (!(vm
->flags
& VM_IOREMAP
)) {
2909 aligned_vwrite(buf
, addr
, n
);
2917 spin_unlock(&vmap_area_lock
);
2924 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2925 * @vma: vma to cover
2926 * @uaddr: target user address to start at
2927 * @kaddr: virtual address of vmalloc kernel memory
2928 * @size: size of map area
2930 * Returns: 0 for success, -Exxx on failure
2932 * This function checks that @kaddr is a valid vmalloc'ed area,
2933 * and that it is big enough to cover the range starting at
2934 * @uaddr in @vma. Will return failure if that criteria isn't
2937 * Similar to remap_pfn_range() (see mm/memory.c)
2939 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2940 void *kaddr
, unsigned long size
)
2942 struct vm_struct
*area
;
2944 size
= PAGE_ALIGN(size
);
2946 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2949 area
= find_vm_area(kaddr
);
2953 if (!(area
->flags
& VM_USERMAP
))
2956 if (kaddr
+ size
> area
->addr
+ get_vm_area_size(area
))
2960 struct page
*page
= vmalloc_to_page(kaddr
);
2963 ret
= vm_insert_page(vma
, uaddr
, page
);
2972 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2976 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2979 * remap_vmalloc_range - map vmalloc pages to userspace
2980 * @vma: vma to cover (map full range of vma)
2981 * @addr: vmalloc memory
2982 * @pgoff: number of pages into addr before first page to map
2984 * Returns: 0 for success, -Exxx on failure
2986 * This function checks that addr is a valid vmalloc'ed area, and
2987 * that it is big enough to cover the vma. Will return failure if
2988 * that criteria isn't met.
2990 * Similar to remap_pfn_range() (see mm/memory.c)
2992 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2993 unsigned long pgoff
)
2995 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2996 addr
+ (pgoff
<< PAGE_SHIFT
),
2997 vma
->vm_end
- vma
->vm_start
);
2999 EXPORT_SYMBOL(remap_vmalloc_range
);
3002 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3005 void __weak
vmalloc_sync_all(void)
3010 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
3022 * alloc_vm_area - allocate a range of kernel address space
3023 * @size: size of the area
3024 * @ptes: returns the PTEs for the address space
3026 * Returns: NULL on failure, vm_struct on success
3028 * This function reserves a range of kernel address space, and
3029 * allocates pagetables to map that range. No actual mappings
3032 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3033 * allocated for the VM area are returned.
3035 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
3037 struct vm_struct
*area
;
3039 area
= get_vm_area_caller(size
, VM_IOREMAP
,
3040 __builtin_return_address(0));
3045 * This ensures that page tables are constructed for this region
3046 * of kernel virtual address space and mapped into init_mm.
3048 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
3049 size
, f
, ptes
? &ptes
: NULL
)) {
3056 EXPORT_SYMBOL_GPL(alloc_vm_area
);
3058 void free_vm_area(struct vm_struct
*area
)
3060 struct vm_struct
*ret
;
3061 ret
= remove_vm_area(area
->addr
);
3062 BUG_ON(ret
!= area
);
3065 EXPORT_SYMBOL_GPL(free_vm_area
);
3068 static struct vmap_area
*node_to_va(struct rb_node
*n
)
3070 return rb_entry_safe(n
, struct vmap_area
, rb_node
);
3074 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3075 * @addr: target address
3077 * Returns: vmap_area if it is found. If there is no such area
3078 * the first highest(reverse order) vmap_area is returned
3079 * i.e. va->va_start < addr && va->va_end < addr or NULL
3080 * if there are no any areas before @addr.
3082 static struct vmap_area
*
3083 pvm_find_va_enclose_addr(unsigned long addr
)
3085 struct vmap_area
*va
, *tmp
;
3088 n
= free_vmap_area_root
.rb_node
;
3092 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
3093 if (tmp
->va_start
<= addr
) {
3095 if (tmp
->va_end
>= addr
)
3108 * pvm_determine_end_from_reverse - find the highest aligned address
3109 * of free block below VMALLOC_END
3111 * in - the VA we start the search(reverse order);
3112 * out - the VA with the highest aligned end address.
3114 * Returns: determined end address within vmap_area
3116 static unsigned long
3117 pvm_determine_end_from_reverse(struct vmap_area
**va
, unsigned long align
)
3119 unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
3123 list_for_each_entry_from_reverse((*va
),
3124 &free_vmap_area_list
, list
) {
3125 addr
= min((*va
)->va_end
& ~(align
- 1), vmalloc_end
);
3126 if ((*va
)->va_start
< addr
)
3135 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3136 * @offsets: array containing offset of each area
3137 * @sizes: array containing size of each area
3138 * @nr_vms: the number of areas to allocate
3139 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3141 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3142 * vm_structs on success, %NULL on failure
3144 * Percpu allocator wants to use congruent vm areas so that it can
3145 * maintain the offsets among percpu areas. This function allocates
3146 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3147 * be scattered pretty far, distance between two areas easily going up
3148 * to gigabytes. To avoid interacting with regular vmallocs, these
3149 * areas are allocated from top.
3151 * Despite its complicated look, this allocator is rather simple. It
3152 * does everything top-down and scans free blocks from the end looking
3153 * for matching base. While scanning, if any of the areas do not fit the
3154 * base address is pulled down to fit the area. Scanning is repeated till
3155 * all the areas fit and then all necessary data structures are inserted
3156 * and the result is returned.
3158 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
3159 const size_t *sizes
, int nr_vms
,
3162 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
3163 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
3164 struct vmap_area
**vas
, *va
;
3165 struct vm_struct
**vms
;
3166 int area
, area2
, last_area
, term_area
;
3167 unsigned long base
, start
, size
, end
, last_end
;
3168 bool purged
= false;
3171 /* verify parameters and allocate data structures */
3172 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
3173 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
3174 start
= offsets
[area
];
3175 end
= start
+ sizes
[area
];
3177 /* is everything aligned properly? */
3178 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
3179 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
3181 /* detect the area with the highest address */
3182 if (start
> offsets
[last_area
])
3185 for (area2
= area
+ 1; area2
< nr_vms
; area2
++) {
3186 unsigned long start2
= offsets
[area2
];
3187 unsigned long end2
= start2
+ sizes
[area2
];
3189 BUG_ON(start2
< end
&& start
< end2
);
3192 last_end
= offsets
[last_area
] + sizes
[last_area
];
3194 if (vmalloc_end
- vmalloc_start
< last_end
) {
3199 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
3200 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
3204 for (area
= 0; area
< nr_vms
; area
++) {
3205 vas
[area
] = kmem_cache_zalloc(vmap_area_cachep
, GFP_KERNEL
);
3206 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
3207 if (!vas
[area
] || !vms
[area
])
3211 spin_lock(&vmap_area_lock
);
3213 /* start scanning - we scan from the top, begin with the last area */
3214 area
= term_area
= last_area
;
3215 start
= offsets
[area
];
3216 end
= start
+ sizes
[area
];
3218 va
= pvm_find_va_enclose_addr(vmalloc_end
);
3219 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
3223 * base might have underflowed, add last_end before
3226 if (base
+ last_end
< vmalloc_start
+ last_end
)
3230 * Fitting base has not been found.
3236 * If this VA does not fit, move base downwards and recheck.
3238 if (base
+ start
< va
->va_start
|| base
+ end
> va
->va_end
) {
3239 va
= node_to_va(rb_prev(&va
->rb_node
));
3240 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
3246 * This area fits, move on to the previous one. If
3247 * the previous one is the terminal one, we're done.
3249 area
= (area
+ nr_vms
- 1) % nr_vms
;
3250 if (area
== term_area
)
3253 start
= offsets
[area
];
3254 end
= start
+ sizes
[area
];
3255 va
= pvm_find_va_enclose_addr(base
+ end
);
3258 /* we've found a fitting base, insert all va's */
3259 for (area
= 0; area
< nr_vms
; area
++) {
3262 start
= base
+ offsets
[area
];
3265 va
= pvm_find_va_enclose_addr(start
);
3266 if (WARN_ON_ONCE(va
== NULL
))
3267 /* It is a BUG(), but trigger recovery instead. */
3270 type
= classify_va_fit_type(va
, start
, size
);
3271 if (WARN_ON_ONCE(type
== NOTHING_FIT
))
3272 /* It is a BUG(), but trigger recovery instead. */
3275 ret
= adjust_va_to_fit_type(va
, start
, size
, type
);
3279 /* Allocated area. */
3281 va
->va_start
= start
;
3282 va
->va_end
= start
+ size
;
3284 insert_vmap_area(va
, &vmap_area_root
, &vmap_area_list
);
3287 spin_unlock(&vmap_area_lock
);
3289 /* insert all vm's */
3290 for (area
= 0; area
< nr_vms
; area
++)
3291 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
3298 /* Remove previously inserted areas. */
3300 __free_vmap_area(vas
[area
]);
3305 spin_unlock(&vmap_area_lock
);
3307 purge_vmap_area_lazy();
3310 /* Before "retry", check if we recover. */
3311 for (area
= 0; area
< nr_vms
; area
++) {
3315 vas
[area
] = kmem_cache_zalloc(
3316 vmap_area_cachep
, GFP_KERNEL
);
3325 for (area
= 0; area
< nr_vms
; area
++) {
3327 kmem_cache_free(vmap_area_cachep
, vas
[area
]);
3338 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3339 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3340 * @nr_vms: the number of allocated areas
3342 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3344 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
3348 for (i
= 0; i
< nr_vms
; i
++)
3349 free_vm_area(vms
[i
]);
3352 #endif /* CONFIG_SMP */
3354 #ifdef CONFIG_PROC_FS
3355 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3356 __acquires(&vmap_area_lock
)
3358 spin_lock(&vmap_area_lock
);
3359 return seq_list_start(&vmap_area_list
, *pos
);
3362 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3364 return seq_list_next(p
, &vmap_area_list
, pos
);
3367 static void s_stop(struct seq_file
*m
, void *p
)
3368 __releases(&vmap_area_lock
)
3370 spin_unlock(&vmap_area_lock
);
3373 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
3375 if (IS_ENABLED(CONFIG_NUMA
)) {
3376 unsigned int nr
, *counters
= m
->private;
3381 if (v
->flags
& VM_UNINITIALIZED
)
3383 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3386 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
3388 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
3389 counters
[page_to_nid(v
->pages
[nr
])]++;
3391 for_each_node_state(nr
, N_HIGH_MEMORY
)
3393 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
3397 static int s_show(struct seq_file
*m
, void *p
)
3399 struct vmap_area
*va
;
3400 struct vm_struct
*v
;
3402 va
= list_entry(p
, struct vmap_area
, list
);
3405 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3406 * behalf of vmap area is being tear down or vm_map_ram allocation.
3408 if (!(va
->flags
& VM_VM_AREA
)) {
3409 seq_printf(m
, "0x%pK-0x%pK %7ld %s\n",
3410 (void *)va
->va_start
, (void *)va
->va_end
,
3411 va
->va_end
- va
->va_start
,
3412 va
->flags
& VM_LAZY_FREE
? "unpurged vm_area" : "vm_map_ram");
3419 seq_printf(m
, "0x%pK-0x%pK %7ld",
3420 v
->addr
, v
->addr
+ v
->size
, v
->size
);
3423 seq_printf(m
, " %pS", v
->caller
);
3426 seq_printf(m
, " pages=%d", v
->nr_pages
);
3429 seq_printf(m
, " phys=%pa", &v
->phys_addr
);
3431 if (v
->flags
& VM_IOREMAP
)
3432 seq_puts(m
, " ioremap");
3434 if (v
->flags
& VM_ALLOC
)
3435 seq_puts(m
, " vmalloc");
3437 if (v
->flags
& VM_MAP
)
3438 seq_puts(m
, " vmap");
3440 if (v
->flags
& VM_USERMAP
)
3441 seq_puts(m
, " user");
3443 if (is_vmalloc_addr(v
->pages
))
3444 seq_puts(m
, " vpages");
3446 show_numa_info(m
, v
);
3451 static const struct seq_operations vmalloc_op
= {
3458 static int __init
proc_vmalloc_init(void)
3460 if (IS_ENABLED(CONFIG_NUMA
))
3461 proc_create_seq_private("vmallocinfo", 0400, NULL
,
3463 nr_node_ids
* sizeof(unsigned int), NULL
);
3465 proc_create_seq("vmallocinfo", 0400, NULL
, &vmalloc_op
);
3468 module_init(proc_vmalloc_init
);