1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2014-2015 Broadcom Corporation
4 * Copyright 2014 Linaro Limited
7 #include <linux/cpumask.h>
8 #include <linux/delay.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
12 #include <linux/irqchip/irq-bcm2836.h>
13 #include <linux/jiffies.h>
15 #include <linux/of_address.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/smp.h>
20 #include <asm/cacheflush.h>
22 #include <asm/smp_plat.h>
23 #include <asm/smp_scu.h>
25 /* Size of mapped Cortex A9 SCU address space */
26 #define CORTEX_A9_SCU_SIZE 0x58
28 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
29 #define BOOT_ADDR_CPUID_MASK 0x3
31 /* Name of device node property defining secondary boot register location */
32 #define OF_SECONDARY_BOOT "secondary-boot-reg"
33 #define MPIDR_CPUID_BITMASK 0x3
36 * Enable the Cortex A9 Snoop Control Unit
38 * By the time this is called we already know there are multiple
39 * cores present. We assume we're running on a Cortex A9 processor,
40 * so any trouble getting the base address register or getting the
41 * SCU base is a problem.
43 * Return 0 if successful or an error code otherwise.
45 static int __init
scu_a9_enable(void)
47 unsigned long config_base
;
48 void __iomem
*scu_base
;
50 if (!scu_a9_has_base()) {
51 pr_err("no configuration base address register!\n");
55 /* Config base address register value is zero for uniprocessor */
56 config_base
= scu_a9_get_base();
58 pr_err("hardware reports only one core\n");
62 scu_base
= ioremap((phys_addr_t
)config_base
, CORTEX_A9_SCU_SIZE
);
64 pr_err("failed to remap config base (%lu/%u) for SCU\n",
65 config_base
, CORTEX_A9_SCU_SIZE
);
71 iounmap(scu_base
); /* That's the last we'll need of this */
76 static u32
secondary_boot_addr_for(unsigned int cpu
)
78 u32 secondary_boot_addr
= 0;
79 struct device_node
*cpu_node
= of_get_cpu_node(cpu
, NULL
);
82 pr_err("Failed to find device tree node for CPU%u\n", cpu
);
86 if (of_property_read_u32(cpu_node
,
88 &secondary_boot_addr
))
89 pr_err("required secondary boot register not specified for CPU%u\n",
92 of_node_put(cpu_node
);
94 return secondary_boot_addr
;
97 static int nsp_write_lut(unsigned int cpu
)
99 void __iomem
*sku_rom_lut
;
100 phys_addr_t secondary_startup_phy
;
101 const u32 secondary_boot_addr
= secondary_boot_addr_for(cpu
);
103 if (!secondary_boot_addr
)
106 sku_rom_lut
= ioremap_nocache((phys_addr_t
)secondary_boot_addr
,
107 sizeof(phys_addr_t
));
109 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu
);
113 secondary_startup_phy
= __pa_symbol(secondary_startup
);
114 BUG_ON(secondary_startup_phy
> (phys_addr_t
)U32_MAX
);
116 writel_relaxed(secondary_startup_phy
, sku_rom_lut
);
118 /* Ensure the write is visible to the secondary core */
121 iounmap(sku_rom_lut
);
126 static void __init
bcm_smp_prepare_cpus(unsigned int max_cpus
)
128 const cpumask_t only_cpu_0
= { CPU_BITS_CPU0
};
130 /* Enable the SCU on Cortex A9 based SoCs */
131 if (scu_a9_enable()) {
132 /* Update the CPU present map to reflect uniprocessor mode */
133 pr_warn("failed to enable A9 SCU - disabling SMP\n");
134 init_cpu_present(&only_cpu_0
);
139 * The ROM code has the secondary cores looping, waiting for an event.
140 * When an event occurs each core examines the bottom two bits of the
141 * secondary boot register. When a core finds those bits contain its
142 * own core id, it performs initialization, including computing its boot
143 * address by clearing the boot register value's bottom two bits. The
144 * core signals that it is beginning its execution by writing its boot
145 * address back to the secondary boot register, and finally jumps to
148 * So to start a core executing we need to:
149 * - Encode the (hardware) CPU id with the bottom bits of the secondary
151 * - Write that value into the secondary boot register.
152 * - Generate an event to wake up the secondary CPU(s).
153 * - Wait for the secondary boot register to be re-written, which
154 * indicates the secondary core has started.
156 static int kona_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
158 void __iomem
*boot_reg
;
159 phys_addr_t boot_func
;
163 bool timeout
= false;
164 const u32 secondary_boot_addr
= secondary_boot_addr_for(cpu
);
166 cpu_id
= cpu_logical_map(cpu
);
167 if (cpu_id
& ~BOOT_ADDR_CPUID_MASK
) {
168 pr_err("bad cpu id (%u > %u)\n", cpu_id
, BOOT_ADDR_CPUID_MASK
);
172 if (!secondary_boot_addr
)
175 boot_reg
= ioremap_nocache((phys_addr_t
)secondary_boot_addr
,
176 sizeof(phys_addr_t
));
178 pr_err("unable to map boot register for cpu %u\n", cpu_id
);
183 * Secondary cores will start in secondary_startup(),
184 * defined in "arch/arm/kernel/head.S"
186 boot_func
= __pa_symbol(secondary_startup
);
187 BUG_ON(boot_func
& BOOT_ADDR_CPUID_MASK
);
188 BUG_ON(boot_func
> (phys_addr_t
)U32_MAX
);
190 /* The core to start is encoded in the low bits */
191 boot_val
= (u32
)boot_func
| cpu_id
;
192 writel_relaxed(boot_val
, boot_reg
);
196 /* The low bits will be cleared once the core has started */
197 start_clock
= local_clock();
198 while (!timeout
&& readl_relaxed(boot_reg
) == boot_val
)
199 timeout
= local_clock() - start_clock
> SECONDARY_TIMEOUT_NS
;
206 pr_err("timeout waiting for cpu %u to start\n", cpu_id
);
211 /* Cluster Dormant Control command to bring CPU into a running state */
213 #define CDC_CMD_OFFSET 0
214 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
217 * BCM23550 has a Cluster Dormant Control block that keeps the core in
218 * idle state. A command needs to be sent to the block to bring the CPU
219 * into running state.
221 static int bcm23550_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
223 void __iomem
*cdc_base
;
224 struct device_node
*dn
;
228 /* Make sure a CDC node exists before booting the
231 name
= "brcm,bcm23550-cdc";
232 dn
= of_find_compatible_node(NULL
, NULL
, name
);
234 pr_err("unable to find cdc node\n");
238 cdc_base
= of_iomap(dn
, 0);
242 pr_err("unable to remap cdc base register\n");
246 /* Boot the secondary core */
247 ret
= kona_boot_secondary(cpu
, idle
);
251 /* Bring this CPU to RUN state so that nIRQ nFIQ
252 * signals are unblocked.
254 writel_relaxed(CDC_CMD
, cdc_base
+ CDC_CMD_REG(cpu
));
262 static int nsp_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
267 * After wake up, secondary core branches to the startup
268 * address programmed at SKU ROM LUT location.
270 ret
= nsp_write_lut(cpu
);
272 pr_err("unable to write startup addr to SKU ROM LUT\n");
276 /* Send a CPU wakeup interrupt to the secondary core */
277 arch_send_wakeup_ipi_mask(cpumask_of(cpu
));
283 static int bcm2836_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
285 void __iomem
*intc_base
;
286 struct device_node
*dn
;
289 name
= "brcm,bcm2836-l1-intc";
290 dn
= of_find_compatible_node(NULL
, NULL
, name
);
292 pr_err("unable to find intc node\n");
296 intc_base
= of_iomap(dn
, 0);
300 pr_err("unable to remap intc base register\n");
304 writel(virt_to_phys(secondary_startup
),
305 intc_base
+ LOCAL_MAILBOX3_SET0
+ 16 * cpu
);
315 static const struct smp_operations kona_smp_ops __initconst
= {
316 .smp_prepare_cpus
= bcm_smp_prepare_cpus
,
317 .smp_boot_secondary
= kona_boot_secondary
,
319 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx
, "brcm,bcm11351-cpu-method",
322 static const struct smp_operations bcm23550_smp_ops __initconst
= {
323 .smp_boot_secondary
= bcm23550_boot_secondary
,
325 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550
, "brcm,bcm23550",
328 static const struct smp_operations nsp_smp_ops __initconst
= {
329 .smp_prepare_cpus
= bcm_smp_prepare_cpus
,
330 .smp_boot_secondary
= nsp_boot_secondary
,
332 CPU_METHOD_OF_DECLARE(bcm_smp_nsp
, "brcm,bcm-nsp-smp", &nsp_smp_ops
);
334 const struct smp_operations bcm2836_smp_ops __initconst
= {
335 .smp_boot_secondary
= bcm2836_boot_secondary
,
337 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836
, "brcm,bcm2836-smp", &bcm2836_smp_ops
);