2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
14 #include <linux/genalloc.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 #include <linux/cma.h>
31 #include <asm/memory.h>
32 #include <asm/highmem.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mach/arch.h>
36 #include <asm/dma-iommu.h>
37 #include <asm/mach/map.h>
38 #include <asm/system_info.h>
39 #include <asm/dma-contiguous.h>
44 struct arm_dma_alloc_args
{
54 struct arm_dma_free_args
{
65 struct arm_dma_allocator
{
66 void *(*alloc
)(struct arm_dma_alloc_args
*args
,
67 struct page
**ret_page
);
68 void (*free
)(struct arm_dma_free_args
*args
);
71 struct arm_dma_buffer
{
72 struct list_head list
;
74 struct arm_dma_allocator
*allocator
;
77 static LIST_HEAD(arm_dma_bufs
);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock
);
80 static struct arm_dma_buffer
*arm_dma_buffer_find(void *virt
)
82 struct arm_dma_buffer
*buf
, *found
= NULL
;
85 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
86 list_for_each_entry(buf
, &arm_dma_bufs
, list
) {
87 if (buf
->virt
== virt
) {
93 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
109 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
110 size_t, enum dma_data_direction
);
111 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
112 size_t, enum dma_data_direction
);
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
122 * Ensure that any data held in the cache is appropriately discarded
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
128 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
129 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
132 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
133 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
134 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
137 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
138 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
141 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
158 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
159 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
161 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
163 handle
& ~PAGE_MASK
, size
, dir
);
166 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
167 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
169 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
170 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
171 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
174 static void arm_dma_sync_single_for_device(struct device
*dev
,
175 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
177 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
178 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
179 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
182 const struct dma_map_ops arm_dma_ops
= {
183 .alloc
= arm_dma_alloc
,
184 .free
= arm_dma_free
,
185 .mmap
= arm_dma_mmap
,
186 .get_sgtable
= arm_dma_get_sgtable
,
187 .map_page
= arm_dma_map_page
,
188 .unmap_page
= arm_dma_unmap_page
,
189 .map_sg
= arm_dma_map_sg
,
190 .unmap_sg
= arm_dma_unmap_sg
,
191 .map_resource
= dma_direct_map_resource
,
192 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
193 .sync_single_for_device
= arm_dma_sync_single_for_device
,
194 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
195 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
196 .dma_supported
= arm_dma_supported
,
198 EXPORT_SYMBOL(arm_dma_ops
);
200 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
201 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
);
202 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
203 dma_addr_t handle
, unsigned long attrs
);
204 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
205 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
206 unsigned long attrs
);
208 const struct dma_map_ops arm_coherent_dma_ops
= {
209 .alloc
= arm_coherent_dma_alloc
,
210 .free
= arm_coherent_dma_free
,
211 .mmap
= arm_coherent_dma_mmap
,
212 .get_sgtable
= arm_dma_get_sgtable
,
213 .map_page
= arm_coherent_dma_map_page
,
214 .map_sg
= arm_dma_map_sg
,
215 .map_resource
= dma_direct_map_resource
,
216 .dma_supported
= arm_dma_supported
,
218 EXPORT_SYMBOL(arm_coherent_dma_ops
);
220 static int __dma_supported(struct device
*dev
, u64 mask
, bool warn
)
222 unsigned long max_dma_pfn
;
225 * If the mask allows for more memory than we can address,
226 * and we actually have that much memory, then we must
227 * indicate that DMA to this device is not supported.
229 if (sizeof(mask
) != sizeof(dma_addr_t
) &&
230 mask
> (dma_addr_t
)~0 &&
231 dma_to_pfn(dev
, ~0) < max_pfn
- 1) {
233 dev_warn(dev
, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
235 dev_warn(dev
, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
240 max_dma_pfn
= min(max_pfn
, arm_dma_pfn_limit
);
243 * Translate the device's DMA mask to a PFN limit. This
244 * PFN number includes the page which we can DMA to.
246 if (dma_to_pfn(dev
, mask
) < max_dma_pfn
) {
248 dev_warn(dev
, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
250 dma_to_pfn(dev
, 0), dma_to_pfn(dev
, mask
) + 1,
258 static u64
get_coherent_dma_mask(struct device
*dev
)
260 u64 mask
= (u64
)DMA_BIT_MASK(32);
263 mask
= dev
->coherent_dma_mask
;
266 * Sanity check the DMA mask - it must be non-zero, and
267 * must be able to be satisfied by a DMA allocation.
270 dev_warn(dev
, "coherent DMA mask is unset\n");
274 if (!__dma_supported(dev
, mask
, true))
281 static void __dma_clear_buffer(struct page
*page
, size_t size
, int coherent_flag
)
284 * Ensure that the allocated pages are zeroed, and that any data
285 * lurking in the kernel direct-mapped region is invalidated.
287 if (PageHighMem(page
)) {
288 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
289 phys_addr_t end
= base
+ size
;
291 void *ptr
= kmap_atomic(page
);
292 memset(ptr
, 0, PAGE_SIZE
);
293 if (coherent_flag
!= COHERENT
)
294 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
299 if (coherent_flag
!= COHERENT
)
300 outer_flush_range(base
, end
);
302 void *ptr
= page_address(page
);
303 memset(ptr
, 0, size
);
304 if (coherent_flag
!= COHERENT
) {
305 dmac_flush_range(ptr
, ptr
+ size
);
306 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
312 * Allocate a DMA buffer for 'dev' of size 'size' using the
313 * specified gfp mask. Note that 'size' must be page aligned.
315 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
,
316 gfp_t gfp
, int coherent_flag
)
318 unsigned long order
= get_order(size
);
319 struct page
*page
, *p
, *e
;
321 page
= alloc_pages(gfp
, order
);
326 * Now split the huge page and free the excess pages
328 split_page(page
, order
);
329 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
332 __dma_clear_buffer(page
, size
, coherent_flag
);
338 * Free a DMA buffer. 'size' must be page aligned.
340 static void __dma_free_buffer(struct page
*page
, size_t size
)
342 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
350 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
351 pgprot_t prot
, struct page
**ret_page
,
352 const void *caller
, bool want_vaddr
,
353 int coherent_flag
, gfp_t gfp
);
355 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
356 pgprot_t prot
, struct page
**ret_page
,
357 const void *caller
, bool want_vaddr
);
360 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
,
364 * DMA allocation can be mapped to user space, so lets
365 * set VM_USERMAP flags too.
367 return dma_common_contiguous_remap(page
, size
,
368 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
372 static void __dma_free_remap(void *cpu_addr
, size_t size
)
374 dma_common_free_remap(cpu_addr
, size
,
375 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
378 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
379 static struct gen_pool
*atomic_pool __ro_after_init
;
381 static size_t atomic_pool_size __initdata
= DEFAULT_DMA_COHERENT_POOL_SIZE
;
383 static int __init
early_coherent_pool(char *p
)
385 atomic_pool_size
= memparse(p
, &p
);
388 early_param("coherent_pool", early_coherent_pool
);
391 * Initialise the coherent pool for atomic allocations.
393 static int __init
atomic_pool_init(void)
395 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
396 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
400 atomic_pool
= gen_pool_create(PAGE_SHIFT
, -1);
404 * The atomic pool is only used for non-coherent allocations
405 * so we must pass NORMAL for coherent_flag.
407 if (dev_get_cma_area(NULL
))
408 ptr
= __alloc_from_contiguous(NULL
, atomic_pool_size
, prot
,
409 &page
, atomic_pool_init
, true, NORMAL
,
412 ptr
= __alloc_remap_buffer(NULL
, atomic_pool_size
, gfp
, prot
,
413 &page
, atomic_pool_init
, true);
417 ret
= gen_pool_add_virt(atomic_pool
, (unsigned long)ptr
,
419 atomic_pool_size
, -1);
421 goto destroy_genpool
;
423 gen_pool_set_algo(atomic_pool
,
424 gen_pool_first_fit_order_align
,
426 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
427 atomic_pool_size
/ 1024);
432 gen_pool_destroy(atomic_pool
);
435 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
436 atomic_pool_size
/ 1024);
440 * CMA is activated by core_initcall, so we must be called after it.
442 postcore_initcall(atomic_pool_init
);
444 struct dma_contig_early_reserve
{
449 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
451 static int dma_mmu_remap_num __initdata
;
453 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
455 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
456 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
460 void __init
dma_contiguous_remap(void)
463 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
464 phys_addr_t start
= dma_mmu_remap
[i
].base
;
465 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
469 if (end
> arm_lowmem_limit
)
470 end
= arm_lowmem_limit
;
474 map
.pfn
= __phys_to_pfn(start
);
475 map
.virtual = __phys_to_virt(start
);
476 map
.length
= end
- start
;
477 map
.type
= MT_MEMORY_DMA_READY
;
480 * Clear previous low-memory mapping to ensure that the
481 * TLB does not see any conflicting entries, then flush
482 * the TLB of the old entries before creating new mappings.
484 * This ensures that any speculatively loaded TLB entries
485 * (even though they may be rare) can not cause any problems,
486 * and ensures that this code is architecturally compliant.
488 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
490 pmd_clear(pmd_off_k(addr
));
492 flush_tlb_kernel_range(__phys_to_virt(start
),
493 __phys_to_virt(end
));
495 iotable_init(&map
, 1);
499 static int __dma_update_pte(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
502 struct page
*page
= virt_to_page(addr
);
503 pgprot_t prot
= *(pgprot_t
*)data
;
505 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
509 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
511 unsigned long start
= (unsigned long) page_address(page
);
512 unsigned end
= start
+ size
;
514 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
515 flush_tlb_kernel_range(start
, end
);
518 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
519 pgprot_t prot
, struct page
**ret_page
,
520 const void *caller
, bool want_vaddr
)
525 * __alloc_remap_buffer is only called when the device is
528 page
= __dma_alloc_buffer(dev
, size
, gfp
, NORMAL
);
534 ptr
= __dma_alloc_remap(page
, size
, gfp
, prot
, caller
);
536 __dma_free_buffer(page
, size
);
545 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
551 WARN(1, "coherent pool not initialised!\n");
555 val
= gen_pool_alloc(atomic_pool
, size
);
557 phys_addr_t phys
= gen_pool_virt_to_phys(atomic_pool
, val
);
559 *ret_page
= phys_to_page(phys
);
566 static bool __in_atomic_pool(void *start
, size_t size
)
568 return addr_in_gen_pool(atomic_pool
, (unsigned long)start
, size
);
571 static int __free_from_pool(void *start
, size_t size
)
573 if (!__in_atomic_pool(start
, size
))
576 gen_pool_free(atomic_pool
, (unsigned long)start
, size
);
581 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
582 pgprot_t prot
, struct page
**ret_page
,
583 const void *caller
, bool want_vaddr
,
584 int coherent_flag
, gfp_t gfp
)
586 unsigned long order
= get_order(size
);
587 size_t count
= size
>> PAGE_SHIFT
;
591 page
= dma_alloc_from_contiguous(dev
, count
, order
, gfp
& __GFP_NOWARN
);
595 __dma_clear_buffer(page
, size
, coherent_flag
);
600 if (PageHighMem(page
)) {
601 ptr
= __dma_alloc_remap(page
, size
, GFP_KERNEL
, prot
, caller
);
603 dma_release_from_contiguous(dev
, page
, count
);
607 __dma_remap(page
, size
, prot
);
608 ptr
= page_address(page
);
616 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
617 void *cpu_addr
, size_t size
, bool want_vaddr
)
620 if (PageHighMem(page
))
621 __dma_free_remap(cpu_addr
, size
);
623 __dma_remap(page
, size
, PAGE_KERNEL
);
625 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
628 static inline pgprot_t
__get_dma_pgprot(unsigned long attrs
, pgprot_t prot
)
630 prot
= (attrs
& DMA_ATTR_WRITE_COMBINE
) ?
631 pgprot_writecombine(prot
) :
632 pgprot_dmacoherent(prot
);
636 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
637 struct page
**ret_page
)
640 /* __alloc_simple_buffer is only called when the device is coherent */
641 page
= __dma_alloc_buffer(dev
, size
, gfp
, COHERENT
);
646 return page_address(page
);
649 static void *simple_allocator_alloc(struct arm_dma_alloc_args
*args
,
650 struct page
**ret_page
)
652 return __alloc_simple_buffer(args
->dev
, args
->size
, args
->gfp
,
656 static void simple_allocator_free(struct arm_dma_free_args
*args
)
658 __dma_free_buffer(args
->page
, args
->size
);
661 static struct arm_dma_allocator simple_allocator
= {
662 .alloc
= simple_allocator_alloc
,
663 .free
= simple_allocator_free
,
666 static void *cma_allocator_alloc(struct arm_dma_alloc_args
*args
,
667 struct page
**ret_page
)
669 return __alloc_from_contiguous(args
->dev
, args
->size
, args
->prot
,
670 ret_page
, args
->caller
,
671 args
->want_vaddr
, args
->coherent_flag
,
675 static void cma_allocator_free(struct arm_dma_free_args
*args
)
677 __free_from_contiguous(args
->dev
, args
->page
, args
->cpu_addr
,
678 args
->size
, args
->want_vaddr
);
681 static struct arm_dma_allocator cma_allocator
= {
682 .alloc
= cma_allocator_alloc
,
683 .free
= cma_allocator_free
,
686 static void *pool_allocator_alloc(struct arm_dma_alloc_args
*args
,
687 struct page
**ret_page
)
689 return __alloc_from_pool(args
->size
, ret_page
);
692 static void pool_allocator_free(struct arm_dma_free_args
*args
)
694 __free_from_pool(args
->cpu_addr
, args
->size
);
697 static struct arm_dma_allocator pool_allocator
= {
698 .alloc
= pool_allocator_alloc
,
699 .free
= pool_allocator_free
,
702 static void *remap_allocator_alloc(struct arm_dma_alloc_args
*args
,
703 struct page
**ret_page
)
705 return __alloc_remap_buffer(args
->dev
, args
->size
, args
->gfp
,
706 args
->prot
, ret_page
, args
->caller
,
710 static void remap_allocator_free(struct arm_dma_free_args
*args
)
712 if (args
->want_vaddr
)
713 __dma_free_remap(args
->cpu_addr
, args
->size
);
715 __dma_free_buffer(args
->page
, args
->size
);
718 static struct arm_dma_allocator remap_allocator
= {
719 .alloc
= remap_allocator_alloc
,
720 .free
= remap_allocator_free
,
723 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
724 gfp_t gfp
, pgprot_t prot
, bool is_coherent
,
725 unsigned long attrs
, const void *caller
)
727 u64 mask
= get_coherent_dma_mask(dev
);
728 struct page
*page
= NULL
;
730 bool allowblock
, cma
;
731 struct arm_dma_buffer
*buf
;
732 struct arm_dma_alloc_args args
= {
734 .size
= PAGE_ALIGN(size
),
738 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
739 .coherent_flag
= is_coherent
? COHERENT
: NORMAL
,
742 #ifdef CONFIG_DMA_API_DEBUG
743 u64 limit
= (mask
+ 1) & ~mask
;
744 if (limit
&& size
>= limit
) {
745 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
754 buf
= kzalloc(sizeof(*buf
),
755 gfp
& ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
));
759 if (mask
< 0xffffffffULL
)
763 * Following is a work-around (a.k.a. hack) to prevent pages
764 * with __GFP_COMP being passed to split_page() which cannot
765 * handle them. The real problem is that this flag probably
766 * should be 0 on ARM as it is not supported on this
767 * platform; see CONFIG_HUGETLBFS.
769 gfp
&= ~(__GFP_COMP
);
772 *handle
= DMA_MAPPING_ERROR
;
773 allowblock
= gfpflags_allow_blocking(gfp
);
774 cma
= allowblock
? dev_get_cma_area(dev
) : false;
777 buf
->allocator
= &cma_allocator
;
778 else if (is_coherent
)
779 buf
->allocator
= &simple_allocator
;
781 buf
->allocator
= &remap_allocator
;
783 buf
->allocator
= &pool_allocator
;
785 addr
= buf
->allocator
->alloc(&args
, &page
);
790 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
791 buf
->virt
= args
.want_vaddr
? addr
: page
;
793 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
794 list_add(&buf
->list
, &arm_dma_bufs
);
795 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
800 return args
.want_vaddr
? addr
: page
;
804 * Allocate DMA-coherent memory space and return both the kernel remapped
805 * virtual and bus address for that space.
807 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
808 gfp_t gfp
, unsigned long attrs
)
810 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
812 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
813 attrs
, __builtin_return_address(0));
816 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
817 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
819 return __dma_alloc(dev
, size
, handle
, gfp
, PAGE_KERNEL
, true,
820 attrs
, __builtin_return_address(0));
823 static int __arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
824 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
828 unsigned long nr_vma_pages
= vma_pages(vma
);
829 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
830 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
831 unsigned long off
= vma
->vm_pgoff
;
833 if (dma_mmap_from_dev_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
836 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
837 ret
= remap_pfn_range(vma
, vma
->vm_start
,
839 vma
->vm_end
- vma
->vm_start
,
847 * Create userspace mapping for the DMA-coherent memory.
849 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
850 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
853 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
856 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
857 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
860 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
861 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
865 * Free a buffer as defined by the above mapping.
867 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
868 dma_addr_t handle
, unsigned long attrs
,
871 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
872 struct arm_dma_buffer
*buf
;
873 struct arm_dma_free_args args
= {
875 .size
= PAGE_ALIGN(size
),
876 .cpu_addr
= cpu_addr
,
878 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
881 buf
= arm_dma_buffer_find(cpu_addr
);
882 if (WARN(!buf
, "Freeing invalid buffer %p\n", cpu_addr
))
885 buf
->allocator
->free(&args
);
889 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
890 dma_addr_t handle
, unsigned long attrs
)
892 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
895 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
896 dma_addr_t handle
, unsigned long attrs
)
898 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
902 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
903 * that the intention is to allow exporting memory allocated via the
904 * coherent DMA APIs through the dma_buf API, which only accepts a
905 * scattertable. This presents a couple of problems:
906 * 1. Not all memory allocated via the coherent DMA APIs is backed by
908 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
909 * as we will try to flush the memory through a different alias to that
910 * actually being used (and the flushes are redundant.)
912 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
913 void *cpu_addr
, dma_addr_t handle
, size_t size
,
916 unsigned long pfn
= dma_to_pfn(dev
, handle
);
920 /* If the PFN is not valid, we do not have a struct page */
924 page
= pfn_to_page(pfn
);
926 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
930 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
934 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
935 size_t size
, enum dma_data_direction dir
,
936 void (*op
)(const void *, size_t, int))
941 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
945 * A single sg entry may refer to multiple physically contiguous
946 * pages. But we still need to process highmem pages individually.
947 * If highmem is not configured then the bulk of this loop gets
954 page
= pfn_to_page(pfn
);
956 if (PageHighMem(page
)) {
957 if (len
+ offset
> PAGE_SIZE
)
958 len
= PAGE_SIZE
- offset
;
960 if (cache_is_vipt_nonaliasing()) {
961 vaddr
= kmap_atomic(page
);
962 op(vaddr
+ offset
, len
, dir
);
963 kunmap_atomic(vaddr
);
965 vaddr
= kmap_high_get(page
);
967 op(vaddr
+ offset
, len
, dir
);
972 vaddr
= page_address(page
) + offset
;
982 * Make an area consistent for devices.
983 * Note: Drivers should NOT use this function directly, as it will break
984 * platforms with CONFIG_DMABOUNCE.
985 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
987 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
988 size_t size
, enum dma_data_direction dir
)
992 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
994 paddr
= page_to_phys(page
) + off
;
995 if (dir
== DMA_FROM_DEVICE
) {
996 outer_inv_range(paddr
, paddr
+ size
);
998 outer_clean_range(paddr
, paddr
+ size
);
1000 /* FIXME: non-speculating: flush on bidirectional mappings? */
1003 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
1004 size_t size
, enum dma_data_direction dir
)
1006 phys_addr_t paddr
= page_to_phys(page
) + off
;
1008 /* FIXME: non-speculating: not required */
1009 /* in any case, don't bother invalidating if DMA to device */
1010 if (dir
!= DMA_TO_DEVICE
) {
1011 outer_inv_range(paddr
, paddr
+ size
);
1013 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
1017 * Mark the D-cache clean for these pages to avoid extra flushing.
1019 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
1023 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
1027 left
-= PAGE_SIZE
- off
;
1029 while (left
>= PAGE_SIZE
) {
1030 page
= pfn_to_page(pfn
++);
1031 set_bit(PG_dcache_clean
, &page
->flags
);
1038 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1039 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1040 * @sg: list of buffers
1041 * @nents: number of buffers to map
1042 * @dir: DMA transfer direction
1044 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1045 * This is the scatter-gather version of the dma_map_single interface.
1046 * Here the scatter gather list elements are each tagged with the
1047 * appropriate dma address and length. They are obtained via
1048 * sg_dma_{address,length}.
1050 * Device ownership issues as mentioned for dma_map_single are the same
1053 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1054 enum dma_data_direction dir
, unsigned long attrs
)
1056 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1057 struct scatterlist
*s
;
1060 for_each_sg(sg
, s
, nents
, i
) {
1061 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1062 s
->dma_length
= s
->length
;
1064 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
1065 s
->length
, dir
, attrs
);
1066 if (dma_mapping_error(dev
, s
->dma_address
))
1072 for_each_sg(sg
, s
, i
, j
)
1073 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1078 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1079 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1080 * @sg: list of buffers
1081 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1082 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1084 * Unmap a set of streaming mode DMA translations. Again, CPU access
1085 * rules concerning calls here are the same as for dma_unmap_single().
1087 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1088 enum dma_data_direction dir
, unsigned long attrs
)
1090 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1091 struct scatterlist
*s
;
1095 for_each_sg(sg
, s
, nents
, i
)
1096 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1100 * arm_dma_sync_sg_for_cpu
1101 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1102 * @sg: list of buffers
1103 * @nents: number of buffers to map (returned from dma_map_sg)
1104 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1106 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1107 int nents
, enum dma_data_direction dir
)
1109 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1110 struct scatterlist
*s
;
1113 for_each_sg(sg
, s
, nents
, i
)
1114 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
1119 * arm_dma_sync_sg_for_device
1120 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1121 * @sg: list of buffers
1122 * @nents: number of buffers to map (returned from dma_map_sg)
1123 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1125 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1126 int nents
, enum dma_data_direction dir
)
1128 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1129 struct scatterlist
*s
;
1132 for_each_sg(sg
, s
, nents
, i
)
1133 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1138 * Return whether the given device DMA address mask can be supported
1139 * properly. For example, if your device can only drive the low 24-bits
1140 * during bus mastering, then you would pass 0x00ffffff as the mask
1143 int arm_dma_supported(struct device
*dev
, u64 mask
)
1145 return __dma_supported(dev
, mask
, false);
1148 static const struct dma_map_ops
*arm_get_dma_map_ops(bool coherent
)
1150 return coherent
? &arm_coherent_dma_ops
: &arm_dma_ops
;
1153 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1155 static int __dma_info_to_prot(enum dma_data_direction dir
, unsigned long attrs
)
1159 if (attrs
& DMA_ATTR_PRIVILEGED
)
1163 case DMA_BIDIRECTIONAL
:
1164 return prot
| IOMMU_READ
| IOMMU_WRITE
;
1166 return prot
| IOMMU_READ
;
1167 case DMA_FROM_DEVICE
:
1168 return prot
| IOMMU_WRITE
;
1176 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
);
1178 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1181 unsigned int order
= get_order(size
);
1182 unsigned int align
= 0;
1183 unsigned int count
, start
;
1184 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1185 unsigned long flags
;
1189 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1190 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1192 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1193 align
= (1 << order
) - 1;
1195 spin_lock_irqsave(&mapping
->lock
, flags
);
1196 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++) {
1197 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1198 mapping
->bits
, 0, count
, align
);
1200 if (start
> mapping
->bits
)
1203 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1208 * No unused range found. Try to extend the existing mapping
1209 * and perform a second attempt to reserve an IO virtual
1210 * address range of size bytes.
1212 if (i
== mapping
->nr_bitmaps
) {
1213 if (extend_iommu_mapping(mapping
)) {
1214 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1215 return DMA_MAPPING_ERROR
;
1218 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1219 mapping
->bits
, 0, count
, align
);
1221 if (start
> mapping
->bits
) {
1222 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1223 return DMA_MAPPING_ERROR
;
1226 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1228 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1230 iova
= mapping
->base
+ (mapping_size
* i
);
1231 iova
+= start
<< PAGE_SHIFT
;
1236 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1237 dma_addr_t addr
, size_t size
)
1239 unsigned int start
, count
;
1240 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1241 unsigned long flags
;
1242 dma_addr_t bitmap_base
;
1248 bitmap_index
= (u32
) (addr
- mapping
->base
) / (u32
) mapping_size
;
1249 BUG_ON(addr
< mapping
->base
|| bitmap_index
> mapping
->extensions
);
1251 bitmap_base
= mapping
->base
+ mapping_size
* bitmap_index
;
1253 start
= (addr
- bitmap_base
) >> PAGE_SHIFT
;
1255 if (addr
+ size
> bitmap_base
+ mapping_size
) {
1257 * The address range to be freed reaches into the iova
1258 * range of the next bitmap. This should not happen as
1259 * we don't allow this in __alloc_iova (at the
1264 count
= size
>> PAGE_SHIFT
;
1266 spin_lock_irqsave(&mapping
->lock
, flags
);
1267 bitmap_clear(mapping
->bitmaps
[bitmap_index
], start
, count
);
1268 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1271 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1272 static const int iommu_order_array
[] = { 9, 8, 4, 0 };
1274 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1275 gfp_t gfp
, unsigned long attrs
,
1278 struct page
**pages
;
1279 int count
= size
>> PAGE_SHIFT
;
1280 int array_size
= count
* sizeof(struct page
*);
1284 if (array_size
<= PAGE_SIZE
)
1285 pages
= kzalloc(array_size
, GFP_KERNEL
);
1287 pages
= vzalloc(array_size
);
1291 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
)
1293 unsigned long order
= get_order(size
);
1296 page
= dma_alloc_from_contiguous(dev
, count
, order
,
1297 gfp
& __GFP_NOWARN
);
1301 __dma_clear_buffer(page
, size
, coherent_flag
);
1303 for (i
= 0; i
< count
; i
++)
1304 pages
[i
] = page
+ i
;
1309 /* Go straight to 4K chunks if caller says it's OK. */
1310 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
1311 order_idx
= ARRAY_SIZE(iommu_order_array
) - 1;
1314 * IOMMU can map any pages, so himem can also be used here
1316 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1321 order
= iommu_order_array
[order_idx
];
1323 /* Drop down when we get small */
1324 if (__fls(count
) < order
) {
1330 /* See if it's easy to allocate a high-order chunk */
1331 pages
[i
] = alloc_pages(gfp
| __GFP_NORETRY
, order
);
1333 /* Go down a notch at first sign of pressure */
1339 pages
[i
] = alloc_pages(gfp
, 0);
1345 split_page(pages
[i
], order
);
1348 pages
[i
+ j
] = pages
[i
] + j
;
1351 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
, coherent_flag
);
1353 count
-= 1 << order
;
1360 __free_pages(pages
[i
], 0);
1365 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1366 size_t size
, unsigned long attrs
)
1368 int count
= size
>> PAGE_SHIFT
;
1371 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
) {
1372 dma_release_from_contiguous(dev
, pages
[0], count
);
1374 for (i
= 0; i
< count
; i
++)
1376 __free_pages(pages
[i
], 0);
1384 * Create a CPU mapping for a specified pages
1387 __iommu_alloc_remap(struct page
**pages
, size_t size
, gfp_t gfp
, pgprot_t prot
,
1390 return dma_common_pages_remap(pages
, size
,
1391 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
, prot
, caller
);
1395 * Create a mapping in device IO address space for specified pages
1398 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
,
1399 unsigned long attrs
)
1401 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1402 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1403 dma_addr_t dma_addr
, iova
;
1406 dma_addr
= __alloc_iova(mapping
, size
);
1407 if (dma_addr
== DMA_MAPPING_ERROR
)
1411 for (i
= 0; i
< count
; ) {
1414 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1415 phys_addr_t phys
= page_to_phys(pages
[i
]);
1416 unsigned int len
, j
;
1418 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1419 if (page_to_pfn(pages
[j
]) != next_pfn
)
1422 len
= (j
- i
) << PAGE_SHIFT
;
1423 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1424 __dma_info_to_prot(DMA_BIDIRECTIONAL
, attrs
));
1432 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1433 __free_iova(mapping
, dma_addr
, size
);
1434 return DMA_MAPPING_ERROR
;
1437 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1439 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1442 * add optional in-page offset from iova to size and align
1443 * result to page size
1445 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1448 iommu_unmap(mapping
->domain
, iova
, size
);
1449 __free_iova(mapping
, iova
, size
);
1453 static struct page
**__atomic_get_pages(void *addr
)
1458 phys
= gen_pool_virt_to_phys(atomic_pool
, (unsigned long)addr
);
1459 page
= phys_to_page(phys
);
1461 return (struct page
**)page
;
1464 static struct page
**__iommu_get_pages(void *cpu_addr
, unsigned long attrs
)
1466 struct vm_struct
*area
;
1468 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1469 return __atomic_get_pages(cpu_addr
);
1471 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1474 area
= find_vm_area(cpu_addr
);
1475 if (area
&& (area
->flags
& VM_ARM_DMA_CONSISTENT
))
1480 static void *__iommu_alloc_simple(struct device
*dev
, size_t size
, gfp_t gfp
,
1481 dma_addr_t
*handle
, int coherent_flag
,
1482 unsigned long attrs
)
1487 if (coherent_flag
== COHERENT
)
1488 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
1490 addr
= __alloc_from_pool(size
, &page
);
1494 *handle
= __iommu_create_mapping(dev
, &page
, size
, attrs
);
1495 if (*handle
== DMA_MAPPING_ERROR
)
1501 __free_from_pool(addr
, size
);
1505 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1506 dma_addr_t handle
, size_t size
, int coherent_flag
)
1508 __iommu_remove_mapping(dev
, handle
, size
);
1509 if (coherent_flag
== COHERENT
)
1510 __dma_free_buffer(virt_to_page(cpu_addr
), size
);
1512 __free_from_pool(cpu_addr
, size
);
1515 static void *__arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1516 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
,
1519 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1520 struct page
**pages
;
1523 *handle
= DMA_MAPPING_ERROR
;
1524 size
= PAGE_ALIGN(size
);
1526 if (coherent_flag
== COHERENT
|| !gfpflags_allow_blocking(gfp
))
1527 return __iommu_alloc_simple(dev
, size
, gfp
, handle
,
1528 coherent_flag
, attrs
);
1531 * Following is a work-around (a.k.a. hack) to prevent pages
1532 * with __GFP_COMP being passed to split_page() which cannot
1533 * handle them. The real problem is that this flag probably
1534 * should be 0 on ARM as it is not supported on this
1535 * platform; see CONFIG_HUGETLBFS.
1537 gfp
&= ~(__GFP_COMP
);
1539 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
, coherent_flag
);
1543 *handle
= __iommu_create_mapping(dev
, pages
, size
, attrs
);
1544 if (*handle
== DMA_MAPPING_ERROR
)
1547 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1550 addr
= __iommu_alloc_remap(pages
, size
, gfp
, prot
,
1551 __builtin_return_address(0));
1558 __iommu_remove_mapping(dev
, *handle
, size
);
1560 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1564 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1565 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1567 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, NORMAL
);
1570 static void *arm_coherent_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1571 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1573 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, COHERENT
);
1576 static int __arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1577 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1578 unsigned long attrs
)
1580 unsigned long uaddr
= vma
->vm_start
;
1581 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1582 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1583 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1584 unsigned long off
= vma
->vm_pgoff
;
1589 if (off
>= nr_pages
|| (usize
>> PAGE_SHIFT
) > nr_pages
- off
)
1595 int ret
= vm_insert_page(vma
, uaddr
, *pages
++);
1597 pr_err("Remapping memory failed: %d\n", ret
);
1602 } while (usize
> 0);
1606 static int arm_iommu_mmap_attrs(struct device
*dev
,
1607 struct vm_area_struct
*vma
, void *cpu_addr
,
1608 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1610 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1612 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1615 static int arm_coherent_iommu_mmap_attrs(struct device
*dev
,
1616 struct vm_area_struct
*vma
, void *cpu_addr
,
1617 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1619 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1623 * free a page as defined by the above mapping.
1624 * Must not be called with IRQs disabled.
1626 void __arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1627 dma_addr_t handle
, unsigned long attrs
, int coherent_flag
)
1629 struct page
**pages
;
1630 size
= PAGE_ALIGN(size
);
1632 if (coherent_flag
== COHERENT
|| __in_atomic_pool(cpu_addr
, size
)) {
1633 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
, coherent_flag
);
1637 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1639 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1643 if ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0) {
1644 dma_common_free_remap(cpu_addr
, size
,
1645 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
1648 __iommu_remove_mapping(dev
, handle
, size
);
1649 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1652 void arm_iommu_free_attrs(struct device
*dev
, size_t size
,
1653 void *cpu_addr
, dma_addr_t handle
, unsigned long attrs
)
1655 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, NORMAL
);
1658 void arm_coherent_iommu_free_attrs(struct device
*dev
, size_t size
,
1659 void *cpu_addr
, dma_addr_t handle
, unsigned long attrs
)
1661 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, COHERENT
);
1664 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1665 void *cpu_addr
, dma_addr_t dma_addr
,
1666 size_t size
, unsigned long attrs
)
1668 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1669 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1674 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1679 * Map a part of the scatter-gather list into contiguous io address space
1681 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1682 size_t size
, dma_addr_t
*handle
,
1683 enum dma_data_direction dir
, unsigned long attrs
,
1686 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1687 dma_addr_t iova
, iova_base
;
1690 struct scatterlist
*s
;
1693 size
= PAGE_ALIGN(size
);
1694 *handle
= DMA_MAPPING_ERROR
;
1696 iova_base
= iova
= __alloc_iova(mapping
, size
);
1697 if (iova
== DMA_MAPPING_ERROR
)
1700 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1701 phys_addr_t phys
= page_to_phys(sg_page(s
));
1702 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1704 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1705 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1707 prot
= __dma_info_to_prot(dir
, attrs
);
1709 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1712 count
+= len
>> PAGE_SHIFT
;
1715 *handle
= iova_base
;
1719 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1720 __free_iova(mapping
, iova_base
, size
);
1724 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1725 enum dma_data_direction dir
, unsigned long attrs
,
1728 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1730 unsigned int offset
= s
->offset
;
1731 unsigned int size
= s
->offset
+ s
->length
;
1732 unsigned int max
= dma_get_max_seg_size(dev
);
1734 for (i
= 1; i
< nents
; i
++) {
1737 s
->dma_address
= DMA_MAPPING_ERROR
;
1740 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1741 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1742 dir
, attrs
, is_coherent
) < 0)
1745 dma
->dma_address
+= offset
;
1746 dma
->dma_length
= size
- offset
;
1748 size
= offset
= s
->offset
;
1755 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1759 dma
->dma_address
+= offset
;
1760 dma
->dma_length
= size
- offset
;
1765 for_each_sg(sg
, s
, count
, i
)
1766 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1771 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1772 * @dev: valid struct device pointer
1773 * @sg: list of buffers
1774 * @nents: number of buffers to map
1775 * @dir: DMA transfer direction
1777 * Map a set of i/o coherent buffers described by scatterlist in streaming
1778 * mode for DMA. The scatter gather list elements are merged together (if
1779 * possible) and tagged with the appropriate dma address and length. They are
1780 * obtained via sg_dma_{address,length}.
1782 int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1783 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1785 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1789 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790 * @dev: valid struct device pointer
1791 * @sg: list of buffers
1792 * @nents: number of buffers to map
1793 * @dir: DMA transfer direction
1795 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1796 * The scatter gather list elements are merged together (if possible) and
1797 * tagged with the appropriate dma address and length. They are obtained via
1798 * sg_dma_{address,length}.
1800 int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1801 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1803 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1806 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1807 int nents
, enum dma_data_direction dir
,
1808 unsigned long attrs
, bool is_coherent
)
1810 struct scatterlist
*s
;
1813 for_each_sg(sg
, s
, nents
, i
) {
1815 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1817 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1818 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1824 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1825 * @dev: valid struct device pointer
1826 * @sg: list of buffers
1827 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1828 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1830 * Unmap a set of streaming mode DMA translations. Again, CPU access
1831 * rules concerning calls here are the same as for dma_unmap_single().
1833 void arm_coherent_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1834 int nents
, enum dma_data_direction dir
,
1835 unsigned long attrs
)
1837 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1841 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1842 * @dev: valid struct device pointer
1843 * @sg: list of buffers
1844 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1847 * Unmap a set of streaming mode DMA translations. Again, CPU access
1848 * rules concerning calls here are the same as for dma_unmap_single().
1850 void arm_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1851 enum dma_data_direction dir
,
1852 unsigned long attrs
)
1854 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1858 * arm_iommu_sync_sg_for_cpu
1859 * @dev: valid struct device pointer
1860 * @sg: list of buffers
1861 * @nents: number of buffers to map (returned from dma_map_sg)
1862 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1864 void arm_iommu_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1865 int nents
, enum dma_data_direction dir
)
1867 struct scatterlist
*s
;
1870 for_each_sg(sg
, s
, nents
, i
)
1871 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1876 * arm_iommu_sync_sg_for_device
1877 * @dev: valid struct device pointer
1878 * @sg: list of buffers
1879 * @nents: number of buffers to map (returned from dma_map_sg)
1880 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1882 void arm_iommu_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1883 int nents
, enum dma_data_direction dir
)
1885 struct scatterlist
*s
;
1888 for_each_sg(sg
, s
, nents
, i
)
1889 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1894 * arm_coherent_iommu_map_page
1895 * @dev: valid struct device pointer
1896 * @page: page that buffer resides in
1897 * @offset: offset into page for start of buffer
1898 * @size: size of buffer to map
1899 * @dir: DMA transfer direction
1901 * Coherent IOMMU aware version of arm_dma_map_page()
1903 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1904 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1905 unsigned long attrs
)
1907 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1908 dma_addr_t dma_addr
;
1909 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1911 dma_addr
= __alloc_iova(mapping
, len
);
1912 if (dma_addr
== DMA_MAPPING_ERROR
)
1915 prot
= __dma_info_to_prot(dir
, attrs
);
1917 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1921 return dma_addr
+ offset
;
1923 __free_iova(mapping
, dma_addr
, len
);
1924 return DMA_MAPPING_ERROR
;
1928 * arm_iommu_map_page
1929 * @dev: valid struct device pointer
1930 * @page: page that buffer resides in
1931 * @offset: offset into page for start of buffer
1932 * @size: size of buffer to map
1933 * @dir: DMA transfer direction
1935 * IOMMU aware version of arm_dma_map_page()
1937 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1938 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1939 unsigned long attrs
)
1941 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1942 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1944 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1948 * arm_coherent_iommu_unmap_page
1949 * @dev: valid struct device pointer
1950 * @handle: DMA address of buffer
1951 * @size: size of buffer (same as passed to dma_map_page)
1952 * @dir: DMA transfer direction (same as passed to dma_map_page)
1954 * Coherent IOMMU aware version of arm_dma_unmap_page()
1956 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1957 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1959 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1960 dma_addr_t iova
= handle
& PAGE_MASK
;
1961 int offset
= handle
& ~PAGE_MASK
;
1962 int len
= PAGE_ALIGN(size
+ offset
);
1967 iommu_unmap(mapping
->domain
, iova
, len
);
1968 __free_iova(mapping
, iova
, len
);
1972 * arm_iommu_unmap_page
1973 * @dev: valid struct device pointer
1974 * @handle: DMA address of buffer
1975 * @size: size of buffer (same as passed to dma_map_page)
1976 * @dir: DMA transfer direction (same as passed to dma_map_page)
1978 * IOMMU aware version of arm_dma_unmap_page()
1980 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1981 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1983 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1984 dma_addr_t iova
= handle
& PAGE_MASK
;
1985 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1986 int offset
= handle
& ~PAGE_MASK
;
1987 int len
= PAGE_ALIGN(size
+ offset
);
1992 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1993 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1995 iommu_unmap(mapping
->domain
, iova
, len
);
1996 __free_iova(mapping
, iova
, len
);
2000 * arm_iommu_map_resource - map a device resource for DMA
2001 * @dev: valid struct device pointer
2002 * @phys_addr: physical address of resource
2003 * @size: size of resource to map
2004 * @dir: DMA transfer direction
2006 static dma_addr_t
arm_iommu_map_resource(struct device
*dev
,
2007 phys_addr_t phys_addr
, size_t size
,
2008 enum dma_data_direction dir
, unsigned long attrs
)
2010 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2011 dma_addr_t dma_addr
;
2013 phys_addr_t addr
= phys_addr
& PAGE_MASK
;
2014 unsigned int offset
= phys_addr
& ~PAGE_MASK
;
2015 size_t len
= PAGE_ALIGN(size
+ offset
);
2017 dma_addr
= __alloc_iova(mapping
, len
);
2018 if (dma_addr
== DMA_MAPPING_ERROR
)
2021 prot
= __dma_info_to_prot(dir
, attrs
) | IOMMU_MMIO
;
2023 ret
= iommu_map(mapping
->domain
, dma_addr
, addr
, len
, prot
);
2027 return dma_addr
+ offset
;
2029 __free_iova(mapping
, dma_addr
, len
);
2030 return DMA_MAPPING_ERROR
;
2034 * arm_iommu_unmap_resource - unmap a device DMA resource
2035 * @dev: valid struct device pointer
2036 * @dma_handle: DMA address to resource
2037 * @size: size of resource to map
2038 * @dir: DMA transfer direction
2040 static void arm_iommu_unmap_resource(struct device
*dev
, dma_addr_t dma_handle
,
2041 size_t size
, enum dma_data_direction dir
,
2042 unsigned long attrs
)
2044 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2045 dma_addr_t iova
= dma_handle
& PAGE_MASK
;
2046 unsigned int offset
= dma_handle
& ~PAGE_MASK
;
2047 size_t len
= PAGE_ALIGN(size
+ offset
);
2052 iommu_unmap(mapping
->domain
, iova
, len
);
2053 __free_iova(mapping
, iova
, len
);
2056 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
2057 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
2059 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2060 dma_addr_t iova
= handle
& PAGE_MASK
;
2061 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
2062 unsigned int offset
= handle
& ~PAGE_MASK
;
2067 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
2070 static void arm_iommu_sync_single_for_device(struct device
*dev
,
2071 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
2073 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2074 dma_addr_t iova
= handle
& PAGE_MASK
;
2075 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
2076 unsigned int offset
= handle
& ~PAGE_MASK
;
2081 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
2084 const struct dma_map_ops iommu_ops
= {
2085 .alloc
= arm_iommu_alloc_attrs
,
2086 .free
= arm_iommu_free_attrs
,
2087 .mmap
= arm_iommu_mmap_attrs
,
2088 .get_sgtable
= arm_iommu_get_sgtable
,
2090 .map_page
= arm_iommu_map_page
,
2091 .unmap_page
= arm_iommu_unmap_page
,
2092 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
2093 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
2095 .map_sg
= arm_iommu_map_sg
,
2096 .unmap_sg
= arm_iommu_unmap_sg
,
2097 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
2098 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
2100 .map_resource
= arm_iommu_map_resource
,
2101 .unmap_resource
= arm_iommu_unmap_resource
,
2103 .dma_supported
= arm_dma_supported
,
2106 const struct dma_map_ops iommu_coherent_ops
= {
2107 .alloc
= arm_coherent_iommu_alloc_attrs
,
2108 .free
= arm_coherent_iommu_free_attrs
,
2109 .mmap
= arm_coherent_iommu_mmap_attrs
,
2110 .get_sgtable
= arm_iommu_get_sgtable
,
2112 .map_page
= arm_coherent_iommu_map_page
,
2113 .unmap_page
= arm_coherent_iommu_unmap_page
,
2115 .map_sg
= arm_coherent_iommu_map_sg
,
2116 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
2118 .map_resource
= arm_iommu_map_resource
,
2119 .unmap_resource
= arm_iommu_unmap_resource
,
2121 .dma_supported
= arm_dma_supported
,
2125 * arm_iommu_create_mapping
2126 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2127 * @base: start address of the valid IO address space
2128 * @size: maximum size of the valid IO address space
2130 * Creates a mapping structure which holds information about used/unused
2131 * IO address ranges, which is required to perform memory allocation and
2132 * mapping with IOMMU aware functions.
2134 * The client device need to be attached to the mapping with
2135 * arm_iommu_attach_device function.
2137 struct dma_iommu_mapping
*
2138 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, u64 size
)
2140 unsigned int bits
= size
>> PAGE_SHIFT
;
2141 unsigned int bitmap_size
= BITS_TO_LONGS(bits
) * sizeof(long);
2142 struct dma_iommu_mapping
*mapping
;
2146 /* currently only 32-bit DMA address space is supported */
2147 if (size
> DMA_BIT_MASK(32) + 1)
2148 return ERR_PTR(-ERANGE
);
2151 return ERR_PTR(-EINVAL
);
2153 if (bitmap_size
> PAGE_SIZE
) {
2154 extensions
= bitmap_size
/ PAGE_SIZE
;
2155 bitmap_size
= PAGE_SIZE
;
2158 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
2162 mapping
->bitmap_size
= bitmap_size
;
2163 mapping
->bitmaps
= kcalloc(extensions
, sizeof(unsigned long *),
2165 if (!mapping
->bitmaps
)
2168 mapping
->bitmaps
[0] = kzalloc(bitmap_size
, GFP_KERNEL
);
2169 if (!mapping
->bitmaps
[0])
2172 mapping
->nr_bitmaps
= 1;
2173 mapping
->extensions
= extensions
;
2174 mapping
->base
= base
;
2175 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
2177 spin_lock_init(&mapping
->lock
);
2179 mapping
->domain
= iommu_domain_alloc(bus
);
2180 if (!mapping
->domain
)
2183 kref_init(&mapping
->kref
);
2186 kfree(mapping
->bitmaps
[0]);
2188 kfree(mapping
->bitmaps
);
2192 return ERR_PTR(err
);
2194 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
2196 static void release_iommu_mapping(struct kref
*kref
)
2199 struct dma_iommu_mapping
*mapping
=
2200 container_of(kref
, struct dma_iommu_mapping
, kref
);
2202 iommu_domain_free(mapping
->domain
);
2203 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++)
2204 kfree(mapping
->bitmaps
[i
]);
2205 kfree(mapping
->bitmaps
);
2209 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
)
2213 if (mapping
->nr_bitmaps
>= mapping
->extensions
)
2216 next_bitmap
= mapping
->nr_bitmaps
;
2217 mapping
->bitmaps
[next_bitmap
] = kzalloc(mapping
->bitmap_size
,
2219 if (!mapping
->bitmaps
[next_bitmap
])
2222 mapping
->nr_bitmaps
++;
2227 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
2230 kref_put(&mapping
->kref
, release_iommu_mapping
);
2232 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
2234 static int __arm_iommu_attach_device(struct device
*dev
,
2235 struct dma_iommu_mapping
*mapping
)
2239 err
= iommu_attach_device(mapping
->domain
, dev
);
2243 kref_get(&mapping
->kref
);
2244 to_dma_iommu_mapping(dev
) = mapping
;
2246 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
2251 * arm_iommu_attach_device
2252 * @dev: valid struct device pointer
2253 * @mapping: io address space mapping structure (returned from
2254 * arm_iommu_create_mapping)
2256 * Attaches specified io address space mapping to the provided device.
2257 * This replaces the dma operations (dma_map_ops pointer) with the
2258 * IOMMU aware version.
2260 * More than one client might be attached to the same io address space
2263 int arm_iommu_attach_device(struct device
*dev
,
2264 struct dma_iommu_mapping
*mapping
)
2268 err
= __arm_iommu_attach_device(dev
, mapping
);
2272 set_dma_ops(dev
, &iommu_ops
);
2275 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
2278 * arm_iommu_detach_device
2279 * @dev: valid struct device pointer
2281 * Detaches the provided device from a previously attached map.
2282 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2284 void arm_iommu_detach_device(struct device
*dev
)
2286 struct dma_iommu_mapping
*mapping
;
2288 mapping
= to_dma_iommu_mapping(dev
);
2290 dev_warn(dev
, "Not attached\n");
2294 iommu_detach_device(mapping
->domain
, dev
);
2295 kref_put(&mapping
->kref
, release_iommu_mapping
);
2296 to_dma_iommu_mapping(dev
) = NULL
;
2297 set_dma_ops(dev
, arm_get_dma_map_ops(dev
->archdata
.dma_coherent
));
2299 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
2301 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);
2303 static const struct dma_map_ops
*arm_get_iommu_dma_map_ops(bool coherent
)
2305 return coherent
? &iommu_coherent_ops
: &iommu_ops
;
2308 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2309 const struct iommu_ops
*iommu
)
2311 struct dma_iommu_mapping
*mapping
;
2316 mapping
= arm_iommu_create_mapping(dev
->bus
, dma_base
, size
);
2317 if (IS_ERR(mapping
)) {
2318 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2319 size
, dev_name(dev
));
2323 if (__arm_iommu_attach_device(dev
, mapping
)) {
2324 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2326 arm_iommu_release_mapping(mapping
);
2333 static void arm_teardown_iommu_dma_ops(struct device
*dev
)
2335 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2340 arm_iommu_detach_device(dev
);
2341 arm_iommu_release_mapping(mapping
);
2346 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2347 const struct iommu_ops
*iommu
)
2352 static void arm_teardown_iommu_dma_ops(struct device
*dev
) { }
2354 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2356 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2358 void arch_setup_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2359 const struct iommu_ops
*iommu
, bool coherent
)
2361 const struct dma_map_ops
*dma_ops
;
2363 dev
->archdata
.dma_coherent
= coherent
;
2366 * Don't override the dma_ops if they have already been set. Ideally
2367 * this should be the only location where dma_ops are set, remove this
2368 * check when all other callers of set_dma_ops will have disappeared.
2373 if (arm_setup_iommu_dma_ops(dev
, dma_base
, size
, iommu
))
2374 dma_ops
= arm_get_iommu_dma_map_ops(coherent
);
2376 dma_ops
= arm_get_dma_map_ops(coherent
);
2378 set_dma_ops(dev
, dma_ops
);
2381 if (xen_initial_domain()) {
2382 dev
->archdata
.dev_dma_ops
= dev
->dma_ops
;
2383 dev
->dma_ops
= xen_dma_ops
;
2386 dev
->archdata
.dma_ops_setup
= true;
2389 void arch_teardown_dma_ops(struct device
*dev
)
2391 if (!dev
->archdata
.dma_ops_setup
)
2394 arm_teardown_iommu_dma_ops(dev
);
2395 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2396 set_dma_ops(dev
, NULL
);