fs/adfs: move append_filetype_suffix() into adfs_object_fixup()
[linux-2.6/linux-2.6-arm.git] / net / ipv4 / tcp_input.c
blob731d3045b50a0fb9a89c887a154db9a3da8c7ddd
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
121 icsk->icsk_clean_acked = cad;
122 static_branch_inc(&clean_acked_data_enabled);
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 static_branch_dec(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 unsigned int len)
137 static bool __once __read_mostly;
139 if (!__once) {
140 struct net_device *dev;
142 __once = true;
144 rcu_read_lock();
145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 if (!dev || len >= dev->mtu)
147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 dev ? dev->name : "Unknown driver");
149 rcu_read_unlock();
153 /* Adapt the MSS value used to make delayed ack decision to the
154 * real world.
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
158 struct inet_connection_sock *icsk = inet_csk(sk);
159 const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 unsigned int len;
162 icsk->icsk_ack.last_seg_size = 0;
164 /* skb->len may jitter because of SACKs, even if peer
165 * sends good full-sized frames.
167 len = skb_shinfo(skb)->gso_size ? : skb->len;
168 if (len >= icsk->icsk_ack.rcv_mss) {
169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 tcp_sk(sk)->advmss);
171 /* Account for possibly-removed options */
172 if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 MAX_TCP_OPTION_SPACE))
174 tcp_gro_dev_warn(sk, skb, len);
175 } else {
176 /* Otherwise, we make more careful check taking into account,
177 * that SACKs block is variable.
179 * "len" is invariant segment length, including TCP header.
181 len += skb->data - skb_transport_header(skb);
182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 /* If PSH is not set, packet should be
184 * full sized, provided peer TCP is not badly broken.
185 * This observation (if it is correct 8)) allows
186 * to handle super-low mtu links fairly.
188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 /* Subtract also invariant (if peer is RFC compliant),
191 * tcp header plus fixed timestamp option length.
192 * Resulting "len" is MSS free of SACK jitter.
194 len -= tcp_sk(sk)->tcp_header_len;
195 icsk->icsk_ack.last_seg_size = len;
196 if (len == lss) {
197 icsk->icsk_ack.rcv_mss = len;
198 return;
201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
209 struct inet_connection_sock *icsk = inet_csk(sk);
210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
212 if (quickacks == 0)
213 quickacks = 2;
214 quickacks = min(quickacks, max_quickacks);
215 if (quickacks > icsk->icsk_ack.quick)
216 icsk->icsk_ack.quick = quickacks;
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
221 struct inet_connection_sock *icsk = inet_csk(sk);
223 tcp_incr_quickack(sk, max_quickacks);
224 inet_csk_exit_pingpong_mode(sk);
225 icsk->icsk_ack.ato = TCP_ATO_MIN;
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
229 /* Send ACKs quickly, if "quick" count is not exhausted
230 * and the session is not interactive.
233 static bool tcp_in_quickack_mode(struct sock *sk)
235 const struct inet_connection_sock *icsk = inet_csk(sk);
236 const struct dst_entry *dst = __sk_dst_get(sk);
238 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
244 if (tp->ecn_flags & TCP_ECN_OK)
245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
250 if (tcp_hdr(skb)->cwr) {
251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
253 /* If the sender is telling us it has entered CWR, then its
254 * cwnd may be very low (even just 1 packet), so we should ACK
255 * immediately.
257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
268 struct tcp_sock *tp = tcp_sk(sk);
270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
271 case INET_ECN_NOT_ECT:
272 /* Funny extension: if ECT is not set on a segment,
273 * and we already seen ECT on a previous segment,
274 * it is probably a retransmit.
276 if (tp->ecn_flags & TCP_ECN_SEEN)
277 tcp_enter_quickack_mode(sk, 2);
278 break;
279 case INET_ECN_CE:
280 if (tcp_ca_needs_ecn(sk))
281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 /* Better not delay acks, sender can have a very low cwnd */
285 tcp_enter_quickack_mode(sk, 2);
286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
288 tp->ecn_flags |= TCP_ECN_SEEN;
289 break;
290 default:
291 if (tcp_ca_needs_ecn(sk))
292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
293 tp->ecn_flags |= TCP_ECN_SEEN;
294 break;
298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 __tcp_ecn_check_ce(sk, skb);
304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
307 tp->ecn_flags &= ~TCP_ECN_OK;
310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
313 tp->ecn_flags &= ~TCP_ECN_OK;
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
319 return true;
320 return false;
323 /* Buffer size and advertised window tuning.
325 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
328 static void tcp_sndbuf_expand(struct sock *sk)
330 const struct tcp_sock *tp = tcp_sk(sk);
331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
332 int sndmem, per_mss;
333 u32 nr_segs;
335 /* Worst case is non GSO/TSO : each frame consumes one skb
336 * and skb->head is kmalloced using power of two area of memory
338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 MAX_TCP_HEADER +
340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
342 per_mss = roundup_pow_of_two(per_mss) +
343 SKB_DATA_ALIGN(sizeof(struct sk_buff));
345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
348 /* Fast Recovery (RFC 5681 3.2) :
349 * Cubic needs 1.7 factor, rounded to 2 to include
350 * extra cushion (application might react slowly to EPOLLOUT)
352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 sndmem *= nr_segs * per_mss;
355 if (sk->sk_sndbuf < sndmem)
356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
361 * All tcp_full_space() is split to two parts: "network" buffer, allocated
362 * forward and advertised in receiver window (tp->rcv_wnd) and
363 * "application buffer", required to isolate scheduling/application
364 * latencies from network.
365 * window_clamp is maximal advertised window. It can be less than
366 * tcp_full_space(), in this case tcp_full_space() - window_clamp
367 * is reserved for "application" buffer. The less window_clamp is
368 * the smoother our behaviour from viewpoint of network, but the lower
369 * throughput and the higher sensitivity of the connection to losses. 8)
371 * rcv_ssthresh is more strict window_clamp used at "slow start"
372 * phase to predict further behaviour of this connection.
373 * It is used for two goals:
374 * - to enforce header prediction at sender, even when application
375 * requires some significant "application buffer". It is check #1.
376 * - to prevent pruning of receive queue because of misprediction
377 * of receiver window. Check #2.
379 * The scheme does not work when sender sends good segments opening
380 * window and then starts to feed us spaghetti. But it should work
381 * in common situations. Otherwise, we have to rely on queue collapsing.
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
387 struct tcp_sock *tp = tcp_sk(sk);
388 /* Optimize this! */
389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
392 while (tp->rcv_ssthresh <= window) {
393 if (truesize <= skb->len)
394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
396 truesize >>= 1;
397 window >>= 1;
399 return 0;
402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
404 struct tcp_sock *tp = tcp_sk(sk);
405 int room;
407 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
409 /* Check #1 */
410 if (room > 0 && !tcp_under_memory_pressure(sk)) {
411 int incr;
413 /* Check #2. Increase window, if skb with such overhead
414 * will fit to rcvbuf in future.
416 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
417 incr = 2 * tp->advmss;
418 else
419 incr = __tcp_grow_window(sk, skb);
421 if (incr) {
422 incr = max_t(int, incr, 2 * skb->len);
423 tp->rcv_ssthresh += min(room, incr);
424 inet_csk(sk)->icsk_ack.quick |= 1;
429 /* 3. Try to fixup all. It is made immediately after connection enters
430 * established state.
432 void tcp_init_buffer_space(struct sock *sk)
434 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
439 tcp_sndbuf_expand(sk);
441 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
442 tcp_mstamp_refresh(tp);
443 tp->rcvq_space.time = tp->tcp_mstamp;
444 tp->rcvq_space.seq = tp->copied_seq;
446 maxwin = tcp_full_space(sk);
448 if (tp->window_clamp >= maxwin) {
449 tp->window_clamp = maxwin;
451 if (tcp_app_win && maxwin > 4 * tp->advmss)
452 tp->window_clamp = max(maxwin -
453 (maxwin >> tcp_app_win),
454 4 * tp->advmss);
457 /* Force reservation of one segment. */
458 if (tcp_app_win &&
459 tp->window_clamp > 2 * tp->advmss &&
460 tp->window_clamp + tp->advmss > maxwin)
461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 tp->snd_cwnd_stamp = tcp_jiffies32;
467 /* 4. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock *sk)
470 struct tcp_sock *tp = tcp_sk(sk);
471 struct inet_connection_sock *icsk = inet_csk(sk);
472 struct net *net = sock_net(sk);
474 icsk->icsk_ack.quick = 0;
476 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 !tcp_under_memory_pressure(sk) &&
479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 net->ipv4.sysctl_tcp_rmem[2]);
483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 void tcp_initialize_rcv_mss(struct sock *sk)
496 const struct tcp_sock *tp = tcp_sk(sk);
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 hint = min(hint, tp->rcv_wnd / 2);
500 hint = min(hint, TCP_MSS_DEFAULT);
501 hint = max(hint, TCP_MIN_MSS);
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 /* Receiver "autotuning" code.
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
516 * is pending.
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 long m = sample;
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
529 * Also, since we are only going for a minimum in the
530 * non-timestamp case, we do not smooth things out
531 * else with timestamps disabled convergence takes too
532 * long.
534 if (!win_dep) {
535 m -= (new_sample >> 3);
536 new_sample += m;
537 } else {
538 m <<= 3;
539 if (m < new_sample)
540 new_sample = m;
542 } else {
543 /* No previous measure. */
544 new_sample = m << 3;
547 tp->rcv_rtt_est.rtt_us = new_sample;
550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
552 u32 delta_us;
554 if (tp->rcv_rtt_est.time == 0)
555 goto new_measure;
556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 return;
558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
559 if (!delta_us)
560 delta_us = 1;
561 tcp_rcv_rtt_update(tp, delta_us, 1);
563 new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tp->tcp_mstamp;
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
571 struct tcp_sock *tp = tcp_sk(sk);
573 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
574 return;
575 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
577 if (TCP_SKB_CB(skb)->end_seq -
578 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
579 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
580 u32 delta_us;
582 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
583 if (!delta)
584 delta = 1;
585 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
586 tcp_rcv_rtt_update(tp, delta_us, 0);
592 * This function should be called every time data is copied to user space.
593 * It calculates the appropriate TCP receive buffer space.
595 void tcp_rcv_space_adjust(struct sock *sk)
597 struct tcp_sock *tp = tcp_sk(sk);
598 u32 copied;
599 int time;
601 trace_tcp_rcv_space_adjust(sk);
603 tcp_mstamp_refresh(tp);
604 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
605 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
606 return;
608 /* Number of bytes copied to user in last RTT */
609 copied = tp->copied_seq - tp->rcvq_space.seq;
610 if (copied <= tp->rcvq_space.space)
611 goto new_measure;
613 /* A bit of theory :
614 * copied = bytes received in previous RTT, our base window
615 * To cope with packet losses, we need a 2x factor
616 * To cope with slow start, and sender growing its cwin by 100 %
617 * every RTT, we need a 4x factor, because the ACK we are sending
618 * now is for the next RTT, not the current one :
619 * <prev RTT . ><current RTT .. ><next RTT .... >
622 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
623 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
624 int rcvmem, rcvbuf;
625 u64 rcvwin, grow;
627 /* minimal window to cope with packet losses, assuming
628 * steady state. Add some cushion because of small variations.
630 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
632 /* Accommodate for sender rate increase (eg. slow start) */
633 grow = rcvwin * (copied - tp->rcvq_space.space);
634 do_div(grow, tp->rcvq_space.space);
635 rcvwin += (grow << 1);
637 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
638 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
639 rcvmem += 128;
641 do_div(rcvwin, tp->advmss);
642 rcvbuf = min_t(u64, rcvwin * rcvmem,
643 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
644 if (rcvbuf > sk->sk_rcvbuf) {
645 sk->sk_rcvbuf = rcvbuf;
647 /* Make the window clamp follow along. */
648 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
651 tp->rcvq_space.space = copied;
653 new_measure:
654 tp->rcvq_space.seq = tp->copied_seq;
655 tp->rcvq_space.time = tp->tcp_mstamp;
658 /* There is something which you must keep in mind when you analyze the
659 * behavior of the tp->ato delayed ack timeout interval. When a
660 * connection starts up, we want to ack as quickly as possible. The
661 * problem is that "good" TCP's do slow start at the beginning of data
662 * transmission. The means that until we send the first few ACK's the
663 * sender will sit on his end and only queue most of his data, because
664 * he can only send snd_cwnd unacked packets at any given time. For
665 * each ACK we send, he increments snd_cwnd and transmits more of his
666 * queue. -DaveM
668 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
670 struct tcp_sock *tp = tcp_sk(sk);
671 struct inet_connection_sock *icsk = inet_csk(sk);
672 u32 now;
674 inet_csk_schedule_ack(sk);
676 tcp_measure_rcv_mss(sk, skb);
678 tcp_rcv_rtt_measure(tp);
680 now = tcp_jiffies32;
682 if (!icsk->icsk_ack.ato) {
683 /* The _first_ data packet received, initialize
684 * delayed ACK engine.
686 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
687 icsk->icsk_ack.ato = TCP_ATO_MIN;
688 } else {
689 int m = now - icsk->icsk_ack.lrcvtime;
691 if (m <= TCP_ATO_MIN / 2) {
692 /* The fastest case is the first. */
693 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
694 } else if (m < icsk->icsk_ack.ato) {
695 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
696 if (icsk->icsk_ack.ato > icsk->icsk_rto)
697 icsk->icsk_ack.ato = icsk->icsk_rto;
698 } else if (m > icsk->icsk_rto) {
699 /* Too long gap. Apparently sender failed to
700 * restart window, so that we send ACKs quickly.
702 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
703 sk_mem_reclaim(sk);
706 icsk->icsk_ack.lrcvtime = now;
708 tcp_ecn_check_ce(sk, skb);
710 if (skb->len >= 128)
711 tcp_grow_window(sk, skb);
714 /* Called to compute a smoothed rtt estimate. The data fed to this
715 * routine either comes from timestamps, or from segments that were
716 * known _not_ to have been retransmitted [see Karn/Partridge
717 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
718 * piece by Van Jacobson.
719 * NOTE: the next three routines used to be one big routine.
720 * To save cycles in the RFC 1323 implementation it was better to break
721 * it up into three procedures. -- erics
723 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
725 struct tcp_sock *tp = tcp_sk(sk);
726 long m = mrtt_us; /* RTT */
727 u32 srtt = tp->srtt_us;
729 /* The following amusing code comes from Jacobson's
730 * article in SIGCOMM '88. Note that rtt and mdev
731 * are scaled versions of rtt and mean deviation.
732 * This is designed to be as fast as possible
733 * m stands for "measurement".
735 * On a 1990 paper the rto value is changed to:
736 * RTO = rtt + 4 * mdev
738 * Funny. This algorithm seems to be very broken.
739 * These formulae increase RTO, when it should be decreased, increase
740 * too slowly, when it should be increased quickly, decrease too quickly
741 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
742 * does not matter how to _calculate_ it. Seems, it was trap
743 * that VJ failed to avoid. 8)
745 if (srtt != 0) {
746 m -= (srtt >> 3); /* m is now error in rtt est */
747 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
748 if (m < 0) {
749 m = -m; /* m is now abs(error) */
750 m -= (tp->mdev_us >> 2); /* similar update on mdev */
751 /* This is similar to one of Eifel findings.
752 * Eifel blocks mdev updates when rtt decreases.
753 * This solution is a bit different: we use finer gain
754 * for mdev in this case (alpha*beta).
755 * Like Eifel it also prevents growth of rto,
756 * but also it limits too fast rto decreases,
757 * happening in pure Eifel.
759 if (m > 0)
760 m >>= 3;
761 } else {
762 m -= (tp->mdev_us >> 2); /* similar update on mdev */
764 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
765 if (tp->mdev_us > tp->mdev_max_us) {
766 tp->mdev_max_us = tp->mdev_us;
767 if (tp->mdev_max_us > tp->rttvar_us)
768 tp->rttvar_us = tp->mdev_max_us;
770 if (after(tp->snd_una, tp->rtt_seq)) {
771 if (tp->mdev_max_us < tp->rttvar_us)
772 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
773 tp->rtt_seq = tp->snd_nxt;
774 tp->mdev_max_us = tcp_rto_min_us(sk);
776 } else {
777 /* no previous measure. */
778 srtt = m << 3; /* take the measured time to be rtt */
779 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
780 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
781 tp->mdev_max_us = tp->rttvar_us;
782 tp->rtt_seq = tp->snd_nxt;
784 tp->srtt_us = max(1U, srtt);
787 static void tcp_update_pacing_rate(struct sock *sk)
789 const struct tcp_sock *tp = tcp_sk(sk);
790 u64 rate;
792 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
793 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
795 /* current rate is (cwnd * mss) / srtt
796 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
797 * In Congestion Avoidance phase, set it to 120 % the current rate.
799 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
800 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
801 * end of slow start and should slow down.
803 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
804 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
805 else
806 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
808 rate *= max(tp->snd_cwnd, tp->packets_out);
810 if (likely(tp->srtt_us))
811 do_div(rate, tp->srtt_us);
813 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
814 * without any lock. We want to make sure compiler wont store
815 * intermediate values in this location.
817 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
818 sk->sk_max_pacing_rate));
821 /* Calculate rto without backoff. This is the second half of Van Jacobson's
822 * routine referred to above.
824 static void tcp_set_rto(struct sock *sk)
826 const struct tcp_sock *tp = tcp_sk(sk);
827 /* Old crap is replaced with new one. 8)
829 * More seriously:
830 * 1. If rtt variance happened to be less 50msec, it is hallucination.
831 * It cannot be less due to utterly erratic ACK generation made
832 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
833 * to do with delayed acks, because at cwnd>2 true delack timeout
834 * is invisible. Actually, Linux-2.4 also generates erratic
835 * ACKs in some circumstances.
837 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
839 /* 2. Fixups made earlier cannot be right.
840 * If we do not estimate RTO correctly without them,
841 * all the algo is pure shit and should be replaced
842 * with correct one. It is exactly, which we pretend to do.
845 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
846 * guarantees that rto is higher.
848 tcp_bound_rto(sk);
851 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
853 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
855 if (!cwnd)
856 cwnd = TCP_INIT_CWND;
857 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock *tp)
863 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
864 tp->rack.dsack_seen = 1;
865 tp->dsack_dups++;
868 /* It's reordering when higher sequence was delivered (i.e. sacked) before
869 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
870 * distance is approximated in full-mss packet distance ("reordering").
872 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
873 const int ts)
875 struct tcp_sock *tp = tcp_sk(sk);
876 const u32 mss = tp->mss_cache;
877 u32 fack, metric;
879 fack = tcp_highest_sack_seq(tp);
880 if (!before(low_seq, fack))
881 return;
883 metric = fack - low_seq;
884 if ((metric > tp->reordering * mss) && mss) {
885 #if FASTRETRANS_DEBUG > 1
886 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
887 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
888 tp->reordering,
890 tp->sacked_out,
891 tp->undo_marker ? tp->undo_retrans : 0);
892 #endif
893 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
894 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
897 /* This exciting event is worth to be remembered. 8) */
898 tp->reord_seen++;
899 NET_INC_STATS(sock_net(sk),
900 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
903 /* This must be called before lost_out is incremented */
904 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
906 if (!tp->retransmit_skb_hint ||
907 before(TCP_SKB_CB(skb)->seq,
908 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
909 tp->retransmit_skb_hint = skb;
912 /* Sum the number of packets on the wire we have marked as lost.
913 * There are two cases we care about here:
914 * a) Packet hasn't been marked lost (nor retransmitted),
915 * and this is the first loss.
916 * b) Packet has been marked both lost and retransmitted,
917 * and this means we think it was lost again.
919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
921 __u8 sacked = TCP_SKB_CB(skb)->sacked;
923 if (!(sacked & TCPCB_LOST) ||
924 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
925 tp->lost += tcp_skb_pcount(skb);
928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
930 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
931 tcp_verify_retransmit_hint(tp, skb);
933 tp->lost_out += tcp_skb_pcount(skb);
934 tcp_sum_lost(tp, skb);
935 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
941 tcp_verify_retransmit_hint(tp, skb);
943 tcp_sum_lost(tp, skb);
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tp->lost_out += tcp_skb_pcount(skb);
946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 /* This procedure tags the retransmission queue when SACKs arrive.
952 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953 * Packets in queue with these bits set are counted in variables
954 * sacked_out, retrans_out and lost_out, correspondingly.
956 * Valid combinations are:
957 * Tag InFlight Description
958 * 0 1 - orig segment is in flight.
959 * S 0 - nothing flies, orig reached receiver.
960 * L 0 - nothing flies, orig lost by net.
961 * R 2 - both orig and retransmit are in flight.
962 * L|R 1 - orig is lost, retransmit is in flight.
963 * S|R 1 - orig reached receiver, retrans is still in flight.
964 * (L|S|R is logically valid, it could occur when L|R is sacked,
965 * but it is equivalent to plain S and code short-curcuits it to S.
966 * L|S is logically invalid, it would mean -1 packet in flight 8))
968 * These 6 states form finite state machine, controlled by the following events:
969 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
971 * 3. Loss detection event of two flavors:
972 * A. Scoreboard estimator decided the packet is lost.
973 * A'. Reno "three dupacks" marks head of queue lost.
974 * B. SACK arrives sacking SND.NXT at the moment, when the
975 * segment was retransmitted.
976 * 4. D-SACK added new rule: D-SACK changes any tag to S.
978 * It is pleasant to note, that state diagram turns out to be commutative,
979 * so that we are allowed not to be bothered by order of our actions,
980 * when multiple events arrive simultaneously. (see the function below).
982 * Reordering detection.
983 * --------------------
984 * Reordering metric is maximal distance, which a packet can be displaced
985 * in packet stream. With SACKs we can estimate it:
987 * 1. SACK fills old hole and the corresponding segment was not
988 * ever retransmitted -> reordering. Alas, we cannot use it
989 * when segment was retransmitted.
990 * 2. The last flaw is solved with D-SACK. D-SACK arrives
991 * for retransmitted and already SACKed segment -> reordering..
992 * Both of these heuristics are not used in Loss state, when we cannot
993 * account for retransmits accurately.
995 * SACK block validation.
996 * ----------------------
998 * SACK block range validation checks that the received SACK block fits to
999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000 * Note that SND.UNA is not included to the range though being valid because
1001 * it means that the receiver is rather inconsistent with itself reporting
1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003 * perfectly valid, however, in light of RFC2018 which explicitly states
1004 * that "SACK block MUST reflect the newest segment. Even if the newest
1005 * segment is going to be discarded ...", not that it looks very clever
1006 * in case of head skb. Due to potentional receiver driven attacks, we
1007 * choose to avoid immediate execution of a walk in write queue due to
1008 * reneging and defer head skb's loss recovery to standard loss recovery
1009 * procedure that will eventually trigger (nothing forbids us doing this).
1011 * Implements also blockage to start_seq wrap-around. Problem lies in the
1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013 * there's no guarantee that it will be before snd_nxt (n). The problem
1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015 * wrap (s_w):
1017 * <- outs wnd -> <- wrapzone ->
1018 * u e n u_w e_w s n_w
1019 * | | | | | | |
1020 * |<------------+------+----- TCP seqno space --------------+---------->|
1021 * ...-- <2^31 ->| |<--------...
1022 * ...---- >2^31 ------>| |<--------...
1024 * Current code wouldn't be vulnerable but it's better still to discard such
1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028 * equal to the ideal case (infinite seqno space without wrap caused issues).
1030 * With D-SACK the lower bound is extended to cover sequence space below
1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1032 * again, D-SACK block must not to go across snd_una (for the same reason as
1033 * for the normal SACK blocks, explained above). But there all simplicity
1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035 * fully below undo_marker they do not affect behavior in anyway and can
1036 * therefore be safely ignored. In rare cases (which are more or less
1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038 * fragmentation and packet reordering past skb's retransmission. To consider
1039 * them correctly, the acceptable range must be extended even more though
1040 * the exact amount is rather hard to quantify. However, tp->max_window can
1041 * be used as an exaggerated estimate.
1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 u32 start_seq, u32 end_seq)
1046 /* Too far in future, or reversed (interpretation is ambiguous) */
1047 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1048 return false;
1050 /* Nasty start_seq wrap-around check (see comments above) */
1051 if (!before(start_seq, tp->snd_nxt))
1052 return false;
1054 /* In outstanding window? ...This is valid exit for D-SACKs too.
1055 * start_seq == snd_una is non-sensical (see comments above)
1057 if (after(start_seq, tp->snd_una))
1058 return true;
1060 if (!is_dsack || !tp->undo_marker)
1061 return false;
1063 /* ...Then it's D-SACK, and must reside below snd_una completely */
1064 if (after(end_seq, tp->snd_una))
1065 return false;
1067 if (!before(start_seq, tp->undo_marker))
1068 return true;
1070 /* Too old */
1071 if (!after(end_seq, tp->undo_marker))
1072 return false;
1074 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 * start_seq < undo_marker and end_seq >= undo_marker.
1077 return !before(start_seq, end_seq - tp->max_window);
1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 struct tcp_sack_block_wire *sp, int num_sacks,
1082 u32 prior_snd_una)
1084 struct tcp_sock *tp = tcp_sk(sk);
1085 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1087 bool dup_sack = false;
1089 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1090 dup_sack = true;
1091 tcp_dsack_seen(tp);
1092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1093 } else if (num_sacks > 1) {
1094 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1097 if (!after(end_seq_0, end_seq_1) &&
1098 !before(start_seq_0, start_seq_1)) {
1099 dup_sack = true;
1100 tcp_dsack_seen(tp);
1101 NET_INC_STATS(sock_net(sk),
1102 LINUX_MIB_TCPDSACKOFORECV);
1106 /* D-SACK for already forgotten data... Do dumb counting. */
1107 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1108 !after(end_seq_0, prior_snd_una) &&
1109 after(end_seq_0, tp->undo_marker))
1110 tp->undo_retrans--;
1112 return dup_sack;
1115 struct tcp_sacktag_state {
1116 u32 reord;
1117 /* Timestamps for earliest and latest never-retransmitted segment
1118 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 * but congestion control should still get an accurate delay signal.
1121 u64 first_sackt;
1122 u64 last_sackt;
1123 struct rate_sample *rate;
1124 int flag;
1125 unsigned int mss_now;
1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129 * the incoming SACK may not exactly match but we can find smaller MSS
1130 * aligned portion of it that matches. Therefore we might need to fragment
1131 * which may fail and creates some hassle (caller must handle error case
1132 * returns).
1134 * FIXME: this could be merged to shift decision code
1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1137 u32 start_seq, u32 end_seq)
1139 int err;
1140 bool in_sack;
1141 unsigned int pkt_len;
1142 unsigned int mss;
1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1145 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1147 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1148 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1149 mss = tcp_skb_mss(skb);
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1152 if (!in_sack) {
1153 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1154 if (pkt_len < mss)
1155 pkt_len = mss;
1156 } else {
1157 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1158 if (pkt_len < mss)
1159 return -EINVAL;
1162 /* Round if necessary so that SACKs cover only full MSSes
1163 * and/or the remaining small portion (if present)
1165 if (pkt_len > mss) {
1166 unsigned int new_len = (pkt_len / mss) * mss;
1167 if (!in_sack && new_len < pkt_len)
1168 new_len += mss;
1169 pkt_len = new_len;
1172 if (pkt_len >= skb->len && !in_sack)
1173 return 0;
1175 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1176 pkt_len, mss, GFP_ATOMIC);
1177 if (err < 0)
1178 return err;
1181 return in_sack;
1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1185 static u8 tcp_sacktag_one(struct sock *sk,
1186 struct tcp_sacktag_state *state, u8 sacked,
1187 u32 start_seq, u32 end_seq,
1188 int dup_sack, int pcount,
1189 u64 xmit_time)
1191 struct tcp_sock *tp = tcp_sk(sk);
1193 /* Account D-SACK for retransmitted packet. */
1194 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1195 if (tp->undo_marker && tp->undo_retrans > 0 &&
1196 after(end_seq, tp->undo_marker))
1197 tp->undo_retrans--;
1198 if ((sacked & TCPCB_SACKED_ACKED) &&
1199 before(start_seq, state->reord))
1200 state->reord = start_seq;
1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 if (!after(end_seq, tp->snd_una))
1205 return sacked;
1207 if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1210 if (sacked & TCPCB_SACKED_RETRANS) {
1211 /* If the segment is not tagged as lost,
1212 * we do not clear RETRANS, believing
1213 * that retransmission is still in flight.
1215 if (sacked & TCPCB_LOST) {
1216 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1217 tp->lost_out -= pcount;
1218 tp->retrans_out -= pcount;
1220 } else {
1221 if (!(sacked & TCPCB_RETRANS)) {
1222 /* New sack for not retransmitted frame,
1223 * which was in hole. It is reordering.
1225 if (before(start_seq,
1226 tcp_highest_sack_seq(tp)) &&
1227 before(start_seq, state->reord))
1228 state->reord = start_seq;
1230 if (!after(end_seq, tp->high_seq))
1231 state->flag |= FLAG_ORIG_SACK_ACKED;
1232 if (state->first_sackt == 0)
1233 state->first_sackt = xmit_time;
1234 state->last_sackt = xmit_time;
1237 if (sacked & TCPCB_LOST) {
1238 sacked &= ~TCPCB_LOST;
1239 tp->lost_out -= pcount;
1243 sacked |= TCPCB_SACKED_ACKED;
1244 state->flag |= FLAG_DATA_SACKED;
1245 tp->sacked_out += pcount;
1246 tp->delivered += pcount; /* Out-of-order packets delivered */
1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1249 if (tp->lost_skb_hint &&
1250 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1251 tp->lost_cnt_hint += pcount;
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 sacked &= ~TCPCB_SACKED_RETRANS;
1260 tp->retrans_out -= pcount;
1263 return sacked;
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1270 struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
1275 struct tcp_sock *tp = tcp_sk(sk);
1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1279 BUG_ON(!pcount);
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 start_seq, end_seq, dup_sack, pcount,
1289 tcp_skb_timestamp_us(skb));
1290 tcp_rate_skb_delivered(sk, skb, state->rate);
1292 if (skb == tp->lost_skb_hint)
1293 tp->lost_cnt_hint += pcount;
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1298 tcp_skb_pcount_add(prev, pcount);
1299 BUG_ON(tcp_skb_pcount(skb) < pcount);
1300 tcp_skb_pcount_add(skb, -pcount);
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1307 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1308 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 if (tcp_skb_pcount(skb) <= 1)
1312 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1314 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1317 if (skb->len > 0) {
1318 BUG_ON(!tcp_skb_pcount(skb));
1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1320 return false;
1323 /* Whole SKB was eaten :-) */
1325 if (skb == tp->retransmit_skb_hint)
1326 tp->retransmit_skb_hint = prev;
1327 if (skb == tp->lost_skb_hint) {
1328 tp->lost_skb_hint = prev;
1329 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1332 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1333 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1334 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1335 TCP_SKB_CB(prev)->end_seq++;
1337 if (skb == tcp_highest_sack(sk))
1338 tcp_advance_highest_sack(sk, skb);
1340 tcp_skb_collapse_tstamp(prev, skb);
1341 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1342 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1344 tcp_rtx_queue_unlink_and_free(skb, sk);
1346 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1348 return true;
1351 /* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 struct tcp_sacktag_state *state,
1370 u32 start_seq, u32 end_seq,
1371 bool dup_sack)
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1380 /* Normally R but no L won't result in plain S */
1381 if (!dup_sack &&
1382 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1383 goto fallback;
1384 if (!skb_can_shift(skb))
1385 goto fallback;
1386 /* This frame is about to be dropped (was ACKed). */
1387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1388 goto fallback;
1390 /* Can only happen with delayed DSACK + discard craziness */
1391 prev = skb_rb_prev(skb);
1392 if (!prev)
1393 goto fallback;
1395 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1396 goto fallback;
1398 if (!tcp_skb_can_collapse_to(prev))
1399 goto fallback;
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
1407 mss = tcp_skb_seglen(skb);
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1412 if (mss != tcp_skb_seglen(prev))
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1437 goto fallback;
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1448 mss = tcp_skb_mss(skb);
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1453 if (mss != tcp_skb_seglen(prev))
1454 goto fallback;
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
1472 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1473 goto out;
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1478 skb = skb_rb_next(prev);
1479 if (!skb)
1480 goto out;
1482 if (!skb_can_shift(skb) ||
1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 (mss != tcp_skb_seglen(skb)))
1485 goto out;
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
1490 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1491 len, mss, 0);
1494 out:
1495 return prev;
1497 noop:
1498 return skb;
1500 fallback:
1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 return NULL;
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
1507 struct tcp_sacktag_state *state,
1508 u32 start_seq, u32 end_seq,
1509 bool dup_sack_in)
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1514 skb_rbtree_walk_from(skb) {
1515 int in_sack = 0;
1516 bool dup_sack = dup_sack_in;
1518 /* queue is in-order => we can short-circuit the walk early */
1519 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1520 break;
1522 if (next_dup &&
1523 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1524 in_sack = tcp_match_skb_to_sack(sk, skb,
1525 next_dup->start_seq,
1526 next_dup->end_seq);
1527 if (in_sack > 0)
1528 dup_sack = true;
1531 /* skb reference here is a bit tricky to get right, since
1532 * shifting can eat and free both this skb and the next,
1533 * so not even _safe variant of the loop is enough.
1535 if (in_sack <= 0) {
1536 tmp = tcp_shift_skb_data(sk, skb, state,
1537 start_seq, end_seq, dup_sack);
1538 if (tmp) {
1539 if (tmp != skb) {
1540 skb = tmp;
1541 continue;
1544 in_sack = 0;
1545 } else {
1546 in_sack = tcp_match_skb_to_sack(sk, skb,
1547 start_seq,
1548 end_seq);
1552 if (unlikely(in_sack < 0))
1553 break;
1555 if (in_sack) {
1556 TCP_SKB_CB(skb)->sacked =
1557 tcp_sacktag_one(sk,
1558 state,
1559 TCP_SKB_CB(skb)->sacked,
1560 TCP_SKB_CB(skb)->seq,
1561 TCP_SKB_CB(skb)->end_seq,
1562 dup_sack,
1563 tcp_skb_pcount(skb),
1564 tcp_skb_timestamp_us(skb));
1565 tcp_rate_skb_delivered(sk, skb, state->rate);
1566 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1567 list_del_init(&skb->tcp_tsorted_anchor);
1569 if (!before(TCP_SKB_CB(skb)->seq,
1570 tcp_highest_sack_seq(tp)))
1571 tcp_advance_highest_sack(sk, skb);
1574 return skb;
1577 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1579 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1580 struct sk_buff *skb;
1582 while (*p) {
1583 parent = *p;
1584 skb = rb_to_skb(parent);
1585 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1586 p = &parent->rb_left;
1587 continue;
1589 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1590 p = &parent->rb_right;
1591 continue;
1593 return skb;
1595 return NULL;
1598 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1599 u32 skip_to_seq)
1601 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1602 return skb;
1604 return tcp_sacktag_bsearch(sk, skip_to_seq);
1607 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1608 struct sock *sk,
1609 struct tcp_sack_block *next_dup,
1610 struct tcp_sacktag_state *state,
1611 u32 skip_to_seq)
1613 if (!next_dup)
1614 return skb;
1616 if (before(next_dup->start_seq, skip_to_seq)) {
1617 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1618 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1619 next_dup->start_seq, next_dup->end_seq,
1623 return skb;
1626 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1628 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1631 static int
1632 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1633 u32 prior_snd_una, struct tcp_sacktag_state *state)
1635 struct tcp_sock *tp = tcp_sk(sk);
1636 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1637 TCP_SKB_CB(ack_skb)->sacked);
1638 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1639 struct tcp_sack_block sp[TCP_NUM_SACKS];
1640 struct tcp_sack_block *cache;
1641 struct sk_buff *skb;
1642 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1643 int used_sacks;
1644 bool found_dup_sack = false;
1645 int i, j;
1646 int first_sack_index;
1648 state->flag = 0;
1649 state->reord = tp->snd_nxt;
1651 if (!tp->sacked_out)
1652 tcp_highest_sack_reset(sk);
1654 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1655 num_sacks, prior_snd_una);
1656 if (found_dup_sack) {
1657 state->flag |= FLAG_DSACKING_ACK;
1658 tp->delivered++; /* A spurious retransmission is delivered */
1661 /* Eliminate too old ACKs, but take into
1662 * account more or less fresh ones, they can
1663 * contain valid SACK info.
1665 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1666 return 0;
1668 if (!tp->packets_out)
1669 goto out;
1671 used_sacks = 0;
1672 first_sack_index = 0;
1673 for (i = 0; i < num_sacks; i++) {
1674 bool dup_sack = !i && found_dup_sack;
1676 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1677 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1679 if (!tcp_is_sackblock_valid(tp, dup_sack,
1680 sp[used_sacks].start_seq,
1681 sp[used_sacks].end_seq)) {
1682 int mib_idx;
1684 if (dup_sack) {
1685 if (!tp->undo_marker)
1686 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1687 else
1688 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1689 } else {
1690 /* Don't count olds caused by ACK reordering */
1691 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1692 !after(sp[used_sacks].end_seq, tp->snd_una))
1693 continue;
1694 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1697 NET_INC_STATS(sock_net(sk), mib_idx);
1698 if (i == 0)
1699 first_sack_index = -1;
1700 continue;
1703 /* Ignore very old stuff early */
1704 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1705 continue;
1707 used_sacks++;
1710 /* order SACK blocks to allow in order walk of the retrans queue */
1711 for (i = used_sacks - 1; i > 0; i--) {
1712 for (j = 0; j < i; j++) {
1713 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1714 swap(sp[j], sp[j + 1]);
1716 /* Track where the first SACK block goes to */
1717 if (j == first_sack_index)
1718 first_sack_index = j + 1;
1723 state->mss_now = tcp_current_mss(sk);
1724 skb = NULL;
1725 i = 0;
1727 if (!tp->sacked_out) {
1728 /* It's already past, so skip checking against it */
1729 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1730 } else {
1731 cache = tp->recv_sack_cache;
1732 /* Skip empty blocks in at head of the cache */
1733 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1734 !cache->end_seq)
1735 cache++;
1738 while (i < used_sacks) {
1739 u32 start_seq = sp[i].start_seq;
1740 u32 end_seq = sp[i].end_seq;
1741 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1742 struct tcp_sack_block *next_dup = NULL;
1744 if (found_dup_sack && ((i + 1) == first_sack_index))
1745 next_dup = &sp[i + 1];
1747 /* Skip too early cached blocks */
1748 while (tcp_sack_cache_ok(tp, cache) &&
1749 !before(start_seq, cache->end_seq))
1750 cache++;
1752 /* Can skip some work by looking recv_sack_cache? */
1753 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1754 after(end_seq, cache->start_seq)) {
1756 /* Head todo? */
1757 if (before(start_seq, cache->start_seq)) {
1758 skb = tcp_sacktag_skip(skb, sk, start_seq);
1759 skb = tcp_sacktag_walk(skb, sk, next_dup,
1760 state,
1761 start_seq,
1762 cache->start_seq,
1763 dup_sack);
1766 /* Rest of the block already fully processed? */
1767 if (!after(end_seq, cache->end_seq))
1768 goto advance_sp;
1770 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1771 state,
1772 cache->end_seq);
1774 /* ...tail remains todo... */
1775 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1776 /* ...but better entrypoint exists! */
1777 skb = tcp_highest_sack(sk);
1778 if (!skb)
1779 break;
1780 cache++;
1781 goto walk;
1784 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1785 /* Check overlap against next cached too (past this one already) */
1786 cache++;
1787 continue;
1790 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1791 skb = tcp_highest_sack(sk);
1792 if (!skb)
1793 break;
1795 skb = tcp_sacktag_skip(skb, sk, start_seq);
1797 walk:
1798 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1799 start_seq, end_seq, dup_sack);
1801 advance_sp:
1802 i++;
1805 /* Clear the head of the cache sack blocks so we can skip it next time */
1806 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1807 tp->recv_sack_cache[i].start_seq = 0;
1808 tp->recv_sack_cache[i].end_seq = 0;
1810 for (j = 0; j < used_sacks; j++)
1811 tp->recv_sack_cache[i++] = sp[j];
1813 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1814 tcp_check_sack_reordering(sk, state->reord, 0);
1816 tcp_verify_left_out(tp);
1817 out:
1819 #if FASTRETRANS_DEBUG > 0
1820 WARN_ON((int)tp->sacked_out < 0);
1821 WARN_ON((int)tp->lost_out < 0);
1822 WARN_ON((int)tp->retrans_out < 0);
1823 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1824 #endif
1825 return state->flag;
1828 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1829 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1831 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1833 u32 holes;
1835 holes = max(tp->lost_out, 1U);
1836 holes = min(holes, tp->packets_out);
1838 if ((tp->sacked_out + holes) > tp->packets_out) {
1839 tp->sacked_out = tp->packets_out - holes;
1840 return true;
1842 return false;
1845 /* If we receive more dupacks than we expected counting segments
1846 * in assumption of absent reordering, interpret this as reordering.
1847 * The only another reason could be bug in receiver TCP.
1849 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1851 struct tcp_sock *tp = tcp_sk(sk);
1853 if (!tcp_limit_reno_sacked(tp))
1854 return;
1856 tp->reordering = min_t(u32, tp->packets_out + addend,
1857 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1858 tp->reord_seen++;
1859 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1862 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1864 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1866 if (num_dupack) {
1867 struct tcp_sock *tp = tcp_sk(sk);
1868 u32 prior_sacked = tp->sacked_out;
1869 s32 delivered;
1871 tp->sacked_out += num_dupack;
1872 tcp_check_reno_reordering(sk, 0);
1873 delivered = tp->sacked_out - prior_sacked;
1874 if (delivered > 0)
1875 tp->delivered += delivered;
1876 tcp_verify_left_out(tp);
1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1884 struct tcp_sock *tp = tcp_sk(sk);
1886 if (acked > 0) {
1887 /* One ACK acked hole. The rest eat duplicate ACKs. */
1888 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1889 if (acked - 1 >= tp->sacked_out)
1890 tp->sacked_out = 0;
1891 else
1892 tp->sacked_out -= acked - 1;
1894 tcp_check_reno_reordering(sk, acked);
1895 tcp_verify_left_out(tp);
1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1900 tp->sacked_out = 0;
1903 void tcp_clear_retrans(struct tcp_sock *tp)
1905 tp->retrans_out = 0;
1906 tp->lost_out = 0;
1907 tp->undo_marker = 0;
1908 tp->undo_retrans = -1;
1909 tp->sacked_out = 0;
1912 static inline void tcp_init_undo(struct tcp_sock *tp)
1914 tp->undo_marker = tp->snd_una;
1915 /* Retransmission still in flight may cause DSACKs later. */
1916 tp->undo_retrans = tp->retrans_out ? : -1;
1919 static bool tcp_is_rack(const struct sock *sk)
1921 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1924 /* If we detect SACK reneging, forget all SACK information
1925 * and reset tags completely, otherwise preserve SACKs. If receiver
1926 * dropped its ofo queue, we will know this due to reneging detection.
1928 static void tcp_timeout_mark_lost(struct sock *sk)
1930 struct tcp_sock *tp = tcp_sk(sk);
1931 struct sk_buff *skb, *head;
1932 bool is_reneg; /* is receiver reneging on SACKs? */
1934 head = tcp_rtx_queue_head(sk);
1935 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1936 if (is_reneg) {
1937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1938 tp->sacked_out = 0;
1939 /* Mark SACK reneging until we recover from this loss event. */
1940 tp->is_sack_reneg = 1;
1941 } else if (tcp_is_reno(tp)) {
1942 tcp_reset_reno_sack(tp);
1945 skb = head;
1946 skb_rbtree_walk_from(skb) {
1947 if (is_reneg)
1948 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1949 else if (tcp_is_rack(sk) && skb != head &&
1950 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1951 continue; /* Don't mark recently sent ones lost yet */
1952 tcp_mark_skb_lost(sk, skb);
1954 tcp_verify_left_out(tp);
1955 tcp_clear_all_retrans_hints(tp);
1958 /* Enter Loss state. */
1959 void tcp_enter_loss(struct sock *sk)
1961 const struct inet_connection_sock *icsk = inet_csk(sk);
1962 struct tcp_sock *tp = tcp_sk(sk);
1963 struct net *net = sock_net(sk);
1964 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1966 tcp_timeout_mark_lost(sk);
1968 /* Reduce ssthresh if it has not yet been made inside this window. */
1969 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1970 !after(tp->high_seq, tp->snd_una) ||
1971 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1972 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1973 tp->prior_cwnd = tp->snd_cwnd;
1974 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1975 tcp_ca_event(sk, CA_EVENT_LOSS);
1976 tcp_init_undo(tp);
1978 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
1979 tp->snd_cwnd_cnt = 0;
1980 tp->snd_cwnd_stamp = tcp_jiffies32;
1982 /* Timeout in disordered state after receiving substantial DUPACKs
1983 * suggests that the degree of reordering is over-estimated.
1985 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1986 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1987 tp->reordering = min_t(unsigned int, tp->reordering,
1988 net->ipv4.sysctl_tcp_reordering);
1989 tcp_set_ca_state(sk, TCP_CA_Loss);
1990 tp->high_seq = tp->snd_nxt;
1991 tcp_ecn_queue_cwr(tp);
1993 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1994 * loss recovery is underway except recurring timeout(s) on
1995 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1997 tp->frto = net->ipv4.sysctl_tcp_frto &&
1998 (new_recovery || icsk->icsk_retransmits) &&
1999 !inet_csk(sk)->icsk_mtup.probe_size;
2002 /* If ACK arrived pointing to a remembered SACK, it means that our
2003 * remembered SACKs do not reflect real state of receiver i.e.
2004 * receiver _host_ is heavily congested (or buggy).
2006 * To avoid big spurious retransmission bursts due to transient SACK
2007 * scoreboard oddities that look like reneging, we give the receiver a
2008 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2009 * restore sanity to the SACK scoreboard. If the apparent reneging
2010 * persists until this RTO then we'll clear the SACK scoreboard.
2012 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2014 if (flag & FLAG_SACK_RENEGING) {
2015 struct tcp_sock *tp = tcp_sk(sk);
2016 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2017 msecs_to_jiffies(10));
2019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2020 delay, TCP_RTO_MAX);
2021 return true;
2023 return false;
2026 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2027 * counter when SACK is enabled (without SACK, sacked_out is used for
2028 * that purpose).
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2035 * ignore them.
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2039 return tp->sacked_out + 1;
2042 /* Linux NewReno/SACK/ECN state machine.
2043 * --------------------------------------
2045 * "Open" Normal state, no dubious events, fast path.
2046 * "Disorder" In all the respects it is "Open",
2047 * but requires a bit more attention. It is entered when
2048 * we see some SACKs or dupacks. It is split of "Open"
2049 * mainly to move some processing from fast path to slow one.
2050 * "CWR" CWND was reduced due to some Congestion Notification event.
2051 * It can be ECN, ICMP source quench, local device congestion.
2052 * "Recovery" CWND was reduced, we are fast-retransmitting.
2053 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2055 * tcp_fastretrans_alert() is entered:
2056 * - each incoming ACK, if state is not "Open"
2057 * - when arrived ACK is unusual, namely:
2058 * * SACK
2059 * * Duplicate ACK.
2060 * * ECN ECE.
2062 * Counting packets in flight is pretty simple.
2064 * in_flight = packets_out - left_out + retrans_out
2066 * packets_out is SND.NXT-SND.UNA counted in packets.
2068 * retrans_out is number of retransmitted segments.
2070 * left_out is number of segments left network, but not ACKed yet.
2072 * left_out = sacked_out + lost_out
2074 * sacked_out: Packets, which arrived to receiver out of order
2075 * and hence not ACKed. With SACKs this number is simply
2076 * amount of SACKed data. Even without SACKs
2077 * it is easy to give pretty reliable estimate of this number,
2078 * counting duplicate ACKs.
2080 * lost_out: Packets lost by network. TCP has no explicit
2081 * "loss notification" feedback from network (for now).
2082 * It means that this number can be only _guessed_.
2083 * Actually, it is the heuristics to predict lossage that
2084 * distinguishes different algorithms.
2086 * F.e. after RTO, when all the queue is considered as lost,
2087 * lost_out = packets_out and in_flight = retrans_out.
2089 * Essentially, we have now a few algorithms detecting
2090 * lost packets.
2092 * If the receiver supports SACK:
2094 * RFC6675/3517: It is the conventional algorithm. A packet is
2095 * considered lost if the number of higher sequence packets
2096 * SACKed is greater than or equal the DUPACK thoreshold
2097 * (reordering). This is implemented in tcp_mark_head_lost and
2098 * tcp_update_scoreboard.
2100 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2101 * (2017-) that checks timing instead of counting DUPACKs.
2102 * Essentially a packet is considered lost if it's not S/ACKed
2103 * after RTT + reordering_window, where both metrics are
2104 * dynamically measured and adjusted. This is implemented in
2105 * tcp_rack_mark_lost.
2107 * If the receiver does not support SACK:
2109 * NewReno (RFC6582): in Recovery we assume that one segment
2110 * is lost (classic Reno). While we are in Recovery and
2111 * a partial ACK arrives, we assume that one more packet
2112 * is lost (NewReno). This heuristics are the same in NewReno
2113 * and SACK.
2115 * Really tricky (and requiring careful tuning) part of algorithm
2116 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2117 * The first determines the moment _when_ we should reduce CWND and,
2118 * hence, slow down forward transmission. In fact, it determines the moment
2119 * when we decide that hole is caused by loss, rather than by a reorder.
2121 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2122 * holes, caused by lost packets.
2124 * And the most logically complicated part of algorithm is undo
2125 * heuristics. We detect false retransmits due to both too early
2126 * fast retransmit (reordering) and underestimated RTO, analyzing
2127 * timestamps and D-SACKs. When we detect that some segments were
2128 * retransmitted by mistake and CWND reduction was wrong, we undo
2129 * window reduction and abort recovery phase. This logic is hidden
2130 * inside several functions named tcp_try_undo_<something>.
2133 /* This function decides, when we should leave Disordered state
2134 * and enter Recovery phase, reducing congestion window.
2136 * Main question: may we further continue forward transmission
2137 * with the same cwnd?
2139 static bool tcp_time_to_recover(struct sock *sk, int flag)
2141 struct tcp_sock *tp = tcp_sk(sk);
2143 /* Trick#1: The loss is proven. */
2144 if (tp->lost_out)
2145 return true;
2147 /* Not-A-Trick#2 : Classic rule... */
2148 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2149 return true;
2151 return false;
2154 /* Detect loss in event "A" above by marking head of queue up as lost.
2155 * For non-SACK(Reno) senders, the first "packets" number of segments
2156 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2157 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2158 * the maximum SACKed segments to pass before reaching this limit.
2160 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2162 struct tcp_sock *tp = tcp_sk(sk);
2163 struct sk_buff *skb;
2164 int cnt, oldcnt, lost;
2165 unsigned int mss;
2166 /* Use SACK to deduce losses of new sequences sent during recovery */
2167 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2169 WARN_ON(packets > tp->packets_out);
2170 skb = tp->lost_skb_hint;
2171 if (skb) {
2172 /* Head already handled? */
2173 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2174 return;
2175 cnt = tp->lost_cnt_hint;
2176 } else {
2177 skb = tcp_rtx_queue_head(sk);
2178 cnt = 0;
2181 skb_rbtree_walk_from(skb) {
2182 /* TODO: do this better */
2183 /* this is not the most efficient way to do this... */
2184 tp->lost_skb_hint = skb;
2185 tp->lost_cnt_hint = cnt;
2187 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2188 break;
2190 oldcnt = cnt;
2191 if (tcp_is_reno(tp) ||
2192 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2193 cnt += tcp_skb_pcount(skb);
2195 if (cnt > packets) {
2196 if (tcp_is_sack(tp) ||
2197 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2198 (oldcnt >= packets))
2199 break;
2201 mss = tcp_skb_mss(skb);
2202 /* If needed, chop off the prefix to mark as lost. */
2203 lost = (packets - oldcnt) * mss;
2204 if (lost < skb->len &&
2205 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2206 lost, mss, GFP_ATOMIC) < 0)
2207 break;
2208 cnt = packets;
2211 tcp_skb_mark_lost(tp, skb);
2213 if (mark_head)
2214 break;
2216 tcp_verify_left_out(tp);
2219 /* Account newly detected lost packet(s) */
2221 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2223 struct tcp_sock *tp = tcp_sk(sk);
2225 if (tcp_is_sack(tp)) {
2226 int sacked_upto = tp->sacked_out - tp->reordering;
2227 if (sacked_upto >= 0)
2228 tcp_mark_head_lost(sk, sacked_upto, 0);
2229 else if (fast_rexmit)
2230 tcp_mark_head_lost(sk, 1, 1);
2234 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2236 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2237 before(tp->rx_opt.rcv_tsecr, when);
2240 /* skb is spurious retransmitted if the returned timestamp echo
2241 * reply is prior to the skb transmission time
2243 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2244 const struct sk_buff *skb)
2246 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2247 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2250 /* Nothing was retransmitted or returned timestamp is less
2251 * than timestamp of the first retransmission.
2253 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2255 return !tp->retrans_stamp ||
2256 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2259 /* Undo procedures. */
2261 /* We can clear retrans_stamp when there are no retransmissions in the
2262 * window. It would seem that it is trivially available for us in
2263 * tp->retrans_out, however, that kind of assumptions doesn't consider
2264 * what will happen if errors occur when sending retransmission for the
2265 * second time. ...It could the that such segment has only
2266 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2267 * the head skb is enough except for some reneging corner cases that
2268 * are not worth the effort.
2270 * Main reason for all this complexity is the fact that connection dying
2271 * time now depends on the validity of the retrans_stamp, in particular,
2272 * that successive retransmissions of a segment must not advance
2273 * retrans_stamp under any conditions.
2275 static bool tcp_any_retrans_done(const struct sock *sk)
2277 const struct tcp_sock *tp = tcp_sk(sk);
2278 struct sk_buff *skb;
2280 if (tp->retrans_out)
2281 return true;
2283 skb = tcp_rtx_queue_head(sk);
2284 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2285 return true;
2287 return false;
2290 static void DBGUNDO(struct sock *sk, const char *msg)
2292 #if FASTRETRANS_DEBUG > 1
2293 struct tcp_sock *tp = tcp_sk(sk);
2294 struct inet_sock *inet = inet_sk(sk);
2296 if (sk->sk_family == AF_INET) {
2297 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2298 msg,
2299 &inet->inet_daddr, ntohs(inet->inet_dport),
2300 tp->snd_cwnd, tcp_left_out(tp),
2301 tp->snd_ssthresh, tp->prior_ssthresh,
2302 tp->packets_out);
2304 #if IS_ENABLED(CONFIG_IPV6)
2305 else if (sk->sk_family == AF_INET6) {
2306 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2307 msg,
2308 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2309 tp->snd_cwnd, tcp_left_out(tp),
2310 tp->snd_ssthresh, tp->prior_ssthresh,
2311 tp->packets_out);
2313 #endif
2314 #endif
2317 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2319 struct tcp_sock *tp = tcp_sk(sk);
2321 if (unmark_loss) {
2322 struct sk_buff *skb;
2324 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2325 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2327 tp->lost_out = 0;
2328 tcp_clear_all_retrans_hints(tp);
2331 if (tp->prior_ssthresh) {
2332 const struct inet_connection_sock *icsk = inet_csk(sk);
2334 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2336 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2337 tp->snd_ssthresh = tp->prior_ssthresh;
2338 tcp_ecn_withdraw_cwr(tp);
2341 tp->snd_cwnd_stamp = tcp_jiffies32;
2342 tp->undo_marker = 0;
2343 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2346 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2348 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2351 /* People celebrate: "We love our President!" */
2352 static bool tcp_try_undo_recovery(struct sock *sk)
2354 struct tcp_sock *tp = tcp_sk(sk);
2356 if (tcp_may_undo(tp)) {
2357 int mib_idx;
2359 /* Happy end! We did not retransmit anything
2360 * or our original transmission succeeded.
2362 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2363 tcp_undo_cwnd_reduction(sk, false);
2364 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2365 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2366 else
2367 mib_idx = LINUX_MIB_TCPFULLUNDO;
2369 NET_INC_STATS(sock_net(sk), mib_idx);
2370 } else if (tp->rack.reo_wnd_persist) {
2371 tp->rack.reo_wnd_persist--;
2373 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2374 /* Hold old state until something *above* high_seq
2375 * is ACKed. For Reno it is MUST to prevent false
2376 * fast retransmits (RFC2582). SACK TCP is safe. */
2377 if (!tcp_any_retrans_done(sk))
2378 tp->retrans_stamp = 0;
2379 return true;
2381 tcp_set_ca_state(sk, TCP_CA_Open);
2382 tp->is_sack_reneg = 0;
2383 return false;
2386 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2387 static bool tcp_try_undo_dsack(struct sock *sk)
2389 struct tcp_sock *tp = tcp_sk(sk);
2391 if (tp->undo_marker && !tp->undo_retrans) {
2392 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2393 tp->rack.reo_wnd_persist + 1);
2394 DBGUNDO(sk, "D-SACK");
2395 tcp_undo_cwnd_reduction(sk, false);
2396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2397 return true;
2399 return false;
2402 /* Undo during loss recovery after partial ACK or using F-RTO. */
2403 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2405 struct tcp_sock *tp = tcp_sk(sk);
2407 if (frto_undo || tcp_may_undo(tp)) {
2408 tcp_undo_cwnd_reduction(sk, true);
2410 DBGUNDO(sk, "partial loss");
2411 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2412 if (frto_undo)
2413 NET_INC_STATS(sock_net(sk),
2414 LINUX_MIB_TCPSPURIOUSRTOS);
2415 inet_csk(sk)->icsk_retransmits = 0;
2416 if (frto_undo || tcp_is_sack(tp)) {
2417 tcp_set_ca_state(sk, TCP_CA_Open);
2418 tp->is_sack_reneg = 0;
2420 return true;
2422 return false;
2425 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2426 * It computes the number of packets to send (sndcnt) based on packets newly
2427 * delivered:
2428 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2429 * cwnd reductions across a full RTT.
2430 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2431 * But when the retransmits are acked without further losses, PRR
2432 * slow starts cwnd up to ssthresh to speed up the recovery.
2434 static void tcp_init_cwnd_reduction(struct sock *sk)
2436 struct tcp_sock *tp = tcp_sk(sk);
2438 tp->high_seq = tp->snd_nxt;
2439 tp->tlp_high_seq = 0;
2440 tp->snd_cwnd_cnt = 0;
2441 tp->prior_cwnd = tp->snd_cwnd;
2442 tp->prr_delivered = 0;
2443 tp->prr_out = 0;
2444 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2445 tcp_ecn_queue_cwr(tp);
2448 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2450 struct tcp_sock *tp = tcp_sk(sk);
2451 int sndcnt = 0;
2452 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2454 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2455 return;
2457 tp->prr_delivered += newly_acked_sacked;
2458 if (delta < 0) {
2459 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2460 tp->prior_cwnd - 1;
2461 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2462 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2463 FLAG_RETRANS_DATA_ACKED) {
2464 sndcnt = min_t(int, delta,
2465 max_t(int, tp->prr_delivered - tp->prr_out,
2466 newly_acked_sacked) + 1);
2467 } else {
2468 sndcnt = min(delta, newly_acked_sacked);
2470 /* Force a fast retransmit upon entering fast recovery */
2471 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2472 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2475 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2477 struct tcp_sock *tp = tcp_sk(sk);
2479 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2480 return;
2482 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2483 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2484 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2485 tp->snd_cwnd = tp->snd_ssthresh;
2486 tp->snd_cwnd_stamp = tcp_jiffies32;
2488 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2491 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2492 void tcp_enter_cwr(struct sock *sk)
2494 struct tcp_sock *tp = tcp_sk(sk);
2496 tp->prior_ssthresh = 0;
2497 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2498 tp->undo_marker = 0;
2499 tcp_init_cwnd_reduction(sk);
2500 tcp_set_ca_state(sk, TCP_CA_CWR);
2503 EXPORT_SYMBOL(tcp_enter_cwr);
2505 static void tcp_try_keep_open(struct sock *sk)
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 int state = TCP_CA_Open;
2510 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2511 state = TCP_CA_Disorder;
2513 if (inet_csk(sk)->icsk_ca_state != state) {
2514 tcp_set_ca_state(sk, state);
2515 tp->high_seq = tp->snd_nxt;
2519 static void tcp_try_to_open(struct sock *sk, int flag)
2521 struct tcp_sock *tp = tcp_sk(sk);
2523 tcp_verify_left_out(tp);
2525 if (!tcp_any_retrans_done(sk))
2526 tp->retrans_stamp = 0;
2528 if (flag & FLAG_ECE)
2529 tcp_enter_cwr(sk);
2531 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2532 tcp_try_keep_open(sk);
2536 static void tcp_mtup_probe_failed(struct sock *sk)
2538 struct inet_connection_sock *icsk = inet_csk(sk);
2540 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2541 icsk->icsk_mtup.probe_size = 0;
2542 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2545 static void tcp_mtup_probe_success(struct sock *sk)
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 struct inet_connection_sock *icsk = inet_csk(sk);
2550 /* FIXME: breaks with very large cwnd */
2551 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2552 tp->snd_cwnd = tp->snd_cwnd *
2553 tcp_mss_to_mtu(sk, tp->mss_cache) /
2554 icsk->icsk_mtup.probe_size;
2555 tp->snd_cwnd_cnt = 0;
2556 tp->snd_cwnd_stamp = tcp_jiffies32;
2557 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2559 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2560 icsk->icsk_mtup.probe_size = 0;
2561 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2565 /* Do a simple retransmit without using the backoff mechanisms in
2566 * tcp_timer. This is used for path mtu discovery.
2567 * The socket is already locked here.
2569 void tcp_simple_retransmit(struct sock *sk)
2571 const struct inet_connection_sock *icsk = inet_csk(sk);
2572 struct tcp_sock *tp = tcp_sk(sk);
2573 struct sk_buff *skb;
2574 unsigned int mss = tcp_current_mss(sk);
2576 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2577 if (tcp_skb_seglen(skb) > mss &&
2578 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2579 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2580 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2581 tp->retrans_out -= tcp_skb_pcount(skb);
2583 tcp_skb_mark_lost_uncond_verify(tp, skb);
2587 tcp_clear_retrans_hints_partial(tp);
2589 if (!tp->lost_out)
2590 return;
2592 if (tcp_is_reno(tp))
2593 tcp_limit_reno_sacked(tp);
2595 tcp_verify_left_out(tp);
2597 /* Don't muck with the congestion window here.
2598 * Reason is that we do not increase amount of _data_
2599 * in network, but units changed and effective
2600 * cwnd/ssthresh really reduced now.
2602 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2603 tp->high_seq = tp->snd_nxt;
2604 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2605 tp->prior_ssthresh = 0;
2606 tp->undo_marker = 0;
2607 tcp_set_ca_state(sk, TCP_CA_Loss);
2609 tcp_xmit_retransmit_queue(sk);
2611 EXPORT_SYMBOL(tcp_simple_retransmit);
2613 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 int mib_idx;
2618 if (tcp_is_reno(tp))
2619 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2620 else
2621 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2623 NET_INC_STATS(sock_net(sk), mib_idx);
2625 tp->prior_ssthresh = 0;
2626 tcp_init_undo(tp);
2628 if (!tcp_in_cwnd_reduction(sk)) {
2629 if (!ece_ack)
2630 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2631 tcp_init_cwnd_reduction(sk);
2633 tcp_set_ca_state(sk, TCP_CA_Recovery);
2636 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2637 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2639 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2640 int *rexmit)
2642 struct tcp_sock *tp = tcp_sk(sk);
2643 bool recovered = !before(tp->snd_una, tp->high_seq);
2645 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2646 tcp_try_undo_loss(sk, false))
2647 return;
2649 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2650 /* Step 3.b. A timeout is spurious if not all data are
2651 * lost, i.e., never-retransmitted data are (s)acked.
2653 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2654 tcp_try_undo_loss(sk, true))
2655 return;
2657 if (after(tp->snd_nxt, tp->high_seq)) {
2658 if (flag & FLAG_DATA_SACKED || num_dupack)
2659 tp->frto = 0; /* Step 3.a. loss was real */
2660 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2661 tp->high_seq = tp->snd_nxt;
2662 /* Step 2.b. Try send new data (but deferred until cwnd
2663 * is updated in tcp_ack()). Otherwise fall back to
2664 * the conventional recovery.
2666 if (!tcp_write_queue_empty(sk) &&
2667 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2668 *rexmit = REXMIT_NEW;
2669 return;
2671 tp->frto = 0;
2675 if (recovered) {
2676 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2677 tcp_try_undo_recovery(sk);
2678 return;
2680 if (tcp_is_reno(tp)) {
2681 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2682 * delivered. Lower inflight to clock out (re)tranmissions.
2684 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2685 tcp_add_reno_sack(sk, num_dupack);
2686 else if (flag & FLAG_SND_UNA_ADVANCED)
2687 tcp_reset_reno_sack(tp);
2689 *rexmit = REXMIT_LOST;
2692 /* Undo during fast recovery after partial ACK. */
2693 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2695 struct tcp_sock *tp = tcp_sk(sk);
2697 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2698 /* Plain luck! Hole if filled with delayed
2699 * packet, rather than with a retransmit. Check reordering.
2701 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2703 /* We are getting evidence that the reordering degree is higher
2704 * than we realized. If there are no retransmits out then we
2705 * can undo. Otherwise we clock out new packets but do not
2706 * mark more packets lost or retransmit more.
2708 if (tp->retrans_out)
2709 return true;
2711 if (!tcp_any_retrans_done(sk))
2712 tp->retrans_stamp = 0;
2714 DBGUNDO(sk, "partial recovery");
2715 tcp_undo_cwnd_reduction(sk, true);
2716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2717 tcp_try_keep_open(sk);
2718 return true;
2720 return false;
2723 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2725 struct tcp_sock *tp = tcp_sk(sk);
2727 if (tcp_rtx_queue_empty(sk))
2728 return;
2730 if (unlikely(tcp_is_reno(tp))) {
2731 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2732 } else if (tcp_is_rack(sk)) {
2733 u32 prior_retrans = tp->retrans_out;
2735 tcp_rack_mark_lost(sk);
2736 if (prior_retrans > tp->retrans_out)
2737 *ack_flag |= FLAG_LOST_RETRANS;
2741 static bool tcp_force_fast_retransmit(struct sock *sk)
2743 struct tcp_sock *tp = tcp_sk(sk);
2745 return after(tcp_highest_sack_seq(tp),
2746 tp->snd_una + tp->reordering * tp->mss_cache);
2749 /* Process an event, which can update packets-in-flight not trivially.
2750 * Main goal of this function is to calculate new estimate for left_out,
2751 * taking into account both packets sitting in receiver's buffer and
2752 * packets lost by network.
2754 * Besides that it updates the congestion state when packet loss or ECN
2755 * is detected. But it does not reduce the cwnd, it is done by the
2756 * congestion control later.
2758 * It does _not_ decide what to send, it is made in function
2759 * tcp_xmit_retransmit_queue().
2761 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2762 int num_dupack, int *ack_flag, int *rexmit)
2764 struct inet_connection_sock *icsk = inet_csk(sk);
2765 struct tcp_sock *tp = tcp_sk(sk);
2766 int fast_rexmit = 0, flag = *ack_flag;
2767 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2768 tcp_force_fast_retransmit(sk));
2770 if (!tp->packets_out && tp->sacked_out)
2771 tp->sacked_out = 0;
2773 /* Now state machine starts.
2774 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2775 if (flag & FLAG_ECE)
2776 tp->prior_ssthresh = 0;
2778 /* B. In all the states check for reneging SACKs. */
2779 if (tcp_check_sack_reneging(sk, flag))
2780 return;
2782 /* C. Check consistency of the current state. */
2783 tcp_verify_left_out(tp);
2785 /* D. Check state exit conditions. State can be terminated
2786 * when high_seq is ACKed. */
2787 if (icsk->icsk_ca_state == TCP_CA_Open) {
2788 WARN_ON(tp->retrans_out != 0);
2789 tp->retrans_stamp = 0;
2790 } else if (!before(tp->snd_una, tp->high_seq)) {
2791 switch (icsk->icsk_ca_state) {
2792 case TCP_CA_CWR:
2793 /* CWR is to be held something *above* high_seq
2794 * is ACKed for CWR bit to reach receiver. */
2795 if (tp->snd_una != tp->high_seq) {
2796 tcp_end_cwnd_reduction(sk);
2797 tcp_set_ca_state(sk, TCP_CA_Open);
2799 break;
2801 case TCP_CA_Recovery:
2802 if (tcp_is_reno(tp))
2803 tcp_reset_reno_sack(tp);
2804 if (tcp_try_undo_recovery(sk))
2805 return;
2806 tcp_end_cwnd_reduction(sk);
2807 break;
2811 /* E. Process state. */
2812 switch (icsk->icsk_ca_state) {
2813 case TCP_CA_Recovery:
2814 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2815 if (tcp_is_reno(tp))
2816 tcp_add_reno_sack(sk, num_dupack);
2817 } else {
2818 if (tcp_try_undo_partial(sk, prior_snd_una))
2819 return;
2820 /* Partial ACK arrived. Force fast retransmit. */
2821 do_lost = tcp_is_reno(tp) ||
2822 tcp_force_fast_retransmit(sk);
2824 if (tcp_try_undo_dsack(sk)) {
2825 tcp_try_keep_open(sk);
2826 return;
2828 tcp_identify_packet_loss(sk, ack_flag);
2829 break;
2830 case TCP_CA_Loss:
2831 tcp_process_loss(sk, flag, num_dupack, rexmit);
2832 tcp_identify_packet_loss(sk, ack_flag);
2833 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2834 (*ack_flag & FLAG_LOST_RETRANS)))
2835 return;
2836 /* Change state if cwnd is undone or retransmits are lost */
2837 /* fall through */
2838 default:
2839 if (tcp_is_reno(tp)) {
2840 if (flag & FLAG_SND_UNA_ADVANCED)
2841 tcp_reset_reno_sack(tp);
2842 tcp_add_reno_sack(sk, num_dupack);
2845 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2846 tcp_try_undo_dsack(sk);
2848 tcp_identify_packet_loss(sk, ack_flag);
2849 if (!tcp_time_to_recover(sk, flag)) {
2850 tcp_try_to_open(sk, flag);
2851 return;
2854 /* MTU probe failure: don't reduce cwnd */
2855 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2856 icsk->icsk_mtup.probe_size &&
2857 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2858 tcp_mtup_probe_failed(sk);
2859 /* Restores the reduction we did in tcp_mtup_probe() */
2860 tp->snd_cwnd++;
2861 tcp_simple_retransmit(sk);
2862 return;
2865 /* Otherwise enter Recovery state */
2866 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2867 fast_rexmit = 1;
2870 if (!tcp_is_rack(sk) && do_lost)
2871 tcp_update_scoreboard(sk, fast_rexmit);
2872 *rexmit = REXMIT_LOST;
2875 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2877 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2878 struct tcp_sock *tp = tcp_sk(sk);
2880 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2881 /* If the remote keeps returning delayed ACKs, eventually
2882 * the min filter would pick it up and overestimate the
2883 * prop. delay when it expires. Skip suspected delayed ACKs.
2885 return;
2887 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2888 rtt_us ? : jiffies_to_usecs(1));
2891 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2892 long seq_rtt_us, long sack_rtt_us,
2893 long ca_rtt_us, struct rate_sample *rs)
2895 const struct tcp_sock *tp = tcp_sk(sk);
2897 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2898 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2899 * Karn's algorithm forbids taking RTT if some retransmitted data
2900 * is acked (RFC6298).
2902 if (seq_rtt_us < 0)
2903 seq_rtt_us = sack_rtt_us;
2905 /* RTTM Rule: A TSecr value received in a segment is used to
2906 * update the averaged RTT measurement only if the segment
2907 * acknowledges some new data, i.e., only if it advances the
2908 * left edge of the send window.
2909 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2911 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2912 flag & FLAG_ACKED) {
2913 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2915 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2916 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2917 ca_rtt_us = seq_rtt_us;
2920 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2921 if (seq_rtt_us < 0)
2922 return false;
2924 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2925 * always taken together with ACK, SACK, or TS-opts. Any negative
2926 * values will be skipped with the seq_rtt_us < 0 check above.
2928 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2929 tcp_rtt_estimator(sk, seq_rtt_us);
2930 tcp_set_rto(sk);
2932 /* RFC6298: only reset backoff on valid RTT measurement. */
2933 inet_csk(sk)->icsk_backoff = 0;
2934 return true;
2937 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2938 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2940 struct rate_sample rs;
2941 long rtt_us = -1L;
2943 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2944 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2946 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2950 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2952 const struct inet_connection_sock *icsk = inet_csk(sk);
2954 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2955 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2958 /* Restart timer after forward progress on connection.
2959 * RFC2988 recommends to restart timer to now+rto.
2961 void tcp_rearm_rto(struct sock *sk)
2963 const struct inet_connection_sock *icsk = inet_csk(sk);
2964 struct tcp_sock *tp = tcp_sk(sk);
2966 /* If the retrans timer is currently being used by Fast Open
2967 * for SYN-ACK retrans purpose, stay put.
2969 if (tp->fastopen_rsk)
2970 return;
2972 if (!tp->packets_out) {
2973 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2974 } else {
2975 u32 rto = inet_csk(sk)->icsk_rto;
2976 /* Offset the time elapsed after installing regular RTO */
2977 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2978 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2979 s64 delta_us = tcp_rto_delta_us(sk);
2980 /* delta_us may not be positive if the socket is locked
2981 * when the retrans timer fires and is rescheduled.
2983 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2985 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2986 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
2990 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2991 static void tcp_set_xmit_timer(struct sock *sk)
2993 if (!tcp_schedule_loss_probe(sk, true))
2994 tcp_rearm_rto(sk);
2997 /* If we get here, the whole TSO packet has not been acked. */
2998 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3000 struct tcp_sock *tp = tcp_sk(sk);
3001 u32 packets_acked;
3003 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3005 packets_acked = tcp_skb_pcount(skb);
3006 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3007 return 0;
3008 packets_acked -= tcp_skb_pcount(skb);
3010 if (packets_acked) {
3011 BUG_ON(tcp_skb_pcount(skb) == 0);
3012 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3015 return packets_acked;
3018 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3019 u32 prior_snd_una)
3021 const struct skb_shared_info *shinfo;
3023 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3024 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3025 return;
3027 shinfo = skb_shinfo(skb);
3028 if (!before(shinfo->tskey, prior_snd_una) &&
3029 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3030 tcp_skb_tsorted_save(skb) {
3031 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3032 } tcp_skb_tsorted_restore(skb);
3036 /* Remove acknowledged frames from the retransmission queue. If our packet
3037 * is before the ack sequence we can discard it as it's confirmed to have
3038 * arrived at the other end.
3040 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3041 u32 prior_snd_una,
3042 struct tcp_sacktag_state *sack)
3044 const struct inet_connection_sock *icsk = inet_csk(sk);
3045 u64 first_ackt, last_ackt;
3046 struct tcp_sock *tp = tcp_sk(sk);
3047 u32 prior_sacked = tp->sacked_out;
3048 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3049 struct sk_buff *skb, *next;
3050 bool fully_acked = true;
3051 long sack_rtt_us = -1L;
3052 long seq_rtt_us = -1L;
3053 long ca_rtt_us = -1L;
3054 u32 pkts_acked = 0;
3055 u32 last_in_flight = 0;
3056 bool rtt_update;
3057 int flag = 0;
3059 first_ackt = 0;
3061 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3062 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3063 const u32 start_seq = scb->seq;
3064 u8 sacked = scb->sacked;
3065 u32 acked_pcount;
3067 tcp_ack_tstamp(sk, skb, prior_snd_una);
3069 /* Determine how many packets and what bytes were acked, tso and else */
3070 if (after(scb->end_seq, tp->snd_una)) {
3071 if (tcp_skb_pcount(skb) == 1 ||
3072 !after(tp->snd_una, scb->seq))
3073 break;
3075 acked_pcount = tcp_tso_acked(sk, skb);
3076 if (!acked_pcount)
3077 break;
3078 fully_acked = false;
3079 } else {
3080 acked_pcount = tcp_skb_pcount(skb);
3083 if (unlikely(sacked & TCPCB_RETRANS)) {
3084 if (sacked & TCPCB_SACKED_RETRANS)
3085 tp->retrans_out -= acked_pcount;
3086 flag |= FLAG_RETRANS_DATA_ACKED;
3087 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3088 last_ackt = tcp_skb_timestamp_us(skb);
3089 WARN_ON_ONCE(last_ackt == 0);
3090 if (!first_ackt)
3091 first_ackt = last_ackt;
3093 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3094 if (before(start_seq, reord))
3095 reord = start_seq;
3096 if (!after(scb->end_seq, tp->high_seq))
3097 flag |= FLAG_ORIG_SACK_ACKED;
3100 if (sacked & TCPCB_SACKED_ACKED) {
3101 tp->sacked_out -= acked_pcount;
3102 } else if (tcp_is_sack(tp)) {
3103 tp->delivered += acked_pcount;
3104 if (!tcp_skb_spurious_retrans(tp, skb))
3105 tcp_rack_advance(tp, sacked, scb->end_seq,
3106 tcp_skb_timestamp_us(skb));
3108 if (sacked & TCPCB_LOST)
3109 tp->lost_out -= acked_pcount;
3111 tp->packets_out -= acked_pcount;
3112 pkts_acked += acked_pcount;
3113 tcp_rate_skb_delivered(sk, skb, sack->rate);
3115 /* Initial outgoing SYN's get put onto the write_queue
3116 * just like anything else we transmit. It is not
3117 * true data, and if we misinform our callers that
3118 * this ACK acks real data, we will erroneously exit
3119 * connection startup slow start one packet too
3120 * quickly. This is severely frowned upon behavior.
3122 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3123 flag |= FLAG_DATA_ACKED;
3124 } else {
3125 flag |= FLAG_SYN_ACKED;
3126 tp->retrans_stamp = 0;
3129 if (!fully_acked)
3130 break;
3132 next = skb_rb_next(skb);
3133 if (unlikely(skb == tp->retransmit_skb_hint))
3134 tp->retransmit_skb_hint = NULL;
3135 if (unlikely(skb == tp->lost_skb_hint))
3136 tp->lost_skb_hint = NULL;
3137 tcp_rtx_queue_unlink_and_free(skb, sk);
3140 if (!skb)
3141 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3143 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3144 tp->snd_up = tp->snd_una;
3146 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3147 flag |= FLAG_SACK_RENEGING;
3149 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3150 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3151 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3153 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3154 last_in_flight && !prior_sacked && fully_acked &&
3155 sack->rate->prior_delivered + 1 == tp->delivered &&
3156 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3157 /* Conservatively mark a delayed ACK. It's typically
3158 * from a lone runt packet over the round trip to
3159 * a receiver w/o out-of-order or CE events.
3161 flag |= FLAG_ACK_MAYBE_DELAYED;
3164 if (sack->first_sackt) {
3165 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3166 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3168 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3169 ca_rtt_us, sack->rate);
3171 if (flag & FLAG_ACKED) {
3172 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3173 if (unlikely(icsk->icsk_mtup.probe_size &&
3174 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3175 tcp_mtup_probe_success(sk);
3178 if (tcp_is_reno(tp)) {
3179 tcp_remove_reno_sacks(sk, pkts_acked);
3181 /* If any of the cumulatively ACKed segments was
3182 * retransmitted, non-SACK case cannot confirm that
3183 * progress was due to original transmission due to
3184 * lack of TCPCB_SACKED_ACKED bits even if some of
3185 * the packets may have been never retransmitted.
3187 if (flag & FLAG_RETRANS_DATA_ACKED)
3188 flag &= ~FLAG_ORIG_SACK_ACKED;
3189 } else {
3190 int delta;
3192 /* Non-retransmitted hole got filled? That's reordering */
3193 if (before(reord, prior_fack))
3194 tcp_check_sack_reordering(sk, reord, 0);
3196 delta = prior_sacked - tp->sacked_out;
3197 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3199 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3200 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3201 tcp_skb_timestamp_us(skb))) {
3202 /* Do not re-arm RTO if the sack RTT is measured from data sent
3203 * after when the head was last (re)transmitted. Otherwise the
3204 * timeout may continue to extend in loss recovery.
3206 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3209 if (icsk->icsk_ca_ops->pkts_acked) {
3210 struct ack_sample sample = { .pkts_acked = pkts_acked,
3211 .rtt_us = sack->rate->rtt_us,
3212 .in_flight = last_in_flight };
3214 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3217 #if FASTRETRANS_DEBUG > 0
3218 WARN_ON((int)tp->sacked_out < 0);
3219 WARN_ON((int)tp->lost_out < 0);
3220 WARN_ON((int)tp->retrans_out < 0);
3221 if (!tp->packets_out && tcp_is_sack(tp)) {
3222 icsk = inet_csk(sk);
3223 if (tp->lost_out) {
3224 pr_debug("Leak l=%u %d\n",
3225 tp->lost_out, icsk->icsk_ca_state);
3226 tp->lost_out = 0;
3228 if (tp->sacked_out) {
3229 pr_debug("Leak s=%u %d\n",
3230 tp->sacked_out, icsk->icsk_ca_state);
3231 tp->sacked_out = 0;
3233 if (tp->retrans_out) {
3234 pr_debug("Leak r=%u %d\n",
3235 tp->retrans_out, icsk->icsk_ca_state);
3236 tp->retrans_out = 0;
3239 #endif
3240 return flag;
3243 static void tcp_ack_probe(struct sock *sk)
3245 struct inet_connection_sock *icsk = inet_csk(sk);
3246 struct sk_buff *head = tcp_send_head(sk);
3247 const struct tcp_sock *tp = tcp_sk(sk);
3249 /* Was it a usable window open? */
3250 if (!head)
3251 return;
3252 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3253 icsk->icsk_backoff = 0;
3254 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3255 /* Socket must be waked up by subsequent tcp_data_snd_check().
3256 * This function is not for random using!
3258 } else {
3259 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3261 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3262 when, TCP_RTO_MAX, NULL);
3266 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3268 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3269 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3272 /* Decide wheather to run the increase function of congestion control. */
3273 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3275 /* If reordering is high then always grow cwnd whenever data is
3276 * delivered regardless of its ordering. Otherwise stay conservative
3277 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3278 * new SACK or ECE mark may first advance cwnd here and later reduce
3279 * cwnd in tcp_fastretrans_alert() based on more states.
3281 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3282 return flag & FLAG_FORWARD_PROGRESS;
3284 return flag & FLAG_DATA_ACKED;
3287 /* The "ultimate" congestion control function that aims to replace the rigid
3288 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3289 * It's called toward the end of processing an ACK with precise rate
3290 * information. All transmission or retransmission are delayed afterwards.
3292 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3293 int flag, const struct rate_sample *rs)
3295 const struct inet_connection_sock *icsk = inet_csk(sk);
3297 if (icsk->icsk_ca_ops->cong_control) {
3298 icsk->icsk_ca_ops->cong_control(sk, rs);
3299 return;
3302 if (tcp_in_cwnd_reduction(sk)) {
3303 /* Reduce cwnd if state mandates */
3304 tcp_cwnd_reduction(sk, acked_sacked, flag);
3305 } else if (tcp_may_raise_cwnd(sk, flag)) {
3306 /* Advance cwnd if state allows */
3307 tcp_cong_avoid(sk, ack, acked_sacked);
3309 tcp_update_pacing_rate(sk);
3312 /* Check that window update is acceptable.
3313 * The function assumes that snd_una<=ack<=snd_next.
3315 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3316 const u32 ack, const u32 ack_seq,
3317 const u32 nwin)
3319 return after(ack, tp->snd_una) ||
3320 after(ack_seq, tp->snd_wl1) ||
3321 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3324 /* If we update tp->snd_una, also update tp->bytes_acked */
3325 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3327 u32 delta = ack - tp->snd_una;
3329 sock_owned_by_me((struct sock *)tp);
3330 tp->bytes_acked += delta;
3331 tp->snd_una = ack;
3334 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3335 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3337 u32 delta = seq - tp->rcv_nxt;
3339 sock_owned_by_me((struct sock *)tp);
3340 tp->bytes_received += delta;
3341 tp->rcv_nxt = seq;
3344 /* Update our send window.
3346 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3347 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3349 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3350 u32 ack_seq)
3352 struct tcp_sock *tp = tcp_sk(sk);
3353 int flag = 0;
3354 u32 nwin = ntohs(tcp_hdr(skb)->window);
3356 if (likely(!tcp_hdr(skb)->syn))
3357 nwin <<= tp->rx_opt.snd_wscale;
3359 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3360 flag |= FLAG_WIN_UPDATE;
3361 tcp_update_wl(tp, ack_seq);
3363 if (tp->snd_wnd != nwin) {
3364 tp->snd_wnd = nwin;
3366 /* Note, it is the only place, where
3367 * fast path is recovered for sending TCP.
3369 tp->pred_flags = 0;
3370 tcp_fast_path_check(sk);
3372 if (!tcp_write_queue_empty(sk))
3373 tcp_slow_start_after_idle_check(sk);
3375 if (nwin > tp->max_window) {
3376 tp->max_window = nwin;
3377 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3382 tcp_snd_una_update(tp, ack);
3384 return flag;
3387 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3388 u32 *last_oow_ack_time)
3390 if (*last_oow_ack_time) {
3391 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3393 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3394 NET_INC_STATS(net, mib_idx);
3395 return true; /* rate-limited: don't send yet! */
3399 *last_oow_ack_time = tcp_jiffies32;
3401 return false; /* not rate-limited: go ahead, send dupack now! */
3404 /* Return true if we're currently rate-limiting out-of-window ACKs and
3405 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3406 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3407 * attacks that send repeated SYNs or ACKs for the same connection. To
3408 * do this, we do not send a duplicate SYNACK or ACK if the remote
3409 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3411 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3412 int mib_idx, u32 *last_oow_ack_time)
3414 /* Data packets without SYNs are not likely part of an ACK loop. */
3415 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3416 !tcp_hdr(skb)->syn)
3417 return false;
3419 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3422 /* RFC 5961 7 [ACK Throttling] */
3423 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3425 /* unprotected vars, we dont care of overwrites */
3426 static u32 challenge_timestamp;
3427 static unsigned int challenge_count;
3428 struct tcp_sock *tp = tcp_sk(sk);
3429 struct net *net = sock_net(sk);
3430 u32 count, now;
3432 /* First check our per-socket dupack rate limit. */
3433 if (__tcp_oow_rate_limited(net,
3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3435 &tp->last_oow_ack_time))
3436 return;
3438 /* Then check host-wide RFC 5961 rate limit. */
3439 now = jiffies / HZ;
3440 if (now != challenge_timestamp) {
3441 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3442 u32 half = (ack_limit + 1) >> 1;
3444 challenge_timestamp = now;
3445 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3447 count = READ_ONCE(challenge_count);
3448 if (count > 0) {
3449 WRITE_ONCE(challenge_count, count - 1);
3450 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3451 tcp_send_ack(sk);
3455 static void tcp_store_ts_recent(struct tcp_sock *tp)
3457 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3458 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3463 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3464 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3465 * extra check below makes sure this can only happen
3466 * for pure ACK frames. -DaveM
3468 * Not only, also it occurs for expired timestamps.
3471 if (tcp_paws_check(&tp->rx_opt, 0))
3472 tcp_store_ts_recent(tp);
3476 /* This routine deals with acks during a TLP episode.
3477 * We mark the end of a TLP episode on receiving TLP dupack or when
3478 * ack is after tlp_high_seq.
3479 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3483 struct tcp_sock *tp = tcp_sk(sk);
3485 if (before(ack, tp->tlp_high_seq))
3486 return;
3488 if (flag & FLAG_DSACKING_ACK) {
3489 /* This DSACK means original and TLP probe arrived; no loss */
3490 tp->tlp_high_seq = 0;
3491 } else if (after(ack, tp->tlp_high_seq)) {
3492 /* ACK advances: there was a loss, so reduce cwnd. Reset
3493 * tlp_high_seq in tcp_init_cwnd_reduction()
3495 tcp_init_cwnd_reduction(sk);
3496 tcp_set_ca_state(sk, TCP_CA_CWR);
3497 tcp_end_cwnd_reduction(sk);
3498 tcp_try_keep_open(sk);
3499 NET_INC_STATS(sock_net(sk),
3500 LINUX_MIB_TCPLOSSPROBERECOVERY);
3501 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3502 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3503 /* Pure dupack: original and TLP probe arrived; no loss */
3504 tp->tlp_high_seq = 0;
3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3510 const struct inet_connection_sock *icsk = inet_csk(sk);
3512 if (icsk->icsk_ca_ops->in_ack_event)
3513 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3516 /* Congestion control has updated the cwnd already. So if we're in
3517 * loss recovery then now we do any new sends (for FRTO) or
3518 * retransmits (for CA_Loss or CA_recovery) that make sense.
3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3522 struct tcp_sock *tp = tcp_sk(sk);
3524 if (rexmit == REXMIT_NONE)
3525 return;
3527 if (unlikely(rexmit == 2)) {
3528 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3529 TCP_NAGLE_OFF);
3530 if (after(tp->snd_nxt, tp->high_seq))
3531 return;
3532 tp->frto = 0;
3534 tcp_xmit_retransmit_queue(sk);
3537 /* Returns the number of packets newly acked or sacked by the current ACK */
3538 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3540 const struct net *net = sock_net(sk);
3541 struct tcp_sock *tp = tcp_sk(sk);
3542 u32 delivered;
3544 delivered = tp->delivered - prior_delivered;
3545 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3546 if (flag & FLAG_ECE) {
3547 tp->delivered_ce += delivered;
3548 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3550 return delivered;
3553 /* This routine deals with incoming acks, but not outgoing ones. */
3554 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3556 struct inet_connection_sock *icsk = inet_csk(sk);
3557 struct tcp_sock *tp = tcp_sk(sk);
3558 struct tcp_sacktag_state sack_state;
3559 struct rate_sample rs = { .prior_delivered = 0 };
3560 u32 prior_snd_una = tp->snd_una;
3561 bool is_sack_reneg = tp->is_sack_reneg;
3562 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3563 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3564 int num_dupack = 0;
3565 int prior_packets = tp->packets_out;
3566 u32 delivered = tp->delivered;
3567 u32 lost = tp->lost;
3568 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3569 u32 prior_fack;
3571 sack_state.first_sackt = 0;
3572 sack_state.rate = &rs;
3574 /* We very likely will need to access rtx queue. */
3575 prefetch(sk->tcp_rtx_queue.rb_node);
3577 /* If the ack is older than previous acks
3578 * then we can probably ignore it.
3580 if (before(ack, prior_snd_una)) {
3581 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3582 if (before(ack, prior_snd_una - tp->max_window)) {
3583 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3584 tcp_send_challenge_ack(sk, skb);
3585 return -1;
3587 goto old_ack;
3590 /* If the ack includes data we haven't sent yet, discard
3591 * this segment (RFC793 Section 3.9).
3593 if (after(ack, tp->snd_nxt))
3594 return -1;
3596 if (after(ack, prior_snd_una)) {
3597 flag |= FLAG_SND_UNA_ADVANCED;
3598 icsk->icsk_retransmits = 0;
3600 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3601 if (static_branch_unlikely(&clean_acked_data_enabled))
3602 if (icsk->icsk_clean_acked)
3603 icsk->icsk_clean_acked(sk, ack);
3604 #endif
3607 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3608 rs.prior_in_flight = tcp_packets_in_flight(tp);
3610 /* ts_recent update must be made after we are sure that the packet
3611 * is in window.
3613 if (flag & FLAG_UPDATE_TS_RECENT)
3614 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3616 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3617 FLAG_SND_UNA_ADVANCED) {
3618 /* Window is constant, pure forward advance.
3619 * No more checks are required.
3620 * Note, we use the fact that SND.UNA>=SND.WL2.
3622 tcp_update_wl(tp, ack_seq);
3623 tcp_snd_una_update(tp, ack);
3624 flag |= FLAG_WIN_UPDATE;
3626 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3628 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3629 } else {
3630 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3632 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3633 flag |= FLAG_DATA;
3634 else
3635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3637 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3639 if (TCP_SKB_CB(skb)->sacked)
3640 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3641 &sack_state);
3643 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3644 flag |= FLAG_ECE;
3645 ack_ev_flags |= CA_ACK_ECE;
3648 if (flag & FLAG_WIN_UPDATE)
3649 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3651 tcp_in_ack_event(sk, ack_ev_flags);
3654 /* We passed data and got it acked, remove any soft error
3655 * log. Something worked...
3657 sk->sk_err_soft = 0;
3658 icsk->icsk_probes_out = 0;
3659 tp->rcv_tstamp = tcp_jiffies32;
3660 if (!prior_packets)
3661 goto no_queue;
3663 /* See if we can take anything off of the retransmit queue. */
3664 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3666 tcp_rack_update_reo_wnd(sk, &rs);
3668 if (tp->tlp_high_seq)
3669 tcp_process_tlp_ack(sk, ack, flag);
3670 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3671 if (flag & FLAG_SET_XMIT_TIMER)
3672 tcp_set_xmit_timer(sk);
3674 if (tcp_ack_is_dubious(sk, flag)) {
3675 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3676 num_dupack = 1;
3677 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3678 if (!(flag & FLAG_DATA))
3679 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3681 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3682 &rexmit);
3685 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3686 sk_dst_confirm(sk);
3688 delivered = tcp_newly_delivered(sk, delivered, flag);
3689 lost = tp->lost - lost; /* freshly marked lost */
3690 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3691 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3692 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3693 tcp_xmit_recovery(sk, rexmit);
3694 return 1;
3696 no_queue:
3697 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3698 if (flag & FLAG_DSACKING_ACK) {
3699 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3700 &rexmit);
3701 tcp_newly_delivered(sk, delivered, flag);
3703 /* If this ack opens up a zero window, clear backoff. It was
3704 * being used to time the probes, and is probably far higher than
3705 * it needs to be for normal retransmission.
3707 tcp_ack_probe(sk);
3709 if (tp->tlp_high_seq)
3710 tcp_process_tlp_ack(sk, ack, flag);
3711 return 1;
3713 old_ack:
3714 /* If data was SACKed, tag it and see if we should send more data.
3715 * If data was DSACKed, see if we can undo a cwnd reduction.
3717 if (TCP_SKB_CB(skb)->sacked) {
3718 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3719 &sack_state);
3720 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3721 &rexmit);
3722 tcp_newly_delivered(sk, delivered, flag);
3723 tcp_xmit_recovery(sk, rexmit);
3726 return 0;
3729 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3730 bool syn, struct tcp_fastopen_cookie *foc,
3731 bool exp_opt)
3733 /* Valid only in SYN or SYN-ACK with an even length. */
3734 if (!foc || !syn || len < 0 || (len & 1))
3735 return;
3737 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3738 len <= TCP_FASTOPEN_COOKIE_MAX)
3739 memcpy(foc->val, cookie, len);
3740 else if (len != 0)
3741 len = -1;
3742 foc->len = len;
3743 foc->exp = exp_opt;
3746 static void smc_parse_options(const struct tcphdr *th,
3747 struct tcp_options_received *opt_rx,
3748 const unsigned char *ptr,
3749 int opsize)
3751 #if IS_ENABLED(CONFIG_SMC)
3752 if (static_branch_unlikely(&tcp_have_smc)) {
3753 if (th->syn && !(opsize & 1) &&
3754 opsize >= TCPOLEN_EXP_SMC_BASE &&
3755 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3756 opt_rx->smc_ok = 1;
3758 #endif
3761 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3762 * But, this can also be called on packets in the established flow when
3763 * the fast version below fails.
3765 void tcp_parse_options(const struct net *net,
3766 const struct sk_buff *skb,
3767 struct tcp_options_received *opt_rx, int estab,
3768 struct tcp_fastopen_cookie *foc)
3770 const unsigned char *ptr;
3771 const struct tcphdr *th = tcp_hdr(skb);
3772 int length = (th->doff * 4) - sizeof(struct tcphdr);
3774 ptr = (const unsigned char *)(th + 1);
3775 opt_rx->saw_tstamp = 0;
3777 while (length > 0) {
3778 int opcode = *ptr++;
3779 int opsize;
3781 switch (opcode) {
3782 case TCPOPT_EOL:
3783 return;
3784 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3785 length--;
3786 continue;
3787 default:
3788 opsize = *ptr++;
3789 if (opsize < 2) /* "silly options" */
3790 return;
3791 if (opsize > length)
3792 return; /* don't parse partial options */
3793 switch (opcode) {
3794 case TCPOPT_MSS:
3795 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3796 u16 in_mss = get_unaligned_be16(ptr);
3797 if (in_mss) {
3798 if (opt_rx->user_mss &&
3799 opt_rx->user_mss < in_mss)
3800 in_mss = opt_rx->user_mss;
3801 opt_rx->mss_clamp = in_mss;
3804 break;
3805 case TCPOPT_WINDOW:
3806 if (opsize == TCPOLEN_WINDOW && th->syn &&
3807 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3808 __u8 snd_wscale = *(__u8 *)ptr;
3809 opt_rx->wscale_ok = 1;
3810 if (snd_wscale > TCP_MAX_WSCALE) {
3811 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3812 __func__,
3813 snd_wscale,
3814 TCP_MAX_WSCALE);
3815 snd_wscale = TCP_MAX_WSCALE;
3817 opt_rx->snd_wscale = snd_wscale;
3819 break;
3820 case TCPOPT_TIMESTAMP:
3821 if ((opsize == TCPOLEN_TIMESTAMP) &&
3822 ((estab && opt_rx->tstamp_ok) ||
3823 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3824 opt_rx->saw_tstamp = 1;
3825 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3826 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3828 break;
3829 case TCPOPT_SACK_PERM:
3830 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3831 !estab && net->ipv4.sysctl_tcp_sack) {
3832 opt_rx->sack_ok = TCP_SACK_SEEN;
3833 tcp_sack_reset(opt_rx);
3835 break;
3837 case TCPOPT_SACK:
3838 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3839 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3840 opt_rx->sack_ok) {
3841 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3843 break;
3844 #ifdef CONFIG_TCP_MD5SIG
3845 case TCPOPT_MD5SIG:
3847 * The MD5 Hash has already been
3848 * checked (see tcp_v{4,6}_do_rcv()).
3850 break;
3851 #endif
3852 case TCPOPT_FASTOPEN:
3853 tcp_parse_fastopen_option(
3854 opsize - TCPOLEN_FASTOPEN_BASE,
3855 ptr, th->syn, foc, false);
3856 break;
3858 case TCPOPT_EXP:
3859 /* Fast Open option shares code 254 using a
3860 * 16 bits magic number.
3862 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3863 get_unaligned_be16(ptr) ==
3864 TCPOPT_FASTOPEN_MAGIC)
3865 tcp_parse_fastopen_option(opsize -
3866 TCPOLEN_EXP_FASTOPEN_BASE,
3867 ptr + 2, th->syn, foc, true);
3868 else
3869 smc_parse_options(th, opt_rx, ptr,
3870 opsize);
3871 break;
3874 ptr += opsize-2;
3875 length -= opsize;
3879 EXPORT_SYMBOL(tcp_parse_options);
3881 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3883 const __be32 *ptr = (const __be32 *)(th + 1);
3885 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3886 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3887 tp->rx_opt.saw_tstamp = 1;
3888 ++ptr;
3889 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3890 ++ptr;
3891 if (*ptr)
3892 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3893 else
3894 tp->rx_opt.rcv_tsecr = 0;
3895 return true;
3897 return false;
3900 /* Fast parse options. This hopes to only see timestamps.
3901 * If it is wrong it falls back on tcp_parse_options().
3903 static bool tcp_fast_parse_options(const struct net *net,
3904 const struct sk_buff *skb,
3905 const struct tcphdr *th, struct tcp_sock *tp)
3907 /* In the spirit of fast parsing, compare doff directly to constant
3908 * values. Because equality is used, short doff can be ignored here.
3910 if (th->doff == (sizeof(*th) / 4)) {
3911 tp->rx_opt.saw_tstamp = 0;
3912 return false;
3913 } else if (tp->rx_opt.tstamp_ok &&
3914 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3915 if (tcp_parse_aligned_timestamp(tp, th))
3916 return true;
3919 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3920 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3921 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3923 return true;
3926 #ifdef CONFIG_TCP_MD5SIG
3928 * Parse MD5 Signature option
3930 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3932 int length = (th->doff << 2) - sizeof(*th);
3933 const u8 *ptr = (const u8 *)(th + 1);
3935 /* If not enough data remaining, we can short cut */
3936 while (length >= TCPOLEN_MD5SIG) {
3937 int opcode = *ptr++;
3938 int opsize;
3940 switch (opcode) {
3941 case TCPOPT_EOL:
3942 return NULL;
3943 case TCPOPT_NOP:
3944 length--;
3945 continue;
3946 default:
3947 opsize = *ptr++;
3948 if (opsize < 2 || opsize > length)
3949 return NULL;
3950 if (opcode == TCPOPT_MD5SIG)
3951 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3953 ptr += opsize - 2;
3954 length -= opsize;
3956 return NULL;
3958 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3959 #endif
3961 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3963 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3964 * it can pass through stack. So, the following predicate verifies that
3965 * this segment is not used for anything but congestion avoidance or
3966 * fast retransmit. Moreover, we even are able to eliminate most of such
3967 * second order effects, if we apply some small "replay" window (~RTO)
3968 * to timestamp space.
3970 * All these measures still do not guarantee that we reject wrapped ACKs
3971 * on networks with high bandwidth, when sequence space is recycled fastly,
3972 * but it guarantees that such events will be very rare and do not affect
3973 * connection seriously. This doesn't look nice, but alas, PAWS is really
3974 * buggy extension.
3976 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3977 * states that events when retransmit arrives after original data are rare.
3978 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3979 * the biggest problem on large power networks even with minor reordering.
3980 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3981 * up to bandwidth of 18Gigabit/sec. 8) ]
3984 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3986 const struct tcp_sock *tp = tcp_sk(sk);
3987 const struct tcphdr *th = tcp_hdr(skb);
3988 u32 seq = TCP_SKB_CB(skb)->seq;
3989 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3991 return (/* 1. Pure ACK with correct sequence number. */
3992 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3994 /* 2. ... and duplicate ACK. */
3995 ack == tp->snd_una &&
3997 /* 3. ... and does not update window. */
3998 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4000 /* 4. ... and sits in replay window. */
4001 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4004 static inline bool tcp_paws_discard(const struct sock *sk,
4005 const struct sk_buff *skb)
4007 const struct tcp_sock *tp = tcp_sk(sk);
4009 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4010 !tcp_disordered_ack(sk, skb);
4013 /* Check segment sequence number for validity.
4015 * Segment controls are considered valid, if the segment
4016 * fits to the window after truncation to the window. Acceptability
4017 * of data (and SYN, FIN, of course) is checked separately.
4018 * See tcp_data_queue(), for example.
4020 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4021 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4022 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4023 * (borrowed from freebsd)
4026 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4028 return !before(end_seq, tp->rcv_wup) &&
4029 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4032 /* When we get a reset we do this. */
4033 void tcp_reset(struct sock *sk)
4035 trace_tcp_receive_reset(sk);
4037 /* We want the right error as BSD sees it (and indeed as we do). */
4038 switch (sk->sk_state) {
4039 case TCP_SYN_SENT:
4040 sk->sk_err = ECONNREFUSED;
4041 break;
4042 case TCP_CLOSE_WAIT:
4043 sk->sk_err = EPIPE;
4044 break;
4045 case TCP_CLOSE:
4046 return;
4047 default:
4048 sk->sk_err = ECONNRESET;
4050 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4051 smp_wmb();
4053 tcp_write_queue_purge(sk);
4054 tcp_done(sk);
4056 if (!sock_flag(sk, SOCK_DEAD))
4057 sk->sk_error_report(sk);
4061 * Process the FIN bit. This now behaves as it is supposed to work
4062 * and the FIN takes effect when it is validly part of sequence
4063 * space. Not before when we get holes.
4065 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4066 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4067 * TIME-WAIT)
4069 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4070 * close and we go into CLOSING (and later onto TIME-WAIT)
4072 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4074 void tcp_fin(struct sock *sk)
4076 struct tcp_sock *tp = tcp_sk(sk);
4078 inet_csk_schedule_ack(sk);
4080 sk->sk_shutdown |= RCV_SHUTDOWN;
4081 sock_set_flag(sk, SOCK_DONE);
4083 switch (sk->sk_state) {
4084 case TCP_SYN_RECV:
4085 case TCP_ESTABLISHED:
4086 /* Move to CLOSE_WAIT */
4087 tcp_set_state(sk, TCP_CLOSE_WAIT);
4088 inet_csk_enter_pingpong_mode(sk);
4089 break;
4091 case TCP_CLOSE_WAIT:
4092 case TCP_CLOSING:
4093 /* Received a retransmission of the FIN, do
4094 * nothing.
4096 break;
4097 case TCP_LAST_ACK:
4098 /* RFC793: Remain in the LAST-ACK state. */
4099 break;
4101 case TCP_FIN_WAIT1:
4102 /* This case occurs when a simultaneous close
4103 * happens, we must ack the received FIN and
4104 * enter the CLOSING state.
4106 tcp_send_ack(sk);
4107 tcp_set_state(sk, TCP_CLOSING);
4108 break;
4109 case TCP_FIN_WAIT2:
4110 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4111 tcp_send_ack(sk);
4112 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4113 break;
4114 default:
4115 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4116 * cases we should never reach this piece of code.
4118 pr_err("%s: Impossible, sk->sk_state=%d\n",
4119 __func__, sk->sk_state);
4120 break;
4123 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4124 * Probably, we should reset in this case. For now drop them.
4126 skb_rbtree_purge(&tp->out_of_order_queue);
4127 if (tcp_is_sack(tp))
4128 tcp_sack_reset(&tp->rx_opt);
4129 sk_mem_reclaim(sk);
4131 if (!sock_flag(sk, SOCK_DEAD)) {
4132 sk->sk_state_change(sk);
4134 /* Do not send POLL_HUP for half duplex close. */
4135 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4136 sk->sk_state == TCP_CLOSE)
4137 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4138 else
4139 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4143 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4144 u32 end_seq)
4146 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4147 if (before(seq, sp->start_seq))
4148 sp->start_seq = seq;
4149 if (after(end_seq, sp->end_seq))
4150 sp->end_seq = end_seq;
4151 return true;
4153 return false;
4156 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4158 struct tcp_sock *tp = tcp_sk(sk);
4160 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4161 int mib_idx;
4163 if (before(seq, tp->rcv_nxt))
4164 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4165 else
4166 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4168 NET_INC_STATS(sock_net(sk), mib_idx);
4170 tp->rx_opt.dsack = 1;
4171 tp->duplicate_sack[0].start_seq = seq;
4172 tp->duplicate_sack[0].end_seq = end_seq;
4176 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4178 struct tcp_sock *tp = tcp_sk(sk);
4180 if (!tp->rx_opt.dsack)
4181 tcp_dsack_set(sk, seq, end_seq);
4182 else
4183 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4186 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4188 /* When the ACK path fails or drops most ACKs, the sender would
4189 * timeout and spuriously retransmit the same segment repeatedly.
4190 * The receiver remembers and reflects via DSACKs. Leverage the
4191 * DSACK state and change the txhash to re-route speculatively.
4193 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4194 sk_rethink_txhash(sk);
4197 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4199 struct tcp_sock *tp = tcp_sk(sk);
4201 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4202 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4203 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4204 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4206 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4207 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4209 tcp_rcv_spurious_retrans(sk, skb);
4210 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4211 end_seq = tp->rcv_nxt;
4212 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4216 tcp_send_ack(sk);
4219 /* These routines update the SACK block as out-of-order packets arrive or
4220 * in-order packets close up the sequence space.
4222 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4224 int this_sack;
4225 struct tcp_sack_block *sp = &tp->selective_acks[0];
4226 struct tcp_sack_block *swalk = sp + 1;
4228 /* See if the recent change to the first SACK eats into
4229 * or hits the sequence space of other SACK blocks, if so coalesce.
4231 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4232 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4233 int i;
4235 /* Zap SWALK, by moving every further SACK up by one slot.
4236 * Decrease num_sacks.
4238 tp->rx_opt.num_sacks--;
4239 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4240 sp[i] = sp[i + 1];
4241 continue;
4243 this_sack++, swalk++;
4247 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4249 struct tcp_sock *tp = tcp_sk(sk);
4250 struct tcp_sack_block *sp = &tp->selective_acks[0];
4251 int cur_sacks = tp->rx_opt.num_sacks;
4252 int this_sack;
4254 if (!cur_sacks)
4255 goto new_sack;
4257 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4258 if (tcp_sack_extend(sp, seq, end_seq)) {
4259 /* Rotate this_sack to the first one. */
4260 for (; this_sack > 0; this_sack--, sp--)
4261 swap(*sp, *(sp - 1));
4262 if (cur_sacks > 1)
4263 tcp_sack_maybe_coalesce(tp);
4264 return;
4268 /* Could not find an adjacent existing SACK, build a new one,
4269 * put it at the front, and shift everyone else down. We
4270 * always know there is at least one SACK present already here.
4272 * If the sack array is full, forget about the last one.
4274 if (this_sack >= TCP_NUM_SACKS) {
4275 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4276 tcp_send_ack(sk);
4277 this_sack--;
4278 tp->rx_opt.num_sacks--;
4279 sp--;
4281 for (; this_sack > 0; this_sack--, sp--)
4282 *sp = *(sp - 1);
4284 new_sack:
4285 /* Build the new head SACK, and we're done. */
4286 sp->start_seq = seq;
4287 sp->end_seq = end_seq;
4288 tp->rx_opt.num_sacks++;
4291 /* RCV.NXT advances, some SACKs should be eaten. */
4293 static void tcp_sack_remove(struct tcp_sock *tp)
4295 struct tcp_sack_block *sp = &tp->selective_acks[0];
4296 int num_sacks = tp->rx_opt.num_sacks;
4297 int this_sack;
4299 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4300 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4301 tp->rx_opt.num_sacks = 0;
4302 return;
4305 for (this_sack = 0; this_sack < num_sacks;) {
4306 /* Check if the start of the sack is covered by RCV.NXT. */
4307 if (!before(tp->rcv_nxt, sp->start_seq)) {
4308 int i;
4310 /* RCV.NXT must cover all the block! */
4311 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4313 /* Zap this SACK, by moving forward any other SACKS. */
4314 for (i = this_sack+1; i < num_sacks; i++)
4315 tp->selective_acks[i-1] = tp->selective_acks[i];
4316 num_sacks--;
4317 continue;
4319 this_sack++;
4320 sp++;
4322 tp->rx_opt.num_sacks = num_sacks;
4326 * tcp_try_coalesce - try to merge skb to prior one
4327 * @sk: socket
4328 * @dest: destination queue
4329 * @to: prior buffer
4330 * @from: buffer to add in queue
4331 * @fragstolen: pointer to boolean
4333 * Before queueing skb @from after @to, try to merge them
4334 * to reduce overall memory use and queue lengths, if cost is small.
4335 * Packets in ofo or receive queues can stay a long time.
4336 * Better try to coalesce them right now to avoid future collapses.
4337 * Returns true if caller should free @from instead of queueing it
4339 static bool tcp_try_coalesce(struct sock *sk,
4340 struct sk_buff *to,
4341 struct sk_buff *from,
4342 bool *fragstolen)
4344 int delta;
4346 *fragstolen = false;
4348 /* Its possible this segment overlaps with prior segment in queue */
4349 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4350 return false;
4352 #ifdef CONFIG_TLS_DEVICE
4353 if (from->decrypted != to->decrypted)
4354 return false;
4355 #endif
4357 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4358 return false;
4360 atomic_add(delta, &sk->sk_rmem_alloc);
4361 sk_mem_charge(sk, delta);
4362 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4363 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4364 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4365 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4367 if (TCP_SKB_CB(from)->has_rxtstamp) {
4368 TCP_SKB_CB(to)->has_rxtstamp = true;
4369 to->tstamp = from->tstamp;
4370 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4373 return true;
4376 static bool tcp_ooo_try_coalesce(struct sock *sk,
4377 struct sk_buff *to,
4378 struct sk_buff *from,
4379 bool *fragstolen)
4381 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4383 /* In case tcp_drop() is called later, update to->gso_segs */
4384 if (res) {
4385 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4386 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4388 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4390 return res;
4393 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4395 sk_drops_add(sk, skb);
4396 __kfree_skb(skb);
4399 /* This one checks to see if we can put data from the
4400 * out_of_order queue into the receive_queue.
4402 static void tcp_ofo_queue(struct sock *sk)
4404 struct tcp_sock *tp = tcp_sk(sk);
4405 __u32 dsack_high = tp->rcv_nxt;
4406 bool fin, fragstolen, eaten;
4407 struct sk_buff *skb, *tail;
4408 struct rb_node *p;
4410 p = rb_first(&tp->out_of_order_queue);
4411 while (p) {
4412 skb = rb_to_skb(p);
4413 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4414 break;
4416 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4417 __u32 dsack = dsack_high;
4418 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4419 dsack_high = TCP_SKB_CB(skb)->end_seq;
4420 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4422 p = rb_next(p);
4423 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4425 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4426 tcp_drop(sk, skb);
4427 continue;
4430 tail = skb_peek_tail(&sk->sk_receive_queue);
4431 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4432 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4433 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4434 if (!eaten)
4435 __skb_queue_tail(&sk->sk_receive_queue, skb);
4436 else
4437 kfree_skb_partial(skb, fragstolen);
4439 if (unlikely(fin)) {
4440 tcp_fin(sk);
4441 /* tcp_fin() purges tp->out_of_order_queue,
4442 * so we must end this loop right now.
4444 break;
4449 static bool tcp_prune_ofo_queue(struct sock *sk);
4450 static int tcp_prune_queue(struct sock *sk);
4452 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4453 unsigned int size)
4455 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4456 !sk_rmem_schedule(sk, skb, size)) {
4458 if (tcp_prune_queue(sk) < 0)
4459 return -1;
4461 while (!sk_rmem_schedule(sk, skb, size)) {
4462 if (!tcp_prune_ofo_queue(sk))
4463 return -1;
4466 return 0;
4469 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4471 struct tcp_sock *tp = tcp_sk(sk);
4472 struct rb_node **p, *parent;
4473 struct sk_buff *skb1;
4474 u32 seq, end_seq;
4475 bool fragstolen;
4477 tcp_ecn_check_ce(sk, skb);
4479 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4480 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4481 tcp_drop(sk, skb);
4482 return;
4485 /* Disable header prediction. */
4486 tp->pred_flags = 0;
4487 inet_csk_schedule_ack(sk);
4489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4490 seq = TCP_SKB_CB(skb)->seq;
4491 end_seq = TCP_SKB_CB(skb)->end_seq;
4493 p = &tp->out_of_order_queue.rb_node;
4494 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4495 /* Initial out of order segment, build 1 SACK. */
4496 if (tcp_is_sack(tp)) {
4497 tp->rx_opt.num_sacks = 1;
4498 tp->selective_acks[0].start_seq = seq;
4499 tp->selective_acks[0].end_seq = end_seq;
4501 rb_link_node(&skb->rbnode, NULL, p);
4502 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4503 tp->ooo_last_skb = skb;
4504 goto end;
4507 /* In the typical case, we are adding an skb to the end of the list.
4508 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4510 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4511 skb, &fragstolen)) {
4512 coalesce_done:
4513 tcp_grow_window(sk, skb);
4514 kfree_skb_partial(skb, fragstolen);
4515 skb = NULL;
4516 goto add_sack;
4518 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4519 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4520 parent = &tp->ooo_last_skb->rbnode;
4521 p = &parent->rb_right;
4522 goto insert;
4525 /* Find place to insert this segment. Handle overlaps on the way. */
4526 parent = NULL;
4527 while (*p) {
4528 parent = *p;
4529 skb1 = rb_to_skb(parent);
4530 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4531 p = &parent->rb_left;
4532 continue;
4534 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4535 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4536 /* All the bits are present. Drop. */
4537 NET_INC_STATS(sock_net(sk),
4538 LINUX_MIB_TCPOFOMERGE);
4539 tcp_drop(sk, skb);
4540 skb = NULL;
4541 tcp_dsack_set(sk, seq, end_seq);
4542 goto add_sack;
4544 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4545 /* Partial overlap. */
4546 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4547 } else {
4548 /* skb's seq == skb1's seq and skb covers skb1.
4549 * Replace skb1 with skb.
4551 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4552 &tp->out_of_order_queue);
4553 tcp_dsack_extend(sk,
4554 TCP_SKB_CB(skb1)->seq,
4555 TCP_SKB_CB(skb1)->end_seq);
4556 NET_INC_STATS(sock_net(sk),
4557 LINUX_MIB_TCPOFOMERGE);
4558 tcp_drop(sk, skb1);
4559 goto merge_right;
4561 } else if (tcp_ooo_try_coalesce(sk, skb1,
4562 skb, &fragstolen)) {
4563 goto coalesce_done;
4565 p = &parent->rb_right;
4567 insert:
4568 /* Insert segment into RB tree. */
4569 rb_link_node(&skb->rbnode, parent, p);
4570 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4572 merge_right:
4573 /* Remove other segments covered by skb. */
4574 while ((skb1 = skb_rb_next(skb)) != NULL) {
4575 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4576 break;
4577 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4578 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4579 end_seq);
4580 break;
4582 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4583 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4584 TCP_SKB_CB(skb1)->end_seq);
4585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4586 tcp_drop(sk, skb1);
4588 /* If there is no skb after us, we are the last_skb ! */
4589 if (!skb1)
4590 tp->ooo_last_skb = skb;
4592 add_sack:
4593 if (tcp_is_sack(tp))
4594 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4595 end:
4596 if (skb) {
4597 tcp_grow_window(sk, skb);
4598 skb_condense(skb);
4599 skb_set_owner_r(skb, sk);
4603 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4604 bool *fragstolen)
4606 int eaten;
4607 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4609 eaten = (tail &&
4610 tcp_try_coalesce(sk, tail,
4611 skb, fragstolen)) ? 1 : 0;
4612 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4613 if (!eaten) {
4614 __skb_queue_tail(&sk->sk_receive_queue, skb);
4615 skb_set_owner_r(skb, sk);
4617 return eaten;
4620 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4622 struct sk_buff *skb;
4623 int err = -ENOMEM;
4624 int data_len = 0;
4625 bool fragstolen;
4627 if (size == 0)
4628 return 0;
4630 if (size > PAGE_SIZE) {
4631 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4633 data_len = npages << PAGE_SHIFT;
4634 size = data_len + (size & ~PAGE_MASK);
4636 skb = alloc_skb_with_frags(size - data_len, data_len,
4637 PAGE_ALLOC_COSTLY_ORDER,
4638 &err, sk->sk_allocation);
4639 if (!skb)
4640 goto err;
4642 skb_put(skb, size - data_len);
4643 skb->data_len = data_len;
4644 skb->len = size;
4646 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4648 goto err_free;
4651 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4652 if (err)
4653 goto err_free;
4655 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4656 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4657 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4659 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4660 WARN_ON_ONCE(fragstolen); /* should not happen */
4661 __kfree_skb(skb);
4663 return size;
4665 err_free:
4666 kfree_skb(skb);
4667 err:
4668 return err;
4672 void tcp_data_ready(struct sock *sk)
4674 const struct tcp_sock *tp = tcp_sk(sk);
4675 int avail = tp->rcv_nxt - tp->copied_seq;
4677 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4678 return;
4680 sk->sk_data_ready(sk);
4683 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4685 struct tcp_sock *tp = tcp_sk(sk);
4686 bool fragstolen;
4687 int eaten;
4689 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4690 __kfree_skb(skb);
4691 return;
4693 skb_dst_drop(skb);
4694 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4696 tcp_ecn_accept_cwr(sk, skb);
4698 tp->rx_opt.dsack = 0;
4700 /* Queue data for delivery to the user.
4701 * Packets in sequence go to the receive queue.
4702 * Out of sequence packets to the out_of_order_queue.
4704 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4705 if (tcp_receive_window(tp) == 0) {
4706 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4707 goto out_of_window;
4710 /* Ok. In sequence. In window. */
4711 queue_and_out:
4712 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4713 sk_forced_mem_schedule(sk, skb->truesize);
4714 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4716 goto drop;
4719 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4720 if (skb->len)
4721 tcp_event_data_recv(sk, skb);
4722 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4723 tcp_fin(sk);
4725 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4726 tcp_ofo_queue(sk);
4728 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4729 * gap in queue is filled.
4731 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4732 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4735 if (tp->rx_opt.num_sacks)
4736 tcp_sack_remove(tp);
4738 tcp_fast_path_check(sk);
4740 if (eaten > 0)
4741 kfree_skb_partial(skb, fragstolen);
4742 if (!sock_flag(sk, SOCK_DEAD))
4743 tcp_data_ready(sk);
4744 return;
4747 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4748 tcp_rcv_spurious_retrans(sk, skb);
4749 /* A retransmit, 2nd most common case. Force an immediate ack. */
4750 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4751 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4753 out_of_window:
4754 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4755 inet_csk_schedule_ack(sk);
4756 drop:
4757 tcp_drop(sk, skb);
4758 return;
4761 /* Out of window. F.e. zero window probe. */
4762 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4763 goto out_of_window;
4765 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4766 /* Partial packet, seq < rcv_next < end_seq */
4767 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4769 /* If window is closed, drop tail of packet. But after
4770 * remembering D-SACK for its head made in previous line.
4772 if (!tcp_receive_window(tp)) {
4773 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4774 goto out_of_window;
4776 goto queue_and_out;
4779 tcp_data_queue_ofo(sk, skb);
4782 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4784 if (list)
4785 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4787 return skb_rb_next(skb);
4790 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4791 struct sk_buff_head *list,
4792 struct rb_root *root)
4794 struct sk_buff *next = tcp_skb_next(skb, list);
4796 if (list)
4797 __skb_unlink(skb, list);
4798 else
4799 rb_erase(&skb->rbnode, root);
4801 __kfree_skb(skb);
4802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4804 return next;
4807 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4808 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4810 struct rb_node **p = &root->rb_node;
4811 struct rb_node *parent = NULL;
4812 struct sk_buff *skb1;
4814 while (*p) {
4815 parent = *p;
4816 skb1 = rb_to_skb(parent);
4817 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4818 p = &parent->rb_left;
4819 else
4820 p = &parent->rb_right;
4822 rb_link_node(&skb->rbnode, parent, p);
4823 rb_insert_color(&skb->rbnode, root);
4826 /* Collapse contiguous sequence of skbs head..tail with
4827 * sequence numbers start..end.
4829 * If tail is NULL, this means until the end of the queue.
4831 * Segments with FIN/SYN are not collapsed (only because this
4832 * simplifies code)
4834 static void
4835 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4836 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4838 struct sk_buff *skb = head, *n;
4839 struct sk_buff_head tmp;
4840 bool end_of_skbs;
4842 /* First, check that queue is collapsible and find
4843 * the point where collapsing can be useful.
4845 restart:
4846 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4847 n = tcp_skb_next(skb, list);
4849 /* No new bits? It is possible on ofo queue. */
4850 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4851 skb = tcp_collapse_one(sk, skb, list, root);
4852 if (!skb)
4853 break;
4854 goto restart;
4857 /* The first skb to collapse is:
4858 * - not SYN/FIN and
4859 * - bloated or contains data before "start" or
4860 * overlaps to the next one.
4862 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4863 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4864 before(TCP_SKB_CB(skb)->seq, start))) {
4865 end_of_skbs = false;
4866 break;
4869 if (n && n != tail &&
4870 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4871 end_of_skbs = false;
4872 break;
4875 /* Decided to skip this, advance start seq. */
4876 start = TCP_SKB_CB(skb)->end_seq;
4878 if (end_of_skbs ||
4879 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4880 return;
4882 __skb_queue_head_init(&tmp);
4884 while (before(start, end)) {
4885 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4886 struct sk_buff *nskb;
4888 nskb = alloc_skb(copy, GFP_ATOMIC);
4889 if (!nskb)
4890 break;
4892 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4893 #ifdef CONFIG_TLS_DEVICE
4894 nskb->decrypted = skb->decrypted;
4895 #endif
4896 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4897 if (list)
4898 __skb_queue_before(list, skb, nskb);
4899 else
4900 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4901 skb_set_owner_r(nskb, sk);
4903 /* Copy data, releasing collapsed skbs. */
4904 while (copy > 0) {
4905 int offset = start - TCP_SKB_CB(skb)->seq;
4906 int size = TCP_SKB_CB(skb)->end_seq - start;
4908 BUG_ON(offset < 0);
4909 if (size > 0) {
4910 size = min(copy, size);
4911 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4912 BUG();
4913 TCP_SKB_CB(nskb)->end_seq += size;
4914 copy -= size;
4915 start += size;
4917 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4918 skb = tcp_collapse_one(sk, skb, list, root);
4919 if (!skb ||
4920 skb == tail ||
4921 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4922 goto end;
4923 #ifdef CONFIG_TLS_DEVICE
4924 if (skb->decrypted != nskb->decrypted)
4925 goto end;
4926 #endif
4930 end:
4931 skb_queue_walk_safe(&tmp, skb, n)
4932 tcp_rbtree_insert(root, skb);
4935 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4936 * and tcp_collapse() them until all the queue is collapsed.
4938 static void tcp_collapse_ofo_queue(struct sock *sk)
4940 struct tcp_sock *tp = tcp_sk(sk);
4941 u32 range_truesize, sum_tiny = 0;
4942 struct sk_buff *skb, *head;
4943 u32 start, end;
4945 skb = skb_rb_first(&tp->out_of_order_queue);
4946 new_range:
4947 if (!skb) {
4948 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4949 return;
4951 start = TCP_SKB_CB(skb)->seq;
4952 end = TCP_SKB_CB(skb)->end_seq;
4953 range_truesize = skb->truesize;
4955 for (head = skb;;) {
4956 skb = skb_rb_next(skb);
4958 /* Range is terminated when we see a gap or when
4959 * we are at the queue end.
4961 if (!skb ||
4962 after(TCP_SKB_CB(skb)->seq, end) ||
4963 before(TCP_SKB_CB(skb)->end_seq, start)) {
4964 /* Do not attempt collapsing tiny skbs */
4965 if (range_truesize != head->truesize ||
4966 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4967 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4968 head, skb, start, end);
4969 } else {
4970 sum_tiny += range_truesize;
4971 if (sum_tiny > sk->sk_rcvbuf >> 3)
4972 return;
4974 goto new_range;
4977 range_truesize += skb->truesize;
4978 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4979 start = TCP_SKB_CB(skb)->seq;
4980 if (after(TCP_SKB_CB(skb)->end_seq, end))
4981 end = TCP_SKB_CB(skb)->end_seq;
4986 * Clean the out-of-order queue to make room.
4987 * We drop high sequences packets to :
4988 * 1) Let a chance for holes to be filled.
4989 * 2) not add too big latencies if thousands of packets sit there.
4990 * (But if application shrinks SO_RCVBUF, we could still end up
4991 * freeing whole queue here)
4992 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4994 * Return true if queue has shrunk.
4996 static bool tcp_prune_ofo_queue(struct sock *sk)
4998 struct tcp_sock *tp = tcp_sk(sk);
4999 struct rb_node *node, *prev;
5000 int goal;
5002 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5003 return false;
5005 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5006 goal = sk->sk_rcvbuf >> 3;
5007 node = &tp->ooo_last_skb->rbnode;
5008 do {
5009 prev = rb_prev(node);
5010 rb_erase(node, &tp->out_of_order_queue);
5011 goal -= rb_to_skb(node)->truesize;
5012 tcp_drop(sk, rb_to_skb(node));
5013 if (!prev || goal <= 0) {
5014 sk_mem_reclaim(sk);
5015 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5016 !tcp_under_memory_pressure(sk))
5017 break;
5018 goal = sk->sk_rcvbuf >> 3;
5020 node = prev;
5021 } while (node);
5022 tp->ooo_last_skb = rb_to_skb(prev);
5024 /* Reset SACK state. A conforming SACK implementation will
5025 * do the same at a timeout based retransmit. When a connection
5026 * is in a sad state like this, we care only about integrity
5027 * of the connection not performance.
5029 if (tp->rx_opt.sack_ok)
5030 tcp_sack_reset(&tp->rx_opt);
5031 return true;
5034 /* Reduce allocated memory if we can, trying to get
5035 * the socket within its memory limits again.
5037 * Return less than zero if we should start dropping frames
5038 * until the socket owning process reads some of the data
5039 * to stabilize the situation.
5041 static int tcp_prune_queue(struct sock *sk)
5043 struct tcp_sock *tp = tcp_sk(sk);
5045 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5047 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5048 tcp_clamp_window(sk);
5049 else if (tcp_under_memory_pressure(sk))
5050 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5052 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5053 return 0;
5055 tcp_collapse_ofo_queue(sk);
5056 if (!skb_queue_empty(&sk->sk_receive_queue))
5057 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5058 skb_peek(&sk->sk_receive_queue),
5059 NULL,
5060 tp->copied_seq, tp->rcv_nxt);
5061 sk_mem_reclaim(sk);
5063 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5064 return 0;
5066 /* Collapsing did not help, destructive actions follow.
5067 * This must not ever occur. */
5069 tcp_prune_ofo_queue(sk);
5071 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5072 return 0;
5074 /* If we are really being abused, tell the caller to silently
5075 * drop receive data on the floor. It will get retransmitted
5076 * and hopefully then we'll have sufficient space.
5078 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5080 /* Massive buffer overcommit. */
5081 tp->pred_flags = 0;
5082 return -1;
5085 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5087 const struct tcp_sock *tp = tcp_sk(sk);
5089 /* If the user specified a specific send buffer setting, do
5090 * not modify it.
5092 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5093 return false;
5095 /* If we are under global TCP memory pressure, do not expand. */
5096 if (tcp_under_memory_pressure(sk))
5097 return false;
5099 /* If we are under soft global TCP memory pressure, do not expand. */
5100 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5101 return false;
5103 /* If we filled the congestion window, do not expand. */
5104 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5105 return false;
5107 return true;
5110 /* When incoming ACK allowed to free some skb from write_queue,
5111 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5112 * on the exit from tcp input handler.
5114 * PROBLEM: sndbuf expansion does not work well with largesend.
5116 static void tcp_new_space(struct sock *sk)
5118 struct tcp_sock *tp = tcp_sk(sk);
5120 if (tcp_should_expand_sndbuf(sk)) {
5121 tcp_sndbuf_expand(sk);
5122 tp->snd_cwnd_stamp = tcp_jiffies32;
5125 sk->sk_write_space(sk);
5128 static void tcp_check_space(struct sock *sk)
5130 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5131 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5132 /* pairs with tcp_poll() */
5133 smp_mb();
5134 if (sk->sk_socket &&
5135 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5136 tcp_new_space(sk);
5137 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5138 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5143 static inline void tcp_data_snd_check(struct sock *sk)
5145 tcp_push_pending_frames(sk);
5146 tcp_check_space(sk);
5150 * Check if sending an ack is needed.
5152 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5154 struct tcp_sock *tp = tcp_sk(sk);
5155 unsigned long rtt, delay;
5157 /* More than one full frame received... */
5158 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5159 /* ... and right edge of window advances far enough.
5160 * (tcp_recvmsg() will send ACK otherwise).
5161 * If application uses SO_RCVLOWAT, we want send ack now if
5162 * we have not received enough bytes to satisfy the condition.
5164 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5165 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5166 /* We ACK each frame or... */
5167 tcp_in_quickack_mode(sk) ||
5168 /* Protocol state mandates a one-time immediate ACK */
5169 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5170 send_now:
5171 tcp_send_ack(sk);
5172 return;
5175 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5176 tcp_send_delayed_ack(sk);
5177 return;
5180 if (!tcp_is_sack(tp) ||
5181 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5182 goto send_now;
5184 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5185 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5186 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5188 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5189 tp->compressed_ack = 0;
5192 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5193 goto send_now;
5195 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5196 return;
5198 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5200 rtt = tp->rcv_rtt_est.rtt_us;
5201 if (tp->srtt_us && tp->srtt_us < rtt)
5202 rtt = tp->srtt_us;
5204 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5205 rtt * (NSEC_PER_USEC >> 3)/20);
5206 sock_hold(sk);
5207 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5208 HRTIMER_MODE_REL_PINNED_SOFT);
5211 static inline void tcp_ack_snd_check(struct sock *sk)
5213 if (!inet_csk_ack_scheduled(sk)) {
5214 /* We sent a data segment already. */
5215 return;
5217 __tcp_ack_snd_check(sk, 1);
5221 * This routine is only called when we have urgent data
5222 * signaled. Its the 'slow' part of tcp_urg. It could be
5223 * moved inline now as tcp_urg is only called from one
5224 * place. We handle URGent data wrong. We have to - as
5225 * BSD still doesn't use the correction from RFC961.
5226 * For 1003.1g we should support a new option TCP_STDURG to permit
5227 * either form (or just set the sysctl tcp_stdurg).
5230 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5232 struct tcp_sock *tp = tcp_sk(sk);
5233 u32 ptr = ntohs(th->urg_ptr);
5235 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5236 ptr--;
5237 ptr += ntohl(th->seq);
5239 /* Ignore urgent data that we've already seen and read. */
5240 if (after(tp->copied_seq, ptr))
5241 return;
5243 /* Do not replay urg ptr.
5245 * NOTE: interesting situation not covered by specs.
5246 * Misbehaving sender may send urg ptr, pointing to segment,
5247 * which we already have in ofo queue. We are not able to fetch
5248 * such data and will stay in TCP_URG_NOTYET until will be eaten
5249 * by recvmsg(). Seems, we are not obliged to handle such wicked
5250 * situations. But it is worth to think about possibility of some
5251 * DoSes using some hypothetical application level deadlock.
5253 if (before(ptr, tp->rcv_nxt))
5254 return;
5256 /* Do we already have a newer (or duplicate) urgent pointer? */
5257 if (tp->urg_data && !after(ptr, tp->urg_seq))
5258 return;
5260 /* Tell the world about our new urgent pointer. */
5261 sk_send_sigurg(sk);
5263 /* We may be adding urgent data when the last byte read was
5264 * urgent. To do this requires some care. We cannot just ignore
5265 * tp->copied_seq since we would read the last urgent byte again
5266 * as data, nor can we alter copied_seq until this data arrives
5267 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5269 * NOTE. Double Dutch. Rendering to plain English: author of comment
5270 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5271 * and expect that both A and B disappear from stream. This is _wrong_.
5272 * Though this happens in BSD with high probability, this is occasional.
5273 * Any application relying on this is buggy. Note also, that fix "works"
5274 * only in this artificial test. Insert some normal data between A and B and we will
5275 * decline of BSD again. Verdict: it is better to remove to trap
5276 * buggy users.
5278 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5279 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5280 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5281 tp->copied_seq++;
5282 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5283 __skb_unlink(skb, &sk->sk_receive_queue);
5284 __kfree_skb(skb);
5288 tp->urg_data = TCP_URG_NOTYET;
5289 tp->urg_seq = ptr;
5291 /* Disable header prediction. */
5292 tp->pred_flags = 0;
5295 /* This is the 'fast' part of urgent handling. */
5296 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5298 struct tcp_sock *tp = tcp_sk(sk);
5300 /* Check if we get a new urgent pointer - normally not. */
5301 if (th->urg)
5302 tcp_check_urg(sk, th);
5304 /* Do we wait for any urgent data? - normally not... */
5305 if (tp->urg_data == TCP_URG_NOTYET) {
5306 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5307 th->syn;
5309 /* Is the urgent pointer pointing into this packet? */
5310 if (ptr < skb->len) {
5311 u8 tmp;
5312 if (skb_copy_bits(skb, ptr, &tmp, 1))
5313 BUG();
5314 tp->urg_data = TCP_URG_VALID | tmp;
5315 if (!sock_flag(sk, SOCK_DEAD))
5316 sk->sk_data_ready(sk);
5321 /* Accept RST for rcv_nxt - 1 after a FIN.
5322 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5323 * FIN is sent followed by a RST packet. The RST is sent with the same
5324 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5325 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5326 * ACKs on the closed socket. In addition middleboxes can drop either the
5327 * challenge ACK or a subsequent RST.
5329 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5331 struct tcp_sock *tp = tcp_sk(sk);
5333 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5334 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5335 TCPF_CLOSING));
5338 /* Does PAWS and seqno based validation of an incoming segment, flags will
5339 * play significant role here.
5341 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5342 const struct tcphdr *th, int syn_inerr)
5344 struct tcp_sock *tp = tcp_sk(sk);
5345 bool rst_seq_match = false;
5347 /* RFC1323: H1. Apply PAWS check first. */
5348 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5349 tp->rx_opt.saw_tstamp &&
5350 tcp_paws_discard(sk, skb)) {
5351 if (!th->rst) {
5352 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5353 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5354 LINUX_MIB_TCPACKSKIPPEDPAWS,
5355 &tp->last_oow_ack_time))
5356 tcp_send_dupack(sk, skb);
5357 goto discard;
5359 /* Reset is accepted even if it did not pass PAWS. */
5362 /* Step 1: check sequence number */
5363 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5364 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5365 * (RST) segments are validated by checking their SEQ-fields."
5366 * And page 69: "If an incoming segment is not acceptable,
5367 * an acknowledgment should be sent in reply (unless the RST
5368 * bit is set, if so drop the segment and return)".
5370 if (!th->rst) {
5371 if (th->syn)
5372 goto syn_challenge;
5373 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5374 LINUX_MIB_TCPACKSKIPPEDSEQ,
5375 &tp->last_oow_ack_time))
5376 tcp_send_dupack(sk, skb);
5377 } else if (tcp_reset_check(sk, skb)) {
5378 tcp_reset(sk);
5380 goto discard;
5383 /* Step 2: check RST bit */
5384 if (th->rst) {
5385 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5386 * FIN and SACK too if available):
5387 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5388 * the right-most SACK block,
5389 * then
5390 * RESET the connection
5391 * else
5392 * Send a challenge ACK
5394 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5395 tcp_reset_check(sk, skb)) {
5396 rst_seq_match = true;
5397 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5398 struct tcp_sack_block *sp = &tp->selective_acks[0];
5399 int max_sack = sp[0].end_seq;
5400 int this_sack;
5402 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5403 ++this_sack) {
5404 max_sack = after(sp[this_sack].end_seq,
5405 max_sack) ?
5406 sp[this_sack].end_seq : max_sack;
5409 if (TCP_SKB_CB(skb)->seq == max_sack)
5410 rst_seq_match = true;
5413 if (rst_seq_match)
5414 tcp_reset(sk);
5415 else {
5416 /* Disable TFO if RST is out-of-order
5417 * and no data has been received
5418 * for current active TFO socket
5420 if (tp->syn_fastopen && !tp->data_segs_in &&
5421 sk->sk_state == TCP_ESTABLISHED)
5422 tcp_fastopen_active_disable(sk);
5423 tcp_send_challenge_ack(sk, skb);
5425 goto discard;
5428 /* step 3: check security and precedence [ignored] */
5430 /* step 4: Check for a SYN
5431 * RFC 5961 4.2 : Send a challenge ack
5433 if (th->syn) {
5434 syn_challenge:
5435 if (syn_inerr)
5436 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5438 tcp_send_challenge_ack(sk, skb);
5439 goto discard;
5442 return true;
5444 discard:
5445 tcp_drop(sk, skb);
5446 return false;
5450 * TCP receive function for the ESTABLISHED state.
5452 * It is split into a fast path and a slow path. The fast path is
5453 * disabled when:
5454 * - A zero window was announced from us - zero window probing
5455 * is only handled properly in the slow path.
5456 * - Out of order segments arrived.
5457 * - Urgent data is expected.
5458 * - There is no buffer space left
5459 * - Unexpected TCP flags/window values/header lengths are received
5460 * (detected by checking the TCP header against pred_flags)
5461 * - Data is sent in both directions. Fast path only supports pure senders
5462 * or pure receivers (this means either the sequence number or the ack
5463 * value must stay constant)
5464 * - Unexpected TCP option.
5466 * When these conditions are not satisfied it drops into a standard
5467 * receive procedure patterned after RFC793 to handle all cases.
5468 * The first three cases are guaranteed by proper pred_flags setting,
5469 * the rest is checked inline. Fast processing is turned on in
5470 * tcp_data_queue when everything is OK.
5472 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5474 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5475 struct tcp_sock *tp = tcp_sk(sk);
5476 unsigned int len = skb->len;
5478 /* TCP congestion window tracking */
5479 trace_tcp_probe(sk, skb);
5481 tcp_mstamp_refresh(tp);
5482 if (unlikely(!sk->sk_rx_dst))
5483 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5485 * Header prediction.
5486 * The code loosely follows the one in the famous
5487 * "30 instruction TCP receive" Van Jacobson mail.
5489 * Van's trick is to deposit buffers into socket queue
5490 * on a device interrupt, to call tcp_recv function
5491 * on the receive process context and checksum and copy
5492 * the buffer to user space. smart...
5494 * Our current scheme is not silly either but we take the
5495 * extra cost of the net_bh soft interrupt processing...
5496 * We do checksum and copy also but from device to kernel.
5499 tp->rx_opt.saw_tstamp = 0;
5501 /* pred_flags is 0xS?10 << 16 + snd_wnd
5502 * if header_prediction is to be made
5503 * 'S' will always be tp->tcp_header_len >> 2
5504 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5505 * turn it off (when there are holes in the receive
5506 * space for instance)
5507 * PSH flag is ignored.
5510 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5511 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5512 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5513 int tcp_header_len = tp->tcp_header_len;
5515 /* Timestamp header prediction: tcp_header_len
5516 * is automatically equal to th->doff*4 due to pred_flags
5517 * match.
5520 /* Check timestamp */
5521 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5522 /* No? Slow path! */
5523 if (!tcp_parse_aligned_timestamp(tp, th))
5524 goto slow_path;
5526 /* If PAWS failed, check it more carefully in slow path */
5527 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5528 goto slow_path;
5530 /* DO NOT update ts_recent here, if checksum fails
5531 * and timestamp was corrupted part, it will result
5532 * in a hung connection since we will drop all
5533 * future packets due to the PAWS test.
5537 if (len <= tcp_header_len) {
5538 /* Bulk data transfer: sender */
5539 if (len == tcp_header_len) {
5540 /* Predicted packet is in window by definition.
5541 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5542 * Hence, check seq<=rcv_wup reduces to:
5544 if (tcp_header_len ==
5545 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5546 tp->rcv_nxt == tp->rcv_wup)
5547 tcp_store_ts_recent(tp);
5549 /* We know that such packets are checksummed
5550 * on entry.
5552 tcp_ack(sk, skb, 0);
5553 __kfree_skb(skb);
5554 tcp_data_snd_check(sk);
5555 /* When receiving pure ack in fast path, update
5556 * last ts ecr directly instead of calling
5557 * tcp_rcv_rtt_measure_ts()
5559 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5560 return;
5561 } else { /* Header too small */
5562 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5563 goto discard;
5565 } else {
5566 int eaten = 0;
5567 bool fragstolen = false;
5569 if (tcp_checksum_complete(skb))
5570 goto csum_error;
5572 if ((int)skb->truesize > sk->sk_forward_alloc)
5573 goto step5;
5575 /* Predicted packet is in window by definition.
5576 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5577 * Hence, check seq<=rcv_wup reduces to:
5579 if (tcp_header_len ==
5580 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5581 tp->rcv_nxt == tp->rcv_wup)
5582 tcp_store_ts_recent(tp);
5584 tcp_rcv_rtt_measure_ts(sk, skb);
5586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5588 /* Bulk data transfer: receiver */
5589 __skb_pull(skb, tcp_header_len);
5590 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5592 tcp_event_data_recv(sk, skb);
5594 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5595 /* Well, only one small jumplet in fast path... */
5596 tcp_ack(sk, skb, FLAG_DATA);
5597 tcp_data_snd_check(sk);
5598 if (!inet_csk_ack_scheduled(sk))
5599 goto no_ack;
5602 __tcp_ack_snd_check(sk, 0);
5603 no_ack:
5604 if (eaten)
5605 kfree_skb_partial(skb, fragstolen);
5606 tcp_data_ready(sk);
5607 return;
5611 slow_path:
5612 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5613 goto csum_error;
5615 if (!th->ack && !th->rst && !th->syn)
5616 goto discard;
5619 * Standard slow path.
5622 if (!tcp_validate_incoming(sk, skb, th, 1))
5623 return;
5625 step5:
5626 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5627 goto discard;
5629 tcp_rcv_rtt_measure_ts(sk, skb);
5631 /* Process urgent data. */
5632 tcp_urg(sk, skb, th);
5634 /* step 7: process the segment text */
5635 tcp_data_queue(sk, skb);
5637 tcp_data_snd_check(sk);
5638 tcp_ack_snd_check(sk);
5639 return;
5641 csum_error:
5642 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5643 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5645 discard:
5646 tcp_drop(sk, skb);
5648 EXPORT_SYMBOL(tcp_rcv_established);
5650 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5652 struct tcp_sock *tp = tcp_sk(sk);
5653 struct inet_connection_sock *icsk = inet_csk(sk);
5655 tcp_set_state(sk, TCP_ESTABLISHED);
5656 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5658 if (skb) {
5659 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5660 security_inet_conn_established(sk, skb);
5661 sk_mark_napi_id(sk, skb);
5664 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5666 /* Prevent spurious tcp_cwnd_restart() on first data
5667 * packet.
5669 tp->lsndtime = tcp_jiffies32;
5671 if (sock_flag(sk, SOCK_KEEPOPEN))
5672 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5674 if (!tp->rx_opt.snd_wscale)
5675 __tcp_fast_path_on(tp, tp->snd_wnd);
5676 else
5677 tp->pred_flags = 0;
5680 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5681 struct tcp_fastopen_cookie *cookie)
5683 struct tcp_sock *tp = tcp_sk(sk);
5684 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5685 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5686 bool syn_drop = false;
5688 if (mss == tp->rx_opt.user_mss) {
5689 struct tcp_options_received opt;
5691 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5692 tcp_clear_options(&opt);
5693 opt.user_mss = opt.mss_clamp = 0;
5694 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5695 mss = opt.mss_clamp;
5698 if (!tp->syn_fastopen) {
5699 /* Ignore an unsolicited cookie */
5700 cookie->len = -1;
5701 } else if (tp->total_retrans) {
5702 /* SYN timed out and the SYN-ACK neither has a cookie nor
5703 * acknowledges data. Presumably the remote received only
5704 * the retransmitted (regular) SYNs: either the original
5705 * SYN-data or the corresponding SYN-ACK was dropped.
5707 syn_drop = (cookie->len < 0 && data);
5708 } else if (cookie->len < 0 && !tp->syn_data) {
5709 /* We requested a cookie but didn't get it. If we did not use
5710 * the (old) exp opt format then try so next time (try_exp=1).
5711 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5713 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5716 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5718 if (data) { /* Retransmit unacked data in SYN */
5719 skb_rbtree_walk_from(data) {
5720 if (__tcp_retransmit_skb(sk, data, 1))
5721 break;
5723 tcp_rearm_rto(sk);
5724 NET_INC_STATS(sock_net(sk),
5725 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5726 return true;
5728 tp->syn_data_acked = tp->syn_data;
5729 if (tp->syn_data_acked) {
5730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5731 /* SYN-data is counted as two separate packets in tcp_ack() */
5732 if (tp->delivered > 1)
5733 --tp->delivered;
5736 tcp_fastopen_add_skb(sk, synack);
5738 return false;
5741 static void smc_check_reset_syn(struct tcp_sock *tp)
5743 #if IS_ENABLED(CONFIG_SMC)
5744 if (static_branch_unlikely(&tcp_have_smc)) {
5745 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5746 tp->syn_smc = 0;
5748 #endif
5751 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5752 const struct tcphdr *th)
5754 struct inet_connection_sock *icsk = inet_csk(sk);
5755 struct tcp_sock *tp = tcp_sk(sk);
5756 struct tcp_fastopen_cookie foc = { .len = -1 };
5757 int saved_clamp = tp->rx_opt.mss_clamp;
5758 bool fastopen_fail;
5760 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5761 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5762 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5764 if (th->ack) {
5765 /* rfc793:
5766 * "If the state is SYN-SENT then
5767 * first check the ACK bit
5768 * If the ACK bit is set
5769 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5770 * a reset (unless the RST bit is set, if so drop
5771 * the segment and return)"
5773 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5774 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5775 goto reset_and_undo;
5777 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5778 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5779 tcp_time_stamp(tp))) {
5780 NET_INC_STATS(sock_net(sk),
5781 LINUX_MIB_PAWSACTIVEREJECTED);
5782 goto reset_and_undo;
5785 /* Now ACK is acceptable.
5787 * "If the RST bit is set
5788 * If the ACK was acceptable then signal the user "error:
5789 * connection reset", drop the segment, enter CLOSED state,
5790 * delete TCB, and return."
5793 if (th->rst) {
5794 tcp_reset(sk);
5795 goto discard;
5798 /* rfc793:
5799 * "fifth, if neither of the SYN or RST bits is set then
5800 * drop the segment and return."
5802 * See note below!
5803 * --ANK(990513)
5805 if (!th->syn)
5806 goto discard_and_undo;
5808 /* rfc793:
5809 * "If the SYN bit is on ...
5810 * are acceptable then ...
5811 * (our SYN has been ACKed), change the connection
5812 * state to ESTABLISHED..."
5815 tcp_ecn_rcv_synack(tp, th);
5817 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5818 tcp_ack(sk, skb, FLAG_SLOWPATH);
5820 /* Ok.. it's good. Set up sequence numbers and
5821 * move to established.
5823 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5824 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5826 /* RFC1323: The window in SYN & SYN/ACK segments is
5827 * never scaled.
5829 tp->snd_wnd = ntohs(th->window);
5831 if (!tp->rx_opt.wscale_ok) {
5832 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5833 tp->window_clamp = min(tp->window_clamp, 65535U);
5836 if (tp->rx_opt.saw_tstamp) {
5837 tp->rx_opt.tstamp_ok = 1;
5838 tp->tcp_header_len =
5839 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5840 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5841 tcp_store_ts_recent(tp);
5842 } else {
5843 tp->tcp_header_len = sizeof(struct tcphdr);
5846 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5847 tcp_initialize_rcv_mss(sk);
5849 /* Remember, tcp_poll() does not lock socket!
5850 * Change state from SYN-SENT only after copied_seq
5851 * is initialized. */
5852 tp->copied_seq = tp->rcv_nxt;
5854 smc_check_reset_syn(tp);
5856 smp_mb();
5858 tcp_finish_connect(sk, skb);
5860 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5861 tcp_rcv_fastopen_synack(sk, skb, &foc);
5863 if (!sock_flag(sk, SOCK_DEAD)) {
5864 sk->sk_state_change(sk);
5865 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5867 if (fastopen_fail)
5868 return -1;
5869 if (sk->sk_write_pending ||
5870 icsk->icsk_accept_queue.rskq_defer_accept ||
5871 inet_csk_in_pingpong_mode(sk)) {
5872 /* Save one ACK. Data will be ready after
5873 * several ticks, if write_pending is set.
5875 * It may be deleted, but with this feature tcpdumps
5876 * look so _wonderfully_ clever, that I was not able
5877 * to stand against the temptation 8) --ANK
5879 inet_csk_schedule_ack(sk);
5880 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5881 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5882 TCP_DELACK_MAX, TCP_RTO_MAX);
5884 discard:
5885 tcp_drop(sk, skb);
5886 return 0;
5887 } else {
5888 tcp_send_ack(sk);
5890 return -1;
5893 /* No ACK in the segment */
5895 if (th->rst) {
5896 /* rfc793:
5897 * "If the RST bit is set
5899 * Otherwise (no ACK) drop the segment and return."
5902 goto discard_and_undo;
5905 /* PAWS check. */
5906 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5907 tcp_paws_reject(&tp->rx_opt, 0))
5908 goto discard_and_undo;
5910 if (th->syn) {
5911 /* We see SYN without ACK. It is attempt of
5912 * simultaneous connect with crossed SYNs.
5913 * Particularly, it can be connect to self.
5915 tcp_set_state(sk, TCP_SYN_RECV);
5917 if (tp->rx_opt.saw_tstamp) {
5918 tp->rx_opt.tstamp_ok = 1;
5919 tcp_store_ts_recent(tp);
5920 tp->tcp_header_len =
5921 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5922 } else {
5923 tp->tcp_header_len = sizeof(struct tcphdr);
5926 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5927 tp->copied_seq = tp->rcv_nxt;
5928 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5930 /* RFC1323: The window in SYN & SYN/ACK segments is
5931 * never scaled.
5933 tp->snd_wnd = ntohs(th->window);
5934 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5935 tp->max_window = tp->snd_wnd;
5937 tcp_ecn_rcv_syn(tp, th);
5939 tcp_mtup_init(sk);
5940 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5941 tcp_initialize_rcv_mss(sk);
5943 tcp_send_synack(sk);
5944 #if 0
5945 /* Note, we could accept data and URG from this segment.
5946 * There are no obstacles to make this (except that we must
5947 * either change tcp_recvmsg() to prevent it from returning data
5948 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5950 * However, if we ignore data in ACKless segments sometimes,
5951 * we have no reasons to accept it sometimes.
5952 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5953 * is not flawless. So, discard packet for sanity.
5954 * Uncomment this return to process the data.
5956 return -1;
5957 #else
5958 goto discard;
5959 #endif
5961 /* "fifth, if neither of the SYN or RST bits is set then
5962 * drop the segment and return."
5965 discard_and_undo:
5966 tcp_clear_options(&tp->rx_opt);
5967 tp->rx_opt.mss_clamp = saved_clamp;
5968 goto discard;
5970 reset_and_undo:
5971 tcp_clear_options(&tp->rx_opt);
5972 tp->rx_opt.mss_clamp = saved_clamp;
5973 return 1;
5977 * This function implements the receiving procedure of RFC 793 for
5978 * all states except ESTABLISHED and TIME_WAIT.
5979 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5980 * address independent.
5983 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5985 struct tcp_sock *tp = tcp_sk(sk);
5986 struct inet_connection_sock *icsk = inet_csk(sk);
5987 const struct tcphdr *th = tcp_hdr(skb);
5988 struct request_sock *req;
5989 int queued = 0;
5990 bool acceptable;
5992 switch (sk->sk_state) {
5993 case TCP_CLOSE:
5994 goto discard;
5996 case TCP_LISTEN:
5997 if (th->ack)
5998 return 1;
6000 if (th->rst)
6001 goto discard;
6003 if (th->syn) {
6004 if (th->fin)
6005 goto discard;
6006 /* It is possible that we process SYN packets from backlog,
6007 * so we need to make sure to disable BH and RCU right there.
6009 rcu_read_lock();
6010 local_bh_disable();
6011 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6012 local_bh_enable();
6013 rcu_read_unlock();
6015 if (!acceptable)
6016 return 1;
6017 consume_skb(skb);
6018 return 0;
6020 goto discard;
6022 case TCP_SYN_SENT:
6023 tp->rx_opt.saw_tstamp = 0;
6024 tcp_mstamp_refresh(tp);
6025 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6026 if (queued >= 0)
6027 return queued;
6029 /* Do step6 onward by hand. */
6030 tcp_urg(sk, skb, th);
6031 __kfree_skb(skb);
6032 tcp_data_snd_check(sk);
6033 return 0;
6036 tcp_mstamp_refresh(tp);
6037 tp->rx_opt.saw_tstamp = 0;
6038 req = tp->fastopen_rsk;
6039 if (req) {
6040 bool req_stolen;
6042 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6043 sk->sk_state != TCP_FIN_WAIT1);
6045 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6046 goto discard;
6049 if (!th->ack && !th->rst && !th->syn)
6050 goto discard;
6052 if (!tcp_validate_incoming(sk, skb, th, 0))
6053 return 0;
6055 /* step 5: check the ACK field */
6056 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6057 FLAG_UPDATE_TS_RECENT |
6058 FLAG_NO_CHALLENGE_ACK) > 0;
6060 if (!acceptable) {
6061 if (sk->sk_state == TCP_SYN_RECV)
6062 return 1; /* send one RST */
6063 tcp_send_challenge_ack(sk, skb);
6064 goto discard;
6066 switch (sk->sk_state) {
6067 case TCP_SYN_RECV:
6068 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6069 if (!tp->srtt_us)
6070 tcp_synack_rtt_meas(sk, req);
6072 /* Once we leave TCP_SYN_RECV, we no longer need req
6073 * so release it.
6075 if (req) {
6076 inet_csk(sk)->icsk_retransmits = 0;
6077 reqsk_fastopen_remove(sk, req, false);
6078 /* Re-arm the timer because data may have been sent out.
6079 * This is similar to the regular data transmission case
6080 * when new data has just been ack'ed.
6082 * (TFO) - we could try to be more aggressive and
6083 * retransmitting any data sooner based on when they
6084 * are sent out.
6086 tcp_rearm_rto(sk);
6087 } else {
6088 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6089 tp->copied_seq = tp->rcv_nxt;
6091 smp_mb();
6092 tcp_set_state(sk, TCP_ESTABLISHED);
6093 sk->sk_state_change(sk);
6095 /* Note, that this wakeup is only for marginal crossed SYN case.
6096 * Passively open sockets are not waked up, because
6097 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6099 if (sk->sk_socket)
6100 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6102 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6103 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6104 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6106 if (tp->rx_opt.tstamp_ok)
6107 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6109 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6110 tcp_update_pacing_rate(sk);
6112 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6113 tp->lsndtime = tcp_jiffies32;
6115 tcp_initialize_rcv_mss(sk);
6116 tcp_fast_path_on(tp);
6117 break;
6119 case TCP_FIN_WAIT1: {
6120 int tmo;
6122 /* If we enter the TCP_FIN_WAIT1 state and we are a
6123 * Fast Open socket and this is the first acceptable
6124 * ACK we have received, this would have acknowledged
6125 * our SYNACK so stop the SYNACK timer.
6127 if (req) {
6128 /* We no longer need the request sock. */
6129 reqsk_fastopen_remove(sk, req, false);
6130 tcp_rearm_rto(sk);
6132 if (tp->snd_una != tp->write_seq)
6133 break;
6135 tcp_set_state(sk, TCP_FIN_WAIT2);
6136 sk->sk_shutdown |= SEND_SHUTDOWN;
6138 sk_dst_confirm(sk);
6140 if (!sock_flag(sk, SOCK_DEAD)) {
6141 /* Wake up lingering close() */
6142 sk->sk_state_change(sk);
6143 break;
6146 if (tp->linger2 < 0) {
6147 tcp_done(sk);
6148 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6149 return 1;
6151 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6152 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6153 /* Receive out of order FIN after close() */
6154 if (tp->syn_fastopen && th->fin)
6155 tcp_fastopen_active_disable(sk);
6156 tcp_done(sk);
6157 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6158 return 1;
6161 tmo = tcp_fin_time(sk);
6162 if (tmo > TCP_TIMEWAIT_LEN) {
6163 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6164 } else if (th->fin || sock_owned_by_user(sk)) {
6165 /* Bad case. We could lose such FIN otherwise.
6166 * It is not a big problem, but it looks confusing
6167 * and not so rare event. We still can lose it now,
6168 * if it spins in bh_lock_sock(), but it is really
6169 * marginal case.
6171 inet_csk_reset_keepalive_timer(sk, tmo);
6172 } else {
6173 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6174 goto discard;
6176 break;
6179 case TCP_CLOSING:
6180 if (tp->snd_una == tp->write_seq) {
6181 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6182 goto discard;
6184 break;
6186 case TCP_LAST_ACK:
6187 if (tp->snd_una == tp->write_seq) {
6188 tcp_update_metrics(sk);
6189 tcp_done(sk);
6190 goto discard;
6192 break;
6195 /* step 6: check the URG bit */
6196 tcp_urg(sk, skb, th);
6198 /* step 7: process the segment text */
6199 switch (sk->sk_state) {
6200 case TCP_CLOSE_WAIT:
6201 case TCP_CLOSING:
6202 case TCP_LAST_ACK:
6203 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6204 break;
6205 /* fall through */
6206 case TCP_FIN_WAIT1:
6207 case TCP_FIN_WAIT2:
6208 /* RFC 793 says to queue data in these states,
6209 * RFC 1122 says we MUST send a reset.
6210 * BSD 4.4 also does reset.
6212 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6213 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6214 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6215 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6216 tcp_reset(sk);
6217 return 1;
6220 /* Fall through */
6221 case TCP_ESTABLISHED:
6222 tcp_data_queue(sk, skb);
6223 queued = 1;
6224 break;
6227 /* tcp_data could move socket to TIME-WAIT */
6228 if (sk->sk_state != TCP_CLOSE) {
6229 tcp_data_snd_check(sk);
6230 tcp_ack_snd_check(sk);
6233 if (!queued) {
6234 discard:
6235 tcp_drop(sk, skb);
6237 return 0;
6239 EXPORT_SYMBOL(tcp_rcv_state_process);
6241 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6243 struct inet_request_sock *ireq = inet_rsk(req);
6245 if (family == AF_INET)
6246 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6247 &ireq->ir_rmt_addr, port);
6248 #if IS_ENABLED(CONFIG_IPV6)
6249 else if (family == AF_INET6)
6250 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6251 &ireq->ir_v6_rmt_addr, port);
6252 #endif
6255 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6257 * If we receive a SYN packet with these bits set, it means a
6258 * network is playing bad games with TOS bits. In order to
6259 * avoid possible false congestion notifications, we disable
6260 * TCP ECN negotiation.
6262 * Exception: tcp_ca wants ECN. This is required for DCTCP
6263 * congestion control: Linux DCTCP asserts ECT on all packets,
6264 * including SYN, which is most optimal solution; however,
6265 * others, such as FreeBSD do not.
6267 static void tcp_ecn_create_request(struct request_sock *req,
6268 const struct sk_buff *skb,
6269 const struct sock *listen_sk,
6270 const struct dst_entry *dst)
6272 const struct tcphdr *th = tcp_hdr(skb);
6273 const struct net *net = sock_net(listen_sk);
6274 bool th_ecn = th->ece && th->cwr;
6275 bool ect, ecn_ok;
6276 u32 ecn_ok_dst;
6278 if (!th_ecn)
6279 return;
6281 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6282 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6283 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6285 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6286 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6287 tcp_bpf_ca_needs_ecn((struct sock *)req))
6288 inet_rsk(req)->ecn_ok = 1;
6291 static void tcp_openreq_init(struct request_sock *req,
6292 const struct tcp_options_received *rx_opt,
6293 struct sk_buff *skb, const struct sock *sk)
6295 struct inet_request_sock *ireq = inet_rsk(req);
6297 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6298 req->cookie_ts = 0;
6299 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6300 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6301 tcp_rsk(req)->snt_synack = tcp_clock_us();
6302 tcp_rsk(req)->last_oow_ack_time = 0;
6303 req->mss = rx_opt->mss_clamp;
6304 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6305 ireq->tstamp_ok = rx_opt->tstamp_ok;
6306 ireq->sack_ok = rx_opt->sack_ok;
6307 ireq->snd_wscale = rx_opt->snd_wscale;
6308 ireq->wscale_ok = rx_opt->wscale_ok;
6309 ireq->acked = 0;
6310 ireq->ecn_ok = 0;
6311 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6312 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6313 ireq->ir_mark = inet_request_mark(sk, skb);
6314 #if IS_ENABLED(CONFIG_SMC)
6315 ireq->smc_ok = rx_opt->smc_ok;
6316 #endif
6319 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6320 struct sock *sk_listener,
6321 bool attach_listener)
6323 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6324 attach_listener);
6326 if (req) {
6327 struct inet_request_sock *ireq = inet_rsk(req);
6329 ireq->ireq_opt = NULL;
6330 #if IS_ENABLED(CONFIG_IPV6)
6331 ireq->pktopts = NULL;
6332 #endif
6333 atomic64_set(&ireq->ir_cookie, 0);
6334 ireq->ireq_state = TCP_NEW_SYN_RECV;
6335 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6336 ireq->ireq_family = sk_listener->sk_family;
6339 return req;
6341 EXPORT_SYMBOL(inet_reqsk_alloc);
6344 * Return true if a syncookie should be sent
6346 static bool tcp_syn_flood_action(const struct sock *sk,
6347 const struct sk_buff *skb,
6348 const char *proto)
6350 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6351 const char *msg = "Dropping request";
6352 bool want_cookie = false;
6353 struct net *net = sock_net(sk);
6355 #ifdef CONFIG_SYN_COOKIES
6356 if (net->ipv4.sysctl_tcp_syncookies) {
6357 msg = "Sending cookies";
6358 want_cookie = true;
6359 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6360 } else
6361 #endif
6362 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6364 if (!queue->synflood_warned &&
6365 net->ipv4.sysctl_tcp_syncookies != 2 &&
6366 xchg(&queue->synflood_warned, 1) == 0)
6367 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6368 proto, ntohs(tcp_hdr(skb)->dest), msg);
6370 return want_cookie;
6373 static void tcp_reqsk_record_syn(const struct sock *sk,
6374 struct request_sock *req,
6375 const struct sk_buff *skb)
6377 if (tcp_sk(sk)->save_syn) {
6378 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6379 u32 *copy;
6381 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6382 if (copy) {
6383 copy[0] = len;
6384 memcpy(&copy[1], skb_network_header(skb), len);
6385 req->saved_syn = copy;
6390 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6391 const struct tcp_request_sock_ops *af_ops,
6392 struct sock *sk, struct sk_buff *skb)
6394 struct tcp_fastopen_cookie foc = { .len = -1 };
6395 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6396 struct tcp_options_received tmp_opt;
6397 struct tcp_sock *tp = tcp_sk(sk);
6398 struct net *net = sock_net(sk);
6399 struct sock *fastopen_sk = NULL;
6400 struct request_sock *req;
6401 bool want_cookie = false;
6402 struct dst_entry *dst;
6403 struct flowi fl;
6405 /* TW buckets are converted to open requests without
6406 * limitations, they conserve resources and peer is
6407 * evidently real one.
6409 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6410 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6411 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6412 if (!want_cookie)
6413 goto drop;
6416 if (sk_acceptq_is_full(sk)) {
6417 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6418 goto drop;
6421 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6422 if (!req)
6423 goto drop;
6425 tcp_rsk(req)->af_specific = af_ops;
6426 tcp_rsk(req)->ts_off = 0;
6428 tcp_clear_options(&tmp_opt);
6429 tmp_opt.mss_clamp = af_ops->mss_clamp;
6430 tmp_opt.user_mss = tp->rx_opt.user_mss;
6431 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6432 want_cookie ? NULL : &foc);
6434 if (want_cookie && !tmp_opt.saw_tstamp)
6435 tcp_clear_options(&tmp_opt);
6437 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6438 tmp_opt.smc_ok = 0;
6440 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6441 tcp_openreq_init(req, &tmp_opt, skb, sk);
6442 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6444 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6445 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6447 af_ops->init_req(req, sk, skb);
6449 if (security_inet_conn_request(sk, skb, req))
6450 goto drop_and_free;
6452 if (tmp_opt.tstamp_ok)
6453 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6455 dst = af_ops->route_req(sk, &fl, req);
6456 if (!dst)
6457 goto drop_and_free;
6459 if (!want_cookie && !isn) {
6460 /* Kill the following clause, if you dislike this way. */
6461 if (!net->ipv4.sysctl_tcp_syncookies &&
6462 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6463 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6464 !tcp_peer_is_proven(req, dst)) {
6465 /* Without syncookies last quarter of
6466 * backlog is filled with destinations,
6467 * proven to be alive.
6468 * It means that we continue to communicate
6469 * to destinations, already remembered
6470 * to the moment of synflood.
6472 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6473 rsk_ops->family);
6474 goto drop_and_release;
6477 isn = af_ops->init_seq(skb);
6480 tcp_ecn_create_request(req, skb, sk, dst);
6482 if (want_cookie) {
6483 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6484 req->cookie_ts = tmp_opt.tstamp_ok;
6485 if (!tmp_opt.tstamp_ok)
6486 inet_rsk(req)->ecn_ok = 0;
6489 tcp_rsk(req)->snt_isn = isn;
6490 tcp_rsk(req)->txhash = net_tx_rndhash();
6491 tcp_openreq_init_rwin(req, sk, dst);
6492 sk_rx_queue_set(req_to_sk(req), skb);
6493 if (!want_cookie) {
6494 tcp_reqsk_record_syn(sk, req, skb);
6495 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6497 if (fastopen_sk) {
6498 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6499 &foc, TCP_SYNACK_FASTOPEN);
6500 /* Add the child socket directly into the accept queue */
6501 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6502 reqsk_fastopen_remove(fastopen_sk, req, false);
6503 bh_unlock_sock(fastopen_sk);
6504 sock_put(fastopen_sk);
6505 reqsk_put(req);
6506 goto drop;
6508 sk->sk_data_ready(sk);
6509 bh_unlock_sock(fastopen_sk);
6510 sock_put(fastopen_sk);
6511 } else {
6512 tcp_rsk(req)->tfo_listener = false;
6513 if (!want_cookie)
6514 inet_csk_reqsk_queue_hash_add(sk, req,
6515 tcp_timeout_init((struct sock *)req));
6516 af_ops->send_synack(sk, dst, &fl, req, &foc,
6517 !want_cookie ? TCP_SYNACK_NORMAL :
6518 TCP_SYNACK_COOKIE);
6519 if (want_cookie) {
6520 reqsk_free(req);
6521 return 0;
6524 reqsk_put(req);
6525 return 0;
6527 drop_and_release:
6528 dst_release(dst);
6529 drop_and_free:
6530 reqsk_free(req);
6531 drop:
6532 tcp_listendrop(sk);
6533 return 0;
6535 EXPORT_SYMBOL(tcp_conn_request);