2 * intel_hdmi_audio.c - Intel HDMI audio driver
4 * Copyright (C) 2016 Intel Corp
5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6 * Ramesh Babu K V <ramesh.babu@intel.com>
7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8 * Jerome Anand <jerome.anand@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2 of the License.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 * ALSA driver for Intel HDMI audio
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <sound/core.h>
34 #include <sound/asoundef.h>
35 #include <sound/pcm.h>
36 #include <sound/pcm_params.h>
37 #include <sound/initval.h>
38 #include <sound/control.h>
39 #include <sound/jack.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42 #include "intel_hdmi_audio.h"
44 #define for_each_pipe(card_ctx, pipe) \
45 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
46 #define for_each_port(card_ctx, port) \
47 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
49 /*standard module options for ALSA. This module supports only one card*/
50 static int hdmi_card_index
= SNDRV_DEFAULT_IDX1
;
51 static char *hdmi_card_id
= SNDRV_DEFAULT_STR1
;
52 static bool single_port
;
54 module_param_named(index
, hdmi_card_index
, int, 0444);
55 MODULE_PARM_DESC(index
,
56 "Index value for INTEL Intel HDMI Audio controller.");
57 module_param_named(id
, hdmi_card_id
, charp
, 0444);
59 "ID string for INTEL Intel HDMI Audio controller.");
60 module_param(single_port
, bool, 0444);
61 MODULE_PARM_DESC(single_port
,
62 "Single-port mode (for compatibility)");
65 * ELD SA bits in the CEA Speaker Allocation data block
67 static const int eld_speaker_allocation_bits
[] = {
75 /* the following are not defined in ELD yet */
80 * This is an ordered list!
82 * The preceding ones have better chances to be selected by
83 * hdmi_channel_allocation().
85 static struct cea_channel_speaker_allocation channel_allocations
[] = {
86 /* channel: 7 6 5 4 3 2 1 0 */
87 { .ca_index
= 0x00, .speakers
= { 0, 0, 0, 0, 0, 0, FR
, FL
} },
89 { .ca_index
= 0x01, .speakers
= { 0, 0, 0, 0, 0, LFE
, FR
, FL
} },
91 { .ca_index
= 0x02, .speakers
= { 0, 0, 0, 0, FC
, 0, FR
, FL
} },
93 { .ca_index
= 0x08, .speakers
= { 0, 0, RR
, RL
, 0, 0, FR
, FL
} },
95 { .ca_index
= 0x09, .speakers
= { 0, 0, RR
, RL
, 0, LFE
, FR
, FL
} },
97 { .ca_index
= 0x0a, .speakers
= { 0, 0, RR
, RL
, FC
, 0, FR
, FL
} },
99 { .ca_index
= 0x0b, .speakers
= { 0, 0, RR
, RL
, FC
, LFE
, FR
, FL
} },
101 { .ca_index
= 0x0f, .speakers
= { 0, RC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
103 { .ca_index
= 0x13, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
105 { .ca_index
= 0x03, .speakers
= { 0, 0, 0, 0, FC
, LFE
, FR
, FL
} },
106 { .ca_index
= 0x04, .speakers
= { 0, 0, 0, RC
, 0, 0, FR
, FL
} },
107 { .ca_index
= 0x05, .speakers
= { 0, 0, 0, RC
, 0, LFE
, FR
, FL
} },
108 { .ca_index
= 0x06, .speakers
= { 0, 0, 0, RC
, FC
, 0, FR
, FL
} },
109 { .ca_index
= 0x07, .speakers
= { 0, 0, 0, RC
, FC
, LFE
, FR
, FL
} },
110 { .ca_index
= 0x0c, .speakers
= { 0, RC
, RR
, RL
, 0, 0, FR
, FL
} },
111 { .ca_index
= 0x0d, .speakers
= { 0, RC
, RR
, RL
, 0, LFE
, FR
, FL
} },
112 { .ca_index
= 0x0e, .speakers
= { 0, RC
, RR
, RL
, FC
, 0, FR
, FL
} },
113 { .ca_index
= 0x10, .speakers
= { RRC
, RLC
, RR
, RL
, 0, 0, FR
, FL
} },
114 { .ca_index
= 0x11, .speakers
= { RRC
, RLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
115 { .ca_index
= 0x12, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, 0, FR
, FL
} },
116 { .ca_index
= 0x14, .speakers
= { FRC
, FLC
, 0, 0, 0, 0, FR
, FL
} },
117 { .ca_index
= 0x15, .speakers
= { FRC
, FLC
, 0, 0, 0, LFE
, FR
, FL
} },
118 { .ca_index
= 0x16, .speakers
= { FRC
, FLC
, 0, 0, FC
, 0, FR
, FL
} },
119 { .ca_index
= 0x17, .speakers
= { FRC
, FLC
, 0, 0, FC
, LFE
, FR
, FL
} },
120 { .ca_index
= 0x18, .speakers
= { FRC
, FLC
, 0, RC
, 0, 0, FR
, FL
} },
121 { .ca_index
= 0x19, .speakers
= { FRC
, FLC
, 0, RC
, 0, LFE
, FR
, FL
} },
122 { .ca_index
= 0x1a, .speakers
= { FRC
, FLC
, 0, RC
, FC
, 0, FR
, FL
} },
123 { .ca_index
= 0x1b, .speakers
= { FRC
, FLC
, 0, RC
, FC
, LFE
, FR
, FL
} },
124 { .ca_index
= 0x1c, .speakers
= { FRC
, FLC
, RR
, RL
, 0, 0, FR
, FL
} },
125 { .ca_index
= 0x1d, .speakers
= { FRC
, FLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
126 { .ca_index
= 0x1e, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, 0, FR
, FL
} },
127 { .ca_index
= 0x1f, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
130 static const struct channel_map_table map_tables
[] = {
131 { SNDRV_CHMAP_FL
, 0x00, FL
},
132 { SNDRV_CHMAP_FR
, 0x01, FR
},
133 { SNDRV_CHMAP_RL
, 0x04, RL
},
134 { SNDRV_CHMAP_RR
, 0x05, RR
},
135 { SNDRV_CHMAP_LFE
, 0x02, LFE
},
136 { SNDRV_CHMAP_FC
, 0x03, FC
},
137 { SNDRV_CHMAP_RLC
, 0x06, RLC
},
138 { SNDRV_CHMAP_RRC
, 0x07, RRC
},
142 /* hardware capability structure */
143 static const struct snd_pcm_hardware had_pcm_hardware
= {
144 .info
= (SNDRV_PCM_INFO_INTERLEAVED
|
145 SNDRV_PCM_INFO_MMAP
|
146 SNDRV_PCM_INFO_MMAP_VALID
|
147 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP
),
148 .formats
= (SNDRV_PCM_FMTBIT_S16_LE
|
149 SNDRV_PCM_FMTBIT_S24_LE
|
150 SNDRV_PCM_FMTBIT_S32_LE
),
151 .rates
= SNDRV_PCM_RATE_32000
|
152 SNDRV_PCM_RATE_44100
|
153 SNDRV_PCM_RATE_48000
|
154 SNDRV_PCM_RATE_88200
|
155 SNDRV_PCM_RATE_96000
|
156 SNDRV_PCM_RATE_176400
|
157 SNDRV_PCM_RATE_192000
,
158 .rate_min
= HAD_MIN_RATE
,
159 .rate_max
= HAD_MAX_RATE
,
160 .channels_min
= HAD_MIN_CHANNEL
,
161 .channels_max
= HAD_MAX_CHANNEL
,
162 .buffer_bytes_max
= HAD_MAX_BUFFER
,
163 .period_bytes_min
= HAD_MIN_PERIOD_BYTES
,
164 .period_bytes_max
= HAD_MAX_PERIOD_BYTES
,
165 .periods_min
= HAD_MIN_PERIODS
,
166 .periods_max
= HAD_MAX_PERIODS
,
167 .fifo_size
= HAD_FIFO_SIZE
,
170 /* Get the active PCM substream;
171 * Call had_substream_put() for unreferecing.
172 * Don't call this inside had_spinlock, as it takes by itself
174 static struct snd_pcm_substream
*
175 had_substream_get(struct snd_intelhad
*intelhaddata
)
177 struct snd_pcm_substream
*substream
;
180 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
181 substream
= intelhaddata
->stream_info
.substream
;
183 intelhaddata
->stream_info
.substream_refcount
++;
184 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
188 /* Unref the active PCM substream;
189 * Don't call this inside had_spinlock, as it takes by itself
191 static void had_substream_put(struct snd_intelhad
*intelhaddata
)
195 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
196 intelhaddata
->stream_info
.substream_refcount
--;
197 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
200 static u32
had_config_offset(int pipe
)
205 return AUDIO_HDMI_CONFIG_A
;
207 return AUDIO_HDMI_CONFIG_B
;
209 return AUDIO_HDMI_CONFIG_C
;
213 /* Register access functions */
214 static u32
had_read_register_raw(struct snd_intelhad_card
*card_ctx
,
217 return ioread32(card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
220 static void had_write_register_raw(struct snd_intelhad_card
*card_ctx
,
221 int pipe
, u32 reg
, u32 val
)
223 iowrite32(val
, card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
226 static void had_read_register(struct snd_intelhad
*ctx
, u32 reg
, u32
*val
)
231 *val
= had_read_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
);
234 static void had_write_register(struct snd_intelhad
*ctx
, u32 reg
, u32 val
)
237 had_write_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
, val
);
241 * enable / disable audio configuration
243 * The normal read/modify should not directly be used on VLV2 for
244 * updating AUD_CONFIG register.
246 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
247 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
248 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
249 * register. This field should be 1xy binary for configuration with 6 or
250 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
251 * causes the "channels" field to be updated as 0xy binary resulting in
252 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
253 * appropriate value when doing read-modify of AUD_CONFIG register.
255 static void had_enable_audio(struct snd_intelhad
*intelhaddata
,
258 /* update the cached value */
259 intelhaddata
->aud_config
.regx
.aud_en
= enable
;
260 had_write_register(intelhaddata
, AUD_CONFIG
,
261 intelhaddata
->aud_config
.regval
);
264 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
265 static void had_ack_irqs(struct snd_intelhad
*ctx
)
271 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
272 status_reg
|= HDMI_AUDIO_BUFFER_DONE
| HDMI_AUDIO_UNDERRUN
;
273 had_write_register(ctx
, AUD_HDMI_STATUS
, status_reg
);
274 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
277 /* Reset buffer pointers */
278 static void had_reset_audio(struct snd_intelhad
*intelhaddata
)
280 had_write_register(intelhaddata
, AUD_HDMI_STATUS
,
281 AUD_HDMI_STATUSG_MASK_FUNCRST
);
282 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, 0);
286 * initialize audio channel status registers
287 * This function is called in the prepare callback
289 static int had_prog_status_reg(struct snd_pcm_substream
*substream
,
290 struct snd_intelhad
*intelhaddata
)
292 union aud_ch_status_0 ch_stat0
= {.regval
= 0};
293 union aud_ch_status_1 ch_stat1
= {.regval
= 0};
295 ch_stat0
.regx
.lpcm_id
= (intelhaddata
->aes_bits
&
296 IEC958_AES0_NONAUDIO
) >> 1;
297 ch_stat0
.regx
.clk_acc
= (intelhaddata
->aes_bits
&
298 IEC958_AES3_CON_CLOCK
) >> 4;
300 switch (substream
->runtime
->rate
) {
301 case AUD_SAMPLE_RATE_32
:
302 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_32KHZ
;
305 case AUD_SAMPLE_RATE_44_1
:
306 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_44KHZ
;
308 case AUD_SAMPLE_RATE_48
:
309 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_48KHZ
;
311 case AUD_SAMPLE_RATE_88_2
:
312 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_88KHZ
;
314 case AUD_SAMPLE_RATE_96
:
315 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_96KHZ
;
317 case AUD_SAMPLE_RATE_176_4
:
318 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_176KHZ
;
320 case AUD_SAMPLE_RATE_192
:
321 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_192KHZ
;
325 /* control should never come here */
329 had_write_register(intelhaddata
,
330 AUD_CH_STATUS_0
, ch_stat0
.regval
);
332 switch (substream
->runtime
->format
) {
333 case SNDRV_PCM_FORMAT_S16_LE
:
334 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_20
;
335 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_16BITS
;
337 case SNDRV_PCM_FORMAT_S24_LE
:
338 case SNDRV_PCM_FORMAT_S32_LE
:
339 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_24
;
340 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_24BITS
;
346 had_write_register(intelhaddata
,
347 AUD_CH_STATUS_1
, ch_stat1
.regval
);
352 * function to initialize audio
353 * registers and buffer confgiuration registers
354 * This function is called in the prepare callback
356 static int had_init_audio_ctrl(struct snd_pcm_substream
*substream
,
357 struct snd_intelhad
*intelhaddata
)
359 union aud_cfg cfg_val
= {.regval
= 0};
360 union aud_buf_config buf_cfg
= {.regval
= 0};
363 had_prog_status_reg(substream
, intelhaddata
);
365 buf_cfg
.regx
.audio_fifo_watermark
= FIFO_THRESHOLD
;
366 buf_cfg
.regx
.dma_fifo_watermark
= DMA_FIFO_THRESHOLD
;
367 buf_cfg
.regx
.aud_delay
= 0;
368 had_write_register(intelhaddata
, AUD_BUF_CONFIG
, buf_cfg
.regval
);
370 channels
= substream
->runtime
->channels
;
371 cfg_val
.regx
.num_ch
= channels
- 2;
373 cfg_val
.regx
.layout
= LAYOUT0
;
375 cfg_val
.regx
.layout
= LAYOUT1
;
377 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S16_LE
)
378 cfg_val
.regx
.packet_mode
= 1;
380 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S32_LE
)
381 cfg_val
.regx
.left_align
= 1;
383 cfg_val
.regx
.val_bit
= 1;
385 /* fix up the DP bits */
386 if (intelhaddata
->dp_output
) {
387 cfg_val
.regx
.dp_modei
= 1;
388 cfg_val
.regx
.set
= 1;
391 had_write_register(intelhaddata
, AUD_CONFIG
, cfg_val
.regval
);
392 intelhaddata
->aud_config
= cfg_val
;
397 * Compute derived values in channel_allocations[].
399 static void init_channel_allocations(void)
402 struct cea_channel_speaker_allocation
*p
;
404 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
405 p
= channel_allocations
+ i
;
408 for (j
= 0; j
< ARRAY_SIZE(p
->speakers
); j
++)
409 if (p
->speakers
[j
]) {
411 p
->spk_mask
|= p
->speakers
[j
];
417 * The transformation takes two steps:
419 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
420 * spk_mask => (channel_allocations[]) => ai->CA
422 * TODO: it could select the wrong CA from multiple candidates.
424 static int had_channel_allocation(struct snd_intelhad
*intelhaddata
,
432 * CA defaults to 0 for basic stereo audio
438 * expand ELD's speaker allocation mask
440 * ELD tells the speaker mask in a compact(paired) form,
441 * expand ELD's notions to match the ones used by Audio InfoFrame.
444 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
445 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
446 spk_mask
|= eld_speaker_allocation_bits
[i
];
449 /* search for the first working match in the CA table */
450 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
451 if (channels
== channel_allocations
[i
].channels
&&
452 (spk_mask
& channel_allocations
[i
].spk_mask
) ==
453 channel_allocations
[i
].spk_mask
) {
454 ca
= channel_allocations
[i
].ca_index
;
459 dev_dbg(intelhaddata
->dev
, "select CA 0x%x for %d\n", ca
, channels
);
464 /* from speaker bit mask to ALSA API channel position */
465 static int spk_to_chmap(int spk
)
467 const struct channel_map_table
*t
= map_tables
;
469 for (; t
->map
; t
++) {
470 if (t
->spk_mask
== spk
)
476 static void had_build_channel_allocation_map(struct snd_intelhad
*intelhaddata
)
480 struct snd_pcm_chmap_elem
*chmap
;
481 u8 eld_high
, eld_high_mask
= 0xF0;
484 kfree(intelhaddata
->chmap
->chmap
);
485 intelhaddata
->chmap
->chmap
= NULL
;
487 chmap
= kzalloc(sizeof(*chmap
), GFP_KERNEL
);
491 dev_dbg(intelhaddata
->dev
, "eld speaker = %x\n",
492 intelhaddata
->eld
[DRM_ELD_SPEAKER
]);
494 /* WA: Fix the max channel supported to 8 */
497 * Sink may support more than 8 channels, if eld_high has more than
498 * one bit set. SOC supports max 8 channels.
499 * Refer eld_speaker_allocation_bits, for sink speaker allocation
502 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
503 eld_high
= intelhaddata
->eld
[DRM_ELD_SPEAKER
] & eld_high_mask
;
504 if ((eld_high
& (eld_high
-1)) && (eld_high
> 0x1F)) {
505 /* eld_high & (eld_high-1): if more than 1 bit set */
506 /* 0x1F: 7 channels */
507 for (i
= 1; i
< 4; i
++) {
508 high_msb
= eld_high
& (0x80 >> i
);
510 intelhaddata
->eld
[DRM_ELD_SPEAKER
] &=
517 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
518 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
519 spk_mask
|= eld_speaker_allocation_bits
[i
];
522 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
523 if (spk_mask
== channel_allocations
[i
].spk_mask
) {
524 for (c
= 0; c
< channel_allocations
[i
].channels
; c
++) {
525 chmap
->map
[c
] = spk_to_chmap(
526 channel_allocations
[i
].speakers
[
527 (MAX_SPEAKERS
- 1) - c
]);
529 chmap
->channels
= channel_allocations
[i
].channels
;
530 intelhaddata
->chmap
->chmap
= chmap
;
534 if (i
>= ARRAY_SIZE(channel_allocations
))
539 * ALSA API channel-map control callbacks
541 static int had_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
542 struct snd_ctl_elem_info
*uinfo
)
544 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
545 uinfo
->count
= HAD_MAX_CHANNEL
;
546 uinfo
->value
.integer
.min
= 0;
547 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
551 static int had_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
552 struct snd_ctl_elem_value
*ucontrol
)
554 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
555 struct snd_intelhad
*intelhaddata
= info
->private_data
;
557 const struct snd_pcm_chmap_elem
*chmap
;
559 memset(ucontrol
->value
.integer
.value
, 0,
560 sizeof(long) * HAD_MAX_CHANNEL
);
561 mutex_lock(&intelhaddata
->mutex
);
562 if (!intelhaddata
->chmap
->chmap
) {
563 mutex_unlock(&intelhaddata
->mutex
);
567 chmap
= intelhaddata
->chmap
->chmap
;
568 for (i
= 0; i
< chmap
->channels
; i
++)
569 ucontrol
->value
.integer
.value
[i
] = chmap
->map
[i
];
570 mutex_unlock(&intelhaddata
->mutex
);
575 static int had_register_chmap_ctls(struct snd_intelhad
*intelhaddata
,
580 err
= snd_pcm_add_chmap_ctls(pcm
, SNDRV_PCM_STREAM_PLAYBACK
,
581 NULL
, 0, (unsigned long)intelhaddata
,
582 &intelhaddata
->chmap
);
586 intelhaddata
->chmap
->private_data
= intelhaddata
;
587 intelhaddata
->chmap
->kctl
->info
= had_chmap_ctl_info
;
588 intelhaddata
->chmap
->kctl
->get
= had_chmap_ctl_get
;
589 intelhaddata
->chmap
->chmap
= NULL
;
594 * Initialize Data Island Packets registers
595 * This function is called in the prepare callback
597 static void had_prog_dip(struct snd_pcm_substream
*substream
,
598 struct snd_intelhad
*intelhaddata
)
601 union aud_ctrl_st ctrl_state
= {.regval
= 0};
602 union aud_info_frame2 frame2
= {.regval
= 0};
603 union aud_info_frame3 frame3
= {.regval
= 0};
609 channels
= substream
->runtime
->channels
;
611 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
613 ca
= had_channel_allocation(intelhaddata
, channels
);
614 if (intelhaddata
->dp_output
) {
615 info_frame
= DP_INFO_FRAME_WORD1
;
616 frame2
.regval
= (substream
->runtime
->channels
- 1) | (ca
<< 24);
618 info_frame
= HDMI_INFO_FRAME_WORD1
;
619 frame2
.regx
.chnl_cnt
= substream
->runtime
->channels
- 1;
620 frame3
.regx
.chnl_alloc
= ca
;
622 /* Calculte the byte wide checksum for all valid DIP words */
623 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
624 checksum
+= (info_frame
>> (i
* 8)) & 0xff;
625 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
626 checksum
+= (frame2
.regval
>> (i
* 8)) & 0xff;
627 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
628 checksum
+= (frame3
.regval
>> (i
* 8)) & 0xff;
630 frame2
.regx
.chksum
= -(checksum
);
633 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, info_frame
);
634 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame2
.regval
);
635 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame3
.regval
);
637 /* program remaining DIP words with zero */
638 for (i
= 0; i
< HAD_MAX_DIP_WORDS
-VALID_DIP_WORDS
; i
++)
639 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, 0x0);
641 ctrl_state
.regx
.dip_freq
= 1;
642 ctrl_state
.regx
.dip_en_sta
= 1;
643 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
646 static int had_calculate_maud_value(u32 aud_samp_freq
, u32 link_rate
)
650 /* Select maud according to DP 1.2 spec */
651 if (link_rate
== DP_2_7_GHZ
) {
652 switch (aud_samp_freq
) {
653 case AUD_SAMPLE_RATE_32
:
654 maud_val
= AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL
;
657 case AUD_SAMPLE_RATE_44_1
:
658 maud_val
= AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL
;
661 case AUD_SAMPLE_RATE_48
:
662 maud_val
= AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL
;
665 case AUD_SAMPLE_RATE_88_2
:
666 maud_val
= AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL
;
669 case AUD_SAMPLE_RATE_96
:
670 maud_val
= AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL
;
673 case AUD_SAMPLE_RATE_176_4
:
674 maud_val
= AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL
;
678 maud_val
= HAD_MAX_RATE_DP_2_7_MAUD_VAL
;
685 } else if (link_rate
== DP_1_62_GHZ
) {
686 switch (aud_samp_freq
) {
687 case AUD_SAMPLE_RATE_32
:
688 maud_val
= AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL
;
691 case AUD_SAMPLE_RATE_44_1
:
692 maud_val
= AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL
;
695 case AUD_SAMPLE_RATE_48
:
696 maud_val
= AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL
;
699 case AUD_SAMPLE_RATE_88_2
:
700 maud_val
= AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL
;
703 case AUD_SAMPLE_RATE_96
:
704 maud_val
= AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL
;
707 case AUD_SAMPLE_RATE_176_4
:
708 maud_val
= AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL
;
712 maud_val
= HAD_MAX_RATE_DP_1_62_MAUD_VAL
;
726 * Program HDMI audio CTS value
728 * @aud_samp_freq: sampling frequency of audio data
729 * @tmds: sampling frequency of the display data
730 * @link_rate: DP link rate
731 * @n_param: N value, depends on aud_samp_freq
732 * @intelhaddata: substream private data
734 * Program CTS register based on the audio and display sampling frequency
736 static void had_prog_cts(u32 aud_samp_freq
, u32 tmds
, u32 link_rate
,
737 u32 n_param
, struct snd_intelhad
*intelhaddata
)
740 u64 dividend
, divisor
;
742 if (intelhaddata
->dp_output
) {
743 /* Substitute cts_val with Maud according to DP 1.2 spec*/
744 cts_val
= had_calculate_maud_value(aud_samp_freq
, link_rate
);
746 /* Calculate CTS according to HDMI 1.3a spec*/
747 dividend
= (u64
)tmds
* n_param
*1000;
748 divisor
= 128 * aud_samp_freq
;
749 cts_val
= div64_u64(dividend
, divisor
);
751 dev_dbg(intelhaddata
->dev
, "TMDS value=%d, N value=%d, CTS Value=%d\n",
752 tmds
, n_param
, cts_val
);
753 had_write_register(intelhaddata
, AUD_HDMI_CTS
, (BIT(24) | cts_val
));
756 static int had_calculate_n_value(u32 aud_samp_freq
)
760 /* Select N according to HDMI 1.3a spec*/
761 switch (aud_samp_freq
) {
762 case AUD_SAMPLE_RATE_32
:
766 case AUD_SAMPLE_RATE_44_1
:
770 case AUD_SAMPLE_RATE_48
:
774 case AUD_SAMPLE_RATE_88_2
:
778 case AUD_SAMPLE_RATE_96
:
782 case AUD_SAMPLE_RATE_176_4
:
798 * Program HDMI audio N value
800 * @aud_samp_freq: sampling frequency of audio data
801 * @n_param: N value, depends on aud_samp_freq
802 * @intelhaddata: substream private data
804 * This function is called in the prepare callback.
805 * It programs based on the audio and display sampling frequency
807 static int had_prog_n(u32 aud_samp_freq
, u32
*n_param
,
808 struct snd_intelhad
*intelhaddata
)
812 if (intelhaddata
->dp_output
) {
814 * According to DP specs, Maud and Naud values hold
815 * a relationship, which is stated as:
816 * Maud/Naud = 512 * fs / f_LS_Clk
817 * where, fs is the sampling frequency of the audio stream
818 * and Naud is 32768 for Async clock.
823 n_val
= had_calculate_n_value(aud_samp_freq
);
828 had_write_register(intelhaddata
, AUD_N_ENABLE
, (BIT(24) | n_val
));
834 * PCM ring buffer handling
836 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
837 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
838 * moves at each period elapsed. The below illustrates how it works:
841 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842 * BD | 0 | 1 | 2 | 3 |
844 * At time=1 (period elapsed)
845 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
846 * BD | 1 | 2 | 3 | 0 |
848 * At time=2 (second period elapsed)
849 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
850 * BD | 2 | 3 | 0 | 1 |
852 * The bd_head field points to the index of the BD to be read. It's also the
853 * position to be filled at next. The pcm_head and the pcm_filled fields
854 * point to the indices of the current position and of the next position to
855 * be filled, respectively. For PCM buffer there are both _head and _filled
856 * because they may be difference when nperiods > 4. For example, in the
857 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
859 * pcm_head (=1) --v v-- pcm_filled (=5)
860 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
861 * BD | 1 | 2 | 3 | 0 |
862 * bd_head (=1) --^ ^-- next to fill (= bd_head)
864 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
865 * the hardware skips those BDs in the loop.
867 * An exceptional setup is the case with nperiods=1. Since we have to update
868 * BDs after finishing one BD processing, we'd need at least two BDs, where
869 * both BDs point to the same content, the same address, the same size of the
873 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
874 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
876 /* Set up a buffer descriptor at the "filled" position */
877 static void had_prog_bd(struct snd_pcm_substream
*substream
,
878 struct snd_intelhad
*intelhaddata
)
880 int idx
= intelhaddata
->bd_head
;
881 int ofs
= intelhaddata
->pcmbuf_filled
* intelhaddata
->period_bytes
;
882 u32 addr
= substream
->runtime
->dma_addr
+ ofs
;
884 addr
|= AUD_BUF_VALID
;
885 if (!substream
->runtime
->no_period_wakeup
)
886 addr
|= AUD_BUF_INTR_EN
;
887 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), addr
);
888 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
),
889 intelhaddata
->period_bytes
);
891 /* advance the indices to the next */
892 intelhaddata
->bd_head
++;
893 intelhaddata
->bd_head
%= intelhaddata
->num_bds
;
894 intelhaddata
->pcmbuf_filled
++;
895 intelhaddata
->pcmbuf_filled
%= substream
->runtime
->periods
;
898 /* invalidate a buffer descriptor with the given index */
899 static void had_invalidate_bd(struct snd_intelhad
*intelhaddata
,
902 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), 0);
903 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
), 0);
906 /* Initial programming of ring buffer */
907 static void had_init_ringbuf(struct snd_pcm_substream
*substream
,
908 struct snd_intelhad
*intelhaddata
)
910 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
913 num_periods
= runtime
->periods
;
914 intelhaddata
->num_bds
= min(num_periods
, HAD_NUM_OF_RING_BUFS
);
915 /* set the minimum 2 BDs for num_periods=1 */
916 intelhaddata
->num_bds
= max(intelhaddata
->num_bds
, 2U);
917 intelhaddata
->period_bytes
=
918 frames_to_bytes(runtime
, runtime
->period_size
);
919 WARN_ON(intelhaddata
->period_bytes
& 0x3f);
921 intelhaddata
->bd_head
= 0;
922 intelhaddata
->pcmbuf_head
= 0;
923 intelhaddata
->pcmbuf_filled
= 0;
925 for (i
= 0; i
< HAD_NUM_OF_RING_BUFS
; i
++) {
926 if (i
< intelhaddata
->num_bds
)
927 had_prog_bd(substream
, intelhaddata
);
928 else /* invalidate the rest */
929 had_invalidate_bd(intelhaddata
, i
);
932 intelhaddata
->bd_head
= 0; /* reset at head again before starting */
935 /* process a bd, advance to the next */
936 static void had_advance_ringbuf(struct snd_pcm_substream
*substream
,
937 struct snd_intelhad
*intelhaddata
)
939 int num_periods
= substream
->runtime
->periods
;
941 /* reprogram the next buffer */
942 had_prog_bd(substream
, intelhaddata
);
944 /* proceed to next */
945 intelhaddata
->pcmbuf_head
++;
946 intelhaddata
->pcmbuf_head
%= num_periods
;
949 /* process the current BD(s);
950 * returns the current PCM buffer byte position, or -EPIPE for underrun.
952 static int had_process_ringbuf(struct snd_pcm_substream
*substream
,
953 struct snd_intelhad
*intelhaddata
)
959 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
961 /* get the remaining bytes on the buffer */
962 had_read_register(intelhaddata
,
963 AUD_BUF_LEN(intelhaddata
->bd_head
),
965 if (len
< 0 || len
> intelhaddata
->period_bytes
) {
966 dev_dbg(intelhaddata
->dev
, "Invalid buf length %d\n",
972 if (len
> 0) /* OK, this is the current buffer */
975 /* len=0 => already empty, check the next buffer */
976 if (++processed
>= intelhaddata
->num_bds
) {
977 len
= -EPIPE
; /* all empty? - report underrun */
980 had_advance_ringbuf(substream
, intelhaddata
);
983 len
= intelhaddata
->period_bytes
- len
;
984 len
+= intelhaddata
->period_bytes
* intelhaddata
->pcmbuf_head
;
986 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
990 /* called from irq handler */
991 static void had_process_buffer_done(struct snd_intelhad
*intelhaddata
)
993 struct snd_pcm_substream
*substream
;
995 substream
= had_substream_get(intelhaddata
);
997 return; /* no stream? - bail out */
999 if (!intelhaddata
->connected
) {
1000 snd_pcm_stop_xrun(substream
);
1001 goto out
; /* disconnected? - bail out */
1004 /* process or stop the stream */
1005 if (had_process_ringbuf(substream
, intelhaddata
) < 0)
1006 snd_pcm_stop_xrun(substream
);
1008 snd_pcm_period_elapsed(substream
);
1011 had_substream_put(intelhaddata
);
1015 * The interrupt status 'sticky' bits might not be cleared by
1016 * setting '1' to that bit once...
1018 static void wait_clear_underrun_bit(struct snd_intelhad
*intelhaddata
)
1023 for (i
= 0; i
< 100; i
++) {
1024 /* clear bit30, 31 AUD_HDMI_STATUS */
1025 had_read_register(intelhaddata
, AUD_HDMI_STATUS
, &val
);
1026 if (!(val
& AUD_HDMI_STATUS_MASK_UNDERRUN
))
1030 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, val
);
1032 dev_err(intelhaddata
->dev
, "Unable to clear UNDERRUN bits\n");
1035 /* Perform some reset procedure but only when need_reset is set;
1036 * this is called from prepare or hw_free callbacks once after trigger STOP
1037 * or underrun has been processed in order to settle down the h/w state.
1039 static void had_do_reset(struct snd_intelhad
*intelhaddata
)
1041 if (!intelhaddata
->need_reset
|| !intelhaddata
->connected
)
1044 /* Reset buffer pointers */
1045 had_reset_audio(intelhaddata
);
1046 wait_clear_underrun_bit(intelhaddata
);
1047 intelhaddata
->need_reset
= false;
1050 /* called from irq handler */
1051 static void had_process_buffer_underrun(struct snd_intelhad
*intelhaddata
)
1053 struct snd_pcm_substream
*substream
;
1055 /* Report UNDERRUN error to above layers */
1056 substream
= had_substream_get(intelhaddata
);
1058 snd_pcm_stop_xrun(substream
);
1059 had_substream_put(intelhaddata
);
1061 intelhaddata
->need_reset
= true;
1065 * ALSA PCM open callback
1067 static int had_pcm_open(struct snd_pcm_substream
*substream
)
1069 struct snd_intelhad
*intelhaddata
;
1070 struct snd_pcm_runtime
*runtime
;
1073 intelhaddata
= snd_pcm_substream_chip(substream
);
1074 runtime
= substream
->runtime
;
1076 pm_runtime_get_sync(intelhaddata
->dev
);
1078 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1079 runtime
->hw
= had_pcm_hardware
;
1081 retval
= snd_pcm_hw_constraint_integer(runtime
,
1082 SNDRV_PCM_HW_PARAM_PERIODS
);
1086 /* Make sure, that the period size is always aligned
1089 retval
= snd_pcm_hw_constraint_step(substream
->runtime
, 0,
1090 SNDRV_PCM_HW_PARAM_PERIOD_BYTES
, 64);
1094 retval
= snd_pcm_hw_constraint_msbits(runtime
, 0, 32, 24);
1098 /* expose PCM substream */
1099 spin_lock_irq(&intelhaddata
->had_spinlock
);
1100 intelhaddata
->stream_info
.substream
= substream
;
1101 intelhaddata
->stream_info
.substream_refcount
++;
1102 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1106 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1107 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1112 * ALSA PCM close callback
1114 static int had_pcm_close(struct snd_pcm_substream
*substream
)
1116 struct snd_intelhad
*intelhaddata
;
1118 intelhaddata
= snd_pcm_substream_chip(substream
);
1120 /* unreference and sync with the pending PCM accesses */
1121 spin_lock_irq(&intelhaddata
->had_spinlock
);
1122 intelhaddata
->stream_info
.substream
= NULL
;
1123 intelhaddata
->stream_info
.substream_refcount
--;
1124 while (intelhaddata
->stream_info
.substream_refcount
> 0) {
1125 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1127 spin_lock_irq(&intelhaddata
->had_spinlock
);
1129 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1131 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1132 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1137 * ALSA PCM hw_params callback
1139 static int had_pcm_hw_params(struct snd_pcm_substream
*substream
,
1140 struct snd_pcm_hw_params
*hw_params
)
1142 struct snd_intelhad
*intelhaddata
;
1143 int buf_size
, retval
;
1145 intelhaddata
= snd_pcm_substream_chip(substream
);
1146 buf_size
= params_buffer_bytes(hw_params
);
1147 retval
= snd_pcm_lib_malloc_pages(substream
, buf_size
);
1150 dev_dbg(intelhaddata
->dev
, "%s:allocated memory = %d\n",
1151 __func__
, buf_size
);
1156 * ALSA PCM hw_free callback
1158 static int had_pcm_hw_free(struct snd_pcm_substream
*substream
)
1160 struct snd_intelhad
*intelhaddata
;
1162 intelhaddata
= snd_pcm_substream_chip(substream
);
1163 had_do_reset(intelhaddata
);
1165 return snd_pcm_lib_free_pages(substream
);
1169 * ALSA PCM trigger callback
1171 static int had_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
1174 struct snd_intelhad
*intelhaddata
;
1176 intelhaddata
= snd_pcm_substream_chip(substream
);
1178 spin_lock(&intelhaddata
->had_spinlock
);
1180 case SNDRV_PCM_TRIGGER_START
:
1181 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1182 case SNDRV_PCM_TRIGGER_RESUME
:
1184 had_ack_irqs(intelhaddata
); /* FIXME: do we need this? */
1185 had_enable_audio(intelhaddata
, true);
1188 case SNDRV_PCM_TRIGGER_STOP
:
1189 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1191 had_enable_audio(intelhaddata
, false);
1192 intelhaddata
->need_reset
= true;
1198 spin_unlock(&intelhaddata
->had_spinlock
);
1203 * ALSA PCM prepare callback
1205 static int had_pcm_prepare(struct snd_pcm_substream
*substream
)
1208 u32 disp_samp_freq
, n_param
;
1210 struct snd_intelhad
*intelhaddata
;
1211 struct snd_pcm_runtime
*runtime
;
1213 intelhaddata
= snd_pcm_substream_chip(substream
);
1214 runtime
= substream
->runtime
;
1216 dev_dbg(intelhaddata
->dev
, "period_size=%d\n",
1217 (int)frames_to_bytes(runtime
, runtime
->period_size
));
1218 dev_dbg(intelhaddata
->dev
, "periods=%d\n", runtime
->periods
);
1219 dev_dbg(intelhaddata
->dev
, "buffer_size=%d\n",
1220 (int)snd_pcm_lib_buffer_bytes(substream
));
1221 dev_dbg(intelhaddata
->dev
, "rate=%d\n", runtime
->rate
);
1222 dev_dbg(intelhaddata
->dev
, "channels=%d\n", runtime
->channels
);
1224 had_do_reset(intelhaddata
);
1226 /* Get N value in KHz */
1227 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1229 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1231 dev_err(intelhaddata
->dev
,
1232 "programming N value failed %#x\n", retval
);
1236 if (intelhaddata
->dp_output
)
1237 link_rate
= intelhaddata
->link_rate
;
1239 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1240 n_param
, intelhaddata
);
1242 had_prog_dip(substream
, intelhaddata
);
1244 retval
= had_init_audio_ctrl(substream
, intelhaddata
);
1246 /* Prog buffer address */
1247 had_init_ringbuf(substream
, intelhaddata
);
1250 * Program channel mapping in following order:
1251 * FL, FR, C, LFE, RL, RR
1254 had_write_register(intelhaddata
, AUD_BUF_CH_SWAP
, SWAP_LFE_CENTER
);
1261 * ALSA PCM pointer callback
1263 static snd_pcm_uframes_t
had_pcm_pointer(struct snd_pcm_substream
*substream
)
1265 struct snd_intelhad
*intelhaddata
;
1268 intelhaddata
= snd_pcm_substream_chip(substream
);
1270 if (!intelhaddata
->connected
)
1271 return SNDRV_PCM_POS_XRUN
;
1273 len
= had_process_ringbuf(substream
, intelhaddata
);
1275 return SNDRV_PCM_POS_XRUN
;
1276 len
= bytes_to_frames(substream
->runtime
, len
);
1277 /* wrapping may happen when periods=1 */
1278 len
%= substream
->runtime
->buffer_size
;
1283 * ALSA PCM mmap callback
1285 static int had_pcm_mmap(struct snd_pcm_substream
*substream
,
1286 struct vm_area_struct
*vma
)
1288 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1289 return remap_pfn_range(vma
, vma
->vm_start
,
1290 substream
->dma_buffer
.addr
>> PAGE_SHIFT
,
1291 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
1297 static const struct snd_pcm_ops had_pcm_ops
= {
1298 .open
= had_pcm_open
,
1299 .close
= had_pcm_close
,
1300 .ioctl
= snd_pcm_lib_ioctl
,
1301 .hw_params
= had_pcm_hw_params
,
1302 .hw_free
= had_pcm_hw_free
,
1303 .prepare
= had_pcm_prepare
,
1304 .trigger
= had_pcm_trigger
,
1305 .pointer
= had_pcm_pointer
,
1306 .mmap
= had_pcm_mmap
,
1309 /* process mode change of the running stream; called in mutex */
1310 static int had_process_mode_change(struct snd_intelhad
*intelhaddata
)
1312 struct snd_pcm_substream
*substream
;
1314 u32 disp_samp_freq
, n_param
;
1317 substream
= had_substream_get(intelhaddata
);
1322 had_enable_audio(intelhaddata
, false);
1324 /* Update CTS value */
1325 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1327 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1329 dev_err(intelhaddata
->dev
,
1330 "programming N value failed %#x\n", retval
);
1334 if (intelhaddata
->dp_output
)
1335 link_rate
= intelhaddata
->link_rate
;
1337 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1338 n_param
, intelhaddata
);
1341 had_enable_audio(intelhaddata
, true);
1344 had_substream_put(intelhaddata
);
1348 /* process hot plug, called from wq with mutex locked */
1349 static void had_process_hot_plug(struct snd_intelhad
*intelhaddata
)
1351 struct snd_pcm_substream
*substream
;
1353 spin_lock_irq(&intelhaddata
->had_spinlock
);
1354 if (intelhaddata
->connected
) {
1355 dev_dbg(intelhaddata
->dev
, "Device already connected\n");
1356 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1361 had_enable_audio(intelhaddata
, false);
1363 intelhaddata
->connected
= true;
1364 dev_dbg(intelhaddata
->dev
,
1365 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1366 __func__
, __LINE__
);
1367 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1369 had_build_channel_allocation_map(intelhaddata
);
1371 /* Report to above ALSA layer */
1372 substream
= had_substream_get(intelhaddata
);
1374 snd_pcm_stop_xrun(substream
);
1375 had_substream_put(intelhaddata
);
1378 snd_jack_report(intelhaddata
->jack
, SND_JACK_AVOUT
);
1381 /* process hot unplug, called from wq with mutex locked */
1382 static void had_process_hot_unplug(struct snd_intelhad
*intelhaddata
)
1384 struct snd_pcm_substream
*substream
;
1386 spin_lock_irq(&intelhaddata
->had_spinlock
);
1387 if (!intelhaddata
->connected
) {
1388 dev_dbg(intelhaddata
->dev
, "Device already disconnected\n");
1389 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1395 had_enable_audio(intelhaddata
, false);
1397 intelhaddata
->connected
= false;
1398 dev_dbg(intelhaddata
->dev
,
1399 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1400 __func__
, __LINE__
);
1401 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1403 kfree(intelhaddata
->chmap
->chmap
);
1404 intelhaddata
->chmap
->chmap
= NULL
;
1406 /* Report to above ALSA layer */
1407 substream
= had_substream_get(intelhaddata
);
1409 snd_pcm_stop_xrun(substream
);
1410 had_substream_put(intelhaddata
);
1413 snd_jack_report(intelhaddata
->jack
, 0);
1417 * ALSA iec958 and ELD controls
1420 static int had_iec958_info(struct snd_kcontrol
*kcontrol
,
1421 struct snd_ctl_elem_info
*uinfo
)
1423 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_IEC958
;
1428 static int had_iec958_get(struct snd_kcontrol
*kcontrol
,
1429 struct snd_ctl_elem_value
*ucontrol
)
1431 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1433 mutex_lock(&intelhaddata
->mutex
);
1434 ucontrol
->value
.iec958
.status
[0] = (intelhaddata
->aes_bits
>> 0) & 0xff;
1435 ucontrol
->value
.iec958
.status
[1] = (intelhaddata
->aes_bits
>> 8) & 0xff;
1436 ucontrol
->value
.iec958
.status
[2] =
1437 (intelhaddata
->aes_bits
>> 16) & 0xff;
1438 ucontrol
->value
.iec958
.status
[3] =
1439 (intelhaddata
->aes_bits
>> 24) & 0xff;
1440 mutex_unlock(&intelhaddata
->mutex
);
1444 static int had_iec958_mask_get(struct snd_kcontrol
*kcontrol
,
1445 struct snd_ctl_elem_value
*ucontrol
)
1447 ucontrol
->value
.iec958
.status
[0] = 0xff;
1448 ucontrol
->value
.iec958
.status
[1] = 0xff;
1449 ucontrol
->value
.iec958
.status
[2] = 0xff;
1450 ucontrol
->value
.iec958
.status
[3] = 0xff;
1454 static int had_iec958_put(struct snd_kcontrol
*kcontrol
,
1455 struct snd_ctl_elem_value
*ucontrol
)
1458 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1461 val
= (ucontrol
->value
.iec958
.status
[0] << 0) |
1462 (ucontrol
->value
.iec958
.status
[1] << 8) |
1463 (ucontrol
->value
.iec958
.status
[2] << 16) |
1464 (ucontrol
->value
.iec958
.status
[3] << 24);
1465 mutex_lock(&intelhaddata
->mutex
);
1466 if (intelhaddata
->aes_bits
!= val
) {
1467 intelhaddata
->aes_bits
= val
;
1470 mutex_unlock(&intelhaddata
->mutex
);
1474 static int had_ctl_eld_info(struct snd_kcontrol
*kcontrol
,
1475 struct snd_ctl_elem_info
*uinfo
)
1477 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BYTES
;
1478 uinfo
->count
= HDMI_MAX_ELD_BYTES
;
1482 static int had_ctl_eld_get(struct snd_kcontrol
*kcontrol
,
1483 struct snd_ctl_elem_value
*ucontrol
)
1485 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1487 mutex_lock(&intelhaddata
->mutex
);
1488 memcpy(ucontrol
->value
.bytes
.data
, intelhaddata
->eld
,
1489 HDMI_MAX_ELD_BYTES
);
1490 mutex_unlock(&intelhaddata
->mutex
);
1494 static const struct snd_kcontrol_new had_controls
[] = {
1496 .access
= SNDRV_CTL_ELEM_ACCESS_READ
,
1497 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1498 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, MASK
),
1499 .info
= had_iec958_info
, /* shared */
1500 .get
= had_iec958_mask_get
,
1503 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1504 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, DEFAULT
),
1505 .info
= had_iec958_info
,
1506 .get
= had_iec958_get
,
1507 .put
= had_iec958_put
,
1510 .access
= (SNDRV_CTL_ELEM_ACCESS_READ
|
1511 SNDRV_CTL_ELEM_ACCESS_VOLATILE
),
1512 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1514 .info
= had_ctl_eld_info
,
1515 .get
= had_ctl_eld_get
,
1520 * audio interrupt handler
1522 static irqreturn_t
display_pipe_interrupt_handler(int irq
, void *dev_id
)
1524 struct snd_intelhad_card
*card_ctx
= dev_id
;
1525 u32 audio_stat
[3] = {};
1528 for_each_pipe(card_ctx
, pipe
) {
1529 /* use raw register access to ack IRQs even while disconnected */
1530 audio_stat
[pipe
] = had_read_register_raw(card_ctx
, pipe
,
1532 (HDMI_AUDIO_UNDERRUN
| HDMI_AUDIO_BUFFER_DONE
);
1534 if (audio_stat
[pipe
])
1535 had_write_register_raw(card_ctx
, pipe
,
1536 AUD_HDMI_STATUS
, audio_stat
[pipe
]);
1539 for_each_port(card_ctx
, port
) {
1540 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1541 int pipe
= ctx
->pipe
;
1546 if (audio_stat
[pipe
] & HDMI_AUDIO_BUFFER_DONE
)
1547 had_process_buffer_done(ctx
);
1548 if (audio_stat
[pipe
] & HDMI_AUDIO_UNDERRUN
)
1549 had_process_buffer_underrun(ctx
);
1556 * monitor plug/unplug notification from i915; just kick off the work
1558 static void notify_audio_lpe(struct platform_device
*pdev
, int port
)
1560 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1561 struct snd_intelhad
*ctx
;
1563 ctx
= &card_ctx
->pcm_ctx
[single_port
? 0 : port
];
1567 schedule_work(&ctx
->hdmi_audio_wq
);
1570 /* the work to handle monitor hot plug/unplug */
1571 static void had_audio_wq(struct work_struct
*work
)
1573 struct snd_intelhad
*ctx
=
1574 container_of(work
, struct snd_intelhad
, hdmi_audio_wq
);
1575 struct intel_hdmi_lpe_audio_pdata
*pdata
= ctx
->dev
->platform_data
;
1576 struct intel_hdmi_lpe_audio_port_pdata
*ppdata
= &pdata
->port
[ctx
->port
];
1578 pm_runtime_get_sync(ctx
->dev
);
1579 mutex_lock(&ctx
->mutex
);
1580 if (ppdata
->pipe
< 0) {
1581 dev_dbg(ctx
->dev
, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1582 __func__
, ctx
->port
);
1584 memset(ctx
->eld
, 0, sizeof(ctx
->eld
)); /* clear the old ELD */
1586 ctx
->dp_output
= false;
1587 ctx
->tmds_clock_speed
= 0;
1590 /* Shut down the stream */
1591 had_process_hot_unplug(ctx
);
1595 dev_dbg(ctx
->dev
, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1596 __func__
, ctx
->port
, ppdata
->ls_clock
);
1598 memcpy(ctx
->eld
, ppdata
->eld
, sizeof(ctx
->eld
));
1600 ctx
->dp_output
= ppdata
->dp_output
;
1601 if (ctx
->dp_output
) {
1602 ctx
->tmds_clock_speed
= 0;
1603 ctx
->link_rate
= ppdata
->ls_clock
;
1605 ctx
->tmds_clock_speed
= ppdata
->ls_clock
;
1610 * Shut down the stream before we change
1611 * the pipe assignment for this pcm device
1613 had_process_hot_plug(ctx
);
1615 ctx
->pipe
= ppdata
->pipe
;
1617 /* Restart the stream if necessary */
1618 had_process_mode_change(ctx
);
1621 mutex_unlock(&ctx
->mutex
);
1622 pm_runtime_mark_last_busy(ctx
->dev
);
1623 pm_runtime_put_autosuspend(ctx
->dev
);
1629 static int had_create_jack(struct snd_intelhad
*ctx
,
1630 struct snd_pcm
*pcm
)
1635 snprintf(hdmi_str
, sizeof(hdmi_str
),
1636 "HDMI/DP,pcm=%d", pcm
->device
);
1638 err
= snd_jack_new(ctx
->card_ctx
->card
, hdmi_str
,
1639 SND_JACK_AVOUT
, &ctx
->jack
,
1643 ctx
->jack
->private_data
= ctx
;
1651 static int __maybe_unused
hdmi_lpe_audio_suspend(struct device
*dev
)
1653 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1655 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D3hot
);
1660 static int __maybe_unused
hdmi_lpe_audio_resume(struct device
*dev
)
1662 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1664 pm_runtime_mark_last_busy(dev
);
1666 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D0
);
1671 /* release resources */
1672 static void hdmi_lpe_audio_free(struct snd_card
*card
)
1674 struct snd_intelhad_card
*card_ctx
= card
->private_data
;
1675 struct intel_hdmi_lpe_audio_pdata
*pdata
= card_ctx
->dev
->platform_data
;
1678 spin_lock_irq(&pdata
->lpe_audio_slock
);
1679 pdata
->notify_audio_lpe
= NULL
;
1680 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1682 for_each_port(card_ctx
, port
) {
1683 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1685 cancel_work_sync(&ctx
->hdmi_audio_wq
);
1688 if (card_ctx
->mmio_start
)
1689 iounmap(card_ctx
->mmio_start
);
1690 if (card_ctx
->irq
>= 0)
1691 free_irq(card_ctx
->irq
, card_ctx
);
1695 * hdmi_lpe_audio_probe - start bridge with i915
1697 * This function is called when the i915 driver creates the
1698 * hdmi-lpe-audio platform device.
1700 static int hdmi_lpe_audio_probe(struct platform_device
*pdev
)
1702 struct snd_card
*card
;
1703 struct snd_intelhad_card
*card_ctx
;
1704 struct snd_intelhad
*ctx
;
1705 struct snd_pcm
*pcm
;
1706 struct intel_hdmi_lpe_audio_pdata
*pdata
;
1708 struct resource
*res_mmio
;
1711 pdata
= pdev
->dev
.platform_data
;
1713 dev_err(&pdev
->dev
, "%s: quit: pdata not allocated by i915!!\n", __func__
);
1718 irq
= platform_get_irq(pdev
, 0);
1720 dev_err(&pdev
->dev
, "Could not get irq resource: %d\n", irq
);
1724 res_mmio
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1726 dev_err(&pdev
->dev
, "Could not get IO_MEM resources\n");
1730 /* create a card instance with ALSA framework */
1731 ret
= snd_card_new(&pdev
->dev
, hdmi_card_index
, hdmi_card_id
,
1732 THIS_MODULE
, sizeof(*card_ctx
), &card
);
1736 card_ctx
= card
->private_data
;
1737 card_ctx
->dev
= &pdev
->dev
;
1738 card_ctx
->card
= card
;
1739 strcpy(card
->driver
, INTEL_HAD
);
1740 strcpy(card
->shortname
, "Intel HDMI/DP LPE Audio");
1741 strcpy(card
->longname
, "Intel HDMI/DP LPE Audio");
1745 card
->private_free
= hdmi_lpe_audio_free
;
1747 platform_set_drvdata(pdev
, card_ctx
);
1749 card_ctx
->num_pipes
= pdata
->num_pipes
;
1750 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1752 for_each_port(card_ctx
, port
) {
1753 ctx
= &card_ctx
->pcm_ctx
[port
];
1754 ctx
->card_ctx
= card_ctx
;
1755 ctx
->dev
= card_ctx
->dev
;
1756 ctx
->port
= single_port
? -1 : port
;
1759 spin_lock_init(&ctx
->had_spinlock
);
1760 mutex_init(&ctx
->mutex
);
1761 INIT_WORK(&ctx
->hdmi_audio_wq
, had_audio_wq
);
1764 dev_dbg(&pdev
->dev
, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1765 __func__
, (unsigned int)res_mmio
->start
,
1766 (unsigned int)res_mmio
->end
);
1768 card_ctx
->mmio_start
= ioremap_nocache(res_mmio
->start
,
1769 (size_t)(resource_size(res_mmio
)));
1770 if (!card_ctx
->mmio_start
) {
1771 dev_err(&pdev
->dev
, "Could not get ioremap\n");
1776 /* setup interrupt handler */
1777 ret
= request_irq(irq
, display_pipe_interrupt_handler
, 0,
1778 pdev
->name
, card_ctx
);
1780 dev_err(&pdev
->dev
, "request_irq failed\n");
1784 card_ctx
->irq
= irq
;
1786 /* only 32bit addressable */
1787 dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1788 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1790 init_channel_allocations();
1792 card_ctx
->num_pipes
= pdata
->num_pipes
;
1793 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1795 for_each_port(card_ctx
, port
) {
1798 ctx
= &card_ctx
->pcm_ctx
[port
];
1799 ret
= snd_pcm_new(card
, INTEL_HAD
, port
, MAX_PB_STREAMS
,
1800 MAX_CAP_STREAMS
, &pcm
);
1804 /* setup private data which can be retrieved when required */
1805 pcm
->private_data
= ctx
;
1806 pcm
->info_flags
= 0;
1807 strlcpy(pcm
->name
, card
->shortname
, strlen(card
->shortname
));
1808 /* setup the ops for playabck */
1809 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &had_pcm_ops
);
1811 /* allocate dma pages;
1812 * try to allocate 600k buffer as default which is large enough
1814 snd_pcm_lib_preallocate_pages_for_all(pcm
,
1815 SNDRV_DMA_TYPE_DEV_UC
,
1817 HAD_DEFAULT_BUFFER
, HAD_MAX_BUFFER
);
1819 /* create controls */
1820 for (i
= 0; i
< ARRAY_SIZE(had_controls
); i
++) {
1821 struct snd_kcontrol
*kctl
;
1823 kctl
= snd_ctl_new1(&had_controls
[i
], ctx
);
1829 kctl
->id
.device
= pcm
->device
;
1831 ret
= snd_ctl_add(card
, kctl
);
1836 /* Register channel map controls */
1837 ret
= had_register_chmap_ctls(ctx
, pcm
);
1841 ret
= had_create_jack(ctx
, pcm
);
1846 ret
= snd_card_register(card
);
1850 spin_lock_irq(&pdata
->lpe_audio_slock
);
1851 pdata
->notify_audio_lpe
= notify_audio_lpe
;
1852 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1854 pm_runtime_use_autosuspend(&pdev
->dev
);
1855 pm_runtime_mark_last_busy(&pdev
->dev
);
1857 dev_dbg(&pdev
->dev
, "%s: handle pending notification\n", __func__
);
1858 for_each_port(card_ctx
, port
) {
1859 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1861 schedule_work(&ctx
->hdmi_audio_wq
);
1867 snd_card_free(card
);
1872 * hdmi_lpe_audio_remove - stop bridge with i915
1874 * This function is called when the platform device is destroyed.
1876 static int hdmi_lpe_audio_remove(struct platform_device
*pdev
)
1878 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1880 snd_card_free(card_ctx
->card
);
1884 static const struct dev_pm_ops hdmi_lpe_audio_pm
= {
1885 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend
, hdmi_lpe_audio_resume
)
1888 static struct platform_driver hdmi_lpe_audio_driver
= {
1890 .name
= "hdmi-lpe-audio",
1891 .pm
= &hdmi_lpe_audio_pm
,
1893 .probe
= hdmi_lpe_audio_probe
,
1894 .remove
= hdmi_lpe_audio_remove
,
1897 module_platform_driver(hdmi_lpe_audio_driver
);
1898 MODULE_ALIAS("platform:hdmi_lpe_audio");
1900 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1901 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1902 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1903 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1904 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1905 MODULE_LICENSE("GPL v2");
1906 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");