1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
9 #include <linux/init.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/dax.h>
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
27 #include <linux/mpage.h>
28 #include <linux/mount.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
39 struct block_device bdev
;
40 struct inode vfs_inode
;
43 static const struct address_space_operations def_blk_aops
;
45 static inline struct bdev_inode
*BDEV_I(struct inode
*inode
)
47 return container_of(inode
, struct bdev_inode
, vfs_inode
);
50 struct block_device
*I_BDEV(struct inode
*inode
)
52 return &BDEV_I(inode
)->bdev
;
54 EXPORT_SYMBOL(I_BDEV
);
56 static void bdev_write_inode(struct block_device
*bdev
)
58 struct inode
*inode
= bdev
->bd_inode
;
61 spin_lock(&inode
->i_lock
);
62 while (inode
->i_state
& I_DIRTY
) {
63 spin_unlock(&inode
->i_lock
);
64 ret
= write_inode_now(inode
, true);
66 char name
[BDEVNAME_SIZE
];
67 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
68 "for block device %s (err=%d).\n",
69 bdevname(bdev
, name
), ret
);
71 spin_lock(&inode
->i_lock
);
73 spin_unlock(&inode
->i_lock
);
76 /* Kill _all_ buffers and pagecache , dirty or not.. */
77 void kill_bdev(struct block_device
*bdev
)
79 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
81 if (mapping
->nrpages
== 0 && mapping
->nrexceptional
== 0)
85 truncate_inode_pages(mapping
, 0);
87 EXPORT_SYMBOL(kill_bdev
);
89 /* Invalidate clean unused buffers and pagecache. */
90 void invalidate_bdev(struct block_device
*bdev
)
92 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
94 if (mapping
->nrpages
) {
96 lru_add_drain_all(); /* make sure all lru add caches are flushed */
97 invalidate_mapping_pages(mapping
, 0, -1);
99 /* 99% of the time, we don't need to flush the cleancache on the bdev.
100 * But, for the strange corners, lets be cautious
102 cleancache_invalidate_inode(mapping
);
104 EXPORT_SYMBOL(invalidate_bdev
);
106 static void set_init_blocksize(struct block_device
*bdev
)
108 unsigned bsize
= bdev_logical_block_size(bdev
);
109 loff_t size
= i_size_read(bdev
->bd_inode
);
111 while (bsize
< PAGE_SIZE
) {
116 bdev
->bd_block_size
= bsize
;
117 bdev
->bd_inode
->i_blkbits
= blksize_bits(bsize
);
120 int set_blocksize(struct block_device
*bdev
, int size
)
122 /* Size must be a power of two, and between 512 and PAGE_SIZE */
123 if (size
> PAGE_SIZE
|| size
< 512 || !is_power_of_2(size
))
126 /* Size cannot be smaller than the size supported by the device */
127 if (size
< bdev_logical_block_size(bdev
))
130 /* Don't change the size if it is same as current */
131 if (bdev
->bd_block_size
!= size
) {
133 bdev
->bd_block_size
= size
;
134 bdev
->bd_inode
->i_blkbits
= blksize_bits(size
);
140 EXPORT_SYMBOL(set_blocksize
);
142 int sb_set_blocksize(struct super_block
*sb
, int size
)
144 if (set_blocksize(sb
->s_bdev
, size
))
146 /* If we get here, we know size is power of two
147 * and it's value is between 512 and PAGE_SIZE */
148 sb
->s_blocksize
= size
;
149 sb
->s_blocksize_bits
= blksize_bits(size
);
150 return sb
->s_blocksize
;
153 EXPORT_SYMBOL(sb_set_blocksize
);
155 int sb_min_blocksize(struct super_block
*sb
, int size
)
157 int minsize
= bdev_logical_block_size(sb
->s_bdev
);
160 return sb_set_blocksize(sb
, size
);
163 EXPORT_SYMBOL(sb_min_blocksize
);
166 blkdev_get_block(struct inode
*inode
, sector_t iblock
,
167 struct buffer_head
*bh
, int create
)
169 bh
->b_bdev
= I_BDEV(inode
);
170 bh
->b_blocknr
= iblock
;
171 set_buffer_mapped(bh
);
175 static struct inode
*bdev_file_inode(struct file
*file
)
177 return file
->f_mapping
->host
;
180 static unsigned int dio_bio_write_op(struct kiocb
*iocb
)
182 unsigned int op
= REQ_OP_WRITE
| REQ_SYNC
| REQ_IDLE
;
184 /* avoid the need for a I/O completion work item */
185 if (iocb
->ki_flags
& IOCB_DSYNC
)
190 #define DIO_INLINE_BIO_VECS 4
192 static void blkdev_bio_end_io_simple(struct bio
*bio
)
194 struct task_struct
*waiter
= bio
->bi_private
;
196 WRITE_ONCE(bio
->bi_private
, NULL
);
197 blk_wake_io_task(waiter
);
201 __blkdev_direct_IO_simple(struct kiocb
*iocb
, struct iov_iter
*iter
,
204 struct file
*file
= iocb
->ki_filp
;
205 struct block_device
*bdev
= I_BDEV(bdev_file_inode(file
));
206 struct bio_vec inline_vecs
[DIO_INLINE_BIO_VECS
], *vecs
, *bvec
;
207 loff_t pos
= iocb
->ki_pos
;
208 bool should_dirty
= false;
212 struct bvec_iter_all iter_all
;
214 if ((pos
| iov_iter_alignment(iter
)) &
215 (bdev_logical_block_size(bdev
) - 1))
218 if (nr_pages
<= DIO_INLINE_BIO_VECS
)
221 vecs
= kmalloc_array(nr_pages
, sizeof(struct bio_vec
),
227 bio_init(&bio
, vecs
, nr_pages
);
228 bio_set_dev(&bio
, bdev
);
229 bio
.bi_iter
.bi_sector
= pos
>> 9;
230 bio
.bi_write_hint
= iocb
->ki_hint
;
231 bio
.bi_private
= current
;
232 bio
.bi_end_io
= blkdev_bio_end_io_simple
;
233 bio
.bi_ioprio
= iocb
->ki_ioprio
;
235 ret
= bio_iov_iter_get_pages(&bio
, iter
);
238 ret
= bio
.bi_iter
.bi_size
;
240 if (iov_iter_rw(iter
) == READ
) {
241 bio
.bi_opf
= REQ_OP_READ
;
242 if (iter_is_iovec(iter
))
245 bio
.bi_opf
= dio_bio_write_op(iocb
);
246 task_io_account_write(ret
);
248 if (iocb
->ki_flags
& IOCB_HIPRI
)
249 bio_set_polled(&bio
, iocb
);
251 qc
= submit_bio(&bio
);
253 set_current_state(TASK_UNINTERRUPTIBLE
);
254 if (!READ_ONCE(bio
.bi_private
))
256 if (!(iocb
->ki_flags
& IOCB_HIPRI
) ||
257 !blk_poll(bdev_get_queue(bdev
), qc
, true))
260 __set_current_state(TASK_RUNNING
);
262 bio_for_each_segment_all(bvec
, &bio
, iter_all
) {
263 if (should_dirty
&& !PageCompound(bvec
->bv_page
))
264 set_page_dirty_lock(bvec
->bv_page
);
265 if (!bio_flagged(&bio
, BIO_NO_PAGE_REF
))
266 put_page(bvec
->bv_page
);
269 if (unlikely(bio
.bi_status
))
270 ret
= blk_status_to_errno(bio
.bi_status
);
273 if (vecs
!= inline_vecs
)
284 struct task_struct
*waiter
;
289 bool should_dirty
: 1;
294 static struct bio_set blkdev_dio_pool
;
296 static int blkdev_iopoll(struct kiocb
*kiocb
, bool wait
)
298 struct block_device
*bdev
= I_BDEV(kiocb
->ki_filp
->f_mapping
->host
);
299 struct request_queue
*q
= bdev_get_queue(bdev
);
301 return blk_poll(q
, READ_ONCE(kiocb
->ki_cookie
), wait
);
304 static void blkdev_bio_end_io(struct bio
*bio
)
306 struct blkdev_dio
*dio
= bio
->bi_private
;
307 bool should_dirty
= dio
->should_dirty
;
309 if (bio
->bi_status
&& !dio
->bio
.bi_status
)
310 dio
->bio
.bi_status
= bio
->bi_status
;
312 if (!dio
->multi_bio
|| atomic_dec_and_test(&dio
->ref
)) {
314 struct kiocb
*iocb
= dio
->iocb
;
317 if (likely(!dio
->bio
.bi_status
)) {
321 ret
= blk_status_to_errno(dio
->bio
.bi_status
);
324 dio
->iocb
->ki_complete(iocb
, ret
, 0);
328 struct task_struct
*waiter
= dio
->waiter
;
330 WRITE_ONCE(dio
->waiter
, NULL
);
331 blk_wake_io_task(waiter
);
336 bio_check_pages_dirty(bio
);
338 if (!bio_flagged(bio
, BIO_NO_PAGE_REF
)) {
339 struct bvec_iter_all iter_all
;
340 struct bio_vec
*bvec
;
342 bio_for_each_segment_all(bvec
, bio
, iter_all
)
343 put_page(bvec
->bv_page
);
350 __blkdev_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
, int nr_pages
)
352 struct file
*file
= iocb
->ki_filp
;
353 struct inode
*inode
= bdev_file_inode(file
);
354 struct block_device
*bdev
= I_BDEV(inode
);
355 struct blk_plug plug
;
356 struct blkdev_dio
*dio
;
358 bool is_poll
= (iocb
->ki_flags
& IOCB_HIPRI
) != 0;
359 bool is_read
= (iov_iter_rw(iter
) == READ
), is_sync
;
360 loff_t pos
= iocb
->ki_pos
;
361 blk_qc_t qc
= BLK_QC_T_NONE
;
364 if ((pos
| iov_iter_alignment(iter
)) &
365 (bdev_logical_block_size(bdev
) - 1))
368 bio
= bio_alloc_bioset(GFP_KERNEL
, nr_pages
, &blkdev_dio_pool
);
370 dio
= container_of(bio
, struct blkdev_dio
, bio
);
371 dio
->is_sync
= is_sync
= is_sync_kiocb(iocb
);
373 dio
->waiter
= current
;
380 dio
->multi_bio
= false;
381 dio
->should_dirty
= is_read
&& iter_is_iovec(iter
);
384 * Don't plug for HIPRI/polled IO, as those should go straight
388 blk_start_plug(&plug
);
391 bio_set_dev(bio
, bdev
);
392 bio
->bi_iter
.bi_sector
= pos
>> 9;
393 bio
->bi_write_hint
= iocb
->ki_hint
;
394 bio
->bi_private
= dio
;
395 bio
->bi_end_io
= blkdev_bio_end_io
;
396 bio
->bi_ioprio
= iocb
->ki_ioprio
;
398 ret
= bio_iov_iter_get_pages(bio
, iter
);
400 bio
->bi_status
= BLK_STS_IOERR
;
406 bio
->bi_opf
= REQ_OP_READ
;
407 if (dio
->should_dirty
)
408 bio_set_pages_dirty(bio
);
410 bio
->bi_opf
= dio_bio_write_op(iocb
);
411 task_io_account_write(bio
->bi_iter
.bi_size
);
414 dio
->size
+= bio
->bi_iter
.bi_size
;
415 pos
+= bio
->bi_iter
.bi_size
;
417 nr_pages
= iov_iter_npages(iter
, BIO_MAX_PAGES
);
421 if (iocb
->ki_flags
& IOCB_HIPRI
) {
422 bio_set_polled(bio
, iocb
);
426 qc
= submit_bio(bio
);
429 WRITE_ONCE(iocb
->ki_cookie
, qc
);
433 if (!dio
->multi_bio
) {
435 * AIO needs an extra reference to ensure the dio
436 * structure which is embedded into the first bio
441 dio
->multi_bio
= true;
442 atomic_set(&dio
->ref
, 2);
444 atomic_inc(&dio
->ref
);
448 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
452 blk_finish_plug(&plug
);
458 set_current_state(TASK_UNINTERRUPTIBLE
);
459 if (!READ_ONCE(dio
->waiter
))
462 if (!(iocb
->ki_flags
& IOCB_HIPRI
) ||
463 !blk_poll(bdev_get_queue(bdev
), qc
, true))
466 __set_current_state(TASK_RUNNING
);
469 ret
= blk_status_to_errno(dio
->bio
.bi_status
);
478 blkdev_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
482 nr_pages
= iov_iter_npages(iter
, BIO_MAX_PAGES
+ 1);
485 if (is_sync_kiocb(iocb
) && nr_pages
<= BIO_MAX_PAGES
)
486 return __blkdev_direct_IO_simple(iocb
, iter
, nr_pages
);
488 return __blkdev_direct_IO(iocb
, iter
, min(nr_pages
, BIO_MAX_PAGES
));
491 static __init
int blkdev_init(void)
493 return bioset_init(&blkdev_dio_pool
, 4, offsetof(struct blkdev_dio
, bio
), BIOSET_NEED_BVECS
);
495 module_init(blkdev_init
);
497 int __sync_blockdev(struct block_device
*bdev
, int wait
)
502 return filemap_flush(bdev
->bd_inode
->i_mapping
);
503 return filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
507 * Write out and wait upon all the dirty data associated with a block
508 * device via its mapping. Does not take the superblock lock.
510 int sync_blockdev(struct block_device
*bdev
)
512 return __sync_blockdev(bdev
, 1);
514 EXPORT_SYMBOL(sync_blockdev
);
517 * Write out and wait upon all dirty data associated with this
518 * device. Filesystem data as well as the underlying block
519 * device. Takes the superblock lock.
521 int fsync_bdev(struct block_device
*bdev
)
523 struct super_block
*sb
= get_super(bdev
);
525 int res
= sync_filesystem(sb
);
529 return sync_blockdev(bdev
);
531 EXPORT_SYMBOL(fsync_bdev
);
534 * freeze_bdev -- lock a filesystem and force it into a consistent state
535 * @bdev: blockdevice to lock
537 * If a superblock is found on this device, we take the s_umount semaphore
538 * on it to make sure nobody unmounts until the snapshot creation is done.
539 * The reference counter (bd_fsfreeze_count) guarantees that only the last
540 * unfreeze process can unfreeze the frozen filesystem actually when multiple
541 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
542 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
545 struct super_block
*freeze_bdev(struct block_device
*bdev
)
547 struct super_block
*sb
;
550 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
551 if (++bdev
->bd_fsfreeze_count
> 1) {
553 * We don't even need to grab a reference - the first call
554 * to freeze_bdev grab an active reference and only the last
555 * thaw_bdev drops it.
557 sb
= get_super(bdev
);
560 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
564 sb
= get_active_super(bdev
);
567 if (sb
->s_op
->freeze_super
)
568 error
= sb
->s_op
->freeze_super(sb
);
570 error
= freeze_super(sb
);
572 deactivate_super(sb
);
573 bdev
->bd_fsfreeze_count
--;
574 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
575 return ERR_PTR(error
);
577 deactivate_super(sb
);
580 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
581 return sb
; /* thaw_bdev releases s->s_umount */
583 EXPORT_SYMBOL(freeze_bdev
);
586 * thaw_bdev -- unlock filesystem
587 * @bdev: blockdevice to unlock
588 * @sb: associated superblock
590 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
592 int thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
596 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
597 if (!bdev
->bd_fsfreeze_count
)
601 if (--bdev
->bd_fsfreeze_count
> 0)
607 if (sb
->s_op
->thaw_super
)
608 error
= sb
->s_op
->thaw_super(sb
);
610 error
= thaw_super(sb
);
612 bdev
->bd_fsfreeze_count
++;
614 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
617 EXPORT_SYMBOL(thaw_bdev
);
619 static int blkdev_writepage(struct page
*page
, struct writeback_control
*wbc
)
621 return block_write_full_page(page
, blkdev_get_block
, wbc
);
624 static int blkdev_readpage(struct file
* file
, struct page
* page
)
626 return block_read_full_page(page
, blkdev_get_block
);
629 static int blkdev_readpages(struct file
*file
, struct address_space
*mapping
,
630 struct list_head
*pages
, unsigned nr_pages
)
632 return mpage_readpages(mapping
, pages
, nr_pages
, blkdev_get_block
);
635 static int blkdev_write_begin(struct file
*file
, struct address_space
*mapping
,
636 loff_t pos
, unsigned len
, unsigned flags
,
637 struct page
**pagep
, void **fsdata
)
639 return block_write_begin(mapping
, pos
, len
, flags
, pagep
,
643 static int blkdev_write_end(struct file
*file
, struct address_space
*mapping
,
644 loff_t pos
, unsigned len
, unsigned copied
,
645 struct page
*page
, void *fsdata
)
648 ret
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
658 * for a block special file file_inode(file)->i_size is zero
659 * so we compute the size by hand (just as in block_read/write above)
661 static loff_t
block_llseek(struct file
*file
, loff_t offset
, int whence
)
663 struct inode
*bd_inode
= bdev_file_inode(file
);
666 inode_lock(bd_inode
);
667 retval
= fixed_size_llseek(file
, offset
, whence
, i_size_read(bd_inode
));
668 inode_unlock(bd_inode
);
672 int blkdev_fsync(struct file
*filp
, loff_t start
, loff_t end
, int datasync
)
674 struct inode
*bd_inode
= bdev_file_inode(filp
);
675 struct block_device
*bdev
= I_BDEV(bd_inode
);
678 error
= file_write_and_wait_range(filp
, start
, end
);
683 * There is no need to serialise calls to blkdev_issue_flush with
684 * i_mutex and doing so causes performance issues with concurrent
685 * O_SYNC writers to a block device.
687 error
= blkdev_issue_flush(bdev
, GFP_KERNEL
, NULL
);
688 if (error
== -EOPNOTSUPP
)
693 EXPORT_SYMBOL(blkdev_fsync
);
696 * bdev_read_page() - Start reading a page from a block device
697 * @bdev: The device to read the page from
698 * @sector: The offset on the device to read the page to (need not be aligned)
699 * @page: The page to read
701 * On entry, the page should be locked. It will be unlocked when the page
702 * has been read. If the block driver implements rw_page synchronously,
703 * that will be true on exit from this function, but it need not be.
705 * Errors returned by this function are usually "soft", eg out of memory, or
706 * queue full; callers should try a different route to read this page rather
707 * than propagate an error back up the stack.
709 * Return: negative errno if an error occurs, 0 if submission was successful.
711 int bdev_read_page(struct block_device
*bdev
, sector_t sector
,
714 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
715 int result
= -EOPNOTSUPP
;
717 if (!ops
->rw_page
|| bdev_get_integrity(bdev
))
720 result
= blk_queue_enter(bdev
->bd_queue
, 0);
723 result
= ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
,
725 blk_queue_exit(bdev
->bd_queue
);
728 EXPORT_SYMBOL_GPL(bdev_read_page
);
731 * bdev_write_page() - Start writing a page to a block device
732 * @bdev: The device to write the page to
733 * @sector: The offset on the device to write the page to (need not be aligned)
734 * @page: The page to write
735 * @wbc: The writeback_control for the write
737 * On entry, the page should be locked and not currently under writeback.
738 * On exit, if the write started successfully, the page will be unlocked and
739 * under writeback. If the write failed already (eg the driver failed to
740 * queue the page to the device), the page will still be locked. If the
741 * caller is a ->writepage implementation, it will need to unlock the page.
743 * Errors returned by this function are usually "soft", eg out of memory, or
744 * queue full; callers should try a different route to write this page rather
745 * than propagate an error back up the stack.
747 * Return: negative errno if an error occurs, 0 if submission was successful.
749 int bdev_write_page(struct block_device
*bdev
, sector_t sector
,
750 struct page
*page
, struct writeback_control
*wbc
)
753 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
755 if (!ops
->rw_page
|| bdev_get_integrity(bdev
))
757 result
= blk_queue_enter(bdev
->bd_queue
, 0);
761 set_page_writeback(page
);
762 result
= ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
,
765 end_page_writeback(page
);
767 clean_page_buffers(page
);
770 blk_queue_exit(bdev
->bd_queue
);
773 EXPORT_SYMBOL_GPL(bdev_write_page
);
779 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(bdev_lock
);
780 static struct kmem_cache
* bdev_cachep __read_mostly
;
782 static struct inode
*bdev_alloc_inode(struct super_block
*sb
)
784 struct bdev_inode
*ei
= kmem_cache_alloc(bdev_cachep
, GFP_KERNEL
);
787 return &ei
->vfs_inode
;
790 static void bdev_free_inode(struct inode
*inode
)
792 kmem_cache_free(bdev_cachep
, BDEV_I(inode
));
795 static void init_once(void *foo
)
797 struct bdev_inode
*ei
= (struct bdev_inode
*) foo
;
798 struct block_device
*bdev
= &ei
->bdev
;
800 memset(bdev
, 0, sizeof(*bdev
));
801 mutex_init(&bdev
->bd_mutex
);
802 INIT_LIST_HEAD(&bdev
->bd_list
);
804 INIT_LIST_HEAD(&bdev
->bd_holder_disks
);
806 bdev
->bd_bdi
= &noop_backing_dev_info
;
807 inode_init_once(&ei
->vfs_inode
);
808 /* Initialize mutex for freeze. */
809 mutex_init(&bdev
->bd_fsfreeze_mutex
);
812 static void bdev_evict_inode(struct inode
*inode
)
814 struct block_device
*bdev
= &BDEV_I(inode
)->bdev
;
815 truncate_inode_pages_final(&inode
->i_data
);
816 invalidate_inode_buffers(inode
); /* is it needed here? */
818 spin_lock(&bdev_lock
);
819 list_del_init(&bdev
->bd_list
);
820 spin_unlock(&bdev_lock
);
821 /* Detach inode from wb early as bdi_put() may free bdi->wb */
822 inode_detach_wb(inode
);
823 if (bdev
->bd_bdi
!= &noop_backing_dev_info
) {
824 bdi_put(bdev
->bd_bdi
);
825 bdev
->bd_bdi
= &noop_backing_dev_info
;
829 static const struct super_operations bdev_sops
= {
830 .statfs
= simple_statfs
,
831 .alloc_inode
= bdev_alloc_inode
,
832 .free_inode
= bdev_free_inode
,
833 .drop_inode
= generic_delete_inode
,
834 .evict_inode
= bdev_evict_inode
,
837 static struct dentry
*bd_mount(struct file_system_type
*fs_type
,
838 int flags
, const char *dev_name
, void *data
)
841 dent
= mount_pseudo(fs_type
, "bdev:", &bdev_sops
, NULL
, BDEVFS_MAGIC
);
843 dent
->d_sb
->s_iflags
|= SB_I_CGROUPWB
;
847 static struct file_system_type bd_type
= {
850 .kill_sb
= kill_anon_super
,
853 struct super_block
*blockdev_superblock __read_mostly
;
854 EXPORT_SYMBOL_GPL(blockdev_superblock
);
856 void __init
bdev_cache_init(void)
859 static struct vfsmount
*bd_mnt
;
861 bdev_cachep
= kmem_cache_create("bdev_cache", sizeof(struct bdev_inode
),
862 0, (SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|
863 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
|SLAB_PANIC
),
865 err
= register_filesystem(&bd_type
);
867 panic("Cannot register bdev pseudo-fs");
868 bd_mnt
= kern_mount(&bd_type
);
870 panic("Cannot create bdev pseudo-fs");
871 blockdev_superblock
= bd_mnt
->mnt_sb
; /* For writeback */
875 * Most likely _very_ bad one - but then it's hardly critical for small
876 * /dev and can be fixed when somebody will need really large one.
877 * Keep in mind that it will be fed through icache hash function too.
879 static inline unsigned long hash(dev_t dev
)
881 return MAJOR(dev
)+MINOR(dev
);
884 static int bdev_test(struct inode
*inode
, void *data
)
886 return BDEV_I(inode
)->bdev
.bd_dev
== *(dev_t
*)data
;
889 static int bdev_set(struct inode
*inode
, void *data
)
891 BDEV_I(inode
)->bdev
.bd_dev
= *(dev_t
*)data
;
895 static LIST_HEAD(all_bdevs
);
898 * If there is a bdev inode for this device, unhash it so that it gets evicted
899 * as soon as last inode reference is dropped.
901 void bdev_unhash_inode(dev_t dev
)
905 inode
= ilookup5(blockdev_superblock
, hash(dev
), bdev_test
, &dev
);
907 remove_inode_hash(inode
);
912 struct block_device
*bdget(dev_t dev
)
914 struct block_device
*bdev
;
917 inode
= iget5_locked(blockdev_superblock
, hash(dev
),
918 bdev_test
, bdev_set
, &dev
);
923 bdev
= &BDEV_I(inode
)->bdev
;
925 if (inode
->i_state
& I_NEW
) {
926 bdev
->bd_contains
= NULL
;
927 bdev
->bd_super
= NULL
;
928 bdev
->bd_inode
= inode
;
929 bdev
->bd_block_size
= i_blocksize(inode
);
930 bdev
->bd_part_count
= 0;
931 bdev
->bd_invalidated
= 0;
932 inode
->i_mode
= S_IFBLK
;
934 inode
->i_bdev
= bdev
;
935 inode
->i_data
.a_ops
= &def_blk_aops
;
936 mapping_set_gfp_mask(&inode
->i_data
, GFP_USER
);
937 spin_lock(&bdev_lock
);
938 list_add(&bdev
->bd_list
, &all_bdevs
);
939 spin_unlock(&bdev_lock
);
940 unlock_new_inode(inode
);
945 EXPORT_SYMBOL(bdget
);
948 * bdgrab -- Grab a reference to an already referenced block device
949 * @bdev: Block device to grab a reference to.
951 struct block_device
*bdgrab(struct block_device
*bdev
)
953 ihold(bdev
->bd_inode
);
956 EXPORT_SYMBOL(bdgrab
);
958 long nr_blockdev_pages(void)
960 struct block_device
*bdev
;
962 spin_lock(&bdev_lock
);
963 list_for_each_entry(bdev
, &all_bdevs
, bd_list
) {
964 ret
+= bdev
->bd_inode
->i_mapping
->nrpages
;
966 spin_unlock(&bdev_lock
);
970 void bdput(struct block_device
*bdev
)
972 iput(bdev
->bd_inode
);
975 EXPORT_SYMBOL(bdput
);
977 static struct block_device
*bd_acquire(struct inode
*inode
)
979 struct block_device
*bdev
;
981 spin_lock(&bdev_lock
);
982 bdev
= inode
->i_bdev
;
983 if (bdev
&& !inode_unhashed(bdev
->bd_inode
)) {
985 spin_unlock(&bdev_lock
);
988 spin_unlock(&bdev_lock
);
991 * i_bdev references block device inode that was already shut down
992 * (corresponding device got removed). Remove the reference and look
993 * up block device inode again just in case new device got
994 * reestablished under the same device number.
999 bdev
= bdget(inode
->i_rdev
);
1001 spin_lock(&bdev_lock
);
1002 if (!inode
->i_bdev
) {
1004 * We take an additional reference to bd_inode,
1005 * and it's released in clear_inode() of inode.
1006 * So, we can access it via ->i_mapping always
1010 inode
->i_bdev
= bdev
;
1011 inode
->i_mapping
= bdev
->bd_inode
->i_mapping
;
1013 spin_unlock(&bdev_lock
);
1018 /* Call when you free inode */
1020 void bd_forget(struct inode
*inode
)
1022 struct block_device
*bdev
= NULL
;
1024 spin_lock(&bdev_lock
);
1025 if (!sb_is_blkdev_sb(inode
->i_sb
))
1026 bdev
= inode
->i_bdev
;
1027 inode
->i_bdev
= NULL
;
1028 inode
->i_mapping
= &inode
->i_data
;
1029 spin_unlock(&bdev_lock
);
1036 * bd_may_claim - test whether a block device can be claimed
1037 * @bdev: block device of interest
1038 * @whole: whole block device containing @bdev, may equal @bdev
1039 * @holder: holder trying to claim @bdev
1041 * Test whether @bdev can be claimed by @holder.
1044 * spin_lock(&bdev_lock).
1047 * %true if @bdev can be claimed, %false otherwise.
1049 static bool bd_may_claim(struct block_device
*bdev
, struct block_device
*whole
,
1052 if (bdev
->bd_holder
== holder
)
1053 return true; /* already a holder */
1054 else if (bdev
->bd_holder
!= NULL
)
1055 return false; /* held by someone else */
1056 else if (whole
== bdev
)
1057 return true; /* is a whole device which isn't held */
1059 else if (whole
->bd_holder
== bd_may_claim
)
1060 return true; /* is a partition of a device that is being partitioned */
1061 else if (whole
->bd_holder
!= NULL
)
1062 return false; /* is a partition of a held device */
1064 return true; /* is a partition of an un-held device */
1068 * bd_prepare_to_claim - prepare to claim a block device
1069 * @bdev: block device of interest
1070 * @whole: the whole device containing @bdev, may equal @bdev
1071 * @holder: holder trying to claim @bdev
1073 * Prepare to claim @bdev. This function fails if @bdev is already
1074 * claimed by another holder and waits if another claiming is in
1075 * progress. This function doesn't actually claim. On successful
1076 * return, the caller has ownership of bd_claiming and bd_holder[s].
1079 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1080 * it multiple times.
1083 * 0 if @bdev can be claimed, -EBUSY otherwise.
1085 static int bd_prepare_to_claim(struct block_device
*bdev
,
1086 struct block_device
*whole
, void *holder
)
1089 /* if someone else claimed, fail */
1090 if (!bd_may_claim(bdev
, whole
, holder
))
1093 /* if claiming is already in progress, wait for it to finish */
1094 if (whole
->bd_claiming
) {
1095 wait_queue_head_t
*wq
= bit_waitqueue(&whole
->bd_claiming
, 0);
1098 prepare_to_wait(wq
, &wait
, TASK_UNINTERRUPTIBLE
);
1099 spin_unlock(&bdev_lock
);
1101 finish_wait(wq
, &wait
);
1102 spin_lock(&bdev_lock
);
1110 static struct gendisk
*bdev_get_gendisk(struct block_device
*bdev
, int *partno
)
1112 struct gendisk
*disk
= get_gendisk(bdev
->bd_dev
, partno
);
1117 * Now that we hold gendisk reference we make sure bdev we looked up is
1118 * not stale. If it is, it means device got removed and created before
1119 * we looked up gendisk and we fail open in such case. Associating
1120 * unhashed bdev with newly created gendisk could lead to two bdevs
1121 * (and thus two independent caches) being associated with one device
1124 if (inode_unhashed(bdev
->bd_inode
)) {
1125 put_disk_and_module(disk
);
1132 * bd_start_claiming - start claiming a block device
1133 * @bdev: block device of interest
1134 * @holder: holder trying to claim @bdev
1136 * @bdev is about to be opened exclusively. Check @bdev can be opened
1137 * exclusively and mark that an exclusive open is in progress. Each
1138 * successful call to this function must be matched with a call to
1139 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1142 * This function is used to gain exclusive access to the block device
1143 * without actually causing other exclusive open attempts to fail. It
1144 * should be used when the open sequence itself requires exclusive
1145 * access but may subsequently fail.
1151 * Pointer to the block device containing @bdev on success, ERR_PTR()
1154 static struct block_device
*bd_start_claiming(struct block_device
*bdev
,
1157 struct gendisk
*disk
;
1158 struct block_device
*whole
;
1164 * @bdev might not have been initialized properly yet, look up
1165 * and grab the outer block device the hard way.
1167 disk
= bdev_get_gendisk(bdev
, &partno
);
1169 return ERR_PTR(-ENXIO
);
1172 * Normally, @bdev should equal what's returned from bdget_disk()
1173 * if partno is 0; however, some drivers (floppy) use multiple
1174 * bdev's for the same physical device and @bdev may be one of the
1175 * aliases. Keep @bdev if partno is 0. This means claimer
1176 * tracking is broken for those devices but it has always been that
1180 whole
= bdget_disk(disk
, 0);
1182 whole
= bdgrab(bdev
);
1184 put_disk_and_module(disk
);
1186 return ERR_PTR(-ENOMEM
);
1188 /* prepare to claim, if successful, mark claiming in progress */
1189 spin_lock(&bdev_lock
);
1191 err
= bd_prepare_to_claim(bdev
, whole
, holder
);
1193 whole
->bd_claiming
= holder
;
1194 spin_unlock(&bdev_lock
);
1197 spin_unlock(&bdev_lock
);
1199 return ERR_PTR(err
);
1204 struct bd_holder_disk
{
1205 struct list_head list
;
1206 struct gendisk
*disk
;
1210 static struct bd_holder_disk
*bd_find_holder_disk(struct block_device
*bdev
,
1211 struct gendisk
*disk
)
1213 struct bd_holder_disk
*holder
;
1215 list_for_each_entry(holder
, &bdev
->bd_holder_disks
, list
)
1216 if (holder
->disk
== disk
)
1221 static int add_symlink(struct kobject
*from
, struct kobject
*to
)
1223 return sysfs_create_link(from
, to
, kobject_name(to
));
1226 static void del_symlink(struct kobject
*from
, struct kobject
*to
)
1228 sysfs_remove_link(from
, kobject_name(to
));
1232 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1233 * @bdev: the claimed slave bdev
1234 * @disk: the holding disk
1236 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1238 * This functions creates the following sysfs symlinks.
1240 * - from "slaves" directory of the holder @disk to the claimed @bdev
1241 * - from "holders" directory of the @bdev to the holder @disk
1243 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1244 * passed to bd_link_disk_holder(), then:
1246 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1247 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1249 * The caller must have claimed @bdev before calling this function and
1250 * ensure that both @bdev and @disk are valid during the creation and
1251 * lifetime of these symlinks.
1257 * 0 on success, -errno on failure.
1259 int bd_link_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
1261 struct bd_holder_disk
*holder
;
1264 mutex_lock(&bdev
->bd_mutex
);
1266 WARN_ON_ONCE(!bdev
->bd_holder
);
1268 /* FIXME: remove the following once add_disk() handles errors */
1269 if (WARN_ON(!disk
->slave_dir
|| !bdev
->bd_part
->holder_dir
))
1272 holder
= bd_find_holder_disk(bdev
, disk
);
1278 holder
= kzalloc(sizeof(*holder
), GFP_KERNEL
);
1284 INIT_LIST_HEAD(&holder
->list
);
1285 holder
->disk
= disk
;
1288 ret
= add_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
1292 ret
= add_symlink(bdev
->bd_part
->holder_dir
, &disk_to_dev(disk
)->kobj
);
1296 * bdev could be deleted beneath us which would implicitly destroy
1297 * the holder directory. Hold on to it.
1299 kobject_get(bdev
->bd_part
->holder_dir
);
1301 list_add(&holder
->list
, &bdev
->bd_holder_disks
);
1305 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
1309 mutex_unlock(&bdev
->bd_mutex
);
1312 EXPORT_SYMBOL_GPL(bd_link_disk_holder
);
1315 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1316 * @bdev: the calimed slave bdev
1317 * @disk: the holding disk
1319 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1324 void bd_unlink_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
1326 struct bd_holder_disk
*holder
;
1328 mutex_lock(&bdev
->bd_mutex
);
1330 holder
= bd_find_holder_disk(bdev
, disk
);
1332 if (!WARN_ON_ONCE(holder
== NULL
) && !--holder
->refcnt
) {
1333 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
1334 del_symlink(bdev
->bd_part
->holder_dir
,
1335 &disk_to_dev(disk
)->kobj
);
1336 kobject_put(bdev
->bd_part
->holder_dir
);
1337 list_del_init(&holder
->list
);
1341 mutex_unlock(&bdev
->bd_mutex
);
1343 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder
);
1347 * flush_disk - invalidates all buffer-cache entries on a disk
1349 * @bdev: struct block device to be flushed
1350 * @kill_dirty: flag to guide handling of dirty inodes
1352 * Invalidates all buffer-cache entries on a disk. It should be called
1353 * when a disk has been changed -- either by a media change or online
1356 static void flush_disk(struct block_device
*bdev
, bool kill_dirty
)
1358 if (__invalidate_device(bdev
, kill_dirty
)) {
1359 printk(KERN_WARNING
"VFS: busy inodes on changed media or "
1360 "resized disk %s\n",
1361 bdev
->bd_disk
? bdev
->bd_disk
->disk_name
: "");
1366 if (disk_part_scan_enabled(bdev
->bd_disk
))
1367 bdev
->bd_invalidated
= 1;
1371 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1372 * @disk: struct gendisk to check
1373 * @bdev: struct bdev to adjust.
1374 * @verbose: if %true log a message about a size change if there is any
1376 * This routine checks to see if the bdev size does not match the disk size
1377 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1380 void check_disk_size_change(struct gendisk
*disk
, struct block_device
*bdev
,
1383 loff_t disk_size
, bdev_size
;
1385 disk_size
= (loff_t
)get_capacity(disk
) << 9;
1386 bdev_size
= i_size_read(bdev
->bd_inode
);
1387 if (disk_size
!= bdev_size
) {
1390 "%s: detected capacity change from %lld to %lld\n",
1391 disk
->disk_name
, bdev_size
, disk_size
);
1393 i_size_write(bdev
->bd_inode
, disk_size
);
1394 if (bdev_size
> disk_size
)
1395 flush_disk(bdev
, false);
1400 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1401 * @disk: struct gendisk to be revalidated
1403 * This routine is a wrapper for lower-level driver's revalidate_disk
1404 * call-backs. It is used to do common pre and post operations needed
1405 * for all revalidate_disk operations.
1407 int revalidate_disk(struct gendisk
*disk
)
1411 if (disk
->fops
->revalidate_disk
)
1412 ret
= disk
->fops
->revalidate_disk(disk
);
1415 * Hidden disks don't have associated bdev so there's no point in
1418 if (!(disk
->flags
& GENHD_FL_HIDDEN
)) {
1419 struct block_device
*bdev
= bdget_disk(disk
, 0);
1424 mutex_lock(&bdev
->bd_mutex
);
1425 check_disk_size_change(disk
, bdev
, ret
== 0);
1426 bdev
->bd_invalidated
= 0;
1427 mutex_unlock(&bdev
->bd_mutex
);
1432 EXPORT_SYMBOL(revalidate_disk
);
1435 * This routine checks whether a removable media has been changed,
1436 * and invalidates all buffer-cache-entries in that case. This
1437 * is a relatively slow routine, so we have to try to minimize using
1438 * it. Thus it is called only upon a 'mount' or 'open'. This
1439 * is the best way of combining speed and utility, I think.
1440 * People changing diskettes in the middle of an operation deserve
1443 int check_disk_change(struct block_device
*bdev
)
1445 struct gendisk
*disk
= bdev
->bd_disk
;
1446 const struct block_device_operations
*bdops
= disk
->fops
;
1447 unsigned int events
;
1449 events
= disk_clear_events(disk
, DISK_EVENT_MEDIA_CHANGE
|
1450 DISK_EVENT_EJECT_REQUEST
);
1451 if (!(events
& DISK_EVENT_MEDIA_CHANGE
))
1454 flush_disk(bdev
, true);
1455 if (bdops
->revalidate_disk
)
1456 bdops
->revalidate_disk(bdev
->bd_disk
);
1460 EXPORT_SYMBOL(check_disk_change
);
1462 void bd_set_size(struct block_device
*bdev
, loff_t size
)
1464 inode_lock(bdev
->bd_inode
);
1465 i_size_write(bdev
->bd_inode
, size
);
1466 inode_unlock(bdev
->bd_inode
);
1468 EXPORT_SYMBOL(bd_set_size
);
1470 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
);
1475 * mutex_lock(part->bd_mutex)
1476 * mutex_lock_nested(whole->bd_mutex, 1)
1479 static int __blkdev_get(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1481 struct gendisk
*disk
;
1485 bool first_open
= false;
1487 if (mode
& FMODE_READ
)
1489 if (mode
& FMODE_WRITE
)
1492 * hooks: /n/, see "layering violations".
1495 ret
= devcgroup_inode_permission(bdev
->bd_inode
, perm
);
1505 disk
= bdev_get_gendisk(bdev
, &partno
);
1509 disk_block_events(disk
);
1510 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1511 if (!bdev
->bd_openers
) {
1513 bdev
->bd_disk
= disk
;
1514 bdev
->bd_queue
= disk
->queue
;
1515 bdev
->bd_contains
= bdev
;
1516 bdev
->bd_partno
= partno
;
1520 bdev
->bd_part
= disk_get_part(disk
, partno
);
1525 if (disk
->fops
->open
) {
1526 ret
= disk
->fops
->open(bdev
, mode
);
1527 if (ret
== -ERESTARTSYS
) {
1528 /* Lost a race with 'disk' being
1529 * deleted, try again.
1532 disk_put_part(bdev
->bd_part
);
1533 bdev
->bd_part
= NULL
;
1534 bdev
->bd_disk
= NULL
;
1535 bdev
->bd_queue
= NULL
;
1536 mutex_unlock(&bdev
->bd_mutex
);
1537 disk_unblock_events(disk
);
1538 put_disk_and_module(disk
);
1544 bd_set_size(bdev
,(loff_t
)get_capacity(disk
)<<9);
1545 set_init_blocksize(bdev
);
1549 * If the device is invalidated, rescan partition
1550 * if open succeeded or failed with -ENOMEDIUM.
1551 * The latter is necessary to prevent ghost
1552 * partitions on a removed medium.
1554 if (bdev
->bd_invalidated
) {
1556 rescan_partitions(disk
, bdev
);
1557 else if (ret
== -ENOMEDIUM
)
1558 invalidate_partitions(disk
, bdev
);
1564 struct block_device
*whole
;
1565 whole
= bdget_disk(disk
, 0);
1570 ret
= __blkdev_get(whole
, mode
, 1);
1573 bdev
->bd_contains
= whole
;
1574 bdev
->bd_part
= disk_get_part(disk
, partno
);
1575 if (!(disk
->flags
& GENHD_FL_UP
) ||
1576 !bdev
->bd_part
|| !bdev
->bd_part
->nr_sects
) {
1580 bd_set_size(bdev
, (loff_t
)bdev
->bd_part
->nr_sects
<< 9);
1581 set_init_blocksize(bdev
);
1584 if (bdev
->bd_bdi
== &noop_backing_dev_info
)
1585 bdev
->bd_bdi
= bdi_get(disk
->queue
->backing_dev_info
);
1587 if (bdev
->bd_contains
== bdev
) {
1589 if (bdev
->bd_disk
->fops
->open
)
1590 ret
= bdev
->bd_disk
->fops
->open(bdev
, mode
);
1591 /* the same as first opener case, read comment there */
1592 if (bdev
->bd_invalidated
) {
1594 rescan_partitions(bdev
->bd_disk
, bdev
);
1595 else if (ret
== -ENOMEDIUM
)
1596 invalidate_partitions(bdev
->bd_disk
, bdev
);
1599 goto out_unlock_bdev
;
1604 bdev
->bd_part_count
++;
1605 mutex_unlock(&bdev
->bd_mutex
);
1606 disk_unblock_events(disk
);
1607 /* only one opener holds refs to the module and disk */
1609 put_disk_and_module(disk
);
1613 disk_put_part(bdev
->bd_part
);
1614 bdev
->bd_disk
= NULL
;
1615 bdev
->bd_part
= NULL
;
1616 bdev
->bd_queue
= NULL
;
1617 if (bdev
!= bdev
->bd_contains
)
1618 __blkdev_put(bdev
->bd_contains
, mode
, 1);
1619 bdev
->bd_contains
= NULL
;
1621 mutex_unlock(&bdev
->bd_mutex
);
1622 disk_unblock_events(disk
);
1623 put_disk_and_module(disk
);
1631 * blkdev_get - open a block device
1632 * @bdev: block_device to open
1633 * @mode: FMODE_* mask
1634 * @holder: exclusive holder identifier
1636 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1637 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1638 * @holder is invalid. Exclusive opens may nest for the same @holder.
1640 * On success, the reference count of @bdev is unchanged. On failure,
1647 * 0 on success, -errno on failure.
1649 int blkdev_get(struct block_device
*bdev
, fmode_t mode
, void *holder
)
1651 struct block_device
*whole
= NULL
;
1654 WARN_ON_ONCE((mode
& FMODE_EXCL
) && !holder
);
1656 if ((mode
& FMODE_EXCL
) && holder
) {
1657 whole
= bd_start_claiming(bdev
, holder
);
1658 if (IS_ERR(whole
)) {
1660 return PTR_ERR(whole
);
1664 res
= __blkdev_get(bdev
, mode
, 0);
1667 struct gendisk
*disk
= whole
->bd_disk
;
1669 /* finish claiming */
1670 mutex_lock(&bdev
->bd_mutex
);
1671 spin_lock(&bdev_lock
);
1674 BUG_ON(!bd_may_claim(bdev
, whole
, holder
));
1676 * Note that for a whole device bd_holders
1677 * will be incremented twice, and bd_holder
1678 * will be set to bd_may_claim before being
1681 whole
->bd_holders
++;
1682 whole
->bd_holder
= bd_may_claim
;
1684 bdev
->bd_holder
= holder
;
1687 /* tell others that we're done */
1688 BUG_ON(whole
->bd_claiming
!= holder
);
1689 whole
->bd_claiming
= NULL
;
1690 wake_up_bit(&whole
->bd_claiming
, 0);
1692 spin_unlock(&bdev_lock
);
1695 * Block event polling for write claims if requested. Any
1696 * write holder makes the write_holder state stick until
1697 * all are released. This is good enough and tracking
1698 * individual writeable reference is too fragile given the
1699 * way @mode is used in blkdev_get/put().
1701 if (!res
&& (mode
& FMODE_WRITE
) && !bdev
->bd_write_holder
&&
1702 (disk
->flags
& GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE
)) {
1703 bdev
->bd_write_holder
= true;
1704 disk_block_events(disk
);
1707 mutex_unlock(&bdev
->bd_mutex
);
1713 EXPORT_SYMBOL(blkdev_get
);
1716 * blkdev_get_by_path - open a block device by name
1717 * @path: path to the block device to open
1718 * @mode: FMODE_* mask
1719 * @holder: exclusive holder identifier
1721 * Open the blockdevice described by the device file at @path. @mode
1722 * and @holder are identical to blkdev_get().
1724 * On success, the returned block_device has reference count of one.
1730 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1732 struct block_device
*blkdev_get_by_path(const char *path
, fmode_t mode
,
1735 struct block_device
*bdev
;
1738 bdev
= lookup_bdev(path
);
1742 err
= blkdev_get(bdev
, mode
, holder
);
1744 return ERR_PTR(err
);
1746 if ((mode
& FMODE_WRITE
) && bdev_read_only(bdev
)) {
1747 blkdev_put(bdev
, mode
);
1748 return ERR_PTR(-EACCES
);
1753 EXPORT_SYMBOL(blkdev_get_by_path
);
1756 * blkdev_get_by_dev - open a block device by device number
1757 * @dev: device number of block device to open
1758 * @mode: FMODE_* mask
1759 * @holder: exclusive holder identifier
1761 * Open the blockdevice described by device number @dev. @mode and
1762 * @holder are identical to blkdev_get().
1764 * Use it ONLY if you really do not have anything better - i.e. when
1765 * you are behind a truly sucky interface and all you are given is a
1766 * device number. _Never_ to be used for internal purposes. If you
1767 * ever need it - reconsider your API.
1769 * On success, the returned block_device has reference count of one.
1775 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1777 struct block_device
*blkdev_get_by_dev(dev_t dev
, fmode_t mode
, void *holder
)
1779 struct block_device
*bdev
;
1784 return ERR_PTR(-ENOMEM
);
1786 err
= blkdev_get(bdev
, mode
, holder
);
1788 return ERR_PTR(err
);
1792 EXPORT_SYMBOL(blkdev_get_by_dev
);
1794 static int blkdev_open(struct inode
* inode
, struct file
* filp
)
1796 struct block_device
*bdev
;
1799 * Preserve backwards compatibility and allow large file access
1800 * even if userspace doesn't ask for it explicitly. Some mkfs
1801 * binary needs it. We might want to drop this workaround
1802 * during an unstable branch.
1804 filp
->f_flags
|= O_LARGEFILE
;
1806 filp
->f_mode
|= FMODE_NOWAIT
;
1808 if (filp
->f_flags
& O_NDELAY
)
1809 filp
->f_mode
|= FMODE_NDELAY
;
1810 if (filp
->f_flags
& O_EXCL
)
1811 filp
->f_mode
|= FMODE_EXCL
;
1812 if ((filp
->f_flags
& O_ACCMODE
) == 3)
1813 filp
->f_mode
|= FMODE_WRITE_IOCTL
;
1815 bdev
= bd_acquire(inode
);
1819 filp
->f_mapping
= bdev
->bd_inode
->i_mapping
;
1820 filp
->f_wb_err
= filemap_sample_wb_err(filp
->f_mapping
);
1822 return blkdev_get(bdev
, filp
->f_mode
, filp
);
1825 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1827 struct gendisk
*disk
= bdev
->bd_disk
;
1828 struct block_device
*victim
= NULL
;
1830 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1832 bdev
->bd_part_count
--;
1834 if (!--bdev
->bd_openers
) {
1835 WARN_ON_ONCE(bdev
->bd_holders
);
1836 sync_blockdev(bdev
);
1839 bdev_write_inode(bdev
);
1841 if (bdev
->bd_contains
== bdev
) {
1842 if (disk
->fops
->release
)
1843 disk
->fops
->release(disk
, mode
);
1845 if (!bdev
->bd_openers
) {
1846 disk_put_part(bdev
->bd_part
);
1847 bdev
->bd_part
= NULL
;
1848 bdev
->bd_disk
= NULL
;
1849 if (bdev
!= bdev
->bd_contains
)
1850 victim
= bdev
->bd_contains
;
1851 bdev
->bd_contains
= NULL
;
1853 put_disk_and_module(disk
);
1855 mutex_unlock(&bdev
->bd_mutex
);
1858 __blkdev_put(victim
, mode
, 1);
1861 void blkdev_put(struct block_device
*bdev
, fmode_t mode
)
1863 mutex_lock(&bdev
->bd_mutex
);
1865 if (mode
& FMODE_EXCL
) {
1869 * Release a claim on the device. The holder fields
1870 * are protected with bdev_lock. bd_mutex is to
1871 * synchronize disk_holder unlinking.
1873 spin_lock(&bdev_lock
);
1875 WARN_ON_ONCE(--bdev
->bd_holders
< 0);
1876 WARN_ON_ONCE(--bdev
->bd_contains
->bd_holders
< 0);
1878 /* bd_contains might point to self, check in a separate step */
1879 if ((bdev_free
= !bdev
->bd_holders
))
1880 bdev
->bd_holder
= NULL
;
1881 if (!bdev
->bd_contains
->bd_holders
)
1882 bdev
->bd_contains
->bd_holder
= NULL
;
1884 spin_unlock(&bdev_lock
);
1887 * If this was the last claim, remove holder link and
1888 * unblock evpoll if it was a write holder.
1890 if (bdev_free
&& bdev
->bd_write_holder
) {
1891 disk_unblock_events(bdev
->bd_disk
);
1892 bdev
->bd_write_holder
= false;
1897 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1898 * event. This is to ensure detection of media removal commanded
1899 * from userland - e.g. eject(1).
1901 disk_flush_events(bdev
->bd_disk
, DISK_EVENT_MEDIA_CHANGE
);
1903 mutex_unlock(&bdev
->bd_mutex
);
1905 __blkdev_put(bdev
, mode
, 0);
1907 EXPORT_SYMBOL(blkdev_put
);
1909 static int blkdev_close(struct inode
* inode
, struct file
* filp
)
1911 struct block_device
*bdev
= I_BDEV(bdev_file_inode(filp
));
1912 blkdev_put(bdev
, filp
->f_mode
);
1916 static long block_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1918 struct block_device
*bdev
= I_BDEV(bdev_file_inode(file
));
1919 fmode_t mode
= file
->f_mode
;
1922 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1923 * to updated it before every ioctl.
1925 if (file
->f_flags
& O_NDELAY
)
1926 mode
|= FMODE_NDELAY
;
1928 mode
&= ~FMODE_NDELAY
;
1930 return blkdev_ioctl(bdev
, mode
, cmd
, arg
);
1934 * Write data to the block device. Only intended for the block device itself
1935 * and the raw driver which basically is a fake block device.
1937 * Does not take i_mutex for the write and thus is not for general purpose
1940 ssize_t
blkdev_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1942 struct file
*file
= iocb
->ki_filp
;
1943 struct inode
*bd_inode
= bdev_file_inode(file
);
1944 loff_t size
= i_size_read(bd_inode
);
1945 struct blk_plug plug
;
1948 if (bdev_read_only(I_BDEV(bd_inode
)))
1951 if (!iov_iter_count(from
))
1954 if (iocb
->ki_pos
>= size
)
1957 if ((iocb
->ki_flags
& (IOCB_NOWAIT
| IOCB_DIRECT
)) == IOCB_NOWAIT
)
1960 iov_iter_truncate(from
, size
- iocb
->ki_pos
);
1962 blk_start_plug(&plug
);
1963 ret
= __generic_file_write_iter(iocb
, from
);
1965 ret
= generic_write_sync(iocb
, ret
);
1966 blk_finish_plug(&plug
);
1969 EXPORT_SYMBOL_GPL(blkdev_write_iter
);
1971 ssize_t
blkdev_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1973 struct file
*file
= iocb
->ki_filp
;
1974 struct inode
*bd_inode
= bdev_file_inode(file
);
1975 loff_t size
= i_size_read(bd_inode
);
1976 loff_t pos
= iocb
->ki_pos
;
1982 iov_iter_truncate(to
, size
);
1983 return generic_file_read_iter(iocb
, to
);
1985 EXPORT_SYMBOL_GPL(blkdev_read_iter
);
1988 * Try to release a page associated with block device when the system
1989 * is under memory pressure.
1991 static int blkdev_releasepage(struct page
*page
, gfp_t wait
)
1993 struct super_block
*super
= BDEV_I(page
->mapping
->host
)->bdev
.bd_super
;
1995 if (super
&& super
->s_op
->bdev_try_to_free_page
)
1996 return super
->s_op
->bdev_try_to_free_page(super
, page
, wait
);
1998 return try_to_free_buffers(page
);
2001 static int blkdev_writepages(struct address_space
*mapping
,
2002 struct writeback_control
*wbc
)
2004 return generic_writepages(mapping
, wbc
);
2007 static const struct address_space_operations def_blk_aops
= {
2008 .readpage
= blkdev_readpage
,
2009 .readpages
= blkdev_readpages
,
2010 .writepage
= blkdev_writepage
,
2011 .write_begin
= blkdev_write_begin
,
2012 .write_end
= blkdev_write_end
,
2013 .writepages
= blkdev_writepages
,
2014 .releasepage
= blkdev_releasepage
,
2015 .direct_IO
= blkdev_direct_IO
,
2016 .migratepage
= buffer_migrate_page_norefs
,
2017 .is_dirty_writeback
= buffer_check_dirty_writeback
,
2020 #define BLKDEV_FALLOC_FL_SUPPORTED \
2021 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2022 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2024 static long blkdev_fallocate(struct file
*file
, int mode
, loff_t start
,
2027 struct block_device
*bdev
= I_BDEV(bdev_file_inode(file
));
2028 struct address_space
*mapping
;
2029 loff_t end
= start
+ len
- 1;
2033 /* Fail if we don't recognize the flags. */
2034 if (mode
& ~BLKDEV_FALLOC_FL_SUPPORTED
)
2037 /* Don't go off the end of the device. */
2038 isize
= i_size_read(bdev
->bd_inode
);
2042 if (mode
& FALLOC_FL_KEEP_SIZE
) {
2043 len
= isize
- start
;
2044 end
= start
+ len
- 1;
2050 * Don't allow IO that isn't aligned to logical block size.
2052 if ((start
| len
) & (bdev_logical_block_size(bdev
) - 1))
2055 /* Invalidate the page cache, including dirty pages. */
2056 mapping
= bdev
->bd_inode
->i_mapping
;
2057 truncate_inode_pages_range(mapping
, start
, end
);
2060 case FALLOC_FL_ZERO_RANGE
:
2061 case FALLOC_FL_ZERO_RANGE
| FALLOC_FL_KEEP_SIZE
:
2062 error
= blkdev_issue_zeroout(bdev
, start
>> 9, len
>> 9,
2063 GFP_KERNEL
, BLKDEV_ZERO_NOUNMAP
);
2065 case FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
:
2066 error
= blkdev_issue_zeroout(bdev
, start
>> 9, len
>> 9,
2067 GFP_KERNEL
, BLKDEV_ZERO_NOFALLBACK
);
2069 case FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
| FALLOC_FL_NO_HIDE_STALE
:
2070 error
= blkdev_issue_discard(bdev
, start
>> 9, len
>> 9,
2080 * Invalidate again; if someone wandered in and dirtied a page,
2081 * the caller will be given -EBUSY. The third argument is
2082 * inclusive, so the rounding here is safe.
2084 return invalidate_inode_pages2_range(mapping
,
2085 start
>> PAGE_SHIFT
,
2089 const struct file_operations def_blk_fops
= {
2090 .open
= blkdev_open
,
2091 .release
= blkdev_close
,
2092 .llseek
= block_llseek
,
2093 .read_iter
= blkdev_read_iter
,
2094 .write_iter
= blkdev_write_iter
,
2095 .iopoll
= blkdev_iopoll
,
2096 .mmap
= generic_file_mmap
,
2097 .fsync
= blkdev_fsync
,
2098 .unlocked_ioctl
= block_ioctl
,
2099 #ifdef CONFIG_COMPAT
2100 .compat_ioctl
= compat_blkdev_ioctl
,
2102 .splice_read
= generic_file_splice_read
,
2103 .splice_write
= iter_file_splice_write
,
2104 .fallocate
= blkdev_fallocate
,
2107 int ioctl_by_bdev(struct block_device
*bdev
, unsigned cmd
, unsigned long arg
)
2110 mm_segment_t old_fs
= get_fs();
2112 res
= blkdev_ioctl(bdev
, 0, cmd
, arg
);
2117 EXPORT_SYMBOL(ioctl_by_bdev
);
2120 * lookup_bdev - lookup a struct block_device by name
2121 * @pathname: special file representing the block device
2123 * Get a reference to the blockdevice at @pathname in the current
2124 * namespace if possible and return it. Return ERR_PTR(error)
2127 struct block_device
*lookup_bdev(const char *pathname
)
2129 struct block_device
*bdev
;
2130 struct inode
*inode
;
2134 if (!pathname
|| !*pathname
)
2135 return ERR_PTR(-EINVAL
);
2137 error
= kern_path(pathname
, LOOKUP_FOLLOW
, &path
);
2139 return ERR_PTR(error
);
2141 inode
= d_backing_inode(path
.dentry
);
2143 if (!S_ISBLK(inode
->i_mode
))
2146 if (!may_open_dev(&path
))
2149 bdev
= bd_acquire(inode
);
2156 bdev
= ERR_PTR(error
);
2159 EXPORT_SYMBOL(lookup_bdev
);
2161 int __invalidate_device(struct block_device
*bdev
, bool kill_dirty
)
2163 struct super_block
*sb
= get_super(bdev
);
2168 * no need to lock the super, get_super holds the
2169 * read mutex so the filesystem cannot go away
2170 * under us (->put_super runs with the write lock
2173 shrink_dcache_sb(sb
);
2174 res
= invalidate_inodes(sb
, kill_dirty
);
2177 invalidate_bdev(bdev
);
2180 EXPORT_SYMBOL(__invalidate_device
);
2182 void iterate_bdevs(void (*func
)(struct block_device
*, void *), void *arg
)
2184 struct inode
*inode
, *old_inode
= NULL
;
2186 spin_lock(&blockdev_superblock
->s_inode_list_lock
);
2187 list_for_each_entry(inode
, &blockdev_superblock
->s_inodes
, i_sb_list
) {
2188 struct address_space
*mapping
= inode
->i_mapping
;
2189 struct block_device
*bdev
;
2191 spin_lock(&inode
->i_lock
);
2192 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
) ||
2193 mapping
->nrpages
== 0) {
2194 spin_unlock(&inode
->i_lock
);
2198 spin_unlock(&inode
->i_lock
);
2199 spin_unlock(&blockdev_superblock
->s_inode_list_lock
);
2201 * We hold a reference to 'inode' so it couldn't have been
2202 * removed from s_inodes list while we dropped the
2203 * s_inode_list_lock We cannot iput the inode now as we can
2204 * be holding the last reference and we cannot iput it under
2205 * s_inode_list_lock. So we keep the reference and iput it
2210 bdev
= I_BDEV(inode
);
2212 mutex_lock(&bdev
->bd_mutex
);
2213 if (bdev
->bd_openers
)
2215 mutex_unlock(&bdev
->bd_mutex
);
2217 spin_lock(&blockdev_superblock
->s_inode_list_lock
);
2219 spin_unlock(&blockdev_superblock
->s_inode_list_lock
);