1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/init.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/kthread.h>
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
21 #include <trace/events/f2fs.h>
23 static int gc_thread_func(void *data
)
25 struct f2fs_sb_info
*sbi
= data
;
26 struct f2fs_gc_kthread
*gc_th
= sbi
->gc_thread
;
27 wait_queue_head_t
*wq
= &sbi
->gc_thread
->gc_wait_queue_head
;
30 wait_ms
= gc_th
->min_sleep_time
;
34 wait_event_interruptible_timeout(*wq
,
35 kthread_should_stop() || freezing(current
) ||
37 msecs_to_jiffies(wait_ms
));
39 /* give it a try one time */
43 if (try_to_freeze()) {
44 stat_other_skip_bggc_count(sbi
);
47 if (kthread_should_stop())
50 if (sbi
->sb
->s_writers
.frozen
>= SB_FREEZE_WRITE
) {
51 increase_sleep_time(gc_th
, &wait_ms
);
52 stat_other_skip_bggc_count(sbi
);
56 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
57 f2fs_show_injection_info(FAULT_CHECKPOINT
);
58 f2fs_stop_checkpoint(sbi
, false);
61 if (!sb_start_write_trylock(sbi
->sb
)) {
62 stat_other_skip_bggc_count(sbi
);
67 * [GC triggering condition]
68 * 0. GC is not conducted currently.
69 * 1. There are enough dirty segments.
70 * 2. IO subsystem is idle by checking the # of writeback pages.
71 * 3. IO subsystem is idle by checking the # of requests in
72 * bdev's request list.
74 * Note) We have to avoid triggering GCs frequently.
75 * Because it is possible that some segments can be
76 * invalidated soon after by user update or deletion.
77 * So, I'd like to wait some time to collect dirty segments.
79 if (sbi
->gc_mode
== GC_URGENT
) {
80 wait_ms
= gc_th
->urgent_sleep_time
;
81 mutex_lock(&sbi
->gc_mutex
);
85 if (!mutex_trylock(&sbi
->gc_mutex
)) {
86 stat_other_skip_bggc_count(sbi
);
90 if (!is_idle(sbi
, GC_TIME
)) {
91 increase_sleep_time(gc_th
, &wait_ms
);
92 mutex_unlock(&sbi
->gc_mutex
);
93 stat_io_skip_bggc_count(sbi
);
97 if (has_enough_invalid_blocks(sbi
))
98 decrease_sleep_time(gc_th
, &wait_ms
);
100 increase_sleep_time(gc_th
, &wait_ms
);
102 stat_inc_bggc_count(sbi
);
104 /* if return value is not zero, no victim was selected */
105 if (f2fs_gc(sbi
, test_opt(sbi
, FORCE_FG_GC
), true, NULL_SEGNO
))
106 wait_ms
= gc_th
->no_gc_sleep_time
;
108 trace_f2fs_background_gc(sbi
->sb
, wait_ms
,
109 prefree_segments(sbi
), free_segments(sbi
));
111 /* balancing f2fs's metadata periodically */
112 f2fs_balance_fs_bg(sbi
);
114 sb_end_write(sbi
->sb
);
116 } while (!kthread_should_stop());
120 int f2fs_start_gc_thread(struct f2fs_sb_info
*sbi
)
122 struct f2fs_gc_kthread
*gc_th
;
123 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
126 gc_th
= f2fs_kmalloc(sbi
, sizeof(struct f2fs_gc_kthread
), GFP_KERNEL
);
132 gc_th
->urgent_sleep_time
= DEF_GC_THREAD_URGENT_SLEEP_TIME
;
133 gc_th
->min_sleep_time
= DEF_GC_THREAD_MIN_SLEEP_TIME
;
134 gc_th
->max_sleep_time
= DEF_GC_THREAD_MAX_SLEEP_TIME
;
135 gc_th
->no_gc_sleep_time
= DEF_GC_THREAD_NOGC_SLEEP_TIME
;
139 sbi
->gc_thread
= gc_th
;
140 init_waitqueue_head(&sbi
->gc_thread
->gc_wait_queue_head
);
141 sbi
->gc_thread
->f2fs_gc_task
= kthread_run(gc_thread_func
, sbi
,
142 "f2fs_gc-%u:%u", MAJOR(dev
), MINOR(dev
));
143 if (IS_ERR(gc_th
->f2fs_gc_task
)) {
144 err
= PTR_ERR(gc_th
->f2fs_gc_task
);
146 sbi
->gc_thread
= NULL
;
152 void f2fs_stop_gc_thread(struct f2fs_sb_info
*sbi
)
154 struct f2fs_gc_kthread
*gc_th
= sbi
->gc_thread
;
157 kthread_stop(gc_th
->f2fs_gc_task
);
159 sbi
->gc_thread
= NULL
;
162 static int select_gc_type(struct f2fs_sb_info
*sbi
, int gc_type
)
164 int gc_mode
= (gc_type
== BG_GC
) ? GC_CB
: GC_GREEDY
;
166 switch (sbi
->gc_mode
) {
178 static void select_policy(struct f2fs_sb_info
*sbi
, int gc_type
,
179 int type
, struct victim_sel_policy
*p
)
181 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
183 if (p
->alloc_mode
== SSR
) {
184 p
->gc_mode
= GC_GREEDY
;
185 p
->dirty_segmap
= dirty_i
->dirty_segmap
[type
];
186 p
->max_search
= dirty_i
->nr_dirty
[type
];
189 p
->gc_mode
= select_gc_type(sbi
, gc_type
);
190 p
->dirty_segmap
= dirty_i
->dirty_segmap
[DIRTY
];
191 p
->max_search
= dirty_i
->nr_dirty
[DIRTY
];
192 p
->ofs_unit
= sbi
->segs_per_sec
;
195 /* we need to check every dirty segments in the FG_GC case */
196 if (gc_type
!= FG_GC
&&
197 (sbi
->gc_mode
!= GC_URGENT
) &&
198 p
->max_search
> sbi
->max_victim_search
)
199 p
->max_search
= sbi
->max_victim_search
;
201 /* let's select beginning hot/small space first in no_heap mode*/
202 if (test_opt(sbi
, NOHEAP
) &&
203 (type
== CURSEG_HOT_DATA
|| IS_NODESEG(type
)))
206 p
->offset
= SIT_I(sbi
)->last_victim
[p
->gc_mode
];
209 static unsigned int get_max_cost(struct f2fs_sb_info
*sbi
,
210 struct victim_sel_policy
*p
)
212 /* SSR allocates in a segment unit */
213 if (p
->alloc_mode
== SSR
)
214 return sbi
->blocks_per_seg
;
215 if (p
->gc_mode
== GC_GREEDY
)
216 return 2 * sbi
->blocks_per_seg
* p
->ofs_unit
;
217 else if (p
->gc_mode
== GC_CB
)
219 else /* No other gc_mode */
223 static unsigned int check_bg_victims(struct f2fs_sb_info
*sbi
)
225 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
229 * If the gc_type is FG_GC, we can select victim segments
230 * selected by background GC before.
231 * Those segments guarantee they have small valid blocks.
233 for_each_set_bit(secno
, dirty_i
->victim_secmap
, MAIN_SECS(sbi
)) {
234 if (sec_usage_check(sbi
, secno
))
236 clear_bit(secno
, dirty_i
->victim_secmap
);
237 return GET_SEG_FROM_SEC(sbi
, secno
);
242 static unsigned int get_cb_cost(struct f2fs_sb_info
*sbi
, unsigned int segno
)
244 struct sit_info
*sit_i
= SIT_I(sbi
);
245 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
246 unsigned int start
= GET_SEG_FROM_SEC(sbi
, secno
);
247 unsigned long long mtime
= 0;
248 unsigned int vblocks
;
249 unsigned char age
= 0;
253 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
254 mtime
+= get_seg_entry(sbi
, start
+ i
)->mtime
;
255 vblocks
= get_valid_blocks(sbi
, segno
, true);
257 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
258 vblocks
= div_u64(vblocks
, sbi
->segs_per_sec
);
260 u
= (vblocks
* 100) >> sbi
->log_blocks_per_seg
;
262 /* Handle if the system time has changed by the user */
263 if (mtime
< sit_i
->min_mtime
)
264 sit_i
->min_mtime
= mtime
;
265 if (mtime
> sit_i
->max_mtime
)
266 sit_i
->max_mtime
= mtime
;
267 if (sit_i
->max_mtime
!= sit_i
->min_mtime
)
268 age
= 100 - div64_u64(100 * (mtime
- sit_i
->min_mtime
),
269 sit_i
->max_mtime
- sit_i
->min_mtime
);
271 return UINT_MAX
- ((100 * (100 - u
) * age
) / (100 + u
));
274 static inline unsigned int get_gc_cost(struct f2fs_sb_info
*sbi
,
275 unsigned int segno
, struct victim_sel_policy
*p
)
277 if (p
->alloc_mode
== SSR
)
278 return get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
280 /* alloc_mode == LFS */
281 if (p
->gc_mode
== GC_GREEDY
)
282 return get_valid_blocks(sbi
, segno
, true);
284 return get_cb_cost(sbi
, segno
);
287 static unsigned int count_bits(const unsigned long *addr
,
288 unsigned int offset
, unsigned int len
)
290 unsigned int end
= offset
+ len
, sum
= 0;
292 while (offset
< end
) {
293 if (test_bit(offset
++, addr
))
300 * This function is called from two paths.
301 * One is garbage collection and the other is SSR segment selection.
302 * When it is called during GC, it just gets a victim segment
303 * and it does not remove it from dirty seglist.
304 * When it is called from SSR segment selection, it finds a segment
305 * which has minimum valid blocks and removes it from dirty seglist.
307 static int get_victim_by_default(struct f2fs_sb_info
*sbi
,
308 unsigned int *result
, int gc_type
, int type
, char alloc_mode
)
310 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
311 struct sit_info
*sm
= SIT_I(sbi
);
312 struct victim_sel_policy p
;
313 unsigned int secno
, last_victim
;
314 unsigned int last_segment
= MAIN_SEGS(sbi
);
315 unsigned int nsearched
= 0;
317 mutex_lock(&dirty_i
->seglist_lock
);
319 p
.alloc_mode
= alloc_mode
;
320 select_policy(sbi
, gc_type
, type
, &p
);
322 p
.min_segno
= NULL_SEGNO
;
323 p
.min_cost
= get_max_cost(sbi
, &p
);
325 if (*result
!= NULL_SEGNO
) {
326 if (get_valid_blocks(sbi
, *result
, false) &&
327 !sec_usage_check(sbi
, GET_SEC_FROM_SEG(sbi
, *result
)))
328 p
.min_segno
= *result
;
332 if (p
.max_search
== 0)
335 if (__is_large_section(sbi
) && p
.alloc_mode
== LFS
) {
336 if (sbi
->next_victim_seg
[BG_GC
] != NULL_SEGNO
) {
337 p
.min_segno
= sbi
->next_victim_seg
[BG_GC
];
338 *result
= p
.min_segno
;
339 sbi
->next_victim_seg
[BG_GC
] = NULL_SEGNO
;
342 if (gc_type
== FG_GC
&&
343 sbi
->next_victim_seg
[FG_GC
] != NULL_SEGNO
) {
344 p
.min_segno
= sbi
->next_victim_seg
[FG_GC
];
345 *result
= p
.min_segno
;
346 sbi
->next_victim_seg
[FG_GC
] = NULL_SEGNO
;
351 last_victim
= sm
->last_victim
[p
.gc_mode
];
352 if (p
.alloc_mode
== LFS
&& gc_type
== FG_GC
) {
353 p
.min_segno
= check_bg_victims(sbi
);
354 if (p
.min_segno
!= NULL_SEGNO
)
362 segno
= find_next_bit(p
.dirty_segmap
, last_segment
, p
.offset
);
363 if (segno
>= last_segment
) {
364 if (sm
->last_victim
[p
.gc_mode
]) {
366 sm
->last_victim
[p
.gc_mode
];
367 sm
->last_victim
[p
.gc_mode
] = 0;
374 p
.offset
= segno
+ p
.ofs_unit
;
375 if (p
.ofs_unit
> 1) {
376 p
.offset
-= segno
% p
.ofs_unit
;
377 nsearched
+= count_bits(p
.dirty_segmap
,
378 p
.offset
- p
.ofs_unit
,
384 secno
= GET_SEC_FROM_SEG(sbi
, segno
);
386 if (sec_usage_check(sbi
, secno
))
388 /* Don't touch checkpointed data */
389 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) &&
390 get_ckpt_valid_blocks(sbi
, segno
)))
392 if (gc_type
== BG_GC
&& test_bit(secno
, dirty_i
->victim_secmap
))
395 cost
= get_gc_cost(sbi
, segno
, &p
);
397 if (p
.min_cost
> cost
) {
402 if (nsearched
>= p
.max_search
) {
403 if (!sm
->last_victim
[p
.gc_mode
] && segno
<= last_victim
)
404 sm
->last_victim
[p
.gc_mode
] = last_victim
+ 1;
406 sm
->last_victim
[p
.gc_mode
] = segno
+ 1;
407 sm
->last_victim
[p
.gc_mode
] %= MAIN_SEGS(sbi
);
411 if (p
.min_segno
!= NULL_SEGNO
) {
413 *result
= (p
.min_segno
/ p
.ofs_unit
) * p
.ofs_unit
;
415 if (p
.alloc_mode
== LFS
) {
416 secno
= GET_SEC_FROM_SEG(sbi
, p
.min_segno
);
417 if (gc_type
== FG_GC
)
418 sbi
->cur_victim_sec
= secno
;
420 set_bit(secno
, dirty_i
->victim_secmap
);
425 if (p
.min_segno
!= NULL_SEGNO
)
426 trace_f2fs_get_victim(sbi
->sb
, type
, gc_type
, &p
,
428 prefree_segments(sbi
), free_segments(sbi
));
429 mutex_unlock(&dirty_i
->seglist_lock
);
431 return (p
.min_segno
== NULL_SEGNO
) ? 0 : 1;
434 static const struct victim_selection default_v_ops
= {
435 .get_victim
= get_victim_by_default
,
438 static struct inode
*find_gc_inode(struct gc_inode_list
*gc_list
, nid_t ino
)
440 struct inode_entry
*ie
;
442 ie
= radix_tree_lookup(&gc_list
->iroot
, ino
);
448 static void add_gc_inode(struct gc_inode_list
*gc_list
, struct inode
*inode
)
450 struct inode_entry
*new_ie
;
452 if (inode
== find_gc_inode(gc_list
, inode
->i_ino
)) {
456 new_ie
= f2fs_kmem_cache_alloc(f2fs_inode_entry_slab
, GFP_NOFS
);
457 new_ie
->inode
= inode
;
459 f2fs_radix_tree_insert(&gc_list
->iroot
, inode
->i_ino
, new_ie
);
460 list_add_tail(&new_ie
->list
, &gc_list
->ilist
);
463 static void put_gc_inode(struct gc_inode_list
*gc_list
)
465 struct inode_entry
*ie
, *next_ie
;
466 list_for_each_entry_safe(ie
, next_ie
, &gc_list
->ilist
, list
) {
467 radix_tree_delete(&gc_list
->iroot
, ie
->inode
->i_ino
);
470 kmem_cache_free(f2fs_inode_entry_slab
, ie
);
474 static int check_valid_map(struct f2fs_sb_info
*sbi
,
475 unsigned int segno
, int offset
)
477 struct sit_info
*sit_i
= SIT_I(sbi
);
478 struct seg_entry
*sentry
;
481 down_read(&sit_i
->sentry_lock
);
482 sentry
= get_seg_entry(sbi
, segno
);
483 ret
= f2fs_test_bit(offset
, sentry
->cur_valid_map
);
484 up_read(&sit_i
->sentry_lock
);
489 * This function compares node address got in summary with that in NAT.
490 * On validity, copy that node with cold status, otherwise (invalid node)
493 static int gc_node_segment(struct f2fs_sb_info
*sbi
,
494 struct f2fs_summary
*sum
, unsigned int segno
, int gc_type
)
496 struct f2fs_summary
*entry
;
500 bool fggc
= (gc_type
== FG_GC
);
503 start_addr
= START_BLOCK(sbi
, segno
);
508 if (fggc
&& phase
== 2)
509 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
511 for (off
= 0; off
< sbi
->blocks_per_seg
; off
++, entry
++) {
512 nid_t nid
= le32_to_cpu(entry
->nid
);
513 struct page
*node_page
;
517 /* stop BG_GC if there is not enough free sections. */
518 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0, 0))
521 if (check_valid_map(sbi
, segno
, off
) == 0)
525 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), 1,
531 f2fs_ra_node_page(sbi
, nid
);
536 node_page
= f2fs_get_node_page(sbi
, nid
);
537 if (IS_ERR(node_page
))
540 /* block may become invalid during f2fs_get_node_page */
541 if (check_valid_map(sbi
, segno
, off
) == 0) {
542 f2fs_put_page(node_page
, 1);
546 if (f2fs_get_node_info(sbi
, nid
, &ni
)) {
547 f2fs_put_page(node_page
, 1);
551 if (ni
.blk_addr
!= start_addr
+ off
) {
552 f2fs_put_page(node_page
, 1);
556 err
= f2fs_move_node_page(node_page
, gc_type
);
557 if (!err
&& gc_type
== FG_GC
)
559 stat_inc_node_blk_count(sbi
, 1, gc_type
);
566 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
571 * Calculate start block index indicating the given node offset.
572 * Be careful, caller should give this node offset only indicating direct node
573 * blocks. If any node offsets, which point the other types of node blocks such
574 * as indirect or double indirect node blocks, are given, it must be a caller's
577 block_t
f2fs_start_bidx_of_node(unsigned int node_ofs
, struct inode
*inode
)
579 unsigned int indirect_blks
= 2 * NIDS_PER_BLOCK
+ 4;
587 } else if (node_ofs
<= indirect_blks
) {
588 int dec
= (node_ofs
- 4) / (NIDS_PER_BLOCK
+ 1);
589 bidx
= node_ofs
- 2 - dec
;
591 int dec
= (node_ofs
- indirect_blks
- 3) / (NIDS_PER_BLOCK
+ 1);
592 bidx
= node_ofs
- 5 - dec
;
594 return bidx
* ADDRS_PER_BLOCK(inode
) + ADDRS_PER_INODE(inode
);
597 static bool is_alive(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
598 struct node_info
*dni
, block_t blkaddr
, unsigned int *nofs
)
600 struct page
*node_page
;
602 unsigned int ofs_in_node
;
603 block_t source_blkaddr
;
605 nid
= le32_to_cpu(sum
->nid
);
606 ofs_in_node
= le16_to_cpu(sum
->ofs_in_node
);
608 node_page
= f2fs_get_node_page(sbi
, nid
);
609 if (IS_ERR(node_page
))
612 if (f2fs_get_node_info(sbi
, nid
, dni
)) {
613 f2fs_put_page(node_page
, 1);
617 if (sum
->version
!= dni
->version
) {
618 f2fs_msg(sbi
->sb
, KERN_WARNING
,
619 "%s: valid data with mismatched node version.",
621 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
624 *nofs
= ofs_of_node(node_page
);
625 source_blkaddr
= datablock_addr(NULL
, node_page
, ofs_in_node
);
626 f2fs_put_page(node_page
, 1);
628 if (source_blkaddr
!= blkaddr
)
633 static int ra_data_block(struct inode
*inode
, pgoff_t index
)
635 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
636 struct address_space
*mapping
= inode
->i_mapping
;
637 struct dnode_of_data dn
;
639 struct extent_info ei
= {0, 0, 0};
640 struct f2fs_io_info fio
= {
647 .encrypted_page
= NULL
,
653 page
= f2fs_grab_cache_page(mapping
, index
, true);
657 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
658 dn
.data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
659 if (unlikely(!f2fs_is_valid_blkaddr(sbi
, dn
.data_blkaddr
,
660 DATA_GENERIC_ENHANCE_READ
))) {
667 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
668 err
= f2fs_get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
673 if (!__is_valid_data_blkaddr(dn
.data_blkaddr
)) {
677 if (unlikely(!f2fs_is_valid_blkaddr(sbi
, dn
.data_blkaddr
,
678 DATA_GENERIC_ENHANCE
))) {
685 fio
.new_blkaddr
= fio
.old_blkaddr
= dn
.data_blkaddr
;
688 * don't cache encrypted data into meta inode until previous dirty
689 * data were writebacked to avoid racing between GC and flush.
691 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
693 f2fs_wait_on_block_writeback(inode
, dn
.data_blkaddr
);
695 fio
.encrypted_page
= f2fs_pagecache_get_page(META_MAPPING(sbi
),
697 FGP_LOCK
| FGP_CREAT
, GFP_NOFS
);
698 if (!fio
.encrypted_page
) {
703 err
= f2fs_submit_page_bio(&fio
);
705 goto put_encrypted_page
;
706 f2fs_put_page(fio
.encrypted_page
, 0);
707 f2fs_put_page(page
, 1);
710 f2fs_put_page(fio
.encrypted_page
, 1);
712 f2fs_put_page(page
, 1);
717 * Move data block via META_MAPPING while keeping locked data page.
718 * This can be used to move blocks, aka LBAs, directly on disk.
720 static int move_data_block(struct inode
*inode
, block_t bidx
,
721 int gc_type
, unsigned int segno
, int off
)
723 struct f2fs_io_info fio
= {
724 .sbi
= F2FS_I_SB(inode
),
730 .encrypted_page
= NULL
,
734 struct dnode_of_data dn
;
735 struct f2fs_summary sum
;
737 struct page
*page
, *mpage
;
740 bool lfs_mode
= test_opt(fio
.sbi
, LFS
);
742 /* do not read out */
743 page
= f2fs_grab_cache_page(inode
->i_mapping
, bidx
, false);
747 if (!check_valid_map(F2FS_I_SB(inode
), segno
, off
)) {
752 if (f2fs_is_atomic_file(inode
)) {
753 F2FS_I(inode
)->i_gc_failures
[GC_FAILURE_ATOMIC
]++;
754 F2FS_I_SB(inode
)->skipped_atomic_files
[gc_type
]++;
759 if (f2fs_is_pinned_file(inode
)) {
760 f2fs_pin_file_control(inode
, true);
765 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
766 err
= f2fs_get_dnode_of_data(&dn
, bidx
, LOOKUP_NODE
);
770 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
771 ClearPageUptodate(page
);
777 * don't cache encrypted data into meta inode until previous dirty
778 * data were writebacked to avoid racing between GC and flush.
780 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
782 f2fs_wait_on_block_writeback(inode
, dn
.data_blkaddr
);
784 err
= f2fs_get_node_info(fio
.sbi
, dn
.nid
, &ni
);
788 set_summary(&sum
, dn
.nid
, dn
.ofs_in_node
, ni
.version
);
792 fio
.new_blkaddr
= fio
.old_blkaddr
= dn
.data_blkaddr
;
795 down_write(&fio
.sbi
->io_order_lock
);
797 f2fs_allocate_data_block(fio
.sbi
, NULL
, fio
.old_blkaddr
, &newaddr
,
798 &sum
, CURSEG_COLD_DATA
, NULL
, false);
800 fio
.encrypted_page
= f2fs_pagecache_get_page(META_MAPPING(fio
.sbi
),
801 newaddr
, FGP_LOCK
| FGP_CREAT
, GFP_NOFS
);
802 if (!fio
.encrypted_page
) {
807 mpage
= f2fs_pagecache_get_page(META_MAPPING(fio
.sbi
),
808 fio
.old_blkaddr
, FGP_LOCK
, GFP_NOFS
);
810 bool updated
= false;
812 if (PageUptodate(mpage
)) {
813 memcpy(page_address(fio
.encrypted_page
),
814 page_address(mpage
), PAGE_SIZE
);
817 f2fs_put_page(mpage
, 1);
818 invalidate_mapping_pages(META_MAPPING(fio
.sbi
),
819 fio
.old_blkaddr
, fio
.old_blkaddr
);
824 err
= f2fs_submit_page_bio(&fio
);
829 lock_page(fio
.encrypted_page
);
831 if (unlikely(fio
.encrypted_page
->mapping
!= META_MAPPING(fio
.sbi
))) {
835 if (unlikely(!PageUptodate(fio
.encrypted_page
))) {
841 f2fs_wait_on_page_writeback(fio
.encrypted_page
, DATA
, true, true);
842 set_page_dirty(fio
.encrypted_page
);
843 if (clear_page_dirty_for_io(fio
.encrypted_page
))
844 dec_page_count(fio
.sbi
, F2FS_DIRTY_META
);
846 set_page_writeback(fio
.encrypted_page
);
847 ClearPageError(page
);
849 /* allocate block address */
850 f2fs_wait_on_page_writeback(dn
.node_page
, NODE
, true, true);
852 fio
.op
= REQ_OP_WRITE
;
853 fio
.op_flags
= REQ_SYNC
;
854 fio
.new_blkaddr
= newaddr
;
855 f2fs_submit_page_write(&fio
);
858 if (PageWriteback(fio
.encrypted_page
))
859 end_page_writeback(fio
.encrypted_page
);
863 f2fs_update_iostat(fio
.sbi
, FS_GC_DATA_IO
, F2FS_BLKSIZE
);
865 f2fs_update_data_blkaddr(&dn
, newaddr
);
866 set_inode_flag(inode
, FI_APPEND_WRITE
);
867 if (page
->index
== 0)
868 set_inode_flag(inode
, FI_FIRST_BLOCK_WRITTEN
);
870 f2fs_put_page(fio
.encrypted_page
, 1);
873 up_write(&fio
.sbi
->io_order_lock
);
875 f2fs_do_replace_block(fio
.sbi
, &sum
, newaddr
, fio
.old_blkaddr
,
880 f2fs_put_page(page
, 1);
884 static int move_data_page(struct inode
*inode
, block_t bidx
, int gc_type
,
885 unsigned int segno
, int off
)
890 page
= f2fs_get_lock_data_page(inode
, bidx
, true);
892 return PTR_ERR(page
);
894 if (!check_valid_map(F2FS_I_SB(inode
), segno
, off
)) {
899 if (f2fs_is_atomic_file(inode
)) {
900 F2FS_I(inode
)->i_gc_failures
[GC_FAILURE_ATOMIC
]++;
901 F2FS_I_SB(inode
)->skipped_atomic_files
[gc_type
]++;
905 if (f2fs_is_pinned_file(inode
)) {
906 if (gc_type
== FG_GC
)
907 f2fs_pin_file_control(inode
, true);
912 if (gc_type
== BG_GC
) {
913 if (PageWriteback(page
)) {
917 set_page_dirty(page
);
920 struct f2fs_io_info fio
= {
921 .sbi
= F2FS_I_SB(inode
),
926 .op_flags
= REQ_SYNC
,
927 .old_blkaddr
= NULL_ADDR
,
929 .encrypted_page
= NULL
,
930 .need_lock
= LOCK_REQ
,
931 .io_type
= FS_GC_DATA_IO
,
933 bool is_dirty
= PageDirty(page
);
936 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
938 set_page_dirty(page
);
939 if (clear_page_dirty_for_io(page
)) {
940 inode_dec_dirty_pages(inode
);
941 f2fs_remove_dirty_inode(inode
);
946 err
= f2fs_do_write_data_page(&fio
);
948 clear_cold_data(page
);
949 if (err
== -ENOMEM
) {
950 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
954 set_page_dirty(page
);
958 f2fs_put_page(page
, 1);
963 * This function tries to get parent node of victim data block, and identifies
964 * data block validity. If the block is valid, copy that with cold status and
965 * modify parent node.
966 * If the parent node is not valid or the data block address is different,
967 * the victim data block is ignored.
969 static int gc_data_segment(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
970 struct gc_inode_list
*gc_list
, unsigned int segno
, int gc_type
)
972 struct super_block
*sb
= sbi
->sb
;
973 struct f2fs_summary
*entry
;
979 start_addr
= START_BLOCK(sbi
, segno
);
984 for (off
= 0; off
< sbi
->blocks_per_seg
; off
++, entry
++) {
985 struct page
*data_page
;
987 struct node_info dni
; /* dnode info for the data */
988 unsigned int ofs_in_node
, nofs
;
990 nid_t nid
= le32_to_cpu(entry
->nid
);
992 /* stop BG_GC if there is not enough free sections. */
993 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0, 0))
996 if (check_valid_map(sbi
, segno
, off
) == 0)
1000 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), 1,
1006 f2fs_ra_node_page(sbi
, nid
);
1010 /* Get an inode by ino with checking validity */
1011 if (!is_alive(sbi
, entry
, &dni
, start_addr
+ off
, &nofs
))
1015 f2fs_ra_node_page(sbi
, dni
.ino
);
1019 ofs_in_node
= le16_to_cpu(entry
->ofs_in_node
);
1022 inode
= f2fs_iget(sb
, dni
.ino
);
1023 if (IS_ERR(inode
) || is_bad_inode(inode
))
1026 if (!down_write_trylock(
1027 &F2FS_I(inode
)->i_gc_rwsem
[WRITE
])) {
1029 sbi
->skipped_gc_rwsem
++;
1033 start_bidx
= f2fs_start_bidx_of_node(nofs
, inode
) +
1036 if (f2fs_post_read_required(inode
)) {
1037 int err
= ra_data_block(inode
, start_bidx
);
1039 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1044 add_gc_inode(gc_list
, inode
);
1048 data_page
= f2fs_get_read_data_page(inode
,
1049 start_bidx
, REQ_RAHEAD
, true);
1050 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1051 if (IS_ERR(data_page
)) {
1056 f2fs_put_page(data_page
, 0);
1057 add_gc_inode(gc_list
, inode
);
1062 inode
= find_gc_inode(gc_list
, dni
.ino
);
1064 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
1065 bool locked
= false;
1068 if (S_ISREG(inode
->i_mode
)) {
1069 if (!down_write_trylock(&fi
->i_gc_rwsem
[READ
]))
1071 if (!down_write_trylock(
1072 &fi
->i_gc_rwsem
[WRITE
])) {
1073 sbi
->skipped_gc_rwsem
++;
1074 up_write(&fi
->i_gc_rwsem
[READ
]);
1079 /* wait for all inflight aio data */
1080 inode_dio_wait(inode
);
1083 start_bidx
= f2fs_start_bidx_of_node(nofs
, inode
)
1085 if (f2fs_post_read_required(inode
))
1086 err
= move_data_block(inode
, start_bidx
,
1087 gc_type
, segno
, off
);
1089 err
= move_data_page(inode
, start_bidx
, gc_type
,
1092 if (!err
&& (gc_type
== FG_GC
||
1093 f2fs_post_read_required(inode
)))
1097 up_write(&fi
->i_gc_rwsem
[WRITE
]);
1098 up_write(&fi
->i_gc_rwsem
[READ
]);
1101 stat_inc_data_blk_count(sbi
, 1, gc_type
);
1111 static int __get_victim(struct f2fs_sb_info
*sbi
, unsigned int *victim
,
1114 struct sit_info
*sit_i
= SIT_I(sbi
);
1117 down_write(&sit_i
->sentry_lock
);
1118 ret
= DIRTY_I(sbi
)->v_ops
->get_victim(sbi
, victim
, gc_type
,
1119 NO_CHECK_TYPE
, LFS
);
1120 up_write(&sit_i
->sentry_lock
);
1124 static int do_garbage_collect(struct f2fs_sb_info
*sbi
,
1125 unsigned int start_segno
,
1126 struct gc_inode_list
*gc_list
, int gc_type
)
1128 struct page
*sum_page
;
1129 struct f2fs_summary_block
*sum
;
1130 struct blk_plug plug
;
1131 unsigned int segno
= start_segno
;
1132 unsigned int end_segno
= start_segno
+ sbi
->segs_per_sec
;
1133 int seg_freed
= 0, migrated
= 0;
1134 unsigned char type
= IS_DATASEG(get_seg_entry(sbi
, segno
)->type
) ?
1135 SUM_TYPE_DATA
: SUM_TYPE_NODE
;
1138 if (__is_large_section(sbi
))
1139 end_segno
= rounddown(end_segno
, sbi
->segs_per_sec
);
1141 /* readahead multi ssa blocks those have contiguous address */
1142 if (__is_large_section(sbi
))
1143 f2fs_ra_meta_pages(sbi
, GET_SUM_BLOCK(sbi
, segno
),
1144 end_segno
- segno
, META_SSA
, true);
1146 /* reference all summary page */
1147 while (segno
< end_segno
) {
1148 sum_page
= f2fs_get_sum_page(sbi
, segno
++);
1149 if (IS_ERR(sum_page
)) {
1150 int err
= PTR_ERR(sum_page
);
1152 end_segno
= segno
- 1;
1153 for (segno
= start_segno
; segno
< end_segno
; segno
++) {
1154 sum_page
= find_get_page(META_MAPPING(sbi
),
1155 GET_SUM_BLOCK(sbi
, segno
));
1156 f2fs_put_page(sum_page
, 0);
1157 f2fs_put_page(sum_page
, 0);
1161 unlock_page(sum_page
);
1164 blk_start_plug(&plug
);
1166 for (segno
= start_segno
; segno
< end_segno
; segno
++) {
1168 /* find segment summary of victim */
1169 sum_page
= find_get_page(META_MAPPING(sbi
),
1170 GET_SUM_BLOCK(sbi
, segno
));
1171 f2fs_put_page(sum_page
, 0);
1173 if (get_valid_blocks(sbi
, segno
, false) == 0)
1175 if (__is_large_section(sbi
) &&
1176 migrated
>= sbi
->migration_granularity
)
1178 if (!PageUptodate(sum_page
) || unlikely(f2fs_cp_error(sbi
)))
1181 sum
= page_address(sum_page
);
1182 if (type
!= GET_SUM_TYPE((&sum
->footer
))) {
1183 f2fs_msg(sbi
->sb
, KERN_ERR
, "Inconsistent segment (%u) "
1184 "type [%d, %d] in SSA and SIT",
1185 segno
, type
, GET_SUM_TYPE((&sum
->footer
)));
1186 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
1187 f2fs_stop_checkpoint(sbi
, false);
1192 * this is to avoid deadlock:
1193 * - lock_page(sum_page) - f2fs_replace_block
1194 * - check_valid_map() - down_write(sentry_lock)
1195 * - down_read(sentry_lock) - change_curseg()
1196 * - lock_page(sum_page)
1198 if (type
== SUM_TYPE_NODE
)
1199 submitted
+= gc_node_segment(sbi
, sum
->entries
, segno
,
1202 submitted
+= gc_data_segment(sbi
, sum
->entries
, gc_list
,
1205 stat_inc_seg_count(sbi
, type
, gc_type
);
1208 if (gc_type
== FG_GC
&&
1209 get_valid_blocks(sbi
, segno
, false) == 0)
1213 if (__is_large_section(sbi
) && segno
+ 1 < end_segno
)
1214 sbi
->next_victim_seg
[gc_type
] = segno
+ 1;
1216 f2fs_put_page(sum_page
, 0);
1220 f2fs_submit_merged_write(sbi
,
1221 (type
== SUM_TYPE_NODE
) ? NODE
: DATA
);
1223 blk_finish_plug(&plug
);
1225 stat_inc_call_count(sbi
->stat_info
);
1230 int f2fs_gc(struct f2fs_sb_info
*sbi
, bool sync
,
1231 bool background
, unsigned int segno
)
1233 int gc_type
= sync
? FG_GC
: BG_GC
;
1234 int sec_freed
= 0, seg_freed
= 0, total_freed
= 0;
1236 struct cp_control cpc
;
1237 unsigned int init_segno
= segno
;
1238 struct gc_inode_list gc_list
= {
1239 .ilist
= LIST_HEAD_INIT(gc_list
.ilist
),
1240 .iroot
= RADIX_TREE_INIT(gc_list
.iroot
, GFP_NOFS
),
1242 unsigned long long last_skipped
= sbi
->skipped_atomic_files
[FG_GC
];
1243 unsigned long long first_skipped
;
1244 unsigned int skipped_round
= 0, round
= 0;
1246 trace_f2fs_gc_begin(sbi
->sb
, sync
, background
,
1247 get_pages(sbi
, F2FS_DIRTY_NODES
),
1248 get_pages(sbi
, F2FS_DIRTY_DENTS
),
1249 get_pages(sbi
, F2FS_DIRTY_IMETA
),
1252 reserved_segments(sbi
),
1253 prefree_segments(sbi
));
1255 cpc
.reason
= __get_cp_reason(sbi
);
1256 sbi
->skipped_gc_rwsem
= 0;
1257 first_skipped
= last_skipped
;
1259 if (unlikely(!(sbi
->sb
->s_flags
& SB_ACTIVE
))) {
1263 if (unlikely(f2fs_cp_error(sbi
))) {
1268 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0, 0)) {
1270 * For example, if there are many prefree_segments below given
1271 * threshold, we can make them free by checkpoint. Then, we
1272 * secure free segments which doesn't need fggc any more.
1274 if (prefree_segments(sbi
) &&
1275 !is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)) {
1276 ret
= f2fs_write_checkpoint(sbi
, &cpc
);
1280 if (has_not_enough_free_secs(sbi
, 0, 0))
1284 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1285 if (gc_type
== BG_GC
&& !background
) {
1289 if (!__get_victim(sbi
, &segno
, gc_type
)) {
1294 seg_freed
= do_garbage_collect(sbi
, segno
, &gc_list
, gc_type
);
1295 if (gc_type
== FG_GC
&& seg_freed
== sbi
->segs_per_sec
)
1297 total_freed
+= seg_freed
;
1299 if (gc_type
== FG_GC
) {
1300 if (sbi
->skipped_atomic_files
[FG_GC
] > last_skipped
||
1301 sbi
->skipped_gc_rwsem
)
1303 last_skipped
= sbi
->skipped_atomic_files
[FG_GC
];
1307 if (gc_type
== FG_GC
)
1308 sbi
->cur_victim_sec
= NULL_SEGNO
;
1313 if (has_not_enough_free_secs(sbi
, sec_freed
, 0)) {
1314 if (skipped_round
<= MAX_SKIP_GC_COUNT
||
1315 skipped_round
* 2 < round
) {
1320 if (first_skipped
< last_skipped
&&
1321 (last_skipped
- first_skipped
) >
1322 sbi
->skipped_gc_rwsem
) {
1323 f2fs_drop_inmem_pages_all(sbi
, true);
1327 if (gc_type
== FG_GC
&& !is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))
1328 ret
= f2fs_write_checkpoint(sbi
, &cpc
);
1331 SIT_I(sbi
)->last_victim
[ALLOC_NEXT
] = 0;
1332 SIT_I(sbi
)->last_victim
[FLUSH_DEVICE
] = init_segno
;
1334 trace_f2fs_gc_end(sbi
->sb
, ret
, total_freed
, sec_freed
,
1335 get_pages(sbi
, F2FS_DIRTY_NODES
),
1336 get_pages(sbi
, F2FS_DIRTY_DENTS
),
1337 get_pages(sbi
, F2FS_DIRTY_IMETA
),
1340 reserved_segments(sbi
),
1341 prefree_segments(sbi
));
1343 mutex_unlock(&sbi
->gc_mutex
);
1345 put_gc_inode(&gc_list
);
1348 ret
= sec_freed
? 0 : -EAGAIN
;
1352 void f2fs_build_gc_manager(struct f2fs_sb_info
*sbi
)
1354 DIRTY_I(sbi
)->v_ops
= &default_v_ops
;
1356 sbi
->gc_pin_file_threshold
= DEF_GC_FAILED_PINNED_FILES
;
1358 /* give warm/cold data area from slower device */
1359 if (f2fs_is_multi_device(sbi
) && !__is_large_section(sbi
))
1360 SIT_I(sbi
)->last_victim
[ALLOC_NEXT
] =
1361 GET_SEGNO(sbi
, FDEV(0).end_blk
) + 1;