1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (c) 2013, Intel Corporation
5 * Authors: Huajun Li <huajun.li@intel.com>
6 * Haicheng Li <haicheng.li@intel.com>
10 #include <linux/f2fs_fs.h>
15 bool f2fs_may_inline_data(struct inode
*inode
)
17 if (f2fs_is_atomic_file(inode
))
20 if (!S_ISREG(inode
->i_mode
) && !S_ISLNK(inode
->i_mode
))
23 if (i_size_read(inode
) > MAX_INLINE_DATA(inode
))
26 if (f2fs_post_read_required(inode
))
32 bool f2fs_may_inline_dentry(struct inode
*inode
)
34 if (!test_opt(F2FS_I_SB(inode
), INLINE_DENTRY
))
37 if (!S_ISDIR(inode
->i_mode
))
43 void f2fs_do_read_inline_data(struct page
*page
, struct page
*ipage
)
45 struct inode
*inode
= page
->mapping
->host
;
46 void *src_addr
, *dst_addr
;
48 if (PageUptodate(page
))
51 f2fs_bug_on(F2FS_P_SB(page
), page
->index
);
53 zero_user_segment(page
, MAX_INLINE_DATA(inode
), PAGE_SIZE
);
55 /* Copy the whole inline data block */
56 src_addr
= inline_data_addr(inode
, ipage
);
57 dst_addr
= kmap_atomic(page
);
58 memcpy(dst_addr
, src_addr
, MAX_INLINE_DATA(inode
));
59 flush_dcache_page(page
);
60 kunmap_atomic(dst_addr
);
61 if (!PageUptodate(page
))
62 SetPageUptodate(page
);
65 void f2fs_truncate_inline_inode(struct inode
*inode
,
66 struct page
*ipage
, u64 from
)
70 if (from
>= MAX_INLINE_DATA(inode
))
73 addr
= inline_data_addr(inode
, ipage
);
75 f2fs_wait_on_page_writeback(ipage
, NODE
, true, true);
76 memset(addr
+ from
, 0, MAX_INLINE_DATA(inode
) - from
);
77 set_page_dirty(ipage
);
80 clear_inode_flag(inode
, FI_DATA_EXIST
);
83 int f2fs_read_inline_data(struct inode
*inode
, struct page
*page
)
87 ipage
= f2fs_get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
90 return PTR_ERR(ipage
);
93 if (!f2fs_has_inline_data(inode
)) {
94 f2fs_put_page(ipage
, 1);
99 zero_user_segment(page
, 0, PAGE_SIZE
);
101 f2fs_do_read_inline_data(page
, ipage
);
103 if (!PageUptodate(page
))
104 SetPageUptodate(page
);
105 f2fs_put_page(ipage
, 1);
110 int f2fs_convert_inline_page(struct dnode_of_data
*dn
, struct page
*page
)
112 struct f2fs_io_info fio
= {
113 .sbi
= F2FS_I_SB(dn
->inode
),
114 .ino
= dn
->inode
->i_ino
,
117 .op_flags
= REQ_SYNC
| REQ_PRIO
,
119 .encrypted_page
= NULL
,
120 .io_type
= FS_DATA_IO
,
125 if (!f2fs_exist_data(dn
->inode
))
128 err
= f2fs_reserve_block(dn
, 0);
132 err
= f2fs_get_node_info(fio
.sbi
, dn
->nid
, &ni
);
138 fio
.version
= ni
.version
;
140 if (unlikely(dn
->data_blkaddr
!= NEW_ADDR
)) {
142 set_sbi_flag(fio
.sbi
, SBI_NEED_FSCK
);
143 f2fs_msg(fio
.sbi
->sb
, KERN_WARNING
,
144 "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, "
146 __func__
, dn
->inode
->i_ino
, dn
->data_blkaddr
);
150 f2fs_bug_on(F2FS_P_SB(page
), PageWriteback(page
));
152 f2fs_do_read_inline_data(page
, dn
->inode_page
);
153 set_page_dirty(page
);
155 /* clear dirty state */
156 dirty
= clear_page_dirty_for_io(page
);
158 /* write data page to try to make data consistent */
159 set_page_writeback(page
);
160 ClearPageError(page
);
161 fio
.old_blkaddr
= dn
->data_blkaddr
;
162 set_inode_flag(dn
->inode
, FI_HOT_DATA
);
163 f2fs_outplace_write_data(dn
, &fio
);
164 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
166 inode_dec_dirty_pages(dn
->inode
);
167 f2fs_remove_dirty_inode(dn
->inode
);
170 /* this converted inline_data should be recovered. */
171 set_inode_flag(dn
->inode
, FI_APPEND_WRITE
);
173 /* clear inline data and flag after data writeback */
174 f2fs_truncate_inline_inode(dn
->inode
, dn
->inode_page
, 0);
175 clear_inline_node(dn
->inode_page
);
177 stat_dec_inline_inode(dn
->inode
);
178 clear_inode_flag(dn
->inode
, FI_INLINE_DATA
);
183 int f2fs_convert_inline_inode(struct inode
*inode
)
185 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
186 struct dnode_of_data dn
;
187 struct page
*ipage
, *page
;
190 if (!f2fs_has_inline_data(inode
))
193 page
= f2fs_grab_cache_page(inode
->i_mapping
, 0, false);
199 ipage
= f2fs_get_node_page(sbi
, inode
->i_ino
);
201 err
= PTR_ERR(ipage
);
205 set_new_dnode(&dn
, inode
, ipage
, ipage
, 0);
207 if (f2fs_has_inline_data(inode
))
208 err
= f2fs_convert_inline_page(&dn
, page
);
214 f2fs_put_page(page
, 1);
216 f2fs_balance_fs(sbi
, dn
.node_changed
);
221 int f2fs_write_inline_data(struct inode
*inode
, struct page
*page
)
223 void *src_addr
, *dst_addr
;
224 struct dnode_of_data dn
;
227 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
228 err
= f2fs_get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
232 if (!f2fs_has_inline_data(inode
)) {
237 f2fs_bug_on(F2FS_I_SB(inode
), page
->index
);
239 f2fs_wait_on_page_writeback(dn
.inode_page
, NODE
, true, true);
240 src_addr
= kmap_atomic(page
);
241 dst_addr
= inline_data_addr(inode
, dn
.inode_page
);
242 memcpy(dst_addr
, src_addr
, MAX_INLINE_DATA(inode
));
243 kunmap_atomic(src_addr
);
244 set_page_dirty(dn
.inode_page
);
246 f2fs_clear_page_cache_dirty_tag(page
);
248 set_inode_flag(inode
, FI_APPEND_WRITE
);
249 set_inode_flag(inode
, FI_DATA_EXIST
);
251 clear_inline_node(dn
.inode_page
);
256 bool f2fs_recover_inline_data(struct inode
*inode
, struct page
*npage
)
258 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
259 struct f2fs_inode
*ri
= NULL
;
260 void *src_addr
, *dst_addr
;
264 * The inline_data recovery policy is as follows.
265 * [prev.] [next] of inline_data flag
266 * o o -> recover inline_data
267 * o x -> remove inline_data, and then recover data blocks
268 * x o -> remove inline_data, and then recover inline_data
269 * x x -> recover data blocks
272 ri
= F2FS_INODE(npage
);
274 if (f2fs_has_inline_data(inode
) &&
275 ri
&& (ri
->i_inline
& F2FS_INLINE_DATA
)) {
277 ipage
= f2fs_get_node_page(sbi
, inode
->i_ino
);
278 f2fs_bug_on(sbi
, IS_ERR(ipage
));
280 f2fs_wait_on_page_writeback(ipage
, NODE
, true, true);
282 src_addr
= inline_data_addr(inode
, npage
);
283 dst_addr
= inline_data_addr(inode
, ipage
);
284 memcpy(dst_addr
, src_addr
, MAX_INLINE_DATA(inode
));
286 set_inode_flag(inode
, FI_INLINE_DATA
);
287 set_inode_flag(inode
, FI_DATA_EXIST
);
289 set_page_dirty(ipage
);
290 f2fs_put_page(ipage
, 1);
294 if (f2fs_has_inline_data(inode
)) {
295 ipage
= f2fs_get_node_page(sbi
, inode
->i_ino
);
296 f2fs_bug_on(sbi
, IS_ERR(ipage
));
297 f2fs_truncate_inline_inode(inode
, ipage
, 0);
298 clear_inode_flag(inode
, FI_INLINE_DATA
);
299 f2fs_put_page(ipage
, 1);
300 } else if (ri
&& (ri
->i_inline
& F2FS_INLINE_DATA
)) {
301 if (f2fs_truncate_blocks(inode
, 0, false))
308 struct f2fs_dir_entry
*f2fs_find_in_inline_dir(struct inode
*dir
,
309 struct fscrypt_name
*fname
, struct page
**res_page
)
311 struct f2fs_sb_info
*sbi
= F2FS_SB(dir
->i_sb
);
312 struct qstr name
= FSTR_TO_QSTR(&fname
->disk_name
);
313 struct f2fs_dir_entry
*de
;
314 struct f2fs_dentry_ptr d
;
317 f2fs_hash_t namehash
;
319 ipage
= f2fs_get_node_page(sbi
, dir
->i_ino
);
325 namehash
= f2fs_dentry_hash(&name
, fname
);
327 inline_dentry
= inline_data_addr(dir
, ipage
);
329 make_dentry_ptr_inline(dir
, &d
, inline_dentry
);
330 de
= f2fs_find_target_dentry(fname
, namehash
, NULL
, &d
);
335 f2fs_put_page(ipage
, 0);
340 int f2fs_make_empty_inline_dir(struct inode
*inode
, struct inode
*parent
,
343 struct f2fs_dentry_ptr d
;
346 inline_dentry
= inline_data_addr(inode
, ipage
);
348 make_dentry_ptr_inline(inode
, &d
, inline_dentry
);
349 f2fs_do_make_empty_dir(inode
, parent
, &d
);
351 set_page_dirty(ipage
);
353 /* update i_size to MAX_INLINE_DATA */
354 if (i_size_read(inode
) < MAX_INLINE_DATA(inode
))
355 f2fs_i_size_write(inode
, MAX_INLINE_DATA(inode
));
360 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
361 * release ipage in this function.
363 static int f2fs_move_inline_dirents(struct inode
*dir
, struct page
*ipage
,
367 struct dnode_of_data dn
;
368 struct f2fs_dentry_block
*dentry_blk
;
369 struct f2fs_dentry_ptr src
, dst
;
372 page
= f2fs_grab_cache_page(dir
->i_mapping
, 0, false);
374 f2fs_put_page(ipage
, 1);
378 set_new_dnode(&dn
, dir
, ipage
, NULL
, 0);
379 err
= f2fs_reserve_block(&dn
, 0);
383 if (unlikely(dn
.data_blkaddr
!= NEW_ADDR
)) {
385 set_sbi_flag(F2FS_P_SB(page
), SBI_NEED_FSCK
);
386 f2fs_msg(F2FS_P_SB(page
)->sb
, KERN_WARNING
,
387 "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, "
389 __func__
, dir
->i_ino
, dn
.data_blkaddr
);
394 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
396 dentry_blk
= page_address(page
);
398 make_dentry_ptr_inline(dir
, &src
, inline_dentry
);
399 make_dentry_ptr_block(dir
, &dst
, dentry_blk
);
401 /* copy data from inline dentry block to new dentry block */
402 memcpy(dst
.bitmap
, src
.bitmap
, src
.nr_bitmap
);
403 memset(dst
.bitmap
+ src
.nr_bitmap
, 0, dst
.nr_bitmap
- src
.nr_bitmap
);
405 * we do not need to zero out remainder part of dentry and filename
406 * field, since we have used bitmap for marking the usage status of
407 * them, besides, we can also ignore copying/zeroing reserved space
408 * of dentry block, because them haven't been used so far.
410 memcpy(dst
.dentry
, src
.dentry
, SIZE_OF_DIR_ENTRY
* src
.max
);
411 memcpy(dst
.filename
, src
.filename
, src
.max
* F2FS_SLOT_LEN
);
413 if (!PageUptodate(page
))
414 SetPageUptodate(page
);
415 set_page_dirty(page
);
417 /* clear inline dir and flag after data writeback */
418 f2fs_truncate_inline_inode(dir
, ipage
, 0);
420 stat_dec_inline_dir(dir
);
421 clear_inode_flag(dir
, FI_INLINE_DENTRY
);
424 * should retrieve reserved space which was used to keep
425 * inline_dentry's structure for backward compatibility.
427 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir
)) &&
428 !f2fs_has_inline_xattr(dir
))
429 F2FS_I(dir
)->i_inline_xattr_size
= 0;
431 f2fs_i_depth_write(dir
, 1);
432 if (i_size_read(dir
) < PAGE_SIZE
)
433 f2fs_i_size_write(dir
, PAGE_SIZE
);
435 f2fs_put_page(page
, 1);
439 static int f2fs_add_inline_entries(struct inode
*dir
, void *inline_dentry
)
441 struct f2fs_dentry_ptr d
;
442 unsigned long bit_pos
= 0;
445 make_dentry_ptr_inline(dir
, &d
, inline_dentry
);
447 while (bit_pos
< d
.max
) {
448 struct f2fs_dir_entry
*de
;
449 struct qstr new_name
;
453 if (!test_bit_le(bit_pos
, d
.bitmap
)) {
458 de
= &d
.dentry
[bit_pos
];
460 if (unlikely(!de
->name_len
)) {
465 new_name
.name
= d
.filename
[bit_pos
];
466 new_name
.len
= le16_to_cpu(de
->name_len
);
468 ino
= le32_to_cpu(de
->ino
);
469 fake_mode
= f2fs_get_de_type(de
) << S_SHIFT
;
471 err
= f2fs_add_regular_entry(dir
, &new_name
, NULL
, NULL
,
474 goto punch_dentry_pages
;
476 bit_pos
+= GET_DENTRY_SLOTS(le16_to_cpu(de
->name_len
));
480 truncate_inode_pages(&dir
->i_data
, 0);
481 f2fs_truncate_blocks(dir
, 0, false);
482 f2fs_remove_dirty_inode(dir
);
486 static int f2fs_move_rehashed_dirents(struct inode
*dir
, struct page
*ipage
,
492 backup_dentry
= f2fs_kmalloc(F2FS_I_SB(dir
),
493 MAX_INLINE_DATA(dir
), GFP_F2FS_ZERO
);
494 if (!backup_dentry
) {
495 f2fs_put_page(ipage
, 1);
499 memcpy(backup_dentry
, inline_dentry
, MAX_INLINE_DATA(dir
));
500 f2fs_truncate_inline_inode(dir
, ipage
, 0);
504 err
= f2fs_add_inline_entries(dir
, backup_dentry
);
510 stat_dec_inline_dir(dir
);
511 clear_inode_flag(dir
, FI_INLINE_DENTRY
);
514 * should retrieve reserved space which was used to keep
515 * inline_dentry's structure for backward compatibility.
517 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir
)) &&
518 !f2fs_has_inline_xattr(dir
))
519 F2FS_I(dir
)->i_inline_xattr_size
= 0;
521 kvfree(backup_dentry
);
525 f2fs_wait_on_page_writeback(ipage
, NODE
, true, true);
526 memcpy(inline_dentry
, backup_dentry
, MAX_INLINE_DATA(dir
));
527 f2fs_i_depth_write(dir
, 0);
528 f2fs_i_size_write(dir
, MAX_INLINE_DATA(dir
));
529 set_page_dirty(ipage
);
530 f2fs_put_page(ipage
, 1);
532 kvfree(backup_dentry
);
536 static int f2fs_convert_inline_dir(struct inode
*dir
, struct page
*ipage
,
539 if (!F2FS_I(dir
)->i_dir_level
)
540 return f2fs_move_inline_dirents(dir
, ipage
, inline_dentry
);
542 return f2fs_move_rehashed_dirents(dir
, ipage
, inline_dentry
);
545 int f2fs_add_inline_entry(struct inode
*dir
, const struct qstr
*new_name
,
546 const struct qstr
*orig_name
,
547 struct inode
*inode
, nid_t ino
, umode_t mode
)
549 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dir
);
551 unsigned int bit_pos
;
552 f2fs_hash_t name_hash
;
553 void *inline_dentry
= NULL
;
554 struct f2fs_dentry_ptr d
;
555 int slots
= GET_DENTRY_SLOTS(new_name
->len
);
556 struct page
*page
= NULL
;
559 ipage
= f2fs_get_node_page(sbi
, dir
->i_ino
);
561 return PTR_ERR(ipage
);
563 inline_dentry
= inline_data_addr(dir
, ipage
);
564 make_dentry_ptr_inline(dir
, &d
, inline_dentry
);
566 bit_pos
= f2fs_room_for_filename(d
.bitmap
, slots
, d
.max
);
567 if (bit_pos
>= d
.max
) {
568 err
= f2fs_convert_inline_dir(dir
, ipage
, inline_dentry
);
576 down_write(&F2FS_I(inode
)->i_sem
);
577 page
= f2fs_init_inode_metadata(inode
, dir
, new_name
,
585 f2fs_wait_on_page_writeback(ipage
, NODE
, true, true);
587 name_hash
= f2fs_dentry_hash(new_name
, NULL
);
588 f2fs_update_dentry(ino
, mode
, &d
, new_name
, name_hash
, bit_pos
);
590 set_page_dirty(ipage
);
592 /* we don't need to mark_inode_dirty now */
594 f2fs_i_pino_write(inode
, dir
->i_ino
);
595 f2fs_put_page(page
, 1);
598 f2fs_update_parent_metadata(dir
, inode
, 0);
601 up_write(&F2FS_I(inode
)->i_sem
);
603 f2fs_put_page(ipage
, 1);
607 void f2fs_delete_inline_entry(struct f2fs_dir_entry
*dentry
, struct page
*page
,
608 struct inode
*dir
, struct inode
*inode
)
610 struct f2fs_dentry_ptr d
;
612 int slots
= GET_DENTRY_SLOTS(le16_to_cpu(dentry
->name_len
));
613 unsigned int bit_pos
;
617 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
619 inline_dentry
= inline_data_addr(dir
, page
);
620 make_dentry_ptr_inline(dir
, &d
, inline_dentry
);
622 bit_pos
= dentry
- d
.dentry
;
623 for (i
= 0; i
< slots
; i
++)
624 __clear_bit_le(bit_pos
+ i
, d
.bitmap
);
626 set_page_dirty(page
);
627 f2fs_put_page(page
, 1);
629 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
630 f2fs_mark_inode_dirty_sync(dir
, false);
633 f2fs_drop_nlink(dir
, inode
);
636 bool f2fs_empty_inline_dir(struct inode
*dir
)
638 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dir
);
640 unsigned int bit_pos
= 2;
642 struct f2fs_dentry_ptr d
;
644 ipage
= f2fs_get_node_page(sbi
, dir
->i_ino
);
648 inline_dentry
= inline_data_addr(dir
, ipage
);
649 make_dentry_ptr_inline(dir
, &d
, inline_dentry
);
651 bit_pos
= find_next_bit_le(d
.bitmap
, d
.max
, bit_pos
);
653 f2fs_put_page(ipage
, 1);
661 int f2fs_read_inline_dir(struct file
*file
, struct dir_context
*ctx
,
662 struct fscrypt_str
*fstr
)
664 struct inode
*inode
= file_inode(file
);
665 struct page
*ipage
= NULL
;
666 struct f2fs_dentry_ptr d
;
667 void *inline_dentry
= NULL
;
670 make_dentry_ptr_inline(inode
, &d
, inline_dentry
);
672 if (ctx
->pos
== d
.max
)
675 ipage
= f2fs_get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
677 return PTR_ERR(ipage
);
680 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access
681 * ipage without page's lock held.
685 inline_dentry
= inline_data_addr(inode
, ipage
);
687 make_dentry_ptr_inline(inode
, &d
, inline_dentry
);
689 err
= f2fs_fill_dentries(ctx
, &d
, 0, fstr
);
693 f2fs_put_page(ipage
, 0);
694 return err
< 0 ? err
: 0;
697 int f2fs_inline_data_fiemap(struct inode
*inode
,
698 struct fiemap_extent_info
*fieinfo
, __u64 start
, __u64 len
)
700 __u64 byteaddr
, ilen
;
701 __u32 flags
= FIEMAP_EXTENT_DATA_INLINE
| FIEMAP_EXTENT_NOT_ALIGNED
|
707 ipage
= f2fs_get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
709 return PTR_ERR(ipage
);
711 if (!f2fs_has_inline_data(inode
)) {
716 ilen
= min_t(size_t, MAX_INLINE_DATA(inode
), i_size_read(inode
));
719 if (start
+ len
< ilen
)
723 err
= f2fs_get_node_info(F2FS_I_SB(inode
), inode
->i_ino
, &ni
);
727 byteaddr
= (__u64
)ni
.blk_addr
<< inode
->i_sb
->s_blocksize_bits
;
728 byteaddr
+= (char *)inline_data_addr(inode
, ipage
) -
729 (char *)F2FS_INODE(ipage
);
730 err
= fiemap_fill_next_extent(fieinfo
, start
, byteaddr
, ilen
, flags
);
732 f2fs_put_page(ipage
, 1);