Linux 5.2
[linux-2.6/linux-2.6-arm.git] / fs / io_uring.c
blob4ef62a45045d3da7b5f4a255242584ed9cfb9655
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
50 #include <linux/sched/signal.h>
51 #include <linux/fs.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
74 #include <uapi/linux/io_uring.h>
76 #include "internal.h"
78 #define IORING_MAX_ENTRIES 4096
79 #define IORING_MAX_FIXED_FILES 1024
81 struct io_uring {
82 u32 head ____cacheline_aligned_in_smp;
83 u32 tail ____cacheline_aligned_in_smp;
87 * This data is shared with the application through the mmap at offset
88 * IORING_OFF_SQ_RING.
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
93 struct io_sq_ring {
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
98 * The kernel controls head and the application controls tail.
100 struct io_uring r;
102 * Bitmask to apply to head and tail offsets (constant, equals
103 * ring_entries - 1)
105 u32 ring_mask;
106 /* Ring size (constant, power of 2) */
107 u32 ring_entries;
109 * Number of invalid entries dropped by the kernel due to
110 * invalid index stored in array
112 * Written by the kernel, shouldn't be modified by the
113 * application (i.e. get number of "new events" by comparing to
114 * cached value).
116 * After a new SQ head value was read by the application this
117 * counter includes all submissions that were dropped reaching
118 * the new SQ head (and possibly more).
120 u32 dropped;
122 * Runtime flags
124 * Written by the kernel, shouldn't be modified by the
125 * application.
127 * The application needs a full memory barrier before checking
128 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
130 u32 flags;
132 * Ring buffer of indices into array of io_uring_sqe, which is
133 * mmapped by the application using the IORING_OFF_SQES offset.
135 * This indirection could e.g. be used to assign fixed
136 * io_uring_sqe entries to operations and only submit them to
137 * the queue when needed.
139 * The kernel modifies neither the indices array nor the entries
140 * array.
142 u32 array[];
146 * This data is shared with the application through the mmap at offset
147 * IORING_OFF_CQ_RING.
149 * The offsets to the member fields are published through struct
150 * io_cqring_offsets when calling io_uring_setup.
152 struct io_cq_ring {
154 * Head and tail offsets into the ring; the offsets need to be
155 * masked to get valid indices.
157 * The application controls head and the kernel tail.
159 struct io_uring r;
161 * Bitmask to apply to head and tail offsets (constant, equals
162 * ring_entries - 1)
164 u32 ring_mask;
165 /* Ring size (constant, power of 2) */
166 u32 ring_entries;
168 * Number of completion events lost because the queue was full;
169 * this should be avoided by the application by making sure
170 * there are not more requests pending thatn there is space in
171 * the completion queue.
173 * Written by the kernel, shouldn't be modified by the
174 * application (i.e. get number of "new events" by comparing to
175 * cached value).
177 * As completion events come in out of order this counter is not
178 * ordered with any other data.
180 u32 overflow;
182 * Ring buffer of completion events.
184 * The kernel writes completion events fresh every time they are
185 * produced, so the application is allowed to modify pending
186 * entries.
188 struct io_uring_cqe cqes[];
191 struct io_mapped_ubuf {
192 u64 ubuf;
193 size_t len;
194 struct bio_vec *bvec;
195 unsigned int nr_bvecs;
198 struct async_list {
199 spinlock_t lock;
200 atomic_t cnt;
201 struct list_head list;
203 struct file *file;
204 off_t io_end;
205 size_t io_pages;
208 struct io_ring_ctx {
209 struct {
210 struct percpu_ref refs;
211 } ____cacheline_aligned_in_smp;
213 struct {
214 unsigned int flags;
215 bool compat;
216 bool account_mem;
218 /* SQ ring */
219 struct io_sq_ring *sq_ring;
220 unsigned cached_sq_head;
221 unsigned sq_entries;
222 unsigned sq_mask;
223 unsigned sq_thread_idle;
224 struct io_uring_sqe *sq_sqes;
226 struct list_head defer_list;
227 } ____cacheline_aligned_in_smp;
229 /* IO offload */
230 struct workqueue_struct *sqo_wq;
231 struct task_struct *sqo_thread; /* if using sq thread polling */
232 struct mm_struct *sqo_mm;
233 wait_queue_head_t sqo_wait;
235 struct {
236 /* CQ ring */
237 struct io_cq_ring *cq_ring;
238 unsigned cached_cq_tail;
239 unsigned cq_entries;
240 unsigned cq_mask;
241 struct wait_queue_head cq_wait;
242 struct fasync_struct *cq_fasync;
243 struct eventfd_ctx *cq_ev_fd;
244 } ____cacheline_aligned_in_smp;
247 * If used, fixed file set. Writers must ensure that ->refs is dead,
248 * readers must ensure that ->refs is alive as long as the file* is
249 * used. Only updated through io_uring_register(2).
251 struct file **user_files;
252 unsigned nr_user_files;
254 /* if used, fixed mapped user buffers */
255 unsigned nr_user_bufs;
256 struct io_mapped_ubuf *user_bufs;
258 struct user_struct *user;
260 struct completion ctx_done;
262 struct {
263 struct mutex uring_lock;
264 wait_queue_head_t wait;
265 } ____cacheline_aligned_in_smp;
267 struct {
268 spinlock_t completion_lock;
269 bool poll_multi_file;
271 * ->poll_list is protected by the ctx->uring_lock for
272 * io_uring instances that don't use IORING_SETUP_SQPOLL.
273 * For SQPOLL, only the single threaded io_sq_thread() will
274 * manipulate the list, hence no extra locking is needed there.
276 struct list_head poll_list;
277 struct list_head cancel_list;
278 } ____cacheline_aligned_in_smp;
280 struct async_list pending_async[2];
282 #if defined(CONFIG_UNIX)
283 struct socket *ring_sock;
284 #endif
287 struct sqe_submit {
288 const struct io_uring_sqe *sqe;
289 unsigned short index;
290 bool has_user;
291 bool needs_lock;
292 bool needs_fixed_file;
296 * First field must be the file pointer in all the
297 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
299 struct io_poll_iocb {
300 struct file *file;
301 struct wait_queue_head *head;
302 __poll_t events;
303 bool done;
304 bool canceled;
305 struct wait_queue_entry wait;
309 * NOTE! Each of the iocb union members has the file pointer
310 * as the first entry in their struct definition. So you can
311 * access the file pointer through any of the sub-structs,
312 * or directly as just 'ki_filp' in this struct.
314 struct io_kiocb {
315 union {
316 struct file *file;
317 struct kiocb rw;
318 struct io_poll_iocb poll;
321 struct sqe_submit submit;
323 struct io_ring_ctx *ctx;
324 struct list_head list;
325 unsigned int flags;
326 refcount_t refs;
327 #define REQ_F_NOWAIT 1 /* must not punt to workers */
328 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
329 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
330 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
331 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
332 #define REQ_F_IO_DRAINED 32 /* drain done */
333 u64 user_data;
334 u32 error; /* iopoll result from callback */
335 u32 sequence;
337 struct work_struct work;
340 #define IO_PLUG_THRESHOLD 2
341 #define IO_IOPOLL_BATCH 8
343 struct io_submit_state {
344 struct blk_plug plug;
347 * io_kiocb alloc cache
349 void *reqs[IO_IOPOLL_BATCH];
350 unsigned int free_reqs;
351 unsigned int cur_req;
354 * File reference cache
356 struct file *file;
357 unsigned int fd;
358 unsigned int has_refs;
359 unsigned int used_refs;
360 unsigned int ios_left;
363 static void io_sq_wq_submit_work(struct work_struct *work);
365 static struct kmem_cache *req_cachep;
367 static const struct file_operations io_uring_fops;
369 struct sock *io_uring_get_socket(struct file *file)
371 #if defined(CONFIG_UNIX)
372 if (file->f_op == &io_uring_fops) {
373 struct io_ring_ctx *ctx = file->private_data;
375 return ctx->ring_sock->sk;
377 #endif
378 return NULL;
380 EXPORT_SYMBOL(io_uring_get_socket);
382 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
384 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
386 complete(&ctx->ctx_done);
389 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
391 struct io_ring_ctx *ctx;
392 int i;
394 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
395 if (!ctx)
396 return NULL;
398 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) {
399 kfree(ctx);
400 return NULL;
403 ctx->flags = p->flags;
404 init_waitqueue_head(&ctx->cq_wait);
405 init_completion(&ctx->ctx_done);
406 mutex_init(&ctx->uring_lock);
407 init_waitqueue_head(&ctx->wait);
408 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
409 spin_lock_init(&ctx->pending_async[i].lock);
410 INIT_LIST_HEAD(&ctx->pending_async[i].list);
411 atomic_set(&ctx->pending_async[i].cnt, 0);
413 spin_lock_init(&ctx->completion_lock);
414 INIT_LIST_HEAD(&ctx->poll_list);
415 INIT_LIST_HEAD(&ctx->cancel_list);
416 INIT_LIST_HEAD(&ctx->defer_list);
417 return ctx;
420 static inline bool io_sequence_defer(struct io_ring_ctx *ctx,
421 struct io_kiocb *req)
423 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN)
424 return false;
426 return req->sequence > ctx->cached_cq_tail + ctx->sq_ring->dropped;
429 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
431 struct io_kiocb *req;
433 if (list_empty(&ctx->defer_list))
434 return NULL;
436 req = list_first_entry(&ctx->defer_list, struct io_kiocb, list);
437 if (!io_sequence_defer(ctx, req)) {
438 list_del_init(&req->list);
439 return req;
442 return NULL;
445 static void __io_commit_cqring(struct io_ring_ctx *ctx)
447 struct io_cq_ring *ring = ctx->cq_ring;
449 if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
450 /* order cqe stores with ring update */
451 smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
453 if (wq_has_sleeper(&ctx->cq_wait)) {
454 wake_up_interruptible(&ctx->cq_wait);
455 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
460 static void io_commit_cqring(struct io_ring_ctx *ctx)
462 struct io_kiocb *req;
464 __io_commit_cqring(ctx);
466 while ((req = io_get_deferred_req(ctx)) != NULL) {
467 req->flags |= REQ_F_IO_DRAINED;
468 queue_work(ctx->sqo_wq, &req->work);
472 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
474 struct io_cq_ring *ring = ctx->cq_ring;
475 unsigned tail;
477 tail = ctx->cached_cq_tail;
479 * writes to the cq entry need to come after reading head; the
480 * control dependency is enough as we're using WRITE_ONCE to
481 * fill the cq entry
483 if (tail - READ_ONCE(ring->r.head) == ring->ring_entries)
484 return NULL;
486 ctx->cached_cq_tail++;
487 return &ring->cqes[tail & ctx->cq_mask];
490 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
491 long res)
493 struct io_uring_cqe *cqe;
496 * If we can't get a cq entry, userspace overflowed the
497 * submission (by quite a lot). Increment the overflow count in
498 * the ring.
500 cqe = io_get_cqring(ctx);
501 if (cqe) {
502 WRITE_ONCE(cqe->user_data, ki_user_data);
503 WRITE_ONCE(cqe->res, res);
504 WRITE_ONCE(cqe->flags, 0);
505 } else {
506 unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
508 WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
512 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
514 if (waitqueue_active(&ctx->wait))
515 wake_up(&ctx->wait);
516 if (waitqueue_active(&ctx->sqo_wait))
517 wake_up(&ctx->sqo_wait);
518 if (ctx->cq_ev_fd)
519 eventfd_signal(ctx->cq_ev_fd, 1);
522 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
523 long res)
525 unsigned long flags;
527 spin_lock_irqsave(&ctx->completion_lock, flags);
528 io_cqring_fill_event(ctx, user_data, res);
529 io_commit_cqring(ctx);
530 spin_unlock_irqrestore(&ctx->completion_lock, flags);
532 io_cqring_ev_posted(ctx);
535 static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
537 percpu_ref_put_many(&ctx->refs, refs);
539 if (waitqueue_active(&ctx->wait))
540 wake_up(&ctx->wait);
543 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
544 struct io_submit_state *state)
546 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
547 struct io_kiocb *req;
549 if (!percpu_ref_tryget(&ctx->refs))
550 return NULL;
552 if (!state) {
553 req = kmem_cache_alloc(req_cachep, gfp);
554 if (unlikely(!req))
555 goto out;
556 } else if (!state->free_reqs) {
557 size_t sz;
558 int ret;
560 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
561 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
564 * Bulk alloc is all-or-nothing. If we fail to get a batch,
565 * retry single alloc to be on the safe side.
567 if (unlikely(ret <= 0)) {
568 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
569 if (!state->reqs[0])
570 goto out;
571 ret = 1;
573 state->free_reqs = ret - 1;
574 state->cur_req = 1;
575 req = state->reqs[0];
576 } else {
577 req = state->reqs[state->cur_req];
578 state->free_reqs--;
579 state->cur_req++;
582 req->file = NULL;
583 req->ctx = ctx;
584 req->flags = 0;
585 /* one is dropped after submission, the other at completion */
586 refcount_set(&req->refs, 2);
587 return req;
588 out:
589 io_ring_drop_ctx_refs(ctx, 1);
590 return NULL;
593 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
595 if (*nr) {
596 kmem_cache_free_bulk(req_cachep, *nr, reqs);
597 io_ring_drop_ctx_refs(ctx, *nr);
598 *nr = 0;
602 static void io_free_req(struct io_kiocb *req)
604 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
605 fput(req->file);
606 io_ring_drop_ctx_refs(req->ctx, 1);
607 kmem_cache_free(req_cachep, req);
610 static void io_put_req(struct io_kiocb *req)
612 if (refcount_dec_and_test(&req->refs))
613 io_free_req(req);
617 * Find and free completed poll iocbs
619 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
620 struct list_head *done)
622 void *reqs[IO_IOPOLL_BATCH];
623 struct io_kiocb *req;
624 int to_free;
626 to_free = 0;
627 while (!list_empty(done)) {
628 req = list_first_entry(done, struct io_kiocb, list);
629 list_del(&req->list);
631 io_cqring_fill_event(ctx, req->user_data, req->error);
632 (*nr_events)++;
634 if (refcount_dec_and_test(&req->refs)) {
635 /* If we're not using fixed files, we have to pair the
636 * completion part with the file put. Use regular
637 * completions for those, only batch free for fixed
638 * file.
640 if (req->flags & REQ_F_FIXED_FILE) {
641 reqs[to_free++] = req;
642 if (to_free == ARRAY_SIZE(reqs))
643 io_free_req_many(ctx, reqs, &to_free);
644 } else {
645 io_free_req(req);
650 io_commit_cqring(ctx);
651 io_free_req_many(ctx, reqs, &to_free);
654 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
655 long min)
657 struct io_kiocb *req, *tmp;
658 LIST_HEAD(done);
659 bool spin;
660 int ret;
663 * Only spin for completions if we don't have multiple devices hanging
664 * off our complete list, and we're under the requested amount.
666 spin = !ctx->poll_multi_file && *nr_events < min;
668 ret = 0;
669 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
670 struct kiocb *kiocb = &req->rw;
673 * Move completed entries to our local list. If we find a
674 * request that requires polling, break out and complete
675 * the done list first, if we have entries there.
677 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
678 list_move_tail(&req->list, &done);
679 continue;
681 if (!list_empty(&done))
682 break;
684 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
685 if (ret < 0)
686 break;
688 if (ret && spin)
689 spin = false;
690 ret = 0;
693 if (!list_empty(&done))
694 io_iopoll_complete(ctx, nr_events, &done);
696 return ret;
700 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
701 * non-spinning poll check - we'll still enter the driver poll loop, but only
702 * as a non-spinning completion check.
704 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
705 long min)
707 while (!list_empty(&ctx->poll_list)) {
708 int ret;
710 ret = io_do_iopoll(ctx, nr_events, min);
711 if (ret < 0)
712 return ret;
713 if (!min || *nr_events >= min)
714 return 0;
717 return 1;
721 * We can't just wait for polled events to come to us, we have to actively
722 * find and complete them.
724 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
726 if (!(ctx->flags & IORING_SETUP_IOPOLL))
727 return;
729 mutex_lock(&ctx->uring_lock);
730 while (!list_empty(&ctx->poll_list)) {
731 unsigned int nr_events = 0;
733 io_iopoll_getevents(ctx, &nr_events, 1);
735 mutex_unlock(&ctx->uring_lock);
738 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
739 long min)
741 int ret = 0;
743 do {
744 int tmin = 0;
746 if (*nr_events < min)
747 tmin = min - *nr_events;
749 ret = io_iopoll_getevents(ctx, nr_events, tmin);
750 if (ret <= 0)
751 break;
752 ret = 0;
753 } while (min && !*nr_events && !need_resched());
755 return ret;
758 static void kiocb_end_write(struct kiocb *kiocb)
760 if (kiocb->ki_flags & IOCB_WRITE) {
761 struct inode *inode = file_inode(kiocb->ki_filp);
764 * Tell lockdep we inherited freeze protection from submission
765 * thread.
767 if (S_ISREG(inode->i_mode))
768 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
769 file_end_write(kiocb->ki_filp);
773 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
775 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
777 kiocb_end_write(kiocb);
779 io_cqring_add_event(req->ctx, req->user_data, res);
780 io_put_req(req);
783 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
785 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
787 kiocb_end_write(kiocb);
789 req->error = res;
790 if (res != -EAGAIN)
791 req->flags |= REQ_F_IOPOLL_COMPLETED;
795 * After the iocb has been issued, it's safe to be found on the poll list.
796 * Adding the kiocb to the list AFTER submission ensures that we don't
797 * find it from a io_iopoll_getevents() thread before the issuer is done
798 * accessing the kiocb cookie.
800 static void io_iopoll_req_issued(struct io_kiocb *req)
802 struct io_ring_ctx *ctx = req->ctx;
805 * Track whether we have multiple files in our lists. This will impact
806 * how we do polling eventually, not spinning if we're on potentially
807 * different devices.
809 if (list_empty(&ctx->poll_list)) {
810 ctx->poll_multi_file = false;
811 } else if (!ctx->poll_multi_file) {
812 struct io_kiocb *list_req;
814 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
815 list);
816 if (list_req->rw.ki_filp != req->rw.ki_filp)
817 ctx->poll_multi_file = true;
821 * For fast devices, IO may have already completed. If it has, add
822 * it to the front so we find it first.
824 if (req->flags & REQ_F_IOPOLL_COMPLETED)
825 list_add(&req->list, &ctx->poll_list);
826 else
827 list_add_tail(&req->list, &ctx->poll_list);
830 static void io_file_put(struct io_submit_state *state)
832 if (state->file) {
833 int diff = state->has_refs - state->used_refs;
835 if (diff)
836 fput_many(state->file, diff);
837 state->file = NULL;
842 * Get as many references to a file as we have IOs left in this submission,
843 * assuming most submissions are for one file, or at least that each file
844 * has more than one submission.
846 static struct file *io_file_get(struct io_submit_state *state, int fd)
848 if (!state)
849 return fget(fd);
851 if (state->file) {
852 if (state->fd == fd) {
853 state->used_refs++;
854 state->ios_left--;
855 return state->file;
857 io_file_put(state);
859 state->file = fget_many(fd, state->ios_left);
860 if (!state->file)
861 return NULL;
863 state->fd = fd;
864 state->has_refs = state->ios_left;
865 state->used_refs = 1;
866 state->ios_left--;
867 return state->file;
871 * If we tracked the file through the SCM inflight mechanism, we could support
872 * any file. For now, just ensure that anything potentially problematic is done
873 * inline.
875 static bool io_file_supports_async(struct file *file)
877 umode_t mode = file_inode(file)->i_mode;
879 if (S_ISBLK(mode) || S_ISCHR(mode))
880 return true;
881 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
882 return true;
884 return false;
887 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
888 bool force_nonblock)
890 const struct io_uring_sqe *sqe = s->sqe;
891 struct io_ring_ctx *ctx = req->ctx;
892 struct kiocb *kiocb = &req->rw;
893 unsigned ioprio;
894 int ret;
896 if (!req->file)
897 return -EBADF;
899 if (force_nonblock && !io_file_supports_async(req->file))
900 force_nonblock = false;
902 kiocb->ki_pos = READ_ONCE(sqe->off);
903 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
904 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
906 ioprio = READ_ONCE(sqe->ioprio);
907 if (ioprio) {
908 ret = ioprio_check_cap(ioprio);
909 if (ret)
910 return ret;
912 kiocb->ki_ioprio = ioprio;
913 } else
914 kiocb->ki_ioprio = get_current_ioprio();
916 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
917 if (unlikely(ret))
918 return ret;
920 /* don't allow async punt if RWF_NOWAIT was requested */
921 if (kiocb->ki_flags & IOCB_NOWAIT)
922 req->flags |= REQ_F_NOWAIT;
924 if (force_nonblock)
925 kiocb->ki_flags |= IOCB_NOWAIT;
927 if (ctx->flags & IORING_SETUP_IOPOLL) {
928 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
929 !kiocb->ki_filp->f_op->iopoll)
930 return -EOPNOTSUPP;
932 req->error = 0;
933 kiocb->ki_flags |= IOCB_HIPRI;
934 kiocb->ki_complete = io_complete_rw_iopoll;
935 } else {
936 if (kiocb->ki_flags & IOCB_HIPRI)
937 return -EINVAL;
938 kiocb->ki_complete = io_complete_rw;
940 return 0;
943 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
945 switch (ret) {
946 case -EIOCBQUEUED:
947 break;
948 case -ERESTARTSYS:
949 case -ERESTARTNOINTR:
950 case -ERESTARTNOHAND:
951 case -ERESTART_RESTARTBLOCK:
953 * We can't just restart the syscall, since previously
954 * submitted sqes may already be in progress. Just fail this
955 * IO with EINTR.
957 ret = -EINTR;
958 /* fall through */
959 default:
960 kiocb->ki_complete(kiocb, ret, 0);
964 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
965 const struct io_uring_sqe *sqe,
966 struct iov_iter *iter)
968 size_t len = READ_ONCE(sqe->len);
969 struct io_mapped_ubuf *imu;
970 unsigned index, buf_index;
971 size_t offset;
972 u64 buf_addr;
974 /* attempt to use fixed buffers without having provided iovecs */
975 if (unlikely(!ctx->user_bufs))
976 return -EFAULT;
978 buf_index = READ_ONCE(sqe->buf_index);
979 if (unlikely(buf_index >= ctx->nr_user_bufs))
980 return -EFAULT;
982 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
983 imu = &ctx->user_bufs[index];
984 buf_addr = READ_ONCE(sqe->addr);
986 /* overflow */
987 if (buf_addr + len < buf_addr)
988 return -EFAULT;
989 /* not inside the mapped region */
990 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
991 return -EFAULT;
994 * May not be a start of buffer, set size appropriately
995 * and advance us to the beginning.
997 offset = buf_addr - imu->ubuf;
998 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
999 if (offset)
1000 iov_iter_advance(iter, offset);
1002 /* don't drop a reference to these pages */
1003 iter->type |= ITER_BVEC_FLAG_NO_REF;
1004 return 0;
1007 static int io_import_iovec(struct io_ring_ctx *ctx, int rw,
1008 const struct sqe_submit *s, struct iovec **iovec,
1009 struct iov_iter *iter)
1011 const struct io_uring_sqe *sqe = s->sqe;
1012 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1013 size_t sqe_len = READ_ONCE(sqe->len);
1014 u8 opcode;
1017 * We're reading ->opcode for the second time, but the first read
1018 * doesn't care whether it's _FIXED or not, so it doesn't matter
1019 * whether ->opcode changes concurrently. The first read does care
1020 * about whether it is a READ or a WRITE, so we don't trust this read
1021 * for that purpose and instead let the caller pass in the read/write
1022 * flag.
1024 opcode = READ_ONCE(sqe->opcode);
1025 if (opcode == IORING_OP_READ_FIXED ||
1026 opcode == IORING_OP_WRITE_FIXED) {
1027 int ret = io_import_fixed(ctx, rw, sqe, iter);
1028 *iovec = NULL;
1029 return ret;
1032 if (!s->has_user)
1033 return -EFAULT;
1035 #ifdef CONFIG_COMPAT
1036 if (ctx->compat)
1037 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1038 iovec, iter);
1039 #endif
1041 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1045 * Make a note of the last file/offset/direction we punted to async
1046 * context. We'll use this information to see if we can piggy back a
1047 * sequential request onto the previous one, if it's still hasn't been
1048 * completed by the async worker.
1050 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1052 struct async_list *async_list = &req->ctx->pending_async[rw];
1053 struct kiocb *kiocb = &req->rw;
1054 struct file *filp = kiocb->ki_filp;
1055 off_t io_end = kiocb->ki_pos + len;
1057 if (filp == async_list->file && kiocb->ki_pos == async_list->io_end) {
1058 unsigned long max_pages;
1060 /* Use 8x RA size as a decent limiter for both reads/writes */
1061 max_pages = filp->f_ra.ra_pages;
1062 if (!max_pages)
1063 max_pages = VM_READAHEAD_PAGES;
1064 max_pages *= 8;
1066 /* If max pages are exceeded, reset the state */
1067 len >>= PAGE_SHIFT;
1068 if (async_list->io_pages + len <= max_pages) {
1069 req->flags |= REQ_F_SEQ_PREV;
1070 async_list->io_pages += len;
1071 } else {
1072 io_end = 0;
1073 async_list->io_pages = 0;
1077 /* New file? Reset state. */
1078 if (async_list->file != filp) {
1079 async_list->io_pages = 0;
1080 async_list->file = filp;
1082 async_list->io_end = io_end;
1085 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1086 bool force_nonblock)
1088 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1089 struct kiocb *kiocb = &req->rw;
1090 struct iov_iter iter;
1091 struct file *file;
1092 size_t iov_count;
1093 int ret;
1095 ret = io_prep_rw(req, s, force_nonblock);
1096 if (ret)
1097 return ret;
1098 file = kiocb->ki_filp;
1100 if (unlikely(!(file->f_mode & FMODE_READ)))
1101 return -EBADF;
1102 if (unlikely(!file->f_op->read_iter))
1103 return -EINVAL;
1105 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1106 if (ret)
1107 return ret;
1109 iov_count = iov_iter_count(&iter);
1110 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1111 if (!ret) {
1112 ssize_t ret2;
1114 /* Catch -EAGAIN return for forced non-blocking submission */
1115 ret2 = call_read_iter(file, kiocb, &iter);
1116 if (!force_nonblock || ret2 != -EAGAIN) {
1117 io_rw_done(kiocb, ret2);
1118 } else {
1120 * If ->needs_lock is true, we're already in async
1121 * context.
1123 if (!s->needs_lock)
1124 io_async_list_note(READ, req, iov_count);
1125 ret = -EAGAIN;
1128 kfree(iovec);
1129 return ret;
1132 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1133 bool force_nonblock)
1135 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1136 struct kiocb *kiocb = &req->rw;
1137 struct iov_iter iter;
1138 struct file *file;
1139 size_t iov_count;
1140 int ret;
1142 ret = io_prep_rw(req, s, force_nonblock);
1143 if (ret)
1144 return ret;
1146 file = kiocb->ki_filp;
1147 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1148 return -EBADF;
1149 if (unlikely(!file->f_op->write_iter))
1150 return -EINVAL;
1152 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1153 if (ret)
1154 return ret;
1156 iov_count = iov_iter_count(&iter);
1158 ret = -EAGAIN;
1159 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1160 /* If ->needs_lock is true, we're already in async context. */
1161 if (!s->needs_lock)
1162 io_async_list_note(WRITE, req, iov_count);
1163 goto out_free;
1166 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1167 if (!ret) {
1168 ssize_t ret2;
1171 * Open-code file_start_write here to grab freeze protection,
1172 * which will be released by another thread in
1173 * io_complete_rw(). Fool lockdep by telling it the lock got
1174 * released so that it doesn't complain about the held lock when
1175 * we return to userspace.
1177 if (S_ISREG(file_inode(file)->i_mode)) {
1178 __sb_start_write(file_inode(file)->i_sb,
1179 SB_FREEZE_WRITE, true);
1180 __sb_writers_release(file_inode(file)->i_sb,
1181 SB_FREEZE_WRITE);
1183 kiocb->ki_flags |= IOCB_WRITE;
1185 ret2 = call_write_iter(file, kiocb, &iter);
1186 if (!force_nonblock || ret2 != -EAGAIN) {
1187 io_rw_done(kiocb, ret2);
1188 } else {
1190 * If ->needs_lock is true, we're already in async
1191 * context.
1193 if (!s->needs_lock)
1194 io_async_list_note(WRITE, req, iov_count);
1195 ret = -EAGAIN;
1198 out_free:
1199 kfree(iovec);
1200 return ret;
1204 * IORING_OP_NOP just posts a completion event, nothing else.
1206 static int io_nop(struct io_kiocb *req, u64 user_data)
1208 struct io_ring_ctx *ctx = req->ctx;
1209 long err = 0;
1211 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1212 return -EINVAL;
1214 io_cqring_add_event(ctx, user_data, err);
1215 io_put_req(req);
1216 return 0;
1219 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1221 struct io_ring_ctx *ctx = req->ctx;
1223 if (!req->file)
1224 return -EBADF;
1226 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1227 return -EINVAL;
1228 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1229 return -EINVAL;
1231 return 0;
1234 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1235 bool force_nonblock)
1237 loff_t sqe_off = READ_ONCE(sqe->off);
1238 loff_t sqe_len = READ_ONCE(sqe->len);
1239 loff_t end = sqe_off + sqe_len;
1240 unsigned fsync_flags;
1241 int ret;
1243 fsync_flags = READ_ONCE(sqe->fsync_flags);
1244 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1245 return -EINVAL;
1247 ret = io_prep_fsync(req, sqe);
1248 if (ret)
1249 return ret;
1251 /* fsync always requires a blocking context */
1252 if (force_nonblock)
1253 return -EAGAIN;
1255 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1256 end > 0 ? end : LLONG_MAX,
1257 fsync_flags & IORING_FSYNC_DATASYNC);
1259 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1260 io_put_req(req);
1261 return 0;
1264 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1266 struct io_ring_ctx *ctx = req->ctx;
1267 int ret = 0;
1269 if (!req->file)
1270 return -EBADF;
1272 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1273 return -EINVAL;
1274 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1275 return -EINVAL;
1277 return ret;
1280 static int io_sync_file_range(struct io_kiocb *req,
1281 const struct io_uring_sqe *sqe,
1282 bool force_nonblock)
1284 loff_t sqe_off;
1285 loff_t sqe_len;
1286 unsigned flags;
1287 int ret;
1289 ret = io_prep_sfr(req, sqe);
1290 if (ret)
1291 return ret;
1293 /* sync_file_range always requires a blocking context */
1294 if (force_nonblock)
1295 return -EAGAIN;
1297 sqe_off = READ_ONCE(sqe->off);
1298 sqe_len = READ_ONCE(sqe->len);
1299 flags = READ_ONCE(sqe->sync_range_flags);
1301 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1303 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1304 io_put_req(req);
1305 return 0;
1308 static void io_poll_remove_one(struct io_kiocb *req)
1310 struct io_poll_iocb *poll = &req->poll;
1312 spin_lock(&poll->head->lock);
1313 WRITE_ONCE(poll->canceled, true);
1314 if (!list_empty(&poll->wait.entry)) {
1315 list_del_init(&poll->wait.entry);
1316 queue_work(req->ctx->sqo_wq, &req->work);
1318 spin_unlock(&poll->head->lock);
1320 list_del_init(&req->list);
1323 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1325 struct io_kiocb *req;
1327 spin_lock_irq(&ctx->completion_lock);
1328 while (!list_empty(&ctx->cancel_list)) {
1329 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1330 io_poll_remove_one(req);
1332 spin_unlock_irq(&ctx->completion_lock);
1336 * Find a running poll command that matches one specified in sqe->addr,
1337 * and remove it if found.
1339 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1341 struct io_ring_ctx *ctx = req->ctx;
1342 struct io_kiocb *poll_req, *next;
1343 int ret = -ENOENT;
1345 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1346 return -EINVAL;
1347 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1348 sqe->poll_events)
1349 return -EINVAL;
1351 spin_lock_irq(&ctx->completion_lock);
1352 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1353 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1354 io_poll_remove_one(poll_req);
1355 ret = 0;
1356 break;
1359 spin_unlock_irq(&ctx->completion_lock);
1361 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1362 io_put_req(req);
1363 return 0;
1366 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1367 __poll_t mask)
1369 req->poll.done = true;
1370 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask));
1371 io_commit_cqring(ctx);
1374 static void io_poll_complete_work(struct work_struct *work)
1376 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1377 struct io_poll_iocb *poll = &req->poll;
1378 struct poll_table_struct pt = { ._key = poll->events };
1379 struct io_ring_ctx *ctx = req->ctx;
1380 __poll_t mask = 0;
1382 if (!READ_ONCE(poll->canceled))
1383 mask = vfs_poll(poll->file, &pt) & poll->events;
1386 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1387 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1388 * synchronize with them. In the cancellation case the list_del_init
1389 * itself is not actually needed, but harmless so we keep it in to
1390 * avoid further branches in the fast path.
1392 spin_lock_irq(&ctx->completion_lock);
1393 if (!mask && !READ_ONCE(poll->canceled)) {
1394 add_wait_queue(poll->head, &poll->wait);
1395 spin_unlock_irq(&ctx->completion_lock);
1396 return;
1398 list_del_init(&req->list);
1399 io_poll_complete(ctx, req, mask);
1400 spin_unlock_irq(&ctx->completion_lock);
1402 io_cqring_ev_posted(ctx);
1403 io_put_req(req);
1406 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1407 void *key)
1409 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1410 wait);
1411 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1412 struct io_ring_ctx *ctx = req->ctx;
1413 __poll_t mask = key_to_poll(key);
1414 unsigned long flags;
1416 /* for instances that support it check for an event match first: */
1417 if (mask && !(mask & poll->events))
1418 return 0;
1420 list_del_init(&poll->wait.entry);
1422 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1423 list_del(&req->list);
1424 io_poll_complete(ctx, req, mask);
1425 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1427 io_cqring_ev_posted(ctx);
1428 io_put_req(req);
1429 } else {
1430 queue_work(ctx->sqo_wq, &req->work);
1433 return 1;
1436 struct io_poll_table {
1437 struct poll_table_struct pt;
1438 struct io_kiocb *req;
1439 int error;
1442 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1443 struct poll_table_struct *p)
1445 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1447 if (unlikely(pt->req->poll.head)) {
1448 pt->error = -EINVAL;
1449 return;
1452 pt->error = 0;
1453 pt->req->poll.head = head;
1454 add_wait_queue(head, &pt->req->poll.wait);
1457 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1459 struct io_poll_iocb *poll = &req->poll;
1460 struct io_ring_ctx *ctx = req->ctx;
1461 struct io_poll_table ipt;
1462 bool cancel = false;
1463 __poll_t mask;
1464 u16 events;
1466 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1467 return -EINVAL;
1468 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1469 return -EINVAL;
1470 if (!poll->file)
1471 return -EBADF;
1473 INIT_WORK(&req->work, io_poll_complete_work);
1474 events = READ_ONCE(sqe->poll_events);
1475 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1477 poll->head = NULL;
1478 poll->done = false;
1479 poll->canceled = false;
1481 ipt.pt._qproc = io_poll_queue_proc;
1482 ipt.pt._key = poll->events;
1483 ipt.req = req;
1484 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1486 /* initialized the list so that we can do list_empty checks */
1487 INIT_LIST_HEAD(&poll->wait.entry);
1488 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1490 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1492 spin_lock_irq(&ctx->completion_lock);
1493 if (likely(poll->head)) {
1494 spin_lock(&poll->head->lock);
1495 if (unlikely(list_empty(&poll->wait.entry))) {
1496 if (ipt.error)
1497 cancel = true;
1498 ipt.error = 0;
1499 mask = 0;
1501 if (mask || ipt.error)
1502 list_del_init(&poll->wait.entry);
1503 else if (cancel)
1504 WRITE_ONCE(poll->canceled, true);
1505 else if (!poll->done) /* actually waiting for an event */
1506 list_add_tail(&req->list, &ctx->cancel_list);
1507 spin_unlock(&poll->head->lock);
1509 if (mask) { /* no async, we'd stolen it */
1510 ipt.error = 0;
1511 io_poll_complete(ctx, req, mask);
1513 spin_unlock_irq(&ctx->completion_lock);
1515 if (mask) {
1516 io_cqring_ev_posted(ctx);
1517 io_put_req(req);
1519 return ipt.error;
1522 static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req,
1523 const struct io_uring_sqe *sqe)
1525 struct io_uring_sqe *sqe_copy;
1527 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list))
1528 return 0;
1530 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1531 if (!sqe_copy)
1532 return -EAGAIN;
1534 spin_lock_irq(&ctx->completion_lock);
1535 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) {
1536 spin_unlock_irq(&ctx->completion_lock);
1537 kfree(sqe_copy);
1538 return 0;
1541 memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
1542 req->submit.sqe = sqe_copy;
1544 INIT_WORK(&req->work, io_sq_wq_submit_work);
1545 list_add_tail(&req->list, &ctx->defer_list);
1546 spin_unlock_irq(&ctx->completion_lock);
1547 return -EIOCBQUEUED;
1550 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1551 const struct sqe_submit *s, bool force_nonblock)
1553 int ret, opcode;
1555 if (unlikely(s->index >= ctx->sq_entries))
1556 return -EINVAL;
1557 req->user_data = READ_ONCE(s->sqe->user_data);
1559 opcode = READ_ONCE(s->sqe->opcode);
1560 switch (opcode) {
1561 case IORING_OP_NOP:
1562 ret = io_nop(req, req->user_data);
1563 break;
1564 case IORING_OP_READV:
1565 if (unlikely(s->sqe->buf_index))
1566 return -EINVAL;
1567 ret = io_read(req, s, force_nonblock);
1568 break;
1569 case IORING_OP_WRITEV:
1570 if (unlikely(s->sqe->buf_index))
1571 return -EINVAL;
1572 ret = io_write(req, s, force_nonblock);
1573 break;
1574 case IORING_OP_READ_FIXED:
1575 ret = io_read(req, s, force_nonblock);
1576 break;
1577 case IORING_OP_WRITE_FIXED:
1578 ret = io_write(req, s, force_nonblock);
1579 break;
1580 case IORING_OP_FSYNC:
1581 ret = io_fsync(req, s->sqe, force_nonblock);
1582 break;
1583 case IORING_OP_POLL_ADD:
1584 ret = io_poll_add(req, s->sqe);
1585 break;
1586 case IORING_OP_POLL_REMOVE:
1587 ret = io_poll_remove(req, s->sqe);
1588 break;
1589 case IORING_OP_SYNC_FILE_RANGE:
1590 ret = io_sync_file_range(req, s->sqe, force_nonblock);
1591 break;
1592 default:
1593 ret = -EINVAL;
1594 break;
1597 if (ret)
1598 return ret;
1600 if (ctx->flags & IORING_SETUP_IOPOLL) {
1601 if (req->error == -EAGAIN)
1602 return -EAGAIN;
1604 /* workqueue context doesn't hold uring_lock, grab it now */
1605 if (s->needs_lock)
1606 mutex_lock(&ctx->uring_lock);
1607 io_iopoll_req_issued(req);
1608 if (s->needs_lock)
1609 mutex_unlock(&ctx->uring_lock);
1612 return 0;
1615 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
1616 const struct io_uring_sqe *sqe)
1618 switch (sqe->opcode) {
1619 case IORING_OP_READV:
1620 case IORING_OP_READ_FIXED:
1621 return &ctx->pending_async[READ];
1622 case IORING_OP_WRITEV:
1623 case IORING_OP_WRITE_FIXED:
1624 return &ctx->pending_async[WRITE];
1625 default:
1626 return NULL;
1630 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
1632 u8 opcode = READ_ONCE(sqe->opcode);
1634 return !(opcode == IORING_OP_READ_FIXED ||
1635 opcode == IORING_OP_WRITE_FIXED);
1638 static void io_sq_wq_submit_work(struct work_struct *work)
1640 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1641 struct io_ring_ctx *ctx = req->ctx;
1642 struct mm_struct *cur_mm = NULL;
1643 struct async_list *async_list;
1644 LIST_HEAD(req_list);
1645 mm_segment_t old_fs;
1646 int ret;
1648 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
1649 restart:
1650 do {
1651 struct sqe_submit *s = &req->submit;
1652 const struct io_uring_sqe *sqe = s->sqe;
1654 /* Ensure we clear previously set non-block flag */
1655 req->rw.ki_flags &= ~IOCB_NOWAIT;
1657 ret = 0;
1658 if (io_sqe_needs_user(sqe) && !cur_mm) {
1659 if (!mmget_not_zero(ctx->sqo_mm)) {
1660 ret = -EFAULT;
1661 } else {
1662 cur_mm = ctx->sqo_mm;
1663 use_mm(cur_mm);
1664 old_fs = get_fs();
1665 set_fs(USER_DS);
1669 if (!ret) {
1670 s->has_user = cur_mm != NULL;
1671 s->needs_lock = true;
1672 do {
1673 ret = __io_submit_sqe(ctx, req, s, false);
1675 * We can get EAGAIN for polled IO even though
1676 * we're forcing a sync submission from here,
1677 * since we can't wait for request slots on the
1678 * block side.
1680 if (ret != -EAGAIN)
1681 break;
1682 cond_resched();
1683 } while (1);
1686 /* drop submission reference */
1687 io_put_req(req);
1689 if (ret) {
1690 io_cqring_add_event(ctx, sqe->user_data, ret);
1691 io_put_req(req);
1694 /* async context always use a copy of the sqe */
1695 kfree(sqe);
1697 if (!async_list)
1698 break;
1699 if (!list_empty(&req_list)) {
1700 req = list_first_entry(&req_list, struct io_kiocb,
1701 list);
1702 list_del(&req->list);
1703 continue;
1705 if (list_empty(&async_list->list))
1706 break;
1708 req = NULL;
1709 spin_lock(&async_list->lock);
1710 if (list_empty(&async_list->list)) {
1711 spin_unlock(&async_list->lock);
1712 break;
1714 list_splice_init(&async_list->list, &req_list);
1715 spin_unlock(&async_list->lock);
1717 req = list_first_entry(&req_list, struct io_kiocb, list);
1718 list_del(&req->list);
1719 } while (req);
1722 * Rare case of racing with a submitter. If we find the count has
1723 * dropped to zero AND we have pending work items, then restart
1724 * the processing. This is a tiny race window.
1726 if (async_list) {
1727 ret = atomic_dec_return(&async_list->cnt);
1728 while (!ret && !list_empty(&async_list->list)) {
1729 spin_lock(&async_list->lock);
1730 atomic_inc(&async_list->cnt);
1731 list_splice_init(&async_list->list, &req_list);
1732 spin_unlock(&async_list->lock);
1734 if (!list_empty(&req_list)) {
1735 req = list_first_entry(&req_list,
1736 struct io_kiocb, list);
1737 list_del(&req->list);
1738 goto restart;
1740 ret = atomic_dec_return(&async_list->cnt);
1744 if (cur_mm) {
1745 set_fs(old_fs);
1746 unuse_mm(cur_mm);
1747 mmput(cur_mm);
1752 * See if we can piggy back onto previously submitted work, that is still
1753 * running. We currently only allow this if the new request is sequential
1754 * to the previous one we punted.
1756 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
1758 bool ret = false;
1760 if (!list)
1761 return false;
1762 if (!(req->flags & REQ_F_SEQ_PREV))
1763 return false;
1764 if (!atomic_read(&list->cnt))
1765 return false;
1767 ret = true;
1768 spin_lock(&list->lock);
1769 list_add_tail(&req->list, &list->list);
1770 if (!atomic_read(&list->cnt)) {
1771 list_del_init(&req->list);
1772 ret = false;
1774 spin_unlock(&list->lock);
1775 return ret;
1778 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
1780 int op = READ_ONCE(sqe->opcode);
1782 switch (op) {
1783 case IORING_OP_NOP:
1784 case IORING_OP_POLL_REMOVE:
1785 return false;
1786 default:
1787 return true;
1791 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
1792 struct io_submit_state *state, struct io_kiocb *req)
1794 unsigned flags;
1795 int fd;
1797 flags = READ_ONCE(s->sqe->flags);
1798 fd = READ_ONCE(s->sqe->fd);
1800 if (flags & IOSQE_IO_DRAIN) {
1801 req->flags |= REQ_F_IO_DRAIN;
1802 req->sequence = ctx->cached_sq_head - 1;
1805 if (!io_op_needs_file(s->sqe))
1806 return 0;
1808 if (flags & IOSQE_FIXED_FILE) {
1809 if (unlikely(!ctx->user_files ||
1810 (unsigned) fd >= ctx->nr_user_files))
1811 return -EBADF;
1812 req->file = ctx->user_files[fd];
1813 req->flags |= REQ_F_FIXED_FILE;
1814 } else {
1815 if (s->needs_fixed_file)
1816 return -EBADF;
1817 req->file = io_file_get(state, fd);
1818 if (unlikely(!req->file))
1819 return -EBADF;
1822 return 0;
1825 static int io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
1826 struct io_submit_state *state)
1828 struct io_kiocb *req;
1829 int ret;
1831 /* enforce forwards compatibility on users */
1832 if (unlikely(s->sqe->flags & ~(IOSQE_FIXED_FILE | IOSQE_IO_DRAIN)))
1833 return -EINVAL;
1835 req = io_get_req(ctx, state);
1836 if (unlikely(!req))
1837 return -EAGAIN;
1839 ret = io_req_set_file(ctx, s, state, req);
1840 if (unlikely(ret))
1841 goto out;
1843 ret = io_req_defer(ctx, req, s->sqe);
1844 if (ret) {
1845 if (ret == -EIOCBQUEUED)
1846 ret = 0;
1847 return ret;
1850 ret = __io_submit_sqe(ctx, req, s, true);
1851 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
1852 struct io_uring_sqe *sqe_copy;
1854 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1855 if (sqe_copy) {
1856 struct async_list *list;
1858 memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
1859 s->sqe = sqe_copy;
1861 memcpy(&req->submit, s, sizeof(*s));
1862 list = io_async_list_from_sqe(ctx, s->sqe);
1863 if (!io_add_to_prev_work(list, req)) {
1864 if (list)
1865 atomic_inc(&list->cnt);
1866 INIT_WORK(&req->work, io_sq_wq_submit_work);
1867 queue_work(ctx->sqo_wq, &req->work);
1871 * Queued up for async execution, worker will release
1872 * submit reference when the iocb is actually
1873 * submitted.
1875 return 0;
1879 out:
1880 /* drop submission reference */
1881 io_put_req(req);
1883 /* and drop final reference, if we failed */
1884 if (ret)
1885 io_put_req(req);
1887 return ret;
1891 * Batched submission is done, ensure local IO is flushed out.
1893 static void io_submit_state_end(struct io_submit_state *state)
1895 blk_finish_plug(&state->plug);
1896 io_file_put(state);
1897 if (state->free_reqs)
1898 kmem_cache_free_bulk(req_cachep, state->free_reqs,
1899 &state->reqs[state->cur_req]);
1903 * Start submission side cache.
1905 static void io_submit_state_start(struct io_submit_state *state,
1906 struct io_ring_ctx *ctx, unsigned max_ios)
1908 blk_start_plug(&state->plug);
1909 state->free_reqs = 0;
1910 state->file = NULL;
1911 state->ios_left = max_ios;
1914 static void io_commit_sqring(struct io_ring_ctx *ctx)
1916 struct io_sq_ring *ring = ctx->sq_ring;
1918 if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
1920 * Ensure any loads from the SQEs are done at this point,
1921 * since once we write the new head, the application could
1922 * write new data to them.
1924 smp_store_release(&ring->r.head, ctx->cached_sq_head);
1929 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1930 * that is mapped by userspace. This means that care needs to be taken to
1931 * ensure that reads are stable, as we cannot rely on userspace always
1932 * being a good citizen. If members of the sqe are validated and then later
1933 * used, it's important that those reads are done through READ_ONCE() to
1934 * prevent a re-load down the line.
1936 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
1938 struct io_sq_ring *ring = ctx->sq_ring;
1939 unsigned head;
1942 * The cached sq head (or cq tail) serves two purposes:
1944 * 1) allows us to batch the cost of updating the user visible
1945 * head updates.
1946 * 2) allows the kernel side to track the head on its own, even
1947 * though the application is the one updating it.
1949 head = ctx->cached_sq_head;
1950 /* make sure SQ entry isn't read before tail */
1951 if (head == smp_load_acquire(&ring->r.tail))
1952 return false;
1954 head = READ_ONCE(ring->array[head & ctx->sq_mask]);
1955 if (head < ctx->sq_entries) {
1956 s->index = head;
1957 s->sqe = &ctx->sq_sqes[head];
1958 ctx->cached_sq_head++;
1959 return true;
1962 /* drop invalid entries */
1963 ctx->cached_sq_head++;
1964 ring->dropped++;
1965 return false;
1968 static int io_submit_sqes(struct io_ring_ctx *ctx, struct sqe_submit *sqes,
1969 unsigned int nr, bool has_user, bool mm_fault)
1971 struct io_submit_state state, *statep = NULL;
1972 int ret, i, submitted = 0;
1974 if (nr > IO_PLUG_THRESHOLD) {
1975 io_submit_state_start(&state, ctx, nr);
1976 statep = &state;
1979 for (i = 0; i < nr; i++) {
1980 if (unlikely(mm_fault)) {
1981 ret = -EFAULT;
1982 } else {
1983 sqes[i].has_user = has_user;
1984 sqes[i].needs_lock = true;
1985 sqes[i].needs_fixed_file = true;
1986 ret = io_submit_sqe(ctx, &sqes[i], statep);
1988 if (!ret) {
1989 submitted++;
1990 continue;
1993 io_cqring_add_event(ctx, sqes[i].sqe->user_data, ret);
1996 if (statep)
1997 io_submit_state_end(&state);
1999 return submitted;
2002 static int io_sq_thread(void *data)
2004 struct sqe_submit sqes[IO_IOPOLL_BATCH];
2005 struct io_ring_ctx *ctx = data;
2006 struct mm_struct *cur_mm = NULL;
2007 mm_segment_t old_fs;
2008 DEFINE_WAIT(wait);
2009 unsigned inflight;
2010 unsigned long timeout;
2012 old_fs = get_fs();
2013 set_fs(USER_DS);
2015 timeout = inflight = 0;
2016 while (!kthread_should_park()) {
2017 bool all_fixed, mm_fault = false;
2018 int i;
2020 if (inflight) {
2021 unsigned nr_events = 0;
2023 if (ctx->flags & IORING_SETUP_IOPOLL) {
2025 * We disallow the app entering submit/complete
2026 * with polling, but we still need to lock the
2027 * ring to prevent racing with polled issue
2028 * that got punted to a workqueue.
2030 mutex_lock(&ctx->uring_lock);
2031 io_iopoll_check(ctx, &nr_events, 0);
2032 mutex_unlock(&ctx->uring_lock);
2033 } else {
2035 * Normal IO, just pretend everything completed.
2036 * We don't have to poll completions for that.
2038 nr_events = inflight;
2041 inflight -= nr_events;
2042 if (!inflight)
2043 timeout = jiffies + ctx->sq_thread_idle;
2046 if (!io_get_sqring(ctx, &sqes[0])) {
2048 * We're polling. If we're within the defined idle
2049 * period, then let us spin without work before going
2050 * to sleep.
2052 if (inflight || !time_after(jiffies, timeout)) {
2053 cpu_relax();
2054 continue;
2058 * Drop cur_mm before scheduling, we can't hold it for
2059 * long periods (or over schedule()). Do this before
2060 * adding ourselves to the waitqueue, as the unuse/drop
2061 * may sleep.
2063 if (cur_mm) {
2064 unuse_mm(cur_mm);
2065 mmput(cur_mm);
2066 cur_mm = NULL;
2069 prepare_to_wait(&ctx->sqo_wait, &wait,
2070 TASK_INTERRUPTIBLE);
2072 /* Tell userspace we may need a wakeup call */
2073 ctx->sq_ring->flags |= IORING_SQ_NEED_WAKEUP;
2074 /* make sure to read SQ tail after writing flags */
2075 smp_mb();
2077 if (!io_get_sqring(ctx, &sqes[0])) {
2078 if (kthread_should_park()) {
2079 finish_wait(&ctx->sqo_wait, &wait);
2080 break;
2082 if (signal_pending(current))
2083 flush_signals(current);
2084 schedule();
2085 finish_wait(&ctx->sqo_wait, &wait);
2087 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
2088 continue;
2090 finish_wait(&ctx->sqo_wait, &wait);
2092 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
2095 i = 0;
2096 all_fixed = true;
2097 do {
2098 if (all_fixed && io_sqe_needs_user(sqes[i].sqe))
2099 all_fixed = false;
2101 i++;
2102 if (i == ARRAY_SIZE(sqes))
2103 break;
2104 } while (io_get_sqring(ctx, &sqes[i]));
2106 /* Unless all new commands are FIXED regions, grab mm */
2107 if (!all_fixed && !cur_mm) {
2108 mm_fault = !mmget_not_zero(ctx->sqo_mm);
2109 if (!mm_fault) {
2110 use_mm(ctx->sqo_mm);
2111 cur_mm = ctx->sqo_mm;
2115 inflight += io_submit_sqes(ctx, sqes, i, cur_mm != NULL,
2116 mm_fault);
2118 /* Commit SQ ring head once we've consumed all SQEs */
2119 io_commit_sqring(ctx);
2122 set_fs(old_fs);
2123 if (cur_mm) {
2124 unuse_mm(cur_mm);
2125 mmput(cur_mm);
2128 kthread_parkme();
2130 return 0;
2133 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2135 struct io_submit_state state, *statep = NULL;
2136 int i, submit = 0;
2138 if (to_submit > IO_PLUG_THRESHOLD) {
2139 io_submit_state_start(&state, ctx, to_submit);
2140 statep = &state;
2143 for (i = 0; i < to_submit; i++) {
2144 struct sqe_submit s;
2145 int ret;
2147 if (!io_get_sqring(ctx, &s))
2148 break;
2150 s.has_user = true;
2151 s.needs_lock = false;
2152 s.needs_fixed_file = false;
2153 submit++;
2155 ret = io_submit_sqe(ctx, &s, statep);
2156 if (ret)
2157 io_cqring_add_event(ctx, s.sqe->user_data, ret);
2159 io_commit_sqring(ctx);
2161 if (statep)
2162 io_submit_state_end(statep);
2164 return submit;
2167 static unsigned io_cqring_events(struct io_cq_ring *ring)
2169 /* See comment at the top of this file */
2170 smp_rmb();
2171 return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
2175 * Wait until events become available, if we don't already have some. The
2176 * application must reap them itself, as they reside on the shared cq ring.
2178 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2179 const sigset_t __user *sig, size_t sigsz)
2181 struct io_cq_ring *ring = ctx->cq_ring;
2182 sigset_t ksigmask, sigsaved;
2183 int ret;
2185 if (io_cqring_events(ring) >= min_events)
2186 return 0;
2188 if (sig) {
2189 #ifdef CONFIG_COMPAT
2190 if (in_compat_syscall())
2191 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2192 &ksigmask, &sigsaved, sigsz);
2193 else
2194 #endif
2195 ret = set_user_sigmask(sig, &ksigmask,
2196 &sigsaved, sigsz);
2198 if (ret)
2199 return ret;
2202 ret = wait_event_interruptible(ctx->wait, io_cqring_events(ring) >= min_events);
2204 if (sig)
2205 restore_user_sigmask(sig, &sigsaved, ret == -ERESTARTSYS);
2207 if (ret == -ERESTARTSYS)
2208 ret = -EINTR;
2210 return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
2213 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2215 #if defined(CONFIG_UNIX)
2216 if (ctx->ring_sock) {
2217 struct sock *sock = ctx->ring_sock->sk;
2218 struct sk_buff *skb;
2220 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2221 kfree_skb(skb);
2223 #else
2224 int i;
2226 for (i = 0; i < ctx->nr_user_files; i++)
2227 fput(ctx->user_files[i]);
2228 #endif
2231 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2233 if (!ctx->user_files)
2234 return -ENXIO;
2236 __io_sqe_files_unregister(ctx);
2237 kfree(ctx->user_files);
2238 ctx->user_files = NULL;
2239 ctx->nr_user_files = 0;
2240 return 0;
2243 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2245 if (ctx->sqo_thread) {
2247 * The park is a bit of a work-around, without it we get
2248 * warning spews on shutdown with SQPOLL set and affinity
2249 * set to a single CPU.
2251 kthread_park(ctx->sqo_thread);
2252 kthread_stop(ctx->sqo_thread);
2253 ctx->sqo_thread = NULL;
2257 static void io_finish_async(struct io_ring_ctx *ctx)
2259 io_sq_thread_stop(ctx);
2261 if (ctx->sqo_wq) {
2262 destroy_workqueue(ctx->sqo_wq);
2263 ctx->sqo_wq = NULL;
2267 #if defined(CONFIG_UNIX)
2268 static void io_destruct_skb(struct sk_buff *skb)
2270 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2272 io_finish_async(ctx);
2273 unix_destruct_scm(skb);
2277 * Ensure the UNIX gc is aware of our file set, so we are certain that
2278 * the io_uring can be safely unregistered on process exit, even if we have
2279 * loops in the file referencing.
2281 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
2283 struct sock *sk = ctx->ring_sock->sk;
2284 struct scm_fp_list *fpl;
2285 struct sk_buff *skb;
2286 int i;
2288 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
2289 unsigned long inflight = ctx->user->unix_inflight + nr;
2291 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
2292 return -EMFILE;
2295 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
2296 if (!fpl)
2297 return -ENOMEM;
2299 skb = alloc_skb(0, GFP_KERNEL);
2300 if (!skb) {
2301 kfree(fpl);
2302 return -ENOMEM;
2305 skb->sk = sk;
2306 skb->destructor = io_destruct_skb;
2308 fpl->user = get_uid(ctx->user);
2309 for (i = 0; i < nr; i++) {
2310 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
2311 unix_inflight(fpl->user, fpl->fp[i]);
2314 fpl->max = fpl->count = nr;
2315 UNIXCB(skb).fp = fpl;
2316 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2317 skb_queue_head(&sk->sk_receive_queue, skb);
2319 for (i = 0; i < nr; i++)
2320 fput(fpl->fp[i]);
2322 return 0;
2326 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2327 * causes regular reference counting to break down. We rely on the UNIX
2328 * garbage collection to take care of this problem for us.
2330 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2332 unsigned left, total;
2333 int ret = 0;
2335 total = 0;
2336 left = ctx->nr_user_files;
2337 while (left) {
2338 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
2340 ret = __io_sqe_files_scm(ctx, this_files, total);
2341 if (ret)
2342 break;
2343 left -= this_files;
2344 total += this_files;
2347 if (!ret)
2348 return 0;
2350 while (total < ctx->nr_user_files) {
2351 fput(ctx->user_files[total]);
2352 total++;
2355 return ret;
2357 #else
2358 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2360 return 0;
2362 #endif
2364 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
2365 unsigned nr_args)
2367 __s32 __user *fds = (__s32 __user *) arg;
2368 int fd, ret = 0;
2369 unsigned i;
2371 if (ctx->user_files)
2372 return -EBUSY;
2373 if (!nr_args)
2374 return -EINVAL;
2375 if (nr_args > IORING_MAX_FIXED_FILES)
2376 return -EMFILE;
2378 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
2379 if (!ctx->user_files)
2380 return -ENOMEM;
2382 for (i = 0; i < nr_args; i++) {
2383 ret = -EFAULT;
2384 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
2385 break;
2387 ctx->user_files[i] = fget(fd);
2389 ret = -EBADF;
2390 if (!ctx->user_files[i])
2391 break;
2393 * Don't allow io_uring instances to be registered. If UNIX
2394 * isn't enabled, then this causes a reference cycle and this
2395 * instance can never get freed. If UNIX is enabled we'll
2396 * handle it just fine, but there's still no point in allowing
2397 * a ring fd as it doesn't support regular read/write anyway.
2399 if (ctx->user_files[i]->f_op == &io_uring_fops) {
2400 fput(ctx->user_files[i]);
2401 break;
2403 ctx->nr_user_files++;
2404 ret = 0;
2407 if (ret) {
2408 for (i = 0; i < ctx->nr_user_files; i++)
2409 fput(ctx->user_files[i]);
2411 kfree(ctx->user_files);
2412 ctx->user_files = NULL;
2413 ctx->nr_user_files = 0;
2414 return ret;
2417 ret = io_sqe_files_scm(ctx);
2418 if (ret)
2419 io_sqe_files_unregister(ctx);
2421 return ret;
2424 static int io_sq_offload_start(struct io_ring_ctx *ctx,
2425 struct io_uring_params *p)
2427 int ret;
2429 init_waitqueue_head(&ctx->sqo_wait);
2430 mmgrab(current->mm);
2431 ctx->sqo_mm = current->mm;
2433 if (ctx->flags & IORING_SETUP_SQPOLL) {
2434 ret = -EPERM;
2435 if (!capable(CAP_SYS_ADMIN))
2436 goto err;
2438 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
2439 if (!ctx->sq_thread_idle)
2440 ctx->sq_thread_idle = HZ;
2442 if (p->flags & IORING_SETUP_SQ_AFF) {
2443 int cpu = p->sq_thread_cpu;
2445 ret = -EINVAL;
2446 if (cpu >= nr_cpu_ids)
2447 goto err;
2448 if (!cpu_online(cpu))
2449 goto err;
2451 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
2452 ctx, cpu,
2453 "io_uring-sq");
2454 } else {
2455 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
2456 "io_uring-sq");
2458 if (IS_ERR(ctx->sqo_thread)) {
2459 ret = PTR_ERR(ctx->sqo_thread);
2460 ctx->sqo_thread = NULL;
2461 goto err;
2463 wake_up_process(ctx->sqo_thread);
2464 } else if (p->flags & IORING_SETUP_SQ_AFF) {
2465 /* Can't have SQ_AFF without SQPOLL */
2466 ret = -EINVAL;
2467 goto err;
2470 /* Do QD, or 2 * CPUS, whatever is smallest */
2471 ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
2472 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
2473 if (!ctx->sqo_wq) {
2474 ret = -ENOMEM;
2475 goto err;
2478 return 0;
2479 err:
2480 io_sq_thread_stop(ctx);
2481 mmdrop(ctx->sqo_mm);
2482 ctx->sqo_mm = NULL;
2483 return ret;
2486 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
2488 atomic_long_sub(nr_pages, &user->locked_vm);
2491 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
2493 unsigned long page_limit, cur_pages, new_pages;
2495 /* Don't allow more pages than we can safely lock */
2496 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
2498 do {
2499 cur_pages = atomic_long_read(&user->locked_vm);
2500 new_pages = cur_pages + nr_pages;
2501 if (new_pages > page_limit)
2502 return -ENOMEM;
2503 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
2504 new_pages) != cur_pages);
2506 return 0;
2509 static void io_mem_free(void *ptr)
2511 struct page *page;
2513 if (!ptr)
2514 return;
2516 page = virt_to_head_page(ptr);
2517 if (put_page_testzero(page))
2518 free_compound_page(page);
2521 static void *io_mem_alloc(size_t size)
2523 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
2524 __GFP_NORETRY;
2526 return (void *) __get_free_pages(gfp_flags, get_order(size));
2529 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
2531 struct io_sq_ring *sq_ring;
2532 struct io_cq_ring *cq_ring;
2533 size_t bytes;
2535 bytes = struct_size(sq_ring, array, sq_entries);
2536 bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
2537 bytes += struct_size(cq_ring, cqes, cq_entries);
2539 return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
2542 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
2544 int i, j;
2546 if (!ctx->user_bufs)
2547 return -ENXIO;
2549 for (i = 0; i < ctx->nr_user_bufs; i++) {
2550 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2552 for (j = 0; j < imu->nr_bvecs; j++)
2553 put_page(imu->bvec[j].bv_page);
2555 if (ctx->account_mem)
2556 io_unaccount_mem(ctx->user, imu->nr_bvecs);
2557 kvfree(imu->bvec);
2558 imu->nr_bvecs = 0;
2561 kfree(ctx->user_bufs);
2562 ctx->user_bufs = NULL;
2563 ctx->nr_user_bufs = 0;
2564 return 0;
2567 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
2568 void __user *arg, unsigned index)
2570 struct iovec __user *src;
2572 #ifdef CONFIG_COMPAT
2573 if (ctx->compat) {
2574 struct compat_iovec __user *ciovs;
2575 struct compat_iovec ciov;
2577 ciovs = (struct compat_iovec __user *) arg;
2578 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
2579 return -EFAULT;
2581 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
2582 dst->iov_len = ciov.iov_len;
2583 return 0;
2585 #endif
2586 src = (struct iovec __user *) arg;
2587 if (copy_from_user(dst, &src[index], sizeof(*dst)))
2588 return -EFAULT;
2589 return 0;
2592 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
2593 unsigned nr_args)
2595 struct vm_area_struct **vmas = NULL;
2596 struct page **pages = NULL;
2597 int i, j, got_pages = 0;
2598 int ret = -EINVAL;
2600 if (ctx->user_bufs)
2601 return -EBUSY;
2602 if (!nr_args || nr_args > UIO_MAXIOV)
2603 return -EINVAL;
2605 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
2606 GFP_KERNEL);
2607 if (!ctx->user_bufs)
2608 return -ENOMEM;
2610 for (i = 0; i < nr_args; i++) {
2611 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2612 unsigned long off, start, end, ubuf;
2613 int pret, nr_pages;
2614 struct iovec iov;
2615 size_t size;
2617 ret = io_copy_iov(ctx, &iov, arg, i);
2618 if (ret)
2619 goto err;
2622 * Don't impose further limits on the size and buffer
2623 * constraints here, we'll -EINVAL later when IO is
2624 * submitted if they are wrong.
2626 ret = -EFAULT;
2627 if (!iov.iov_base || !iov.iov_len)
2628 goto err;
2630 /* arbitrary limit, but we need something */
2631 if (iov.iov_len > SZ_1G)
2632 goto err;
2634 ubuf = (unsigned long) iov.iov_base;
2635 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2636 start = ubuf >> PAGE_SHIFT;
2637 nr_pages = end - start;
2639 if (ctx->account_mem) {
2640 ret = io_account_mem(ctx->user, nr_pages);
2641 if (ret)
2642 goto err;
2645 ret = 0;
2646 if (!pages || nr_pages > got_pages) {
2647 kfree(vmas);
2648 kfree(pages);
2649 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
2650 GFP_KERNEL);
2651 vmas = kvmalloc_array(nr_pages,
2652 sizeof(struct vm_area_struct *),
2653 GFP_KERNEL);
2654 if (!pages || !vmas) {
2655 ret = -ENOMEM;
2656 if (ctx->account_mem)
2657 io_unaccount_mem(ctx->user, nr_pages);
2658 goto err;
2660 got_pages = nr_pages;
2663 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
2664 GFP_KERNEL);
2665 ret = -ENOMEM;
2666 if (!imu->bvec) {
2667 if (ctx->account_mem)
2668 io_unaccount_mem(ctx->user, nr_pages);
2669 goto err;
2672 ret = 0;
2673 down_read(&current->mm->mmap_sem);
2674 pret = get_user_pages(ubuf, nr_pages,
2675 FOLL_WRITE | FOLL_LONGTERM,
2676 pages, vmas);
2677 if (pret == nr_pages) {
2678 /* don't support file backed memory */
2679 for (j = 0; j < nr_pages; j++) {
2680 struct vm_area_struct *vma = vmas[j];
2682 if (vma->vm_file &&
2683 !is_file_hugepages(vma->vm_file)) {
2684 ret = -EOPNOTSUPP;
2685 break;
2688 } else {
2689 ret = pret < 0 ? pret : -EFAULT;
2691 up_read(&current->mm->mmap_sem);
2692 if (ret) {
2694 * if we did partial map, or found file backed vmas,
2695 * release any pages we did get
2697 if (pret > 0) {
2698 for (j = 0; j < pret; j++)
2699 put_page(pages[j]);
2701 if (ctx->account_mem)
2702 io_unaccount_mem(ctx->user, nr_pages);
2703 kvfree(imu->bvec);
2704 goto err;
2707 off = ubuf & ~PAGE_MASK;
2708 size = iov.iov_len;
2709 for (j = 0; j < nr_pages; j++) {
2710 size_t vec_len;
2712 vec_len = min_t(size_t, size, PAGE_SIZE - off);
2713 imu->bvec[j].bv_page = pages[j];
2714 imu->bvec[j].bv_len = vec_len;
2715 imu->bvec[j].bv_offset = off;
2716 off = 0;
2717 size -= vec_len;
2719 /* store original address for later verification */
2720 imu->ubuf = ubuf;
2721 imu->len = iov.iov_len;
2722 imu->nr_bvecs = nr_pages;
2724 ctx->nr_user_bufs++;
2726 kvfree(pages);
2727 kvfree(vmas);
2728 return 0;
2729 err:
2730 kvfree(pages);
2731 kvfree(vmas);
2732 io_sqe_buffer_unregister(ctx);
2733 return ret;
2736 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
2738 __s32 __user *fds = arg;
2739 int fd;
2741 if (ctx->cq_ev_fd)
2742 return -EBUSY;
2744 if (copy_from_user(&fd, fds, sizeof(*fds)))
2745 return -EFAULT;
2747 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
2748 if (IS_ERR(ctx->cq_ev_fd)) {
2749 int ret = PTR_ERR(ctx->cq_ev_fd);
2750 ctx->cq_ev_fd = NULL;
2751 return ret;
2754 return 0;
2757 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2759 if (ctx->cq_ev_fd) {
2760 eventfd_ctx_put(ctx->cq_ev_fd);
2761 ctx->cq_ev_fd = NULL;
2762 return 0;
2765 return -ENXIO;
2768 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
2770 io_finish_async(ctx);
2771 if (ctx->sqo_mm)
2772 mmdrop(ctx->sqo_mm);
2774 io_iopoll_reap_events(ctx);
2775 io_sqe_buffer_unregister(ctx);
2776 io_sqe_files_unregister(ctx);
2777 io_eventfd_unregister(ctx);
2779 #if defined(CONFIG_UNIX)
2780 if (ctx->ring_sock) {
2781 ctx->ring_sock->file = NULL; /* so that iput() is called */
2782 sock_release(ctx->ring_sock);
2784 #endif
2786 io_mem_free(ctx->sq_ring);
2787 io_mem_free(ctx->sq_sqes);
2788 io_mem_free(ctx->cq_ring);
2790 percpu_ref_exit(&ctx->refs);
2791 if (ctx->account_mem)
2792 io_unaccount_mem(ctx->user,
2793 ring_pages(ctx->sq_entries, ctx->cq_entries));
2794 free_uid(ctx->user);
2795 kfree(ctx);
2798 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2800 struct io_ring_ctx *ctx = file->private_data;
2801 __poll_t mask = 0;
2803 poll_wait(file, &ctx->cq_wait, wait);
2805 * synchronizes with barrier from wq_has_sleeper call in
2806 * io_commit_cqring
2808 smp_rmb();
2809 if (READ_ONCE(ctx->sq_ring->r.tail) - ctx->cached_sq_head !=
2810 ctx->sq_ring->ring_entries)
2811 mask |= EPOLLOUT | EPOLLWRNORM;
2812 if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
2813 mask |= EPOLLIN | EPOLLRDNORM;
2815 return mask;
2818 static int io_uring_fasync(int fd, struct file *file, int on)
2820 struct io_ring_ctx *ctx = file->private_data;
2822 return fasync_helper(fd, file, on, &ctx->cq_fasync);
2825 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2827 mutex_lock(&ctx->uring_lock);
2828 percpu_ref_kill(&ctx->refs);
2829 mutex_unlock(&ctx->uring_lock);
2831 io_poll_remove_all(ctx);
2832 io_iopoll_reap_events(ctx);
2833 wait_for_completion(&ctx->ctx_done);
2834 io_ring_ctx_free(ctx);
2837 static int io_uring_release(struct inode *inode, struct file *file)
2839 struct io_ring_ctx *ctx = file->private_data;
2841 file->private_data = NULL;
2842 io_ring_ctx_wait_and_kill(ctx);
2843 return 0;
2846 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2848 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
2849 unsigned long sz = vma->vm_end - vma->vm_start;
2850 struct io_ring_ctx *ctx = file->private_data;
2851 unsigned long pfn;
2852 struct page *page;
2853 void *ptr;
2855 switch (offset) {
2856 case IORING_OFF_SQ_RING:
2857 ptr = ctx->sq_ring;
2858 break;
2859 case IORING_OFF_SQES:
2860 ptr = ctx->sq_sqes;
2861 break;
2862 case IORING_OFF_CQ_RING:
2863 ptr = ctx->cq_ring;
2864 break;
2865 default:
2866 return -EINVAL;
2869 page = virt_to_head_page(ptr);
2870 if (sz > (PAGE_SIZE << compound_order(page)))
2871 return -EINVAL;
2873 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2874 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2877 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2878 u32, min_complete, u32, flags, const sigset_t __user *, sig,
2879 size_t, sigsz)
2881 struct io_ring_ctx *ctx;
2882 long ret = -EBADF;
2883 int submitted = 0;
2884 struct fd f;
2886 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
2887 return -EINVAL;
2889 f = fdget(fd);
2890 if (!f.file)
2891 return -EBADF;
2893 ret = -EOPNOTSUPP;
2894 if (f.file->f_op != &io_uring_fops)
2895 goto out_fput;
2897 ret = -ENXIO;
2898 ctx = f.file->private_data;
2899 if (!percpu_ref_tryget(&ctx->refs))
2900 goto out_fput;
2903 * For SQ polling, the thread will do all submissions and completions.
2904 * Just return the requested submit count, and wake the thread if
2905 * we were asked to.
2907 if (ctx->flags & IORING_SETUP_SQPOLL) {
2908 if (flags & IORING_ENTER_SQ_WAKEUP)
2909 wake_up(&ctx->sqo_wait);
2910 submitted = to_submit;
2911 goto out_ctx;
2914 ret = 0;
2915 if (to_submit) {
2916 to_submit = min(to_submit, ctx->sq_entries);
2918 mutex_lock(&ctx->uring_lock);
2919 submitted = io_ring_submit(ctx, to_submit);
2920 mutex_unlock(&ctx->uring_lock);
2922 if (flags & IORING_ENTER_GETEVENTS) {
2923 unsigned nr_events = 0;
2925 min_complete = min(min_complete, ctx->cq_entries);
2927 if (ctx->flags & IORING_SETUP_IOPOLL) {
2928 mutex_lock(&ctx->uring_lock);
2929 ret = io_iopoll_check(ctx, &nr_events, min_complete);
2930 mutex_unlock(&ctx->uring_lock);
2931 } else {
2932 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
2936 out_ctx:
2937 io_ring_drop_ctx_refs(ctx, 1);
2938 out_fput:
2939 fdput(f);
2940 return submitted ? submitted : ret;
2943 static const struct file_operations io_uring_fops = {
2944 .release = io_uring_release,
2945 .mmap = io_uring_mmap,
2946 .poll = io_uring_poll,
2947 .fasync = io_uring_fasync,
2950 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2951 struct io_uring_params *p)
2953 struct io_sq_ring *sq_ring;
2954 struct io_cq_ring *cq_ring;
2955 size_t size;
2957 sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
2958 if (!sq_ring)
2959 return -ENOMEM;
2961 ctx->sq_ring = sq_ring;
2962 sq_ring->ring_mask = p->sq_entries - 1;
2963 sq_ring->ring_entries = p->sq_entries;
2964 ctx->sq_mask = sq_ring->ring_mask;
2965 ctx->sq_entries = sq_ring->ring_entries;
2967 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
2968 if (size == SIZE_MAX)
2969 return -EOVERFLOW;
2971 ctx->sq_sqes = io_mem_alloc(size);
2972 if (!ctx->sq_sqes)
2973 return -ENOMEM;
2975 cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
2976 if (!cq_ring)
2977 return -ENOMEM;
2979 ctx->cq_ring = cq_ring;
2980 cq_ring->ring_mask = p->cq_entries - 1;
2981 cq_ring->ring_entries = p->cq_entries;
2982 ctx->cq_mask = cq_ring->ring_mask;
2983 ctx->cq_entries = cq_ring->ring_entries;
2984 return 0;
2988 * Allocate an anonymous fd, this is what constitutes the application
2989 * visible backing of an io_uring instance. The application mmaps this
2990 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2991 * we have to tie this fd to a socket for file garbage collection purposes.
2993 static int io_uring_get_fd(struct io_ring_ctx *ctx)
2995 struct file *file;
2996 int ret;
2998 #if defined(CONFIG_UNIX)
2999 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3000 &ctx->ring_sock);
3001 if (ret)
3002 return ret;
3003 #endif
3005 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3006 if (ret < 0)
3007 goto err;
3009 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
3010 O_RDWR | O_CLOEXEC);
3011 if (IS_ERR(file)) {
3012 put_unused_fd(ret);
3013 ret = PTR_ERR(file);
3014 goto err;
3017 #if defined(CONFIG_UNIX)
3018 ctx->ring_sock->file = file;
3019 ctx->ring_sock->sk->sk_user_data = ctx;
3020 #endif
3021 fd_install(ret, file);
3022 return ret;
3023 err:
3024 #if defined(CONFIG_UNIX)
3025 sock_release(ctx->ring_sock);
3026 ctx->ring_sock = NULL;
3027 #endif
3028 return ret;
3031 static int io_uring_create(unsigned entries, struct io_uring_params *p)
3033 struct user_struct *user = NULL;
3034 struct io_ring_ctx *ctx;
3035 bool account_mem;
3036 int ret;
3038 if (!entries || entries > IORING_MAX_ENTRIES)
3039 return -EINVAL;
3042 * Use twice as many entries for the CQ ring. It's possible for the
3043 * application to drive a higher depth than the size of the SQ ring,
3044 * since the sqes are only used at submission time. This allows for
3045 * some flexibility in overcommitting a bit.
3047 p->sq_entries = roundup_pow_of_two(entries);
3048 p->cq_entries = 2 * p->sq_entries;
3050 user = get_uid(current_user());
3051 account_mem = !capable(CAP_IPC_LOCK);
3053 if (account_mem) {
3054 ret = io_account_mem(user,
3055 ring_pages(p->sq_entries, p->cq_entries));
3056 if (ret) {
3057 free_uid(user);
3058 return ret;
3062 ctx = io_ring_ctx_alloc(p);
3063 if (!ctx) {
3064 if (account_mem)
3065 io_unaccount_mem(user, ring_pages(p->sq_entries,
3066 p->cq_entries));
3067 free_uid(user);
3068 return -ENOMEM;
3070 ctx->compat = in_compat_syscall();
3071 ctx->account_mem = account_mem;
3072 ctx->user = user;
3074 ret = io_allocate_scq_urings(ctx, p);
3075 if (ret)
3076 goto err;
3078 ret = io_sq_offload_start(ctx, p);
3079 if (ret)
3080 goto err;
3082 ret = io_uring_get_fd(ctx);
3083 if (ret < 0)
3084 goto err;
3086 memset(&p->sq_off, 0, sizeof(p->sq_off));
3087 p->sq_off.head = offsetof(struct io_sq_ring, r.head);
3088 p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
3089 p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
3090 p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
3091 p->sq_off.flags = offsetof(struct io_sq_ring, flags);
3092 p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
3093 p->sq_off.array = offsetof(struct io_sq_ring, array);
3095 memset(&p->cq_off, 0, sizeof(p->cq_off));
3096 p->cq_off.head = offsetof(struct io_cq_ring, r.head);
3097 p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
3098 p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
3099 p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
3100 p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
3101 p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
3102 return ret;
3103 err:
3104 io_ring_ctx_wait_and_kill(ctx);
3105 return ret;
3109 * Sets up an aio uring context, and returns the fd. Applications asks for a
3110 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3111 * params structure passed in.
3113 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3115 struct io_uring_params p;
3116 long ret;
3117 int i;
3119 if (copy_from_user(&p, params, sizeof(p)))
3120 return -EFAULT;
3121 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3122 if (p.resv[i])
3123 return -EINVAL;
3126 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3127 IORING_SETUP_SQ_AFF))
3128 return -EINVAL;
3130 ret = io_uring_create(entries, &p);
3131 if (ret < 0)
3132 return ret;
3134 if (copy_to_user(params, &p, sizeof(p)))
3135 return -EFAULT;
3137 return ret;
3140 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3141 struct io_uring_params __user *, params)
3143 return io_uring_setup(entries, params);
3146 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3147 void __user *arg, unsigned nr_args)
3148 __releases(ctx->uring_lock)
3149 __acquires(ctx->uring_lock)
3151 int ret;
3154 * We're inside the ring mutex, if the ref is already dying, then
3155 * someone else killed the ctx or is already going through
3156 * io_uring_register().
3158 if (percpu_ref_is_dying(&ctx->refs))
3159 return -ENXIO;
3161 percpu_ref_kill(&ctx->refs);
3164 * Drop uring mutex before waiting for references to exit. If another
3165 * thread is currently inside io_uring_enter() it might need to grab
3166 * the uring_lock to make progress. If we hold it here across the drain
3167 * wait, then we can deadlock. It's safe to drop the mutex here, since
3168 * no new references will come in after we've killed the percpu ref.
3170 mutex_unlock(&ctx->uring_lock);
3171 wait_for_completion(&ctx->ctx_done);
3172 mutex_lock(&ctx->uring_lock);
3174 switch (opcode) {
3175 case IORING_REGISTER_BUFFERS:
3176 ret = io_sqe_buffer_register(ctx, arg, nr_args);
3177 break;
3178 case IORING_UNREGISTER_BUFFERS:
3179 ret = -EINVAL;
3180 if (arg || nr_args)
3181 break;
3182 ret = io_sqe_buffer_unregister(ctx);
3183 break;
3184 case IORING_REGISTER_FILES:
3185 ret = io_sqe_files_register(ctx, arg, nr_args);
3186 break;
3187 case IORING_UNREGISTER_FILES:
3188 ret = -EINVAL;
3189 if (arg || nr_args)
3190 break;
3191 ret = io_sqe_files_unregister(ctx);
3192 break;
3193 case IORING_REGISTER_EVENTFD:
3194 ret = -EINVAL;
3195 if (nr_args != 1)
3196 break;
3197 ret = io_eventfd_register(ctx, arg);
3198 break;
3199 case IORING_UNREGISTER_EVENTFD:
3200 ret = -EINVAL;
3201 if (arg || nr_args)
3202 break;
3203 ret = io_eventfd_unregister(ctx);
3204 break;
3205 default:
3206 ret = -EINVAL;
3207 break;
3210 /* bring the ctx back to life */
3211 reinit_completion(&ctx->ctx_done);
3212 percpu_ref_reinit(&ctx->refs);
3213 return ret;
3216 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3217 void __user *, arg, unsigned int, nr_args)
3219 struct io_ring_ctx *ctx;
3220 long ret = -EBADF;
3221 struct fd f;
3223 f = fdget(fd);
3224 if (!f.file)
3225 return -EBADF;
3227 ret = -EOPNOTSUPP;
3228 if (f.file->f_op != &io_uring_fops)
3229 goto out_fput;
3231 ctx = f.file->private_data;
3233 mutex_lock(&ctx->uring_lock);
3234 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3235 mutex_unlock(&ctx->uring_lock);
3236 out_fput:
3237 fdput(f);
3238 return ret;
3241 static int __init io_uring_init(void)
3243 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3244 return 0;
3246 __initcall(io_uring_init);