1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 static DEFINE_SPINLOCK(ptype_lock
);
154 static DEFINE_SPINLOCK(offload_lock
);
155 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
156 struct list_head ptype_all __read_mostly
; /* Taps */
157 static struct list_head offload_base __read_mostly
;
159 static int netif_rx_internal(struct sk_buff
*skb
);
160 static int call_netdevice_notifiers_info(unsigned long val
,
161 struct netdev_notifier_info
*info
);
162 static int call_netdevice_notifiers_extack(unsigned long val
,
163 struct net_device
*dev
,
164 struct netlink_ext_ack
*extack
);
165 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
186 DEFINE_RWLOCK(dev_base_lock
);
187 EXPORT_SYMBOL(dev_base_lock
);
189 static DEFINE_MUTEX(ifalias_mutex
);
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock
);
194 static unsigned int napi_gen_id
= NR_CPUS
;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
197 static seqcount_t devnet_rename_seq
;
199 static inline void dev_base_seq_inc(struct net
*net
)
201 while (++net
->dev_base_seq
== 0)
205 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
207 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
209 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
212 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
214 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
217 static inline void rps_lock(struct softnet_data
*sd
)
220 spin_lock(&sd
->input_pkt_queue
.lock
);
224 static inline void rps_unlock(struct softnet_data
*sd
)
227 spin_unlock(&sd
->input_pkt_queue
.lock
);
231 /* Device list insertion */
232 static void list_netdevice(struct net_device
*dev
)
234 struct net
*net
= dev_net(dev
);
238 write_lock_bh(&dev_base_lock
);
239 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
240 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
241 hlist_add_head_rcu(&dev
->index_hlist
,
242 dev_index_hash(net
, dev
->ifindex
));
243 write_unlock_bh(&dev_base_lock
);
245 dev_base_seq_inc(net
);
248 /* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
251 static void unlist_netdevice(struct net_device
*dev
)
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock
);
257 list_del_rcu(&dev
->dev_list
);
258 hlist_del_rcu(&dev
->name_hlist
);
259 hlist_del_rcu(&dev
->index_hlist
);
260 write_unlock_bh(&dev_base_lock
);
262 dev_base_seq_inc(dev_net(dev
));
269 static RAW_NOTIFIER_HEAD(netdev_chain
);
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
277 EXPORT_PER_CPU_SYMBOL(softnet_data
);
279 #ifdef CONFIG_LOCKDEP
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
284 static const unsigned short netdev_lock_type
[] = {
285 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
286 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
287 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
288 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
289 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
290 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
291 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
292 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
293 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
294 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
295 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
296 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
297 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
298 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
299 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
301 static const char *const netdev_lock_name
[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
319 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
325 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
326 if (netdev_lock_type
[i
] == dev_type
)
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type
) - 1;
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
333 unsigned short dev_type
)
337 i
= netdev_lock_pos(dev_type
);
338 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
339 netdev_lock_name
[i
]);
342 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
346 i
= netdev_lock_pos(dev
->type
);
347 lockdep_set_class_and_name(&dev
->addr_list_lock
,
348 &netdev_addr_lock_key
[i
],
349 netdev_lock_name
[i
]);
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
353 unsigned short dev_type
)
356 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
361 /*******************************************************************************
363 * Protocol management and registration routines
365 *******************************************************************************/
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
384 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
386 if (pt
->type
== htons(ETH_P_ALL
))
387 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
389 return pt
->dev
? &pt
->dev
->ptype_specific
:
390 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
406 void dev_add_pack(struct packet_type
*pt
)
408 struct list_head
*head
= ptype_head(pt
);
410 spin_lock(&ptype_lock
);
411 list_add_rcu(&pt
->list
, head
);
412 spin_unlock(&ptype_lock
);
414 EXPORT_SYMBOL(dev_add_pack
);
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
429 void __dev_remove_pack(struct packet_type
*pt
)
431 struct list_head
*head
= ptype_head(pt
);
432 struct packet_type
*pt1
;
434 spin_lock(&ptype_lock
);
436 list_for_each_entry(pt1
, head
, list
) {
438 list_del_rcu(&pt
->list
);
443 pr_warn("dev_remove_pack: %p not found\n", pt
);
445 spin_unlock(&ptype_lock
);
447 EXPORT_SYMBOL(__dev_remove_pack
);
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
458 * This call sleeps to guarantee that no CPU is looking at the packet
461 void dev_remove_pack(struct packet_type
*pt
)
463 __dev_remove_pack(pt
);
467 EXPORT_SYMBOL(dev_remove_pack
);
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
482 void dev_add_offload(struct packet_offload
*po
)
484 struct packet_offload
*elem
;
486 spin_lock(&offload_lock
);
487 list_for_each_entry(elem
, &offload_base
, list
) {
488 if (po
->priority
< elem
->priority
)
491 list_add_rcu(&po
->list
, elem
->list
.prev
);
492 spin_unlock(&offload_lock
);
494 EXPORT_SYMBOL(dev_add_offload
);
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
509 static void __dev_remove_offload(struct packet_offload
*po
)
511 struct list_head
*head
= &offload_base
;
512 struct packet_offload
*po1
;
514 spin_lock(&offload_lock
);
516 list_for_each_entry(po1
, head
, list
) {
518 list_del_rcu(&po
->list
);
523 pr_warn("dev_remove_offload: %p not found\n", po
);
525 spin_unlock(&offload_lock
);
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
537 * This call sleeps to guarantee that no CPU is looking at the packet
540 void dev_remove_offload(struct packet_offload
*po
)
542 __dev_remove_offload(po
);
546 EXPORT_SYMBOL(dev_remove_offload
);
548 /******************************************************************************
550 * Device Boot-time Settings Routines
552 ******************************************************************************/
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
566 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
568 struct netdev_boot_setup
*s
;
572 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
573 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
574 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
575 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
576 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
581 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
593 int netdev_boot_setup_check(struct net_device
*dev
)
595 struct netdev_boot_setup
*s
= dev_boot_setup
;
598 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
599 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
600 !strcmp(dev
->name
, s
[i
].name
)) {
601 dev
->irq
= s
[i
].map
.irq
;
602 dev
->base_addr
= s
[i
].map
.base_addr
;
603 dev
->mem_start
= s
[i
].map
.mem_start
;
604 dev
->mem_end
= s
[i
].map
.mem_end
;
610 EXPORT_SYMBOL(netdev_boot_setup_check
);
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
623 unsigned long netdev_boot_base(const char *prefix
, int unit
)
625 const struct netdev_boot_setup
*s
= dev_boot_setup
;
629 sprintf(name
, "%s%d", prefix
, unit
);
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
635 if (__dev_get_by_name(&init_net
, name
))
638 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
639 if (!strcmp(name
, s
[i
].name
))
640 return s
[i
].map
.base_addr
;
645 * Saves at boot time configured settings for any netdevice.
647 int __init
netdev_boot_setup(char *str
)
652 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
657 memset(&map
, 0, sizeof(map
));
661 map
.base_addr
= ints
[2];
663 map
.mem_start
= ints
[3];
665 map
.mem_end
= ints
[4];
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str
, &map
);
671 __setup("netdev=", netdev_boot_setup
);
673 /*******************************************************************************
675 * Device Interface Subroutines
677 *******************************************************************************/
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 int dev_get_iflink(const struct net_device
*dev
)
689 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
690 return dev
->netdev_ops
->ndo_get_iflink(dev
);
694 EXPORT_SYMBOL(dev_get_iflink
);
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
705 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
707 struct ip_tunnel_info
*info
;
709 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
712 info
= skb_tunnel_info_unclone(skb
);
715 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
718 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
734 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
736 struct net_device
*dev
;
737 struct hlist_head
*head
= dev_name_hash(net
, name
);
739 hlist_for_each_entry(dev
, head
, name_hlist
)
740 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
745 EXPORT_SYMBOL(__dev_get_by_name
);
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
759 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
761 struct net_device
*dev
;
762 struct hlist_head
*head
= dev_name_hash(net
, name
);
764 hlist_for_each_entry_rcu(dev
, head
, name_hlist
)
765 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
770 EXPORT_SYMBOL(dev_get_by_name_rcu
);
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
784 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
786 struct net_device
*dev
;
789 dev
= dev_get_by_name_rcu(net
, name
);
795 EXPORT_SYMBOL(dev_get_by_name
);
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
809 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
811 struct net_device
*dev
;
812 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
814 hlist_for_each_entry(dev
, head
, index_hlist
)
815 if (dev
->ifindex
== ifindex
)
820 EXPORT_SYMBOL(__dev_get_by_index
);
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
833 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
835 struct net_device
*dev
;
836 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
838 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
839 if (dev
->ifindex
== ifindex
)
844 EXPORT_SYMBOL(dev_get_by_index_rcu
);
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
858 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
860 struct net_device
*dev
;
863 dev
= dev_get_by_index_rcu(net
, ifindex
);
869 EXPORT_SYMBOL(dev_get_by_index
);
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
881 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
883 struct napi_struct
*napi
;
885 WARN_ON_ONCE(!rcu_read_lock_held());
887 if (napi_id
< MIN_NAPI_ID
)
890 napi
= napi_by_id(napi_id
);
892 return napi
? napi
->dev
: NULL
;
894 EXPORT_SYMBOL(dev_get_by_napi_id
);
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
906 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
908 struct net_device
*dev
;
912 seq
= raw_seqcount_begin(&devnet_rename_seq
);
914 dev
= dev_get_by_index_rcu(net
, ifindex
);
920 strcpy(name
, dev
->name
);
922 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
944 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
947 struct net_device
*dev
;
949 for_each_netdev_rcu(net
, dev
)
950 if (dev
->type
== type
&&
951 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
958 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
960 struct net_device
*dev
;
963 for_each_netdev(net
, dev
)
964 if (dev
->type
== type
)
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
971 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
973 struct net_device
*dev
, *ret
= NULL
;
976 for_each_netdev_rcu(net
, dev
)
977 if (dev
->type
== type
) {
985 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
998 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1001 struct net_device
*dev
, *ret
;
1006 for_each_netdev(net
, dev
) {
1007 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1014 EXPORT_SYMBOL(__dev_get_by_flags
);
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1024 bool dev_valid_name(const char *name
)
1028 if (strnlen(name
, IFNAMSIZ
) == IFNAMSIZ
)
1030 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1034 if (*name
== '/' || *name
== ':' || isspace(*name
))
1040 EXPORT_SYMBOL(dev_valid_name
);
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1057 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1061 const int max_netdevices
= 8*PAGE_SIZE
;
1062 unsigned long *inuse
;
1063 struct net_device
*d
;
1065 if (!dev_valid_name(name
))
1068 p
= strchr(name
, '%');
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1075 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1078 /* Use one page as a bit array of possible slots */
1079 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1083 for_each_netdev(net
, d
) {
1084 if (!sscanf(d
->name
, name
, &i
))
1086 if (i
< 0 || i
>= max_netdevices
)
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf
, IFNAMSIZ
, name
, i
);
1091 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1095 i
= find_first_zero_bit(inuse
, max_netdevices
);
1096 free_page((unsigned long) inuse
);
1099 snprintf(buf
, IFNAMSIZ
, name
, i
);
1100 if (!__dev_get_by_name(net
, buf
))
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1110 static int dev_alloc_name_ns(struct net
*net
,
1111 struct net_device
*dev
,
1118 ret
= __dev_alloc_name(net
, name
, buf
);
1120 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1125 * dev_alloc_name - allocate a name for a device
1127 * @name: name format string
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1138 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1140 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1142 EXPORT_SYMBOL(dev_alloc_name
);
1144 int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1149 if (!dev_valid_name(name
))
1152 if (strchr(name
, '%'))
1153 return dev_alloc_name_ns(net
, dev
, name
);
1154 else if (__dev_get_by_name(net
, name
))
1156 else if (dev
->name
!= name
)
1157 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1161 EXPORT_SYMBOL(dev_get_valid_name
);
1164 * dev_change_name - change name of a device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1168 * Change name of a device, can pass format strings "eth%d".
1171 int dev_change_name(struct net_device
*dev
, const char *newname
)
1173 unsigned char old_assign_type
;
1174 char oldname
[IFNAMSIZ
];
1180 BUG_ON(!dev_net(dev
));
1184 /* Some auto-enslaved devices e.g. failover slaves are
1185 * special, as userspace might rename the device after
1186 * the interface had been brought up and running since
1187 * the point kernel initiated auto-enslavement. Allow
1188 * live name change even when these slave devices are
1191 * Typically, users of these auto-enslaving devices
1192 * don't actually care about slave name change, as
1193 * they are supposed to operate on master interface
1196 if (dev
->flags
& IFF_UP
&&
1197 likely(!(dev
->priv_flags
& IFF_LIVE_RENAME_OK
)))
1200 write_seqcount_begin(&devnet_rename_seq
);
1202 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1203 write_seqcount_end(&devnet_rename_seq
);
1207 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1209 err
= dev_get_valid_name(net
, dev
, newname
);
1211 write_seqcount_end(&devnet_rename_seq
);
1215 if (oldname
[0] && !strchr(oldname
, '%'))
1216 netdev_info(dev
, "renamed from %s\n", oldname
);
1218 old_assign_type
= dev
->name_assign_type
;
1219 dev
->name_assign_type
= NET_NAME_RENAMED
;
1222 ret
= device_rename(&dev
->dev
, dev
->name
);
1224 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1225 dev
->name_assign_type
= old_assign_type
;
1226 write_seqcount_end(&devnet_rename_seq
);
1230 write_seqcount_end(&devnet_rename_seq
);
1232 netdev_adjacent_rename_links(dev
, oldname
);
1234 write_lock_bh(&dev_base_lock
);
1235 hlist_del_rcu(&dev
->name_hlist
);
1236 write_unlock_bh(&dev_base_lock
);
1240 write_lock_bh(&dev_base_lock
);
1241 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
1242 write_unlock_bh(&dev_base_lock
);
1244 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1245 ret
= notifier_to_errno(ret
);
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1251 write_seqcount_begin(&devnet_rename_seq
);
1252 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1253 memcpy(oldname
, newname
, IFNAMSIZ
);
1254 dev
->name_assign_type
= old_assign_type
;
1255 old_assign_type
= NET_NAME_RENAMED
;
1258 pr_err("%s: name change rollback failed: %d\n",
1267 * dev_set_alias - change ifalias of a device
1269 * @alias: name up to IFALIASZ
1270 * @len: limit of bytes to copy from info
1272 * Set ifalias for a device,
1274 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1276 struct dev_ifalias
*new_alias
= NULL
;
1278 if (len
>= IFALIASZ
)
1282 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1286 memcpy(new_alias
->ifalias
, alias
, len
);
1287 new_alias
->ifalias
[len
] = 0;
1290 mutex_lock(&ifalias_mutex
);
1291 rcu_swap_protected(dev
->ifalias
, new_alias
,
1292 mutex_is_locked(&ifalias_mutex
));
1293 mutex_unlock(&ifalias_mutex
);
1296 kfree_rcu(new_alias
, rcuhead
);
1300 EXPORT_SYMBOL(dev_set_alias
);
1303 * dev_get_alias - get ifalias of a device
1305 * @name: buffer to store name of ifalias
1306 * @len: size of buffer
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1311 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1313 const struct dev_ifalias
*alias
;
1317 alias
= rcu_dereference(dev
->ifalias
);
1319 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1326 * netdev_features_change - device changes features
1327 * @dev: device to cause notification
1329 * Called to indicate a device has changed features.
1331 void netdev_features_change(struct net_device
*dev
)
1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1335 EXPORT_SYMBOL(netdev_features_change
);
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1345 void netdev_state_change(struct net_device
*dev
)
1347 if (dev
->flags
& IFF_UP
) {
1348 struct netdev_notifier_change_info change_info
= {
1352 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1354 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1357 EXPORT_SYMBOL(netdev_state_change
);
1360 * netdev_notify_peers - notify network peers about existence of @dev
1361 * @dev: network device
1363 * Generate traffic such that interested network peers are aware of
1364 * @dev, such as by generating a gratuitous ARP. This may be used when
1365 * a device wants to inform the rest of the network about some sort of
1366 * reconfiguration such as a failover event or virtual machine
1369 void netdev_notify_peers(struct net_device
*dev
)
1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1376 EXPORT_SYMBOL(netdev_notify_peers
);
1378 static int __dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1380 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1385 if (!netif_device_present(dev
))
1388 /* Block netpoll from trying to do any rx path servicing.
1389 * If we don't do this there is a chance ndo_poll_controller
1390 * or ndo_poll may be running while we open the device
1392 netpoll_poll_disable(dev
);
1394 ret
= call_netdevice_notifiers_extack(NETDEV_PRE_UP
, dev
, extack
);
1395 ret
= notifier_to_errno(ret
);
1399 set_bit(__LINK_STATE_START
, &dev
->state
);
1401 if (ops
->ndo_validate_addr
)
1402 ret
= ops
->ndo_validate_addr(dev
);
1404 if (!ret
&& ops
->ndo_open
)
1405 ret
= ops
->ndo_open(dev
);
1407 netpoll_poll_enable(dev
);
1410 clear_bit(__LINK_STATE_START
, &dev
->state
);
1412 dev
->flags
|= IFF_UP
;
1413 dev_set_rx_mode(dev
);
1415 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1422 * dev_open - prepare an interface for use.
1423 * @dev: device to open
1424 * @extack: netlink extended ack
1426 * Takes a device from down to up state. The device's private open
1427 * function is invoked and then the multicast lists are loaded. Finally
1428 * the device is moved into the up state and a %NETDEV_UP message is
1429 * sent to the netdev notifier chain.
1431 * Calling this function on an active interface is a nop. On a failure
1432 * a negative errno code is returned.
1434 int dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1438 if (dev
->flags
& IFF_UP
)
1441 ret
= __dev_open(dev
, extack
);
1445 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1446 call_netdevice_notifiers(NETDEV_UP
, dev
);
1450 EXPORT_SYMBOL(dev_open
);
1452 static void __dev_close_many(struct list_head
*head
)
1454 struct net_device
*dev
;
1459 list_for_each_entry(dev
, head
, close_list
) {
1460 /* Temporarily disable netpoll until the interface is down */
1461 netpoll_poll_disable(dev
);
1463 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1465 clear_bit(__LINK_STATE_START
, &dev
->state
);
1467 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468 * can be even on different cpu. So just clear netif_running().
1470 * dev->stop() will invoke napi_disable() on all of it's
1471 * napi_struct instances on this device.
1473 smp_mb__after_atomic(); /* Commit netif_running(). */
1476 dev_deactivate_many(head
);
1478 list_for_each_entry(dev
, head
, close_list
) {
1479 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1482 * Call the device specific close. This cannot fail.
1483 * Only if device is UP
1485 * We allow it to be called even after a DETACH hot-plug
1491 dev
->flags
&= ~IFF_UP
;
1492 netpoll_poll_enable(dev
);
1496 static void __dev_close(struct net_device
*dev
)
1500 list_add(&dev
->close_list
, &single
);
1501 __dev_close_many(&single
);
1505 void dev_close_many(struct list_head
*head
, bool unlink
)
1507 struct net_device
*dev
, *tmp
;
1509 /* Remove the devices that don't need to be closed */
1510 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1511 if (!(dev
->flags
& IFF_UP
))
1512 list_del_init(&dev
->close_list
);
1514 __dev_close_many(head
);
1516 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1517 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1518 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1520 list_del_init(&dev
->close_list
);
1523 EXPORT_SYMBOL(dev_close_many
);
1526 * dev_close - shutdown an interface.
1527 * @dev: device to shutdown
1529 * This function moves an active device into down state. A
1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1534 void dev_close(struct net_device
*dev
)
1536 if (dev
->flags
& IFF_UP
) {
1539 list_add(&dev
->close_list
, &single
);
1540 dev_close_many(&single
, true);
1544 EXPORT_SYMBOL(dev_close
);
1548 * dev_disable_lro - disable Large Receive Offload on a device
1551 * Disable Large Receive Offload (LRO) on a net device. Must be
1552 * called under RTNL. This is needed if received packets may be
1553 * forwarded to another interface.
1555 void dev_disable_lro(struct net_device
*dev
)
1557 struct net_device
*lower_dev
;
1558 struct list_head
*iter
;
1560 dev
->wanted_features
&= ~NETIF_F_LRO
;
1561 netdev_update_features(dev
);
1563 if (unlikely(dev
->features
& NETIF_F_LRO
))
1564 netdev_WARN(dev
, "failed to disable LRO!\n");
1566 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1567 dev_disable_lro(lower_dev
);
1569 EXPORT_SYMBOL(dev_disable_lro
);
1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1576 * called under RTNL. This is needed if Generic XDP is installed on
1579 static void dev_disable_gro_hw(struct net_device
*dev
)
1581 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1582 netdev_update_features(dev
);
1584 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1585 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1591 case NETDEV_##val: \
1592 return "NETDEV_" __stringify(val);
1594 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1595 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1596 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1597 N(POST_INIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
) N(CHANGEUPPER
)
1598 N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
) N(BONDING_INFO
)
1599 N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
) N(UDP_TUNNEL_PUSH_INFO
)
1600 N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1601 N(CVLAN_FILTER_PUSH_INFO
) N(CVLAN_FILTER_DROP_INFO
)
1602 N(SVLAN_FILTER_PUSH_INFO
) N(SVLAN_FILTER_DROP_INFO
)
1606 return "UNKNOWN_NETDEV_EVENT";
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1610 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1611 struct net_device
*dev
)
1613 struct netdev_notifier_info info
= {
1617 return nb
->notifier_call(nb
, val
, &info
);
1620 static int dev_boot_phase
= 1;
1623 * register_netdevice_notifier - register a network notifier block
1626 * Register a notifier to be called when network device events occur.
1627 * The notifier passed is linked into the kernel structures and must
1628 * not be reused until it has been unregistered. A negative errno code
1629 * is returned on a failure.
1631 * When registered all registration and up events are replayed
1632 * to the new notifier to allow device to have a race free
1633 * view of the network device list.
1636 int register_netdevice_notifier(struct notifier_block
*nb
)
1638 struct net_device
*dev
;
1639 struct net_device
*last
;
1643 /* Close race with setup_net() and cleanup_net() */
1644 down_write(&pernet_ops_rwsem
);
1646 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1652 for_each_netdev(net
, dev
) {
1653 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1654 err
= notifier_to_errno(err
);
1658 if (!(dev
->flags
& IFF_UP
))
1661 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1667 up_write(&pernet_ops_rwsem
);
1673 for_each_netdev(net
, dev
) {
1677 if (dev
->flags
& IFF_UP
) {
1678 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1680 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1682 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1687 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1690 EXPORT_SYMBOL(register_netdevice_notifier
);
1693 * unregister_netdevice_notifier - unregister a network notifier block
1696 * Unregister a notifier previously registered by
1697 * register_netdevice_notifier(). The notifier is unlinked into the
1698 * kernel structures and may then be reused. A negative errno code
1699 * is returned on a failure.
1701 * After unregistering unregister and down device events are synthesized
1702 * for all devices on the device list to the removed notifier to remove
1703 * the need for special case cleanup code.
1706 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1708 struct net_device
*dev
;
1712 /* Close race with setup_net() and cleanup_net() */
1713 down_write(&pernet_ops_rwsem
);
1715 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1720 for_each_netdev(net
, dev
) {
1721 if (dev
->flags
& IFF_UP
) {
1722 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1724 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1726 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1731 up_write(&pernet_ops_rwsem
);
1734 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1737 * call_netdevice_notifiers_info - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @info: notifier information data
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1745 static int call_netdevice_notifiers_info(unsigned long val
,
1746 struct netdev_notifier_info
*info
)
1749 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1752 static int call_netdevice_notifiers_extack(unsigned long val
,
1753 struct net_device
*dev
,
1754 struct netlink_ext_ack
*extack
)
1756 struct netdev_notifier_info info
= {
1761 return call_netdevice_notifiers_info(val
, &info
);
1765 * call_netdevice_notifiers - call all network notifier blocks
1766 * @val: value passed unmodified to notifier function
1767 * @dev: net_device pointer passed unmodified to notifier function
1769 * Call all network notifier blocks. Parameters and return value
1770 * are as for raw_notifier_call_chain().
1773 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1775 return call_netdevice_notifiers_extack(val
, dev
, NULL
);
1777 EXPORT_SYMBOL(call_netdevice_notifiers
);
1780 * call_netdevice_notifiers_mtu - call all network notifier blocks
1781 * @val: value passed unmodified to notifier function
1782 * @dev: net_device pointer passed unmodified to notifier function
1783 * @arg: additional u32 argument passed to the notifier function
1785 * Call all network notifier blocks. Parameters and return value
1786 * are as for raw_notifier_call_chain().
1788 static int call_netdevice_notifiers_mtu(unsigned long val
,
1789 struct net_device
*dev
, u32 arg
)
1791 struct netdev_notifier_info_ext info
= {
1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext
, info
) != 0);
1798 return call_netdevice_notifiers_info(val
, &info
.info
);
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key
);
1804 void net_inc_ingress_queue(void)
1806 static_branch_inc(&ingress_needed_key
);
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1810 void net_dec_ingress_queue(void)
1812 static_branch_dec(&ingress_needed_key
);
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key
);
1820 void net_inc_egress_queue(void)
1822 static_branch_inc(&egress_needed_key
);
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1826 void net_dec_egress_queue(void)
1828 static_branch_dec(&egress_needed_key
);
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key
);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred
;
1836 static atomic_t netstamp_wanted
;
1837 static void netstamp_clear(struct work_struct
*work
)
1839 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1842 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1844 static_branch_enable(&netstamp_needed_key
);
1846 static_branch_disable(&netstamp_needed_key
);
1848 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1851 void net_enable_timestamp(void)
1853 #ifdef CONFIG_JUMP_LABEL
1857 wanted
= atomic_read(&netstamp_wanted
);
1860 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
1863 atomic_inc(&netstamp_needed_deferred
);
1864 schedule_work(&netstamp_work
);
1866 static_branch_inc(&netstamp_needed_key
);
1869 EXPORT_SYMBOL(net_enable_timestamp
);
1871 void net_disable_timestamp(void)
1873 #ifdef CONFIG_JUMP_LABEL
1877 wanted
= atomic_read(&netstamp_wanted
);
1880 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
1883 atomic_dec(&netstamp_needed_deferred
);
1884 schedule_work(&netstamp_work
);
1886 static_branch_dec(&netstamp_needed_key
);
1889 EXPORT_SYMBOL(net_disable_timestamp
);
1891 static inline void net_timestamp_set(struct sk_buff
*skb
)
1894 if (static_branch_unlikely(&netstamp_needed_key
))
1895 __net_timestamp(skb
);
1898 #define net_timestamp_check(COND, SKB) \
1899 if (static_branch_unlikely(&netstamp_needed_key)) { \
1900 if ((COND) && !(SKB)->tstamp) \
1901 __net_timestamp(SKB); \
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1908 if (!(dev
->flags
& IFF_UP
))
1911 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
1912 if (skb
->len
<= len
)
1915 /* if TSO is enabled, we don't care about the length as the packet
1916 * could be forwarded without being segmented before
1918 if (skb_is_gso(skb
))
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
1925 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1927 int ret
= ____dev_forward_skb(dev
, skb
);
1930 skb
->protocol
= eth_type_trans(skb
, dev
);
1931 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
1939 * dev_forward_skb - loopback an skb to another netif
1941 * @dev: destination network device
1942 * @skb: buffer to forward
1945 * NET_RX_SUCCESS (no congestion)
1946 * NET_RX_DROP (packet was dropped, but freed)
1948 * dev_forward_skb can be used for injecting an skb from the
1949 * start_xmit function of one device into the receive queue
1950 * of another device.
1952 * The receiving device may be in another namespace, so
1953 * we have to clear all information in the skb that could
1954 * impact namespace isolation.
1956 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1958 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
1960 EXPORT_SYMBOL_GPL(dev_forward_skb
);
1962 static inline int deliver_skb(struct sk_buff
*skb
,
1963 struct packet_type
*pt_prev
,
1964 struct net_device
*orig_dev
)
1966 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
1968 refcount_inc(&skb
->users
);
1969 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
1972 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
1973 struct packet_type
**pt
,
1974 struct net_device
*orig_dev
,
1976 struct list_head
*ptype_list
)
1978 struct packet_type
*ptype
, *pt_prev
= *pt
;
1980 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1981 if (ptype
->type
!= type
)
1984 deliver_skb(skb
, pt_prev
, orig_dev
);
1990 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
1992 if (!ptype
->af_packet_priv
|| !skb
->sk
)
1995 if (ptype
->id_match
)
1996 return ptype
->id_match(ptype
, skb
->sk
);
1997 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
2004 * dev_nit_active - return true if any network interface taps are in use
2006 * @dev: network device to check for the presence of taps
2008 bool dev_nit_active(struct net_device
*dev
)
2010 return !list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
);
2012 EXPORT_SYMBOL_GPL(dev_nit_active
);
2015 * Support routine. Sends outgoing frames to any network
2016 * taps currently in use.
2019 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
2021 struct packet_type
*ptype
;
2022 struct sk_buff
*skb2
= NULL
;
2023 struct packet_type
*pt_prev
= NULL
;
2024 struct list_head
*ptype_list
= &ptype_all
;
2028 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2029 if (ptype
->ignore_outgoing
)
2032 /* Never send packets back to the socket
2033 * they originated from - MvS (miquels@drinkel.ow.org)
2035 if (skb_loop_sk(ptype
, skb
))
2039 deliver_skb(skb2
, pt_prev
, skb
->dev
);
2044 /* need to clone skb, done only once */
2045 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2049 net_timestamp_set(skb2
);
2051 /* skb->nh should be correctly
2052 * set by sender, so that the second statement is
2053 * just protection against buggy protocols.
2055 skb_reset_mac_header(skb2
);
2057 if (skb_network_header(skb2
) < skb2
->data
||
2058 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 ntohs(skb2
->protocol
),
2062 skb_reset_network_header(skb2
);
2065 skb2
->transport_header
= skb2
->network_header
;
2066 skb2
->pkt_type
= PACKET_OUTGOING
;
2070 if (ptype_list
== &ptype_all
) {
2071 ptype_list
= &dev
->ptype_all
;
2076 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2077 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087 * @dev: Network device
2088 * @txq: number of queues available
2090 * If real_num_tx_queues is changed the tc mappings may no longer be
2091 * valid. To resolve this verify the tc mapping remains valid and if
2092 * not NULL the mapping. With no priorities mapping to this
2093 * offset/count pair it will no longer be used. In the worst case TC0
2094 * is invalid nothing can be done so disable priority mappings. If is
2095 * expected that drivers will fix this mapping if they can before
2096 * calling netif_set_real_num_tx_queues.
2098 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2101 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2103 /* If TC0 is invalidated disable TC mapping */
2104 if (tc
->offset
+ tc
->count
> txq
) {
2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2110 /* Invalidated prio to tc mappings set to TC0 */
2111 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2112 int q
= netdev_get_prio_tc_map(dev
, i
);
2114 tc
= &dev
->tc_to_txq
[q
];
2115 if (tc
->offset
+ tc
->count
> txq
) {
2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2118 netdev_set_prio_tc_map(dev
, i
, 0);
2123 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2126 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2129 /* walk through the TCs and see if it falls into any of them */
2130 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2131 if ((txq
- tc
->offset
) < tc
->count
)
2135 /* didn't find it, just return -1 to indicate no match */
2141 EXPORT_SYMBOL(netdev_txq_to_tc
);
2144 struct static_key xps_needed __read_mostly
;
2145 EXPORT_SYMBOL(xps_needed
);
2146 struct static_key xps_rxqs_needed __read_mostly
;
2147 EXPORT_SYMBOL(xps_rxqs_needed
);
2148 static DEFINE_MUTEX(xps_map_mutex
);
2149 #define xmap_dereference(P) \
2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2152 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2155 struct xps_map
*map
= NULL
;
2159 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2163 for (pos
= map
->len
; pos
--;) {
2164 if (map
->queues
[pos
] != index
)
2168 map
->queues
[pos
] = map
->queues
[--map
->len
];
2172 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2173 kfree_rcu(map
, rcu
);
2180 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2181 struct xps_dev_maps
*dev_maps
,
2182 int cpu
, u16 offset
, u16 count
)
2184 int num_tc
= dev
->num_tc
? : 1;
2185 bool active
= false;
2188 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2191 for (i
= count
, j
= offset
; i
--; j
++) {
2192 if (!remove_xps_queue(dev_maps
, tci
, j
))
2202 static void reset_xps_maps(struct net_device
*dev
,
2203 struct xps_dev_maps
*dev_maps
,
2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed
);
2208 RCU_INIT_POINTER(dev
->xps_rxqs_map
, NULL
);
2210 RCU_INIT_POINTER(dev
->xps_cpus_map
, NULL
);
2212 static_key_slow_dec_cpuslocked(&xps_needed
);
2213 kfree_rcu(dev_maps
, rcu
);
2216 static void clean_xps_maps(struct net_device
*dev
, const unsigned long *mask
,
2217 struct xps_dev_maps
*dev_maps
, unsigned int nr_ids
,
2218 u16 offset
, u16 count
, bool is_rxqs_map
)
2220 bool active
= false;
2223 for (j
= -1; j
= netif_attrmask_next(j
, mask
, nr_ids
),
2225 active
|= remove_xps_queue_cpu(dev
, dev_maps
, j
, offset
,
2228 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2231 for (i
= offset
+ (count
- 1); count
--; i
--) {
2232 netdev_queue_numa_node_write(
2233 netdev_get_tx_queue(dev
, i
),
2239 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2242 const unsigned long *possible_mask
= NULL
;
2243 struct xps_dev_maps
*dev_maps
;
2244 unsigned int nr_ids
;
2246 if (!static_key_false(&xps_needed
))
2250 mutex_lock(&xps_map_mutex
);
2252 if (static_key_false(&xps_rxqs_needed
)) {
2253 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2255 nr_ids
= dev
->num_rx_queues
;
2256 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
,
2257 offset
, count
, true);
2261 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2265 if (num_possible_cpus() > 1)
2266 possible_mask
= cpumask_bits(cpu_possible_mask
);
2267 nr_ids
= nr_cpu_ids
;
2268 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
, offset
, count
,
2272 mutex_unlock(&xps_map_mutex
);
2276 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2278 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2281 static struct xps_map
*expand_xps_map(struct xps_map
*map
, int attr_index
,
2282 u16 index
, bool is_rxqs_map
)
2284 struct xps_map
*new_map
;
2285 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2288 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2289 if (map
->queues
[pos
] != index
)
2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2296 if (pos
< map
->alloc_len
)
2299 alloc_len
= map
->alloc_len
* 2;
2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2306 new_map
= kzalloc(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
);
2308 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2309 cpu_to_node(attr_index
));
2313 for (i
= 0; i
< pos
; i
++)
2314 new_map
->queues
[i
] = map
->queues
[i
];
2315 new_map
->alloc_len
= alloc_len
;
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device
*dev
, const unsigned long *mask
,
2323 u16 index
, bool is_rxqs_map
)
2325 const unsigned long *online_mask
= NULL
, *possible_mask
= NULL
;
2326 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2327 int i
, j
, tci
, numa_node_id
= -2;
2328 int maps_sz
, num_tc
= 1, tc
= 0;
2329 struct xps_map
*map
, *new_map
;
2330 bool active
= false;
2331 unsigned int nr_ids
;
2334 /* Do not allow XPS on subordinate device directly */
2335 num_tc
= dev
->num_tc
;
2339 /* If queue belongs to subordinate dev use its map */
2340 dev
= netdev_get_tx_queue(dev
, index
)->sb_dev
? : dev
;
2342 tc
= netdev_txq_to_tc(dev
, index
);
2347 mutex_lock(&xps_map_mutex
);
2349 maps_sz
= XPS_RXQ_DEV_MAPS_SIZE(num_tc
, dev
->num_rx_queues
);
2350 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2351 nr_ids
= dev
->num_rx_queues
;
2353 maps_sz
= XPS_CPU_DEV_MAPS_SIZE(num_tc
);
2354 if (num_possible_cpus() > 1) {
2355 online_mask
= cpumask_bits(cpu_online_mask
);
2356 possible_mask
= cpumask_bits(cpu_possible_mask
);
2358 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2359 nr_ids
= nr_cpu_ids
;
2362 if (maps_sz
< L1_CACHE_BYTES
)
2363 maps_sz
= L1_CACHE_BYTES
;
2365 /* allocate memory for queue storage */
2366 for (j
= -1; j
= netif_attrmask_next_and(j
, online_mask
, mask
, nr_ids
),
2369 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2370 if (!new_dev_maps
) {
2371 mutex_unlock(&xps_map_mutex
);
2375 tci
= j
* num_tc
+ tc
;
2376 map
= dev_maps
? xmap_dereference(dev_maps
->attr_map
[tci
]) :
2379 map
= expand_xps_map(map
, j
, index
, is_rxqs_map
);
2383 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2387 goto out_no_new_maps
;
2390 /* Increment static keys at most once per type */
2391 static_key_slow_inc_cpuslocked(&xps_needed
);
2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed
);
2396 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2398 /* copy maps belonging to foreign traffic classes */
2399 for (i
= tc
, tci
= j
* num_tc
; dev_maps
&& i
--; tci
++) {
2400 /* fill in the new device map from the old device map */
2401 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2402 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2405 /* We need to explicitly update tci as prevous loop
2406 * could break out early if dev_maps is NULL.
2408 tci
= j
* num_tc
+ tc
;
2410 if (netif_attr_test_mask(j
, mask
, nr_ids
) &&
2411 netif_attr_test_online(j
, online_mask
, nr_ids
)) {
2412 /* add tx-queue to CPU/rx-queue maps */
2415 map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2416 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2419 if (pos
== map
->len
)
2420 map
->queues
[map
->len
++] = index
;
2423 if (numa_node_id
== -2)
2424 numa_node_id
= cpu_to_node(j
);
2425 else if (numa_node_id
!= cpu_to_node(j
))
2429 } else if (dev_maps
) {
2430 /* fill in the new device map from the old device map */
2431 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2432 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2435 /* copy maps belonging to foreign traffic classes */
2436 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2437 /* fill in the new device map from the old device map */
2438 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2439 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2444 rcu_assign_pointer(dev
->xps_rxqs_map
, new_dev_maps
);
2446 rcu_assign_pointer(dev
->xps_cpus_map
, new_dev_maps
);
2448 /* Cleanup old maps */
2450 goto out_no_old_maps
;
2452 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2454 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2455 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2456 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2457 if (map
&& map
!= new_map
)
2458 kfree_rcu(map
, rcu
);
2462 kfree_rcu(dev_maps
, rcu
);
2465 dev_maps
= new_dev_maps
;
2470 /* update Tx queue numa node */
2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2472 (numa_node_id
>= 0) ?
2473 numa_node_id
: NUMA_NO_NODE
);
2479 /* removes tx-queue from unused CPUs/rx-queues */
2480 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2482 for (i
= tc
, tci
= j
* num_tc
; i
--; tci
++)
2483 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2484 if (!netif_attr_test_mask(j
, mask
, nr_ids
) ||
2485 !netif_attr_test_online(j
, online_mask
, nr_ids
))
2486 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2487 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2488 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2491 /* free map if not active */
2493 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2496 mutex_unlock(&xps_map_mutex
);
2500 /* remove any maps that we added */
2501 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2503 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2504 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2506 xmap_dereference(dev_maps
->attr_map
[tci
]) :
2508 if (new_map
&& new_map
!= map
)
2513 mutex_unlock(&xps_map_mutex
);
2515 kfree(new_dev_maps
);
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue
);
2520 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2526 ret
= __netif_set_xps_queue(dev
, cpumask_bits(mask
), index
, false);
2531 EXPORT_SYMBOL(netif_set_xps_queue
);
2534 static void netdev_unbind_all_sb_channels(struct net_device
*dev
)
2536 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2538 /* Unbind any subordinate channels */
2539 while (txq
-- != &dev
->_tx
[0]) {
2541 netdev_unbind_sb_channel(dev
, txq
->sb_dev
);
2545 void netdev_reset_tc(struct net_device
*dev
)
2548 netif_reset_xps_queues_gt(dev
, 0);
2550 netdev_unbind_all_sb_channels(dev
);
2552 /* Reset TC configuration of device */
2554 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2555 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2557 EXPORT_SYMBOL(netdev_reset_tc
);
2559 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2561 if (tc
>= dev
->num_tc
)
2565 netif_reset_xps_queues(dev
, offset
, count
);
2567 dev
->tc_to_txq
[tc
].count
= count
;
2568 dev
->tc_to_txq
[tc
].offset
= offset
;
2571 EXPORT_SYMBOL(netdev_set_tc_queue
);
2573 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2575 if (num_tc
> TC_MAX_QUEUE
)
2579 netif_reset_xps_queues_gt(dev
, 0);
2581 netdev_unbind_all_sb_channels(dev
);
2583 dev
->num_tc
= num_tc
;
2586 EXPORT_SYMBOL(netdev_set_num_tc
);
2588 void netdev_unbind_sb_channel(struct net_device
*dev
,
2589 struct net_device
*sb_dev
)
2591 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2594 netif_reset_xps_queues_gt(sb_dev
, 0);
2596 memset(sb_dev
->tc_to_txq
, 0, sizeof(sb_dev
->tc_to_txq
));
2597 memset(sb_dev
->prio_tc_map
, 0, sizeof(sb_dev
->prio_tc_map
));
2599 while (txq
-- != &dev
->_tx
[0]) {
2600 if (txq
->sb_dev
== sb_dev
)
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel
);
2606 int netdev_bind_sb_channel_queue(struct net_device
*dev
,
2607 struct net_device
*sb_dev
,
2608 u8 tc
, u16 count
, u16 offset
)
2610 /* Make certain the sb_dev and dev are already configured */
2611 if (sb_dev
->num_tc
>= 0 || tc
>= dev
->num_tc
)
2614 /* We cannot hand out queues we don't have */
2615 if ((offset
+ count
) > dev
->real_num_tx_queues
)
2618 /* Record the mapping */
2619 sb_dev
->tc_to_txq
[tc
].count
= count
;
2620 sb_dev
->tc_to_txq
[tc
].offset
= offset
;
2622 /* Provide a way for Tx queue to find the tc_to_txq map or
2623 * XPS map for itself.
2626 netdev_get_tx_queue(dev
, count
+ offset
)->sb_dev
= sb_dev
;
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue
);
2632 int netdev_set_sb_channel(struct net_device
*dev
, u16 channel
)
2634 /* Do not use a multiqueue device to represent a subordinate channel */
2635 if (netif_is_multiqueue(dev
))
2638 /* We allow channels 1 - 32767 to be used for subordinate channels.
2639 * Channel 0 is meant to be "native" mode and used only to represent
2640 * the main root device. We allow writing 0 to reset the device back
2641 * to normal mode after being used as a subordinate channel.
2643 if (channel
> S16_MAX
)
2646 dev
->num_tc
= -channel
;
2650 EXPORT_SYMBOL(netdev_set_sb_channel
);
2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2656 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2661 disabling
= txq
< dev
->real_num_tx_queues
;
2663 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2666 if (dev
->reg_state
== NETREG_REGISTERED
||
2667 dev
->reg_state
== NETREG_UNREGISTERING
) {
2670 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2676 netif_setup_tc(dev
, txq
);
2678 dev
->real_num_tx_queues
= txq
;
2682 qdisc_reset_all_tx_gt(dev
, txq
);
2684 netif_reset_xps_queues_gt(dev
, txq
);
2688 dev
->real_num_tx_queues
= txq
;
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2697 * netif_set_real_num_rx_queues - set actual number of RX queues used
2698 * @dev: Network device
2699 * @rxq: Actual number of RX queues
2701 * This must be called either with the rtnl_lock held or before
2702 * registration of the net device. Returns 0 on success, or a
2703 * negative error code. If called before registration, it always
2706 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2710 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2713 if (dev
->reg_state
== NETREG_REGISTERED
) {
2716 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2722 dev
->real_num_rx_queues
= rxq
;
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2729 * netif_get_num_default_rss_queues - default number of RSS queues
2731 * This routine should set an upper limit on the number of RSS queues
2732 * used by default by multiqueue devices.
2734 int netif_get_num_default_rss_queues(void)
2736 return is_kdump_kernel() ?
2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2741 static void __netif_reschedule(struct Qdisc
*q
)
2743 struct softnet_data
*sd
;
2744 unsigned long flags
;
2746 local_irq_save(flags
);
2747 sd
= this_cpu_ptr(&softnet_data
);
2748 q
->next_sched
= NULL
;
2749 *sd
->output_queue_tailp
= q
;
2750 sd
->output_queue_tailp
= &q
->next_sched
;
2751 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2752 local_irq_restore(flags
);
2755 void __netif_schedule(struct Qdisc
*q
)
2757 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2758 __netif_reschedule(q
);
2760 EXPORT_SYMBOL(__netif_schedule
);
2762 struct dev_kfree_skb_cb
{
2763 enum skb_free_reason reason
;
2766 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2768 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2771 void netif_schedule_queue(struct netdev_queue
*txq
)
2774 if (!(txq
->state
& QUEUE_STATE_ANY_XOFF
)) {
2775 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2777 __netif_schedule(q
);
2781 EXPORT_SYMBOL(netif_schedule_queue
);
2783 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2789 q
= rcu_dereference(dev_queue
->qdisc
);
2790 __netif_schedule(q
);
2794 EXPORT_SYMBOL(netif_tx_wake_queue
);
2796 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2798 unsigned long flags
;
2803 if (likely(refcount_read(&skb
->users
) == 1)) {
2805 refcount_set(&skb
->users
, 0);
2806 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
2809 get_kfree_skb_cb(skb
)->reason
= reason
;
2810 local_irq_save(flags
);
2811 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2812 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2813 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2814 local_irq_restore(flags
);
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2818 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2820 if (in_irq() || irqs_disabled())
2821 __dev_kfree_skb_irq(skb
, reason
);
2825 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2829 * netif_device_detach - mark device as removed
2830 * @dev: network device
2832 * Mark device as removed from system and therefore no longer available.
2834 void netif_device_detach(struct net_device
*dev
)
2836 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2837 netif_running(dev
)) {
2838 netif_tx_stop_all_queues(dev
);
2841 EXPORT_SYMBOL(netif_device_detach
);
2844 * netif_device_attach - mark device as attached
2845 * @dev: network device
2847 * Mark device as attached from system and restart if needed.
2849 void netif_device_attach(struct net_device
*dev
)
2851 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2852 netif_running(dev
)) {
2853 netif_tx_wake_all_queues(dev
);
2854 __netdev_watchdog_up(dev
);
2857 EXPORT_SYMBOL(netif_device_attach
);
2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861 * to be used as a distribution range.
2863 static u16
skb_tx_hash(const struct net_device
*dev
,
2864 const struct net_device
*sb_dev
,
2865 struct sk_buff
*skb
)
2869 u16 qcount
= dev
->real_num_tx_queues
;
2872 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
2874 qoffset
= sb_dev
->tc_to_txq
[tc
].offset
;
2875 qcount
= sb_dev
->tc_to_txq
[tc
].count
;
2878 if (skb_rx_queue_recorded(skb
)) {
2879 hash
= skb_get_rx_queue(skb
);
2880 while (unlikely(hash
>= qcount
))
2882 return hash
+ qoffset
;
2885 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
2888 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
2890 static const netdev_features_t null_features
;
2891 struct net_device
*dev
= skb
->dev
;
2892 const char *name
= "";
2894 if (!net_ratelimit())
2898 if (dev
->dev
.parent
)
2899 name
= dev_driver_string(dev
->dev
.parent
);
2901 name
= netdev_name(dev
);
2903 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904 "gso_type=%d ip_summed=%d\n",
2905 name
, dev
? &dev
->features
: &null_features
,
2906 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
,
2907 skb
->len
, skb
->data_len
, skb_shinfo(skb
)->gso_size
,
2908 skb_shinfo(skb
)->gso_type
, skb
->ip_summed
);
2912 * Invalidate hardware checksum when packet is to be mangled, and
2913 * complete checksum manually on outgoing path.
2915 int skb_checksum_help(struct sk_buff
*skb
)
2918 int ret
= 0, offset
;
2920 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2921 goto out_set_summed
;
2923 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
2924 skb_warn_bad_offload(skb
);
2928 /* Before computing a checksum, we should make sure no frag could
2929 * be modified by an external entity : checksum could be wrong.
2931 if (skb_has_shared_frag(skb
)) {
2932 ret
= __skb_linearize(skb
);
2937 offset
= skb_checksum_start_offset(skb
);
2938 BUG_ON(offset
>= skb_headlen(skb
));
2939 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2941 offset
+= skb
->csum_offset
;
2942 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
2944 if (skb_cloned(skb
) &&
2945 !skb_clone_writable(skb
, offset
+ sizeof(__sum16
))) {
2946 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2951 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
2953 skb
->ip_summed
= CHECKSUM_NONE
;
2957 EXPORT_SYMBOL(skb_checksum_help
);
2959 int skb_crc32c_csum_help(struct sk_buff
*skb
)
2962 int ret
= 0, offset
, start
;
2964 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2967 if (unlikely(skb_is_gso(skb
)))
2970 /* Before computing a checksum, we should make sure no frag could
2971 * be modified by an external entity : checksum could be wrong.
2973 if (unlikely(skb_has_shared_frag(skb
))) {
2974 ret
= __skb_linearize(skb
);
2978 start
= skb_checksum_start_offset(skb
);
2979 offset
= start
+ offsetof(struct sctphdr
, checksum
);
2980 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
2984 if (skb_cloned(skb
) &&
2985 !skb_clone_writable(skb
, offset
+ sizeof(__le32
))) {
2986 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2990 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
2991 skb
->len
- start
, ~(__u32
)0,
2993 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
2994 skb
->ip_summed
= CHECKSUM_NONE
;
2995 skb
->csum_not_inet
= 0;
3000 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
3002 __be16 type
= skb
->protocol
;
3004 /* Tunnel gso handlers can set protocol to ethernet. */
3005 if (type
== htons(ETH_P_TEB
)) {
3008 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
3011 eth
= (struct ethhdr
*)skb
->data
;
3012 type
= eth
->h_proto
;
3015 return __vlan_get_protocol(skb
, type
, depth
);
3019 * skb_mac_gso_segment - mac layer segmentation handler.
3020 * @skb: buffer to segment
3021 * @features: features for the output path (see dev->features)
3023 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
3024 netdev_features_t features
)
3026 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
3027 struct packet_offload
*ptype
;
3028 int vlan_depth
= skb
->mac_len
;
3029 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
3031 if (unlikely(!type
))
3032 return ERR_PTR(-EINVAL
);
3034 __skb_pull(skb
, vlan_depth
);
3037 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
3038 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
3039 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
3045 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
3049 EXPORT_SYMBOL(skb_mac_gso_segment
);
3052 /* openvswitch calls this on rx path, so we need a different check.
3054 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
3057 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
3058 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
3060 return skb
->ip_summed
== CHECKSUM_NONE
;
3064 * __skb_gso_segment - Perform segmentation on skb.
3065 * @skb: buffer to segment
3066 * @features: features for the output path (see dev->features)
3067 * @tx_path: whether it is called in TX path
3069 * This function segments the given skb and returns a list of segments.
3071 * It may return NULL if the skb requires no segmentation. This is
3072 * only possible when GSO is used for verifying header integrity.
3074 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3076 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
3077 netdev_features_t features
, bool tx_path
)
3079 struct sk_buff
*segs
;
3081 if (unlikely(skb_needs_check(skb
, tx_path
))) {
3084 /* We're going to init ->check field in TCP or UDP header */
3085 err
= skb_cow_head(skb
, 0);
3087 return ERR_PTR(err
);
3090 /* Only report GSO partial support if it will enable us to
3091 * support segmentation on this frame without needing additional
3094 if (features
& NETIF_F_GSO_PARTIAL
) {
3095 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
3096 struct net_device
*dev
= skb
->dev
;
3098 partial_features
|= dev
->features
& dev
->gso_partial_features
;
3099 if (!skb_gso_ok(skb
, features
| partial_features
))
3100 features
&= ~NETIF_F_GSO_PARTIAL
;
3103 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
3104 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
3106 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
3107 SKB_GSO_CB(skb
)->encap_level
= 0;
3109 skb_reset_mac_header(skb
);
3110 skb_reset_mac_len(skb
);
3112 segs
= skb_mac_gso_segment(skb
, features
);
3114 if (unlikely(skb_needs_check(skb
, tx_path
) && !IS_ERR(segs
)))
3115 skb_warn_bad_offload(skb
);
3119 EXPORT_SYMBOL(__skb_gso_segment
);
3121 /* Take action when hardware reception checksum errors are detected. */
3123 void netdev_rx_csum_fault(struct net_device
*dev
, struct sk_buff
*skb
)
3125 if (net_ratelimit()) {
3126 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
3128 pr_err("dev features: %pNF\n", &dev
->features
);
3129 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130 skb
->len
, skb
->data_len
, skb
->pkt_type
,
3131 skb_shinfo(skb
)->gso_size
, skb_shinfo(skb
)->gso_type
,
3132 skb_shinfo(skb
)->nr_frags
, skb
->ip_summed
, skb
->csum
,
3133 skb
->csum_complete_sw
, skb
->csum_valid
, skb
->csum_level
);
3137 EXPORT_SYMBOL(netdev_rx_csum_fault
);
3140 /* XXX: check that highmem exists at all on the given machine. */
3141 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
3143 #ifdef CONFIG_HIGHMEM
3146 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
3147 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3148 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3150 if (PageHighMem(skb_frag_page(frag
)))
3158 /* If MPLS offload request, verify we are testing hardware MPLS features
3159 * instead of standard features for the netdev.
3161 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3162 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3163 netdev_features_t features
,
3166 if (eth_p_mpls(type
))
3167 features
&= skb
->dev
->mpls_features
;
3172 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3173 netdev_features_t features
,
3180 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
3181 netdev_features_t features
)
3186 type
= skb_network_protocol(skb
, &tmp
);
3187 features
= net_mpls_features(skb
, features
, type
);
3189 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
3190 !can_checksum_protocol(features
, type
)) {
3191 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3193 if (illegal_highdma(skb
->dev
, skb
))
3194 features
&= ~NETIF_F_SG
;
3199 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
3200 struct net_device
*dev
,
3201 netdev_features_t features
)
3205 EXPORT_SYMBOL(passthru_features_check
);
3207 static netdev_features_t
dflt_features_check(struct sk_buff
*skb
,
3208 struct net_device
*dev
,
3209 netdev_features_t features
)
3211 return vlan_features_check(skb
, features
);
3214 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
3215 struct net_device
*dev
,
3216 netdev_features_t features
)
3218 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
3220 if (gso_segs
> dev
->gso_max_segs
)
3221 return features
& ~NETIF_F_GSO_MASK
;
3223 /* Support for GSO partial features requires software
3224 * intervention before we can actually process the packets
3225 * so we need to strip support for any partial features now
3226 * and we can pull them back in after we have partially
3227 * segmented the frame.
3229 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
3230 features
&= ~dev
->gso_partial_features
;
3232 /* Make sure to clear the IPv4 ID mangling feature if the
3233 * IPv4 header has the potential to be fragmented.
3235 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
3236 struct iphdr
*iph
= skb
->encapsulation
?
3237 inner_ip_hdr(skb
) : ip_hdr(skb
);
3239 if (!(iph
->frag_off
& htons(IP_DF
)))
3240 features
&= ~NETIF_F_TSO_MANGLEID
;
3246 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3248 struct net_device
*dev
= skb
->dev
;
3249 netdev_features_t features
= dev
->features
;
3251 if (skb_is_gso(skb
))
3252 features
= gso_features_check(skb
, dev
, features
);
3254 /* If encapsulation offload request, verify we are testing
3255 * hardware encapsulation features instead of standard
3256 * features for the netdev
3258 if (skb
->encapsulation
)
3259 features
&= dev
->hw_enc_features
;
3261 if (skb_vlan_tagged(skb
))
3262 features
= netdev_intersect_features(features
,
3263 dev
->vlan_features
|
3264 NETIF_F_HW_VLAN_CTAG_TX
|
3265 NETIF_F_HW_VLAN_STAG_TX
);
3267 if (dev
->netdev_ops
->ndo_features_check
)
3268 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3271 features
&= dflt_features_check(skb
, dev
, features
);
3273 return harmonize_features(skb
, features
);
3275 EXPORT_SYMBOL(netif_skb_features
);
3277 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3278 struct netdev_queue
*txq
, bool more
)
3283 if (dev_nit_active(dev
))
3284 dev_queue_xmit_nit(skb
, dev
);
3287 trace_net_dev_start_xmit(skb
, dev
);
3288 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3289 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3294 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3295 struct netdev_queue
*txq
, int *ret
)
3297 struct sk_buff
*skb
= first
;
3298 int rc
= NETDEV_TX_OK
;
3301 struct sk_buff
*next
= skb
->next
;
3303 skb_mark_not_on_list(skb
);
3304 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3305 if (unlikely(!dev_xmit_complete(rc
))) {
3311 if (netif_tx_queue_stopped(txq
) && skb
) {
3312 rc
= NETDEV_TX_BUSY
;
3322 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3323 netdev_features_t features
)
3325 if (skb_vlan_tag_present(skb
) &&
3326 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3327 skb
= __vlan_hwaccel_push_inside(skb
);
3331 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3332 const netdev_features_t features
)
3334 if (unlikely(skb
->csum_not_inet
))
3335 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3336 skb_crc32c_csum_help(skb
);
3338 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3340 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3342 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3344 netdev_features_t features
;
3346 features
= netif_skb_features(skb
);
3347 skb
= validate_xmit_vlan(skb
, features
);
3351 skb
= sk_validate_xmit_skb(skb
, dev
);
3355 if (netif_needs_gso(skb
, features
)) {
3356 struct sk_buff
*segs
;
3358 segs
= skb_gso_segment(skb
, features
);
3366 if (skb_needs_linearize(skb
, features
) &&
3367 __skb_linearize(skb
))
3370 /* If packet is not checksummed and device does not
3371 * support checksumming for this protocol, complete
3372 * checksumming here.
3374 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3375 if (skb
->encapsulation
)
3376 skb_set_inner_transport_header(skb
,
3377 skb_checksum_start_offset(skb
));
3379 skb_set_transport_header(skb
,
3380 skb_checksum_start_offset(skb
));
3381 if (skb_csum_hwoffload_help(skb
, features
))
3386 skb
= validate_xmit_xfrm(skb
, features
, again
);
3393 atomic_long_inc(&dev
->tx_dropped
);
3397 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3399 struct sk_buff
*next
, *head
= NULL
, *tail
;
3401 for (; skb
!= NULL
; skb
= next
) {
3403 skb_mark_not_on_list(skb
);
3405 /* in case skb wont be segmented, point to itself */
3408 skb
= validate_xmit_skb(skb
, dev
, again
);
3416 /* If skb was segmented, skb->prev points to
3417 * the last segment. If not, it still contains skb.
3423 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3425 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3427 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3429 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3431 /* To get more precise estimation of bytes sent on wire,
3432 * we add to pkt_len the headers size of all segments
3434 if (shinfo
->gso_size
&& skb_transport_header_was_set(skb
)) {
3435 unsigned int hdr_len
;
3436 u16 gso_segs
= shinfo
->gso_segs
;
3438 /* mac layer + network layer */
3439 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3441 /* + transport layer */
3442 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3443 const struct tcphdr
*th
;
3444 struct tcphdr _tcphdr
;
3446 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
3447 sizeof(_tcphdr
), &_tcphdr
);
3449 hdr_len
+= __tcp_hdrlen(th
);
3451 struct udphdr _udphdr
;
3453 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
3454 sizeof(_udphdr
), &_udphdr
))
3455 hdr_len
+= sizeof(struct udphdr
);
3458 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3459 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3462 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3466 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3467 struct net_device
*dev
,
3468 struct netdev_queue
*txq
)
3470 spinlock_t
*root_lock
= qdisc_lock(q
);
3471 struct sk_buff
*to_free
= NULL
;
3475 qdisc_calculate_pkt_len(skb
, q
);
3477 if (q
->flags
& TCQ_F_NOLOCK
) {
3478 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3479 __qdisc_drop(skb
, &to_free
);
3481 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && q
->empty
&&
3482 qdisc_run_begin(q
)) {
3483 qdisc_bstats_cpu_update(q
, skb
);
3485 if (sch_direct_xmit(skb
, q
, dev
, txq
, NULL
, true))
3489 rc
= NET_XMIT_SUCCESS
;
3491 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3495 if (unlikely(to_free
))
3496 kfree_skb_list(to_free
);
3501 * Heuristic to force contended enqueues to serialize on a
3502 * separate lock before trying to get qdisc main lock.
3503 * This permits qdisc->running owner to get the lock more
3504 * often and dequeue packets faster.
3506 contended
= qdisc_is_running(q
);
3507 if (unlikely(contended
))
3508 spin_lock(&q
->busylock
);
3510 spin_lock(root_lock
);
3511 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3512 __qdisc_drop(skb
, &to_free
);
3514 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3515 qdisc_run_begin(q
)) {
3517 * This is a work-conserving queue; there are no old skbs
3518 * waiting to be sent out; and the qdisc is not running -
3519 * xmit the skb directly.
3522 qdisc_bstats_update(q
, skb
);
3524 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3525 if (unlikely(contended
)) {
3526 spin_unlock(&q
->busylock
);
3533 rc
= NET_XMIT_SUCCESS
;
3535 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3536 if (qdisc_run_begin(q
)) {
3537 if (unlikely(contended
)) {
3538 spin_unlock(&q
->busylock
);
3545 spin_unlock(root_lock
);
3546 if (unlikely(to_free
))
3547 kfree_skb_list(to_free
);
3548 if (unlikely(contended
))
3549 spin_unlock(&q
->busylock
);
3553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3554 static void skb_update_prio(struct sk_buff
*skb
)
3556 const struct netprio_map
*map
;
3557 const struct sock
*sk
;
3558 unsigned int prioidx
;
3562 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3565 sk
= skb_to_full_sk(skb
);
3569 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3571 if (prioidx
< map
->priomap_len
)
3572 skb
->priority
= map
->priomap
[prioidx
];
3575 #define skb_update_prio(skb)
3579 * dev_loopback_xmit - loop back @skb
3580 * @net: network namespace this loopback is happening in
3581 * @sk: sk needed to be a netfilter okfn
3582 * @skb: buffer to transmit
3584 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3586 skb_reset_mac_header(skb
);
3587 __skb_pull(skb
, skb_network_offset(skb
));
3588 skb
->pkt_type
= PACKET_LOOPBACK
;
3589 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3590 WARN_ON(!skb_dst(skb
));
3595 EXPORT_SYMBOL(dev_loopback_xmit
);
3597 #ifdef CONFIG_NET_EGRESS
3598 static struct sk_buff
*
3599 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3601 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3602 struct tcf_result cl_res
;
3607 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3608 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3610 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3612 case TC_ACT_RECLASSIFY
:
3613 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3616 mini_qdisc_qstats_cpu_drop(miniq
);
3617 *ret
= NET_XMIT_DROP
;
3623 *ret
= NET_XMIT_SUCCESS
;
3626 case TC_ACT_REDIRECT
:
3627 /* No need to push/pop skb's mac_header here on egress! */
3628 skb_do_redirect(skb
);
3629 *ret
= NET_XMIT_SUCCESS
;
3637 #endif /* CONFIG_NET_EGRESS */
3640 static int __get_xps_queue_idx(struct net_device
*dev
, struct sk_buff
*skb
,
3641 struct xps_dev_maps
*dev_maps
, unsigned int tci
)
3643 struct xps_map
*map
;
3644 int queue_index
= -1;
3648 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3651 map
= rcu_dereference(dev_maps
->attr_map
[tci
]);
3654 queue_index
= map
->queues
[0];
3656 queue_index
= map
->queues
[reciprocal_scale(
3657 skb_get_hash(skb
), map
->len
)];
3658 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3665 static int get_xps_queue(struct net_device
*dev
, struct net_device
*sb_dev
,
3666 struct sk_buff
*skb
)
3669 struct xps_dev_maps
*dev_maps
;
3670 struct sock
*sk
= skb
->sk
;
3671 int queue_index
= -1;
3673 if (!static_key_false(&xps_needed
))
3677 if (!static_key_false(&xps_rxqs_needed
))
3680 dev_maps
= rcu_dereference(sb_dev
->xps_rxqs_map
);
3682 int tci
= sk_rx_queue_get(sk
);
3684 if (tci
>= 0 && tci
< dev
->num_rx_queues
)
3685 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3690 if (queue_index
< 0) {
3691 dev_maps
= rcu_dereference(sb_dev
->xps_cpus_map
);
3693 unsigned int tci
= skb
->sender_cpu
- 1;
3695 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3707 u16
dev_pick_tx_zero(struct net_device
*dev
, struct sk_buff
*skb
,
3708 struct net_device
*sb_dev
)
3712 EXPORT_SYMBOL(dev_pick_tx_zero
);
3714 u16
dev_pick_tx_cpu_id(struct net_device
*dev
, struct sk_buff
*skb
,
3715 struct net_device
*sb_dev
)
3717 return (u16
)raw_smp_processor_id() % dev
->real_num_tx_queues
;
3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id
);
3721 u16
netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
,
3722 struct net_device
*sb_dev
)
3724 struct sock
*sk
= skb
->sk
;
3725 int queue_index
= sk_tx_queue_get(sk
);
3727 sb_dev
= sb_dev
? : dev
;
3729 if (queue_index
< 0 || skb
->ooo_okay
||
3730 queue_index
>= dev
->real_num_tx_queues
) {
3731 int new_index
= get_xps_queue(dev
, sb_dev
, skb
);
3734 new_index
= skb_tx_hash(dev
, sb_dev
, skb
);
3736 if (queue_index
!= new_index
&& sk
&&
3738 rcu_access_pointer(sk
->sk_dst_cache
))
3739 sk_tx_queue_set(sk
, new_index
);
3741 queue_index
= new_index
;
3746 EXPORT_SYMBOL(netdev_pick_tx
);
3748 struct netdev_queue
*netdev_core_pick_tx(struct net_device
*dev
,
3749 struct sk_buff
*skb
,
3750 struct net_device
*sb_dev
)
3752 int queue_index
= 0;
3755 u32 sender_cpu
= skb
->sender_cpu
- 1;
3757 if (sender_cpu
>= (u32
)NR_CPUS
)
3758 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3761 if (dev
->real_num_tx_queues
!= 1) {
3762 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3764 if (ops
->ndo_select_queue
)
3765 queue_index
= ops
->ndo_select_queue(dev
, skb
, sb_dev
);
3767 queue_index
= netdev_pick_tx(dev
, skb
, sb_dev
);
3769 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3772 skb_set_queue_mapping(skb
, queue_index
);
3773 return netdev_get_tx_queue(dev
, queue_index
);
3777 * __dev_queue_xmit - transmit a buffer
3778 * @skb: buffer to transmit
3779 * @sb_dev: suboordinate device used for L2 forwarding offload
3781 * Queue a buffer for transmission to a network device. The caller must
3782 * have set the device and priority and built the buffer before calling
3783 * this function. The function can be called from an interrupt.
3785 * A negative errno code is returned on a failure. A success does not
3786 * guarantee the frame will be transmitted as it may be dropped due
3787 * to congestion or traffic shaping.
3789 * -----------------------------------------------------------------------------------
3790 * I notice this method can also return errors from the queue disciplines,
3791 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3794 * Regardless of the return value, the skb is consumed, so it is currently
3795 * difficult to retry a send to this method. (You can bump the ref count
3796 * before sending to hold a reference for retry if you are careful.)
3798 * When calling this method, interrupts MUST be enabled. This is because
3799 * the BH enable code must have IRQs enabled so that it will not deadlock.
3802 static int __dev_queue_xmit(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3804 struct net_device
*dev
= skb
->dev
;
3805 struct netdev_queue
*txq
;
3810 skb_reset_mac_header(skb
);
3812 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3813 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3815 /* Disable soft irqs for various locks below. Also
3816 * stops preemption for RCU.
3820 skb_update_prio(skb
);
3822 qdisc_pkt_len_init(skb
);
3823 #ifdef CONFIG_NET_CLS_ACT
3824 skb
->tc_at_ingress
= 0;
3825 # ifdef CONFIG_NET_EGRESS
3826 if (static_branch_unlikely(&egress_needed_key
)) {
3827 skb
= sch_handle_egress(skb
, &rc
, dev
);
3833 /* If device/qdisc don't need skb->dst, release it right now while
3834 * its hot in this cpu cache.
3836 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3841 txq
= netdev_core_pick_tx(dev
, skb
, sb_dev
);
3842 q
= rcu_dereference_bh(txq
->qdisc
);
3844 trace_net_dev_queue(skb
);
3846 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3850 /* The device has no queue. Common case for software devices:
3851 * loopback, all the sorts of tunnels...
3853 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3856 * However, it is possible, that they rely on protection
3859 * Check this and shot the lock. It is not prone from deadlocks.
3860 *Either shot noqueue qdisc, it is even simpler 8)
3862 if (dev
->flags
& IFF_UP
) {
3863 int cpu
= smp_processor_id(); /* ok because BHs are off */
3865 if (txq
->xmit_lock_owner
!= cpu
) {
3866 if (dev_xmit_recursion())
3867 goto recursion_alert
;
3869 skb
= validate_xmit_skb(skb
, dev
, &again
);
3873 HARD_TX_LOCK(dev
, txq
, cpu
);
3875 if (!netif_xmit_stopped(txq
)) {
3876 dev_xmit_recursion_inc();
3877 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
3878 dev_xmit_recursion_dec();
3879 if (dev_xmit_complete(rc
)) {
3880 HARD_TX_UNLOCK(dev
, txq
);
3884 HARD_TX_UNLOCK(dev
, txq
);
3885 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3888 /* Recursion is detected! It is possible,
3892 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3898 rcu_read_unlock_bh();
3900 atomic_long_inc(&dev
->tx_dropped
);
3901 kfree_skb_list(skb
);
3904 rcu_read_unlock_bh();
3908 int dev_queue_xmit(struct sk_buff
*skb
)
3910 return __dev_queue_xmit(skb
, NULL
);
3912 EXPORT_SYMBOL(dev_queue_xmit
);
3914 int dev_queue_xmit_accel(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3916 return __dev_queue_xmit(skb
, sb_dev
);
3918 EXPORT_SYMBOL(dev_queue_xmit_accel
);
3920 int dev_direct_xmit(struct sk_buff
*skb
, u16 queue_id
)
3922 struct net_device
*dev
= skb
->dev
;
3923 struct sk_buff
*orig_skb
= skb
;
3924 struct netdev_queue
*txq
;
3925 int ret
= NETDEV_TX_BUSY
;
3928 if (unlikely(!netif_running(dev
) ||
3929 !netif_carrier_ok(dev
)))
3932 skb
= validate_xmit_skb_list(skb
, dev
, &again
);
3933 if (skb
!= orig_skb
)
3936 skb_set_queue_mapping(skb
, queue_id
);
3937 txq
= skb_get_tx_queue(dev
, skb
);
3941 HARD_TX_LOCK(dev
, txq
, smp_processor_id());
3942 if (!netif_xmit_frozen_or_drv_stopped(txq
))
3943 ret
= netdev_start_xmit(skb
, dev
, txq
, false);
3944 HARD_TX_UNLOCK(dev
, txq
);
3948 if (!dev_xmit_complete(ret
))
3953 atomic_long_inc(&dev
->tx_dropped
);
3954 kfree_skb_list(skb
);
3955 return NET_XMIT_DROP
;
3957 EXPORT_SYMBOL(dev_direct_xmit
);
3959 /*************************************************************************
3961 *************************************************************************/
3963 int netdev_max_backlog __read_mostly
= 1000;
3964 EXPORT_SYMBOL(netdev_max_backlog
);
3966 int netdev_tstamp_prequeue __read_mostly
= 1;
3967 int netdev_budget __read_mostly
= 300;
3968 unsigned int __read_mostly netdev_budget_usecs
= 2000;
3969 int weight_p __read_mostly
= 64; /* old backlog weight */
3970 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
3971 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
3972 int dev_rx_weight __read_mostly
= 64;
3973 int dev_tx_weight __read_mostly
= 64;
3975 /* Called with irq disabled */
3976 static inline void ____napi_schedule(struct softnet_data
*sd
,
3977 struct napi_struct
*napi
)
3979 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
3980 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3985 /* One global table that all flow-based protocols share. */
3986 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
3987 EXPORT_SYMBOL(rps_sock_flow_table
);
3988 u32 rps_cpu_mask __read_mostly
;
3989 EXPORT_SYMBOL(rps_cpu_mask
);
3991 struct static_key_false rps_needed __read_mostly
;
3992 EXPORT_SYMBOL(rps_needed
);
3993 struct static_key_false rfs_needed __read_mostly
;
3994 EXPORT_SYMBOL(rfs_needed
);
3996 static struct rps_dev_flow
*
3997 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3998 struct rps_dev_flow
*rflow
, u16 next_cpu
)
4000 if (next_cpu
< nr_cpu_ids
) {
4001 #ifdef CONFIG_RFS_ACCEL
4002 struct netdev_rx_queue
*rxqueue
;
4003 struct rps_dev_flow_table
*flow_table
;
4004 struct rps_dev_flow
*old_rflow
;
4009 /* Should we steer this flow to a different hardware queue? */
4010 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
4011 !(dev
->features
& NETIF_F_NTUPLE
))
4013 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
4014 if (rxq_index
== skb_get_rx_queue(skb
))
4017 rxqueue
= dev
->_rx
+ rxq_index
;
4018 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4021 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
4022 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
4023 rxq_index
, flow_id
);
4027 rflow
= &flow_table
->flows
[flow_id
];
4029 if (old_rflow
->filter
== rflow
->filter
)
4030 old_rflow
->filter
= RPS_NO_FILTER
;
4034 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
4037 rflow
->cpu
= next_cpu
;
4042 * get_rps_cpu is called from netif_receive_skb and returns the target
4043 * CPU from the RPS map of the receiving queue for a given skb.
4044 * rcu_read_lock must be held on entry.
4046 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4047 struct rps_dev_flow
**rflowp
)
4049 const struct rps_sock_flow_table
*sock_flow_table
;
4050 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
4051 struct rps_dev_flow_table
*flow_table
;
4052 struct rps_map
*map
;
4057 if (skb_rx_queue_recorded(skb
)) {
4058 u16 index
= skb_get_rx_queue(skb
);
4060 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4061 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4062 "%s received packet on queue %u, but number "
4063 "of RX queues is %u\n",
4064 dev
->name
, index
, dev
->real_num_rx_queues
);
4070 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4072 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4073 map
= rcu_dereference(rxqueue
->rps_map
);
4074 if (!flow_table
&& !map
)
4077 skb_reset_network_header(skb
);
4078 hash
= skb_get_hash(skb
);
4082 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
4083 if (flow_table
&& sock_flow_table
) {
4084 struct rps_dev_flow
*rflow
;
4088 /* First check into global flow table if there is a match */
4089 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
4090 if ((ident
^ hash
) & ~rps_cpu_mask
)
4093 next_cpu
= ident
& rps_cpu_mask
;
4095 /* OK, now we know there is a match,
4096 * we can look at the local (per receive queue) flow table
4098 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
4102 * If the desired CPU (where last recvmsg was done) is
4103 * different from current CPU (one in the rx-queue flow
4104 * table entry), switch if one of the following holds:
4105 * - Current CPU is unset (>= nr_cpu_ids).
4106 * - Current CPU is offline.
4107 * - The current CPU's queue tail has advanced beyond the
4108 * last packet that was enqueued using this table entry.
4109 * This guarantees that all previous packets for the flow
4110 * have been dequeued, thus preserving in order delivery.
4112 if (unlikely(tcpu
!= next_cpu
) &&
4113 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
4114 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
4115 rflow
->last_qtail
)) >= 0)) {
4117 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
4120 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
4130 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
4131 if (cpu_online(tcpu
)) {
4141 #ifdef CONFIG_RFS_ACCEL
4144 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145 * @dev: Device on which the filter was set
4146 * @rxq_index: RX queue index
4147 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4150 * Drivers that implement ndo_rx_flow_steer() should periodically call
4151 * this function for each installed filter and remove the filters for
4152 * which it returns %true.
4154 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
4155 u32 flow_id
, u16 filter_id
)
4157 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
4158 struct rps_dev_flow_table
*flow_table
;
4159 struct rps_dev_flow
*rflow
;
4164 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4165 if (flow_table
&& flow_id
<= flow_table
->mask
) {
4166 rflow
= &flow_table
->flows
[flow_id
];
4167 cpu
= READ_ONCE(rflow
->cpu
);
4168 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
4169 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
4170 rflow
->last_qtail
) <
4171 (int)(10 * flow_table
->mask
)))
4177 EXPORT_SYMBOL(rps_may_expire_flow
);
4179 #endif /* CONFIG_RFS_ACCEL */
4181 /* Called from hardirq (IPI) context */
4182 static void rps_trigger_softirq(void *data
)
4184 struct softnet_data
*sd
= data
;
4186 ____napi_schedule(sd
, &sd
->backlog
);
4190 #endif /* CONFIG_RPS */
4193 * Check if this softnet_data structure is another cpu one
4194 * If yes, queue it to our IPI list and return 1
4197 static int rps_ipi_queued(struct softnet_data
*sd
)
4200 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
4203 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
4204 mysd
->rps_ipi_list
= sd
;
4206 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4209 #endif /* CONFIG_RPS */
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
4217 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
4219 #ifdef CONFIG_NET_FLOW_LIMIT
4220 struct sd_flow_limit
*fl
;
4221 struct softnet_data
*sd
;
4222 unsigned int old_flow
, new_flow
;
4224 if (qlen
< (netdev_max_backlog
>> 1))
4227 sd
= this_cpu_ptr(&softnet_data
);
4230 fl
= rcu_dereference(sd
->flow_limit
);
4232 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
4233 old_flow
= fl
->history
[fl
->history_head
];
4234 fl
->history
[fl
->history_head
] = new_flow
;
4237 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
4239 if (likely(fl
->buckets
[old_flow
]))
4240 fl
->buckets
[old_flow
]--;
4242 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
4254 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255 * queue (may be a remote CPU queue).
4257 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
4258 unsigned int *qtail
)
4260 struct softnet_data
*sd
;
4261 unsigned long flags
;
4264 sd
= &per_cpu(softnet_data
, cpu
);
4266 local_irq_save(flags
);
4269 if (!netif_running(skb
->dev
))
4271 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
4272 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
4275 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
4276 input_queue_tail_incr_save(sd
, qtail
);
4278 local_irq_restore(flags
);
4279 return NET_RX_SUCCESS
;
4282 /* Schedule NAPI for backlog device
4283 * We can use non atomic operation since we own the queue lock
4285 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
4286 if (!rps_ipi_queued(sd
))
4287 ____napi_schedule(sd
, &sd
->backlog
);
4296 local_irq_restore(flags
);
4298 atomic_long_inc(&skb
->dev
->rx_dropped
);
4303 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
4305 struct net_device
*dev
= skb
->dev
;
4306 struct netdev_rx_queue
*rxqueue
;
4310 if (skb_rx_queue_recorded(skb
)) {
4311 u16 index
= skb_get_rx_queue(skb
);
4313 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4314 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4315 "%s received packet on queue %u, but number "
4316 "of RX queues is %u\n",
4317 dev
->name
, index
, dev
->real_num_rx_queues
);
4319 return rxqueue
; /* Return first rxqueue */
4326 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
4327 struct xdp_buff
*xdp
,
4328 struct bpf_prog
*xdp_prog
)
4330 struct netdev_rx_queue
*rxqueue
;
4331 void *orig_data
, *orig_data_end
;
4332 u32 metalen
, act
= XDP_DROP
;
4333 __be16 orig_eth_type
;
4339 /* Reinjected packets coming from act_mirred or similar should
4340 * not get XDP generic processing.
4342 if (skb_cloned(skb
) || skb_is_tc_redirected(skb
))
4345 /* XDP packets must be linear and must have sufficient headroom
4346 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347 * native XDP provides, thus we need to do it here as well.
4349 if (skb_is_nonlinear(skb
) ||
4350 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
4351 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
4352 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
4354 /* In case we have to go down the path and also linearize,
4355 * then lets do the pskb_expand_head() work just once here.
4357 if (pskb_expand_head(skb
,
4358 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
4359 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
4361 if (skb_linearize(skb
))
4365 /* The XDP program wants to see the packet starting at the MAC
4368 mac_len
= skb
->data
- skb_mac_header(skb
);
4369 hlen
= skb_headlen(skb
) + mac_len
;
4370 xdp
->data
= skb
->data
- mac_len
;
4371 xdp
->data_meta
= xdp
->data
;
4372 xdp
->data_end
= xdp
->data
+ hlen
;
4373 xdp
->data_hard_start
= skb
->data
- skb_headroom(skb
);
4374 orig_data_end
= xdp
->data_end
;
4375 orig_data
= xdp
->data
;
4376 eth
= (struct ethhdr
*)xdp
->data
;
4377 orig_bcast
= is_multicast_ether_addr_64bits(eth
->h_dest
);
4378 orig_eth_type
= eth
->h_proto
;
4380 rxqueue
= netif_get_rxqueue(skb
);
4381 xdp
->rxq
= &rxqueue
->xdp_rxq
;
4383 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
4385 off
= xdp
->data
- orig_data
;
4387 __skb_pull(skb
, off
);
4389 __skb_push(skb
, -off
);
4390 skb
->mac_header
+= off
;
4392 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4395 off
= orig_data_end
- xdp
->data_end
;
4397 skb_set_tail_pointer(skb
, xdp
->data_end
- xdp
->data
);
4402 /* check if XDP changed eth hdr such SKB needs update */
4403 eth
= (struct ethhdr
*)xdp
->data
;
4404 if ((orig_eth_type
!= eth
->h_proto
) ||
4405 (orig_bcast
!= is_multicast_ether_addr_64bits(eth
->h_dest
))) {
4406 __skb_push(skb
, ETH_HLEN
);
4407 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
4413 __skb_push(skb
, mac_len
);
4416 metalen
= xdp
->data
- xdp
->data_meta
;
4418 skb_metadata_set(skb
, metalen
);
4421 bpf_warn_invalid_xdp_action(act
);
4424 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
4435 /* When doing generic XDP we have to bypass the qdisc layer and the
4436 * network taps in order to match in-driver-XDP behavior.
4438 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
4440 struct net_device
*dev
= skb
->dev
;
4441 struct netdev_queue
*txq
;
4442 bool free_skb
= true;
4445 txq
= netdev_core_pick_tx(dev
, skb
, NULL
);
4446 cpu
= smp_processor_id();
4447 HARD_TX_LOCK(dev
, txq
, cpu
);
4448 if (!netif_xmit_stopped(txq
)) {
4449 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
4450 if (dev_xmit_complete(rc
))
4453 HARD_TX_UNLOCK(dev
, txq
);
4455 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
4459 EXPORT_SYMBOL_GPL(generic_xdp_tx
);
4461 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key
);
4463 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
4466 struct xdp_buff xdp
;
4470 act
= netif_receive_generic_xdp(skb
, &xdp
, xdp_prog
);
4471 if (act
!= XDP_PASS
) {
4474 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
4480 generic_xdp_tx(skb
, xdp_prog
);
4491 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4493 static int netif_rx_internal(struct sk_buff
*skb
)
4497 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4499 trace_netif_rx(skb
);
4502 if (static_branch_unlikely(&rps_needed
)) {
4503 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4509 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4511 cpu
= smp_processor_id();
4513 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4522 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4529 * netif_rx - post buffer to the network code
4530 * @skb: buffer to post
4532 * This function receives a packet from a device driver and queues it for
4533 * the upper (protocol) levels to process. It always succeeds. The buffer
4534 * may be dropped during processing for congestion control or by the
4538 * NET_RX_SUCCESS (no congestion)
4539 * NET_RX_DROP (packet was dropped)
4543 int netif_rx(struct sk_buff
*skb
)
4547 trace_netif_rx_entry(skb
);
4549 ret
= netif_rx_internal(skb
);
4550 trace_netif_rx_exit(ret
);
4554 EXPORT_SYMBOL(netif_rx
);
4556 int netif_rx_ni(struct sk_buff
*skb
)
4560 trace_netif_rx_ni_entry(skb
);
4563 err
= netif_rx_internal(skb
);
4564 if (local_softirq_pending())
4567 trace_netif_rx_ni_exit(err
);
4571 EXPORT_SYMBOL(netif_rx_ni
);
4573 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4575 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4577 if (sd
->completion_queue
) {
4578 struct sk_buff
*clist
;
4580 local_irq_disable();
4581 clist
= sd
->completion_queue
;
4582 sd
->completion_queue
= NULL
;
4586 struct sk_buff
*skb
= clist
;
4588 clist
= clist
->next
;
4590 WARN_ON(refcount_read(&skb
->users
));
4591 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4592 trace_consume_skb(skb
);
4594 trace_kfree_skb(skb
, net_tx_action
);
4596 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4599 __kfree_skb_defer(skb
);
4602 __kfree_skb_flush();
4605 if (sd
->output_queue
) {
4608 local_irq_disable();
4609 head
= sd
->output_queue
;
4610 sd
->output_queue
= NULL
;
4611 sd
->output_queue_tailp
= &sd
->output_queue
;
4615 struct Qdisc
*q
= head
;
4616 spinlock_t
*root_lock
= NULL
;
4618 head
= head
->next_sched
;
4620 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
4621 root_lock
= qdisc_lock(q
);
4622 spin_lock(root_lock
);
4624 /* We need to make sure head->next_sched is read
4625 * before clearing __QDISC_STATE_SCHED
4627 smp_mb__before_atomic();
4628 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4631 spin_unlock(root_lock
);
4635 xfrm_dev_backlog(sd
);
4638 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4639 /* This hook is defined here for ATM LANE */
4640 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4641 unsigned char *addr
) __read_mostly
;
4642 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4645 static inline struct sk_buff
*
4646 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4647 struct net_device
*orig_dev
)
4649 #ifdef CONFIG_NET_CLS_ACT
4650 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4651 struct tcf_result cl_res
;
4653 /* If there's at least one ingress present somewhere (so
4654 * we get here via enabled static key), remaining devices
4655 * that are not configured with an ingress qdisc will bail
4662 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4666 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4667 skb
->tc_at_ingress
= 1;
4668 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4670 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
4672 case TC_ACT_RECLASSIFY
:
4673 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4676 mini_qdisc_qstats_cpu_drop(miniq
);
4684 case TC_ACT_REDIRECT
:
4685 /* skb_mac_header check was done by cls/act_bpf, so
4686 * we can safely push the L2 header back before
4687 * redirecting to another netdev
4689 __skb_push(skb
, skb
->mac_len
);
4690 skb_do_redirect(skb
);
4692 case TC_ACT_REINSERT
:
4693 /* this does not scrub the packet, and updates stats on error */
4694 skb_tc_reinsert(skb
, &cl_res
);
4699 #endif /* CONFIG_NET_CLS_ACT */
4704 * netdev_is_rx_handler_busy - check if receive handler is registered
4705 * @dev: device to check
4707 * Check if a receive handler is already registered for a given device.
4708 * Return true if there one.
4710 * The caller must hold the rtnl_mutex.
4712 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4715 return dev
&& rtnl_dereference(dev
->rx_handler
);
4717 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4720 * netdev_rx_handler_register - register receive handler
4721 * @dev: device to register a handler for
4722 * @rx_handler: receive handler to register
4723 * @rx_handler_data: data pointer that is used by rx handler
4725 * Register a receive handler for a device. This handler will then be
4726 * called from __netif_receive_skb. A negative errno code is returned
4729 * The caller must hold the rtnl_mutex.
4731 * For a general description of rx_handler, see enum rx_handler_result.
4733 int netdev_rx_handler_register(struct net_device
*dev
,
4734 rx_handler_func_t
*rx_handler
,
4735 void *rx_handler_data
)
4737 if (netdev_is_rx_handler_busy(dev
))
4740 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
4743 /* Note: rx_handler_data must be set before rx_handler */
4744 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4745 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4749 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4752 * netdev_rx_handler_unregister - unregister receive handler
4753 * @dev: device to unregister a handler from
4755 * Unregister a receive handler from a device.
4757 * The caller must hold the rtnl_mutex.
4759 void netdev_rx_handler_unregister(struct net_device
*dev
)
4763 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4764 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4765 * section has a guarantee to see a non NULL rx_handler_data
4769 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4771 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4774 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4775 * the special handling of PFMEMALLOC skbs.
4777 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4779 switch (skb
->protocol
) {
4780 case htons(ETH_P_ARP
):
4781 case htons(ETH_P_IP
):
4782 case htons(ETH_P_IPV6
):
4783 case htons(ETH_P_8021Q
):
4784 case htons(ETH_P_8021AD
):
4791 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4792 int *ret
, struct net_device
*orig_dev
)
4794 #ifdef CONFIG_NETFILTER_INGRESS
4795 if (nf_hook_ingress_active(skb
)) {
4799 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4804 ingress_retval
= nf_hook_ingress(skb
);
4806 return ingress_retval
;
4808 #endif /* CONFIG_NETFILTER_INGRESS */
4812 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
,
4813 struct packet_type
**ppt_prev
)
4815 struct packet_type
*ptype
, *pt_prev
;
4816 rx_handler_func_t
*rx_handler
;
4817 struct net_device
*orig_dev
;
4818 bool deliver_exact
= false;
4819 int ret
= NET_RX_DROP
;
4822 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4824 trace_netif_receive_skb(skb
);
4826 orig_dev
= skb
->dev
;
4828 skb_reset_network_header(skb
);
4829 if (!skb_transport_header_was_set(skb
))
4830 skb_reset_transport_header(skb
);
4831 skb_reset_mac_len(skb
);
4836 skb
->skb_iif
= skb
->dev
->ifindex
;
4838 __this_cpu_inc(softnet_data
.processed
);
4840 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
4844 ret2
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4847 if (ret2
!= XDP_PASS
)
4849 skb_reset_mac_len(skb
);
4852 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4853 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4854 skb
= skb_vlan_untag(skb
);
4859 if (skb_skip_tc_classify(skb
))
4865 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
4867 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4871 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
4873 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4878 #ifdef CONFIG_NET_INGRESS
4879 if (static_branch_unlikely(&ingress_needed_key
)) {
4880 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
4884 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
4890 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
4893 if (skb_vlan_tag_present(skb
)) {
4895 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4898 if (vlan_do_receive(&skb
))
4900 else if (unlikely(!skb
))
4904 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
4907 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4910 switch (rx_handler(&skb
)) {
4911 case RX_HANDLER_CONSUMED
:
4912 ret
= NET_RX_SUCCESS
;
4914 case RX_HANDLER_ANOTHER
:
4916 case RX_HANDLER_EXACT
:
4917 deliver_exact
= true;
4918 case RX_HANDLER_PASS
:
4925 if (unlikely(skb_vlan_tag_present(skb
))) {
4927 if (skb_vlan_tag_get_id(skb
)) {
4928 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4931 skb
->pkt_type
= PACKET_OTHERHOST
;
4932 } else if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4933 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4934 /* Outer header is 802.1P with vlan 0, inner header is
4935 * 802.1Q or 802.1AD and vlan_do_receive() above could
4936 * not find vlan dev for vlan id 0.
4938 __vlan_hwaccel_clear_tag(skb
);
4939 skb
= skb_vlan_untag(skb
);
4942 if (vlan_do_receive(&skb
))
4943 /* After stripping off 802.1P header with vlan 0
4944 * vlan dev is found for inner header.
4947 else if (unlikely(!skb
))
4950 /* We have stripped outer 802.1P vlan 0 header.
4951 * But could not find vlan dev.
4952 * check again for vlan id to set OTHERHOST.
4956 /* Note: we might in the future use prio bits
4957 * and set skb->priority like in vlan_do_receive()
4958 * For the time being, just ignore Priority Code Point
4960 __vlan_hwaccel_clear_tag(skb
);
4963 type
= skb
->protocol
;
4965 /* deliver only exact match when indicated */
4966 if (likely(!deliver_exact
)) {
4967 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4968 &ptype_base
[ntohs(type
) &
4972 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4973 &orig_dev
->ptype_specific
);
4975 if (unlikely(skb
->dev
!= orig_dev
)) {
4976 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4977 &skb
->dev
->ptype_specific
);
4981 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
4983 *ppt_prev
= pt_prev
;
4987 atomic_long_inc(&skb
->dev
->rx_dropped
);
4989 atomic_long_inc(&skb
->dev
->rx_nohandler
);
4991 /* Jamal, now you will not able to escape explaining
4992 * me how you were going to use this. :-)
5001 static int __netif_receive_skb_one_core(struct sk_buff
*skb
, bool pfmemalloc
)
5003 struct net_device
*orig_dev
= skb
->dev
;
5004 struct packet_type
*pt_prev
= NULL
;
5007 ret
= __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
5009 ret
= INDIRECT_CALL_INET(pt_prev
->func
, ipv6_rcv
, ip_rcv
, skb
,
5010 skb
->dev
, pt_prev
, orig_dev
);
5015 * netif_receive_skb_core - special purpose version of netif_receive_skb
5016 * @skb: buffer to process
5018 * More direct receive version of netif_receive_skb(). It should
5019 * only be used by callers that have a need to skip RPS and Generic XDP.
5020 * Caller must also take care of handling if (page_is_)pfmemalloc.
5022 * This function may only be called from softirq context and interrupts
5023 * should be enabled.
5025 * Return values (usually ignored):
5026 * NET_RX_SUCCESS: no congestion
5027 * NET_RX_DROP: packet was dropped
5029 int netif_receive_skb_core(struct sk_buff
*skb
)
5034 ret
= __netif_receive_skb_one_core(skb
, false);
5039 EXPORT_SYMBOL(netif_receive_skb_core
);
5041 static inline void __netif_receive_skb_list_ptype(struct list_head
*head
,
5042 struct packet_type
*pt_prev
,
5043 struct net_device
*orig_dev
)
5045 struct sk_buff
*skb
, *next
;
5049 if (list_empty(head
))
5051 if (pt_prev
->list_func
!= NULL
)
5052 INDIRECT_CALL_INET(pt_prev
->list_func
, ipv6_list_rcv
,
5053 ip_list_rcv
, head
, pt_prev
, orig_dev
);
5055 list_for_each_entry_safe(skb
, next
, head
, list
) {
5056 skb_list_del_init(skb
);
5057 pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
5061 static void __netif_receive_skb_list_core(struct list_head
*head
, bool pfmemalloc
)
5063 /* Fast-path assumptions:
5064 * - There is no RX handler.
5065 * - Only one packet_type matches.
5066 * If either of these fails, we will end up doing some per-packet
5067 * processing in-line, then handling the 'last ptype' for the whole
5068 * sublist. This can't cause out-of-order delivery to any single ptype,
5069 * because the 'last ptype' must be constant across the sublist, and all
5070 * other ptypes are handled per-packet.
5072 /* Current (common) ptype of sublist */
5073 struct packet_type
*pt_curr
= NULL
;
5074 /* Current (common) orig_dev of sublist */
5075 struct net_device
*od_curr
= NULL
;
5076 struct list_head sublist
;
5077 struct sk_buff
*skb
, *next
;
5079 INIT_LIST_HEAD(&sublist
);
5080 list_for_each_entry_safe(skb
, next
, head
, list
) {
5081 struct net_device
*orig_dev
= skb
->dev
;
5082 struct packet_type
*pt_prev
= NULL
;
5084 skb_list_del_init(skb
);
5085 __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
5088 if (pt_curr
!= pt_prev
|| od_curr
!= orig_dev
) {
5089 /* dispatch old sublist */
5090 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5091 /* start new sublist */
5092 INIT_LIST_HEAD(&sublist
);
5096 list_add_tail(&skb
->list
, &sublist
);
5099 /* dispatch final sublist */
5100 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5103 static int __netif_receive_skb(struct sk_buff
*skb
)
5107 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
5108 unsigned int noreclaim_flag
;
5111 * PFMEMALLOC skbs are special, they should
5112 * - be delivered to SOCK_MEMALLOC sockets only
5113 * - stay away from userspace
5114 * - have bounded memory usage
5116 * Use PF_MEMALLOC as this saves us from propagating the allocation
5117 * context down to all allocation sites.
5119 noreclaim_flag
= memalloc_noreclaim_save();
5120 ret
= __netif_receive_skb_one_core(skb
, true);
5121 memalloc_noreclaim_restore(noreclaim_flag
);
5123 ret
= __netif_receive_skb_one_core(skb
, false);
5128 static void __netif_receive_skb_list(struct list_head
*head
)
5130 unsigned long noreclaim_flag
= 0;
5131 struct sk_buff
*skb
, *next
;
5132 bool pfmemalloc
= false; /* Is current sublist PF_MEMALLOC? */
5134 list_for_each_entry_safe(skb
, next
, head
, list
) {
5135 if ((sk_memalloc_socks() && skb_pfmemalloc(skb
)) != pfmemalloc
) {
5136 struct list_head sublist
;
5138 /* Handle the previous sublist */
5139 list_cut_before(&sublist
, head
, &skb
->list
);
5140 if (!list_empty(&sublist
))
5141 __netif_receive_skb_list_core(&sublist
, pfmemalloc
);
5142 pfmemalloc
= !pfmemalloc
;
5143 /* See comments in __netif_receive_skb */
5145 noreclaim_flag
= memalloc_noreclaim_save();
5147 memalloc_noreclaim_restore(noreclaim_flag
);
5150 /* Handle the remaining sublist */
5151 if (!list_empty(head
))
5152 __netif_receive_skb_list_core(head
, pfmemalloc
);
5153 /* Restore pflags */
5155 memalloc_noreclaim_restore(noreclaim_flag
);
5158 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
5160 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
5161 struct bpf_prog
*new = xdp
->prog
;
5164 switch (xdp
->command
) {
5165 case XDP_SETUP_PROG
:
5166 rcu_assign_pointer(dev
->xdp_prog
, new);
5171 static_branch_dec(&generic_xdp_needed_key
);
5172 } else if (new && !old
) {
5173 static_branch_inc(&generic_xdp_needed_key
);
5174 dev_disable_lro(dev
);
5175 dev_disable_gro_hw(dev
);
5179 case XDP_QUERY_PROG
:
5180 xdp
->prog_id
= old
? old
->aux
->id
: 0;
5191 static int netif_receive_skb_internal(struct sk_buff
*skb
)
5195 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5197 if (skb_defer_rx_timestamp(skb
))
5198 return NET_RX_SUCCESS
;
5202 if (static_branch_unlikely(&rps_needed
)) {
5203 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5204 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5207 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5213 ret
= __netif_receive_skb(skb
);
5218 static void netif_receive_skb_list_internal(struct list_head
*head
)
5220 struct sk_buff
*skb
, *next
;
5221 struct list_head sublist
;
5223 INIT_LIST_HEAD(&sublist
);
5224 list_for_each_entry_safe(skb
, next
, head
, list
) {
5225 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5226 skb_list_del_init(skb
);
5227 if (!skb_defer_rx_timestamp(skb
))
5228 list_add_tail(&skb
->list
, &sublist
);
5230 list_splice_init(&sublist
, head
);
5234 if (static_branch_unlikely(&rps_needed
)) {
5235 list_for_each_entry_safe(skb
, next
, head
, list
) {
5236 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5237 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5240 /* Will be handled, remove from list */
5241 skb_list_del_init(skb
);
5242 enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5247 __netif_receive_skb_list(head
);
5252 * netif_receive_skb - process receive buffer from network
5253 * @skb: buffer to process
5255 * netif_receive_skb() is the main receive data processing function.
5256 * It always succeeds. The buffer may be dropped during processing
5257 * for congestion control or by the protocol layers.
5259 * This function may only be called from softirq context and interrupts
5260 * should be enabled.
5262 * Return values (usually ignored):
5263 * NET_RX_SUCCESS: no congestion
5264 * NET_RX_DROP: packet was dropped
5266 int netif_receive_skb(struct sk_buff
*skb
)
5270 trace_netif_receive_skb_entry(skb
);
5272 ret
= netif_receive_skb_internal(skb
);
5273 trace_netif_receive_skb_exit(ret
);
5277 EXPORT_SYMBOL(netif_receive_skb
);
5280 * netif_receive_skb_list - process many receive buffers from network
5281 * @head: list of skbs to process.
5283 * Since return value of netif_receive_skb() is normally ignored, and
5284 * wouldn't be meaningful for a list, this function returns void.
5286 * This function may only be called from softirq context and interrupts
5287 * should be enabled.
5289 void netif_receive_skb_list(struct list_head
*head
)
5291 struct sk_buff
*skb
;
5293 if (list_empty(head
))
5295 if (trace_netif_receive_skb_list_entry_enabled()) {
5296 list_for_each_entry(skb
, head
, list
)
5297 trace_netif_receive_skb_list_entry(skb
);
5299 netif_receive_skb_list_internal(head
);
5300 trace_netif_receive_skb_list_exit(0);
5302 EXPORT_SYMBOL(netif_receive_skb_list
);
5304 DEFINE_PER_CPU(struct work_struct
, flush_works
);
5306 /* Network device is going away, flush any packets still pending */
5307 static void flush_backlog(struct work_struct
*work
)
5309 struct sk_buff
*skb
, *tmp
;
5310 struct softnet_data
*sd
;
5313 sd
= this_cpu_ptr(&softnet_data
);
5315 local_irq_disable();
5317 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
5318 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5319 __skb_unlink(skb
, &sd
->input_pkt_queue
);
5321 input_queue_head_incr(sd
);
5327 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
5328 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5329 __skb_unlink(skb
, &sd
->process_queue
);
5331 input_queue_head_incr(sd
);
5337 static void flush_all_backlogs(void)
5343 for_each_online_cpu(cpu
)
5344 queue_work_on(cpu
, system_highpri_wq
,
5345 per_cpu_ptr(&flush_works
, cpu
));
5347 for_each_online_cpu(cpu
)
5348 flush_work(per_cpu_ptr(&flush_works
, cpu
));
5353 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff
*, int));
5354 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff
*, int));
5355 static int napi_gro_complete(struct sk_buff
*skb
)
5357 struct packet_offload
*ptype
;
5358 __be16 type
= skb
->protocol
;
5359 struct list_head
*head
= &offload_base
;
5362 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
5364 if (NAPI_GRO_CB(skb
)->count
== 1) {
5365 skb_shinfo(skb
)->gso_size
= 0;
5370 list_for_each_entry_rcu(ptype
, head
, list
) {
5371 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5374 err
= INDIRECT_CALL_INET(ptype
->callbacks
.gro_complete
,
5375 ipv6_gro_complete
, inet_gro_complete
,
5382 WARN_ON(&ptype
->list
== head
);
5384 return NET_RX_SUCCESS
;
5388 return netif_receive_skb_internal(skb
);
5391 static void __napi_gro_flush_chain(struct napi_struct
*napi
, u32 index
,
5394 struct list_head
*head
= &napi
->gro_hash
[index
].list
;
5395 struct sk_buff
*skb
, *p
;
5397 list_for_each_entry_safe_reverse(skb
, p
, head
, list
) {
5398 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
5400 skb_list_del_init(skb
);
5401 napi_gro_complete(skb
);
5402 napi
->gro_hash
[index
].count
--;
5405 if (!napi
->gro_hash
[index
].count
)
5406 __clear_bit(index
, &napi
->gro_bitmask
);
5409 /* napi->gro_hash[].list contains packets ordered by age.
5410 * youngest packets at the head of it.
5411 * Complete skbs in reverse order to reduce latencies.
5413 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
5415 unsigned long bitmask
= napi
->gro_bitmask
;
5416 unsigned int i
, base
= ~0U;
5418 while ((i
= ffs(bitmask
)) != 0) {
5421 __napi_gro_flush_chain(napi
, base
, flush_old
);
5424 EXPORT_SYMBOL(napi_gro_flush
);
5426 static struct list_head
*gro_list_prepare(struct napi_struct
*napi
,
5427 struct sk_buff
*skb
)
5429 unsigned int maclen
= skb
->dev
->hard_header_len
;
5430 u32 hash
= skb_get_hash_raw(skb
);
5431 struct list_head
*head
;
5434 head
= &napi
->gro_hash
[hash
& (GRO_HASH_BUCKETS
- 1)].list
;
5435 list_for_each_entry(p
, head
, list
) {
5436 unsigned long diffs
;
5438 NAPI_GRO_CB(p
)->flush
= 0;
5440 if (hash
!= skb_get_hash_raw(p
)) {
5441 NAPI_GRO_CB(p
)->same_flow
= 0;
5445 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
5446 diffs
|= skb_vlan_tag_present(p
) ^ skb_vlan_tag_present(skb
);
5447 if (skb_vlan_tag_present(p
))
5448 diffs
|= p
->vlan_tci
^ skb
->vlan_tci
;
5449 diffs
|= skb_metadata_dst_cmp(p
, skb
);
5450 diffs
|= skb_metadata_differs(p
, skb
);
5451 if (maclen
== ETH_HLEN
)
5452 diffs
|= compare_ether_header(skb_mac_header(p
),
5453 skb_mac_header(skb
));
5455 diffs
= memcmp(skb_mac_header(p
),
5456 skb_mac_header(skb
),
5458 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
5464 static void skb_gro_reset_offset(struct sk_buff
*skb
)
5466 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5467 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
5469 NAPI_GRO_CB(skb
)->data_offset
= 0;
5470 NAPI_GRO_CB(skb
)->frag0
= NULL
;
5471 NAPI_GRO_CB(skb
)->frag0_len
= 0;
5473 if (skb_mac_header(skb
) == skb_tail_pointer(skb
) &&
5475 !PageHighMem(skb_frag_page(frag0
))) {
5476 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
5477 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
5478 skb_frag_size(frag0
),
5479 skb
->end
- skb
->tail
);
5483 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
5485 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5487 BUG_ON(skb
->end
- skb
->tail
< grow
);
5489 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
5491 skb
->data_len
-= grow
;
5494 pinfo
->frags
[0].page_offset
+= grow
;
5495 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
5497 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
5498 skb_frag_unref(skb
, 0);
5499 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
5500 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
5504 static void gro_flush_oldest(struct list_head
*head
)
5506 struct sk_buff
*oldest
;
5508 oldest
= list_last_entry(head
, struct sk_buff
, list
);
5510 /* We are called with head length >= MAX_GRO_SKBS, so this is
5513 if (WARN_ON_ONCE(!oldest
))
5516 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5519 skb_list_del_init(oldest
);
5520 napi_gro_complete(oldest
);
5523 INDIRECT_CALLABLE_DECLARE(struct sk_buff
*inet_gro_receive(struct list_head
*,
5525 INDIRECT_CALLABLE_DECLARE(struct sk_buff
*ipv6_gro_receive(struct list_head
*,
5527 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5529 u32 hash
= skb_get_hash_raw(skb
) & (GRO_HASH_BUCKETS
- 1);
5530 struct list_head
*head
= &offload_base
;
5531 struct packet_offload
*ptype
;
5532 __be16 type
= skb
->protocol
;
5533 struct list_head
*gro_head
;
5534 struct sk_buff
*pp
= NULL
;
5535 enum gro_result ret
;
5539 if (netif_elide_gro(skb
->dev
))
5542 gro_head
= gro_list_prepare(napi
, skb
);
5545 list_for_each_entry_rcu(ptype
, head
, list
) {
5546 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5549 skb_set_network_header(skb
, skb_gro_offset(skb
));
5550 skb_reset_mac_len(skb
);
5551 NAPI_GRO_CB(skb
)->same_flow
= 0;
5552 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
5553 NAPI_GRO_CB(skb
)->free
= 0;
5554 NAPI_GRO_CB(skb
)->encap_mark
= 0;
5555 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
5556 NAPI_GRO_CB(skb
)->is_fou
= 0;
5557 NAPI_GRO_CB(skb
)->is_atomic
= 1;
5558 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
5560 /* Setup for GRO checksum validation */
5561 switch (skb
->ip_summed
) {
5562 case CHECKSUM_COMPLETE
:
5563 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
5564 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5565 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5567 case CHECKSUM_UNNECESSARY
:
5568 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
5569 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5572 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5573 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5576 pp
= INDIRECT_CALL_INET(ptype
->callbacks
.gro_receive
,
5577 ipv6_gro_receive
, inet_gro_receive
,
5583 if (&ptype
->list
== head
)
5586 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
5591 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
5592 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
5595 skb_list_del_init(pp
);
5596 napi_gro_complete(pp
);
5597 napi
->gro_hash
[hash
].count
--;
5603 if (NAPI_GRO_CB(skb
)->flush
)
5606 if (unlikely(napi
->gro_hash
[hash
].count
>= MAX_GRO_SKBS
)) {
5607 gro_flush_oldest(gro_head
);
5609 napi
->gro_hash
[hash
].count
++;
5611 NAPI_GRO_CB(skb
)->count
= 1;
5612 NAPI_GRO_CB(skb
)->age
= jiffies
;
5613 NAPI_GRO_CB(skb
)->last
= skb
;
5614 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
5615 list_add(&skb
->list
, gro_head
);
5619 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
5621 gro_pull_from_frag0(skb
, grow
);
5623 if (napi
->gro_hash
[hash
].count
) {
5624 if (!test_bit(hash
, &napi
->gro_bitmask
))
5625 __set_bit(hash
, &napi
->gro_bitmask
);
5626 } else if (test_bit(hash
, &napi
->gro_bitmask
)) {
5627 __clear_bit(hash
, &napi
->gro_bitmask
);
5637 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
5639 struct list_head
*offload_head
= &offload_base
;
5640 struct packet_offload
*ptype
;
5642 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5643 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5649 EXPORT_SYMBOL(gro_find_receive_by_type
);
5651 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
5653 struct list_head
*offload_head
= &offload_base
;
5654 struct packet_offload
*ptype
;
5656 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5657 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5663 EXPORT_SYMBOL(gro_find_complete_by_type
);
5665 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
5669 kmem_cache_free(skbuff_head_cache
, skb
);
5672 static gro_result_t
napi_skb_finish(gro_result_t ret
, struct sk_buff
*skb
)
5676 if (netif_receive_skb_internal(skb
))
5684 case GRO_MERGED_FREE
:
5685 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5686 napi_skb_free_stolen_head(skb
);
5700 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5704 skb_mark_napi_id(skb
, napi
);
5705 trace_napi_gro_receive_entry(skb
);
5707 skb_gro_reset_offset(skb
);
5709 ret
= napi_skb_finish(dev_gro_receive(napi
, skb
), skb
);
5710 trace_napi_gro_receive_exit(ret
);
5714 EXPORT_SYMBOL(napi_gro_receive
);
5716 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
5718 if (unlikely(skb
->pfmemalloc
)) {
5722 __skb_pull(skb
, skb_headlen(skb
));
5723 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5724 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5725 __vlan_hwaccel_clear_tag(skb
);
5726 skb
->dev
= napi
->dev
;
5729 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5730 skb
->pkt_type
= PACKET_HOST
;
5732 skb
->encapsulation
= 0;
5733 skb_shinfo(skb
)->gso_type
= 0;
5734 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5740 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5742 struct sk_buff
*skb
= napi
->skb
;
5745 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5748 skb_mark_napi_id(skb
, napi
);
5753 EXPORT_SYMBOL(napi_get_frags
);
5755 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5756 struct sk_buff
*skb
,
5762 __skb_push(skb
, ETH_HLEN
);
5763 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5764 if (ret
== GRO_NORMAL
&& netif_receive_skb_internal(skb
))
5769 napi_reuse_skb(napi
, skb
);
5772 case GRO_MERGED_FREE
:
5773 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5774 napi_skb_free_stolen_head(skb
);
5776 napi_reuse_skb(napi
, skb
);
5787 /* Upper GRO stack assumes network header starts at gro_offset=0
5788 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5789 * We copy ethernet header into skb->data to have a common layout.
5791 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5793 struct sk_buff
*skb
= napi
->skb
;
5794 const struct ethhdr
*eth
;
5795 unsigned int hlen
= sizeof(*eth
);
5799 skb_reset_mac_header(skb
);
5800 skb_gro_reset_offset(skb
);
5802 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
5803 eth
= skb_gro_header_slow(skb
, hlen
, 0);
5804 if (unlikely(!eth
)) {
5805 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5806 __func__
, napi
->dev
->name
);
5807 napi_reuse_skb(napi
, skb
);
5811 eth
= (const struct ethhdr
*)skb
->data
;
5812 gro_pull_from_frag0(skb
, hlen
);
5813 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
5814 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
5816 __skb_pull(skb
, hlen
);
5819 * This works because the only protocols we care about don't require
5821 * We'll fix it up properly in napi_frags_finish()
5823 skb
->protocol
= eth
->h_proto
;
5828 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
5831 struct sk_buff
*skb
= napi_frags_skb(napi
);
5836 trace_napi_gro_frags_entry(skb
);
5838 ret
= napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5839 trace_napi_gro_frags_exit(ret
);
5843 EXPORT_SYMBOL(napi_gro_frags
);
5845 /* Compute the checksum from gro_offset and return the folded value
5846 * after adding in any pseudo checksum.
5848 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
5853 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
5855 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5856 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
5857 /* See comments in __skb_checksum_complete(). */
5859 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
5860 !skb
->csum_complete_sw
)
5861 netdev_rx_csum_fault(skb
->dev
, skb
);
5864 NAPI_GRO_CB(skb
)->csum
= wsum
;
5865 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5869 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
5871 static void net_rps_send_ipi(struct softnet_data
*remsd
)
5875 struct softnet_data
*next
= remsd
->rps_ipi_next
;
5877 if (cpu_online(remsd
->cpu
))
5878 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
5885 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5886 * Note: called with local irq disabled, but exits with local irq enabled.
5888 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
5891 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
5894 sd
->rps_ipi_list
= NULL
;
5898 /* Send pending IPI's to kick RPS processing on remote cpus. */
5899 net_rps_send_ipi(remsd
);
5905 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
5908 return sd
->rps_ipi_list
!= NULL
;
5914 static int process_backlog(struct napi_struct
*napi
, int quota
)
5916 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
5920 /* Check if we have pending ipi, its better to send them now,
5921 * not waiting net_rx_action() end.
5923 if (sd_has_rps_ipi_waiting(sd
)) {
5924 local_irq_disable();
5925 net_rps_action_and_irq_enable(sd
);
5928 napi
->weight
= dev_rx_weight
;
5930 struct sk_buff
*skb
;
5932 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
5934 __netif_receive_skb(skb
);
5936 input_queue_head_incr(sd
);
5937 if (++work
>= quota
)
5942 local_irq_disable();
5944 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
5946 * Inline a custom version of __napi_complete().
5947 * only current cpu owns and manipulates this napi,
5948 * and NAPI_STATE_SCHED is the only possible flag set
5950 * We can use a plain write instead of clear_bit(),
5951 * and we dont need an smp_mb() memory barrier.
5956 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
5957 &sd
->process_queue
);
5967 * __napi_schedule - schedule for receive
5968 * @n: entry to schedule
5970 * The entry's receive function will be scheduled to run.
5971 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5973 void __napi_schedule(struct napi_struct
*n
)
5975 unsigned long flags
;
5977 local_irq_save(flags
);
5978 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5979 local_irq_restore(flags
);
5981 EXPORT_SYMBOL(__napi_schedule
);
5984 * napi_schedule_prep - check if napi can be scheduled
5987 * Test if NAPI routine is already running, and if not mark
5988 * it as running. This is used as a condition variable
5989 * insure only one NAPI poll instance runs. We also make
5990 * sure there is no pending NAPI disable.
5992 bool napi_schedule_prep(struct napi_struct
*n
)
5994 unsigned long val
, new;
5997 val
= READ_ONCE(n
->state
);
5998 if (unlikely(val
& NAPIF_STATE_DISABLE
))
6000 new = val
| NAPIF_STATE_SCHED
;
6002 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6003 * This was suggested by Alexander Duyck, as compiler
6004 * emits better code than :
6005 * if (val & NAPIF_STATE_SCHED)
6006 * new |= NAPIF_STATE_MISSED;
6008 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
6010 } while (cmpxchg(&n
->state
, val
, new) != val
);
6012 return !(val
& NAPIF_STATE_SCHED
);
6014 EXPORT_SYMBOL(napi_schedule_prep
);
6017 * __napi_schedule_irqoff - schedule for receive
6018 * @n: entry to schedule
6020 * Variant of __napi_schedule() assuming hard irqs are masked
6022 void __napi_schedule_irqoff(struct napi_struct
*n
)
6024 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
6026 EXPORT_SYMBOL(__napi_schedule_irqoff
);
6028 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
6030 unsigned long flags
, val
, new;
6033 * 1) Don't let napi dequeue from the cpu poll list
6034 * just in case its running on a different cpu.
6035 * 2) If we are busy polling, do nothing here, we have
6036 * the guarantee we will be called later.
6038 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
6039 NAPIF_STATE_IN_BUSY_POLL
)))
6042 if (n
->gro_bitmask
) {
6043 unsigned long timeout
= 0;
6046 timeout
= n
->dev
->gro_flush_timeout
;
6048 /* When the NAPI instance uses a timeout and keeps postponing
6049 * it, we need to bound somehow the time packets are kept in
6052 napi_gro_flush(n
, !!timeout
);
6054 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
6055 HRTIMER_MODE_REL_PINNED
);
6057 if (unlikely(!list_empty(&n
->poll_list
))) {
6058 /* If n->poll_list is not empty, we need to mask irqs */
6059 local_irq_save(flags
);
6060 list_del_init(&n
->poll_list
);
6061 local_irq_restore(flags
);
6065 val
= READ_ONCE(n
->state
);
6067 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
6069 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
6071 /* If STATE_MISSED was set, leave STATE_SCHED set,
6072 * because we will call napi->poll() one more time.
6073 * This C code was suggested by Alexander Duyck to help gcc.
6075 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
6077 } while (cmpxchg(&n
->state
, val
, new) != val
);
6079 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
6086 EXPORT_SYMBOL(napi_complete_done
);
6088 /* must be called under rcu_read_lock(), as we dont take a reference */
6089 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
6091 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
6092 struct napi_struct
*napi
;
6094 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
6095 if (napi
->napi_id
== napi_id
)
6101 #if defined(CONFIG_NET_RX_BUSY_POLL)
6103 #define BUSY_POLL_BUDGET 8
6105 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
6109 /* Busy polling means there is a high chance device driver hard irq
6110 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6111 * set in napi_schedule_prep().
6112 * Since we are about to call napi->poll() once more, we can safely
6113 * clear NAPI_STATE_MISSED.
6115 * Note: x86 could use a single "lock and ..." instruction
6116 * to perform these two clear_bit()
6118 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
6119 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
6123 /* All we really want here is to re-enable device interrupts.
6124 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6126 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
6127 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
6128 netpoll_poll_unlock(have_poll_lock
);
6129 if (rc
== BUSY_POLL_BUDGET
)
6130 __napi_schedule(napi
);
6134 void napi_busy_loop(unsigned int napi_id
,
6135 bool (*loop_end
)(void *, unsigned long),
6138 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
6139 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
6140 void *have_poll_lock
= NULL
;
6141 struct napi_struct
*napi
;
6148 napi
= napi_by_id(napi_id
);
6158 unsigned long val
= READ_ONCE(napi
->state
);
6160 /* If multiple threads are competing for this napi,
6161 * we avoid dirtying napi->state as much as we can.
6163 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
6164 NAPIF_STATE_IN_BUSY_POLL
))
6166 if (cmpxchg(&napi
->state
, val
,
6167 val
| NAPIF_STATE_IN_BUSY_POLL
|
6168 NAPIF_STATE_SCHED
) != val
)
6170 have_poll_lock
= netpoll_poll_lock(napi
);
6171 napi_poll
= napi
->poll
;
6173 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
6174 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
6177 __NET_ADD_STATS(dev_net(napi
->dev
),
6178 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
6181 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
6184 if (unlikely(need_resched())) {
6186 busy_poll_stop(napi
, have_poll_lock
);
6190 if (loop_end(loop_end_arg
, start_time
))
6197 busy_poll_stop(napi
, have_poll_lock
);
6202 EXPORT_SYMBOL(napi_busy_loop
);
6204 #endif /* CONFIG_NET_RX_BUSY_POLL */
6206 static void napi_hash_add(struct napi_struct
*napi
)
6208 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
6209 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
6212 spin_lock(&napi_hash_lock
);
6214 /* 0..NR_CPUS range is reserved for sender_cpu use */
6216 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
6217 napi_gen_id
= MIN_NAPI_ID
;
6218 } while (napi_by_id(napi_gen_id
));
6219 napi
->napi_id
= napi_gen_id
;
6221 hlist_add_head_rcu(&napi
->napi_hash_node
,
6222 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
6224 spin_unlock(&napi_hash_lock
);
6227 /* Warning : caller is responsible to make sure rcu grace period
6228 * is respected before freeing memory containing @napi
6230 bool napi_hash_del(struct napi_struct
*napi
)
6232 bool rcu_sync_needed
= false;
6234 spin_lock(&napi_hash_lock
);
6236 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
6237 rcu_sync_needed
= true;
6238 hlist_del_rcu(&napi
->napi_hash_node
);
6240 spin_unlock(&napi_hash_lock
);
6241 return rcu_sync_needed
;
6243 EXPORT_SYMBOL_GPL(napi_hash_del
);
6245 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
6247 struct napi_struct
*napi
;
6249 napi
= container_of(timer
, struct napi_struct
, timer
);
6251 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6252 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6254 if (napi
->gro_bitmask
&& !napi_disable_pending(napi
) &&
6255 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
6256 __napi_schedule_irqoff(napi
);
6258 return HRTIMER_NORESTART
;
6261 static void init_gro_hash(struct napi_struct
*napi
)
6265 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6266 INIT_LIST_HEAD(&napi
->gro_hash
[i
].list
);
6267 napi
->gro_hash
[i
].count
= 0;
6269 napi
->gro_bitmask
= 0;
6272 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
6273 int (*poll
)(struct napi_struct
*, int), int weight
)
6275 INIT_LIST_HEAD(&napi
->poll_list
);
6276 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
6277 napi
->timer
.function
= napi_watchdog
;
6278 init_gro_hash(napi
);
6281 if (weight
> NAPI_POLL_WEIGHT
)
6282 netdev_err_once(dev
, "%s() called with weight %d\n", __func__
,
6284 napi
->weight
= weight
;
6285 list_add(&napi
->dev_list
, &dev
->napi_list
);
6287 #ifdef CONFIG_NETPOLL
6288 napi
->poll_owner
= -1;
6290 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
6291 napi_hash_add(napi
);
6293 EXPORT_SYMBOL(netif_napi_add
);
6295 void napi_disable(struct napi_struct
*n
)
6298 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
6300 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
6302 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
6305 hrtimer_cancel(&n
->timer
);
6307 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
6309 EXPORT_SYMBOL(napi_disable
);
6311 static void flush_gro_hash(struct napi_struct
*napi
)
6315 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6316 struct sk_buff
*skb
, *n
;
6318 list_for_each_entry_safe(skb
, n
, &napi
->gro_hash
[i
].list
, list
)
6320 napi
->gro_hash
[i
].count
= 0;
6324 /* Must be called in process context */
6325 void netif_napi_del(struct napi_struct
*napi
)
6328 if (napi_hash_del(napi
))
6330 list_del_init(&napi
->dev_list
);
6331 napi_free_frags(napi
);
6333 flush_gro_hash(napi
);
6334 napi
->gro_bitmask
= 0;
6336 EXPORT_SYMBOL(netif_napi_del
);
6338 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
6343 list_del_init(&n
->poll_list
);
6345 have
= netpoll_poll_lock(n
);
6349 /* This NAPI_STATE_SCHED test is for avoiding a race
6350 * with netpoll's poll_napi(). Only the entity which
6351 * obtains the lock and sees NAPI_STATE_SCHED set will
6352 * actually make the ->poll() call. Therefore we avoid
6353 * accidentally calling ->poll() when NAPI is not scheduled.
6356 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
6357 work
= n
->poll(n
, weight
);
6358 trace_napi_poll(n
, work
, weight
);
6361 WARN_ON_ONCE(work
> weight
);
6363 if (likely(work
< weight
))
6366 /* Drivers must not modify the NAPI state if they
6367 * consume the entire weight. In such cases this code
6368 * still "owns" the NAPI instance and therefore can
6369 * move the instance around on the list at-will.
6371 if (unlikely(napi_disable_pending(n
))) {
6376 if (n
->gro_bitmask
) {
6377 /* flush too old packets
6378 * If HZ < 1000, flush all packets.
6380 napi_gro_flush(n
, HZ
>= 1000);
6383 /* Some drivers may have called napi_schedule
6384 * prior to exhausting their budget.
6386 if (unlikely(!list_empty(&n
->poll_list
))) {
6387 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6388 n
->dev
? n
->dev
->name
: "backlog");
6392 list_add_tail(&n
->poll_list
, repoll
);
6395 netpoll_poll_unlock(have
);
6400 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
6402 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
6403 unsigned long time_limit
= jiffies
+
6404 usecs_to_jiffies(netdev_budget_usecs
);
6405 int budget
= netdev_budget
;
6409 local_irq_disable();
6410 list_splice_init(&sd
->poll_list
, &list
);
6414 struct napi_struct
*n
;
6416 if (list_empty(&list
)) {
6417 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
6422 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
6423 budget
-= napi_poll(n
, &repoll
);
6425 /* If softirq window is exhausted then punt.
6426 * Allow this to run for 2 jiffies since which will allow
6427 * an average latency of 1.5/HZ.
6429 if (unlikely(budget
<= 0 ||
6430 time_after_eq(jiffies
, time_limit
))) {
6436 local_irq_disable();
6438 list_splice_tail_init(&sd
->poll_list
, &list
);
6439 list_splice_tail(&repoll
, &list
);
6440 list_splice(&list
, &sd
->poll_list
);
6441 if (!list_empty(&sd
->poll_list
))
6442 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
6444 net_rps_action_and_irq_enable(sd
);
6446 __kfree_skb_flush();
6449 struct netdev_adjacent
{
6450 struct net_device
*dev
;
6452 /* upper master flag, there can only be one master device per list */
6455 /* counter for the number of times this device was added to us */
6458 /* private field for the users */
6461 struct list_head list
;
6462 struct rcu_head rcu
;
6465 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
6466 struct list_head
*adj_list
)
6468 struct netdev_adjacent
*adj
;
6470 list_for_each_entry(adj
, adj_list
, list
) {
6471 if (adj
->dev
== adj_dev
)
6477 static int __netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
6479 struct net_device
*dev
= data
;
6481 return upper_dev
== dev
;
6485 * netdev_has_upper_dev - Check if device is linked to an upper device
6487 * @upper_dev: upper device to check
6489 * Find out if a device is linked to specified upper device and return true
6490 * in case it is. Note that this checks only immediate upper device,
6491 * not through a complete stack of devices. The caller must hold the RTNL lock.
6493 bool netdev_has_upper_dev(struct net_device
*dev
,
6494 struct net_device
*upper_dev
)
6498 return netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6501 EXPORT_SYMBOL(netdev_has_upper_dev
);
6504 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6506 * @upper_dev: upper device to check
6508 * Find out if a device is linked to specified upper device and return true
6509 * in case it is. Note that this checks the entire upper device chain.
6510 * The caller must hold rcu lock.
6513 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
6514 struct net_device
*upper_dev
)
6516 return !!netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6519 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
6522 * netdev_has_any_upper_dev - Check if device is linked to some device
6525 * Find out if a device is linked to an upper device and return true in case
6526 * it is. The caller must hold the RTNL lock.
6528 bool netdev_has_any_upper_dev(struct net_device
*dev
)
6532 return !list_empty(&dev
->adj_list
.upper
);
6534 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
6537 * netdev_master_upper_dev_get - Get master upper device
6540 * Find a master upper device and return pointer to it or NULL in case
6541 * it's not there. The caller must hold the RTNL lock.
6543 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
6545 struct netdev_adjacent
*upper
;
6549 if (list_empty(&dev
->adj_list
.upper
))
6552 upper
= list_first_entry(&dev
->adj_list
.upper
,
6553 struct netdev_adjacent
, list
);
6554 if (likely(upper
->master
))
6558 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
6561 * netdev_has_any_lower_dev - Check if device is linked to some device
6564 * Find out if a device is linked to a lower device and return true in case
6565 * it is. The caller must hold the RTNL lock.
6567 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
6571 return !list_empty(&dev
->adj_list
.lower
);
6574 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
6576 struct netdev_adjacent
*adj
;
6578 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
6580 return adj
->private;
6582 EXPORT_SYMBOL(netdev_adjacent_get_private
);
6585 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6587 * @iter: list_head ** of the current position
6589 * Gets the next device from the dev's upper list, starting from iter
6590 * position. The caller must hold RCU read lock.
6592 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
6593 struct list_head
**iter
)
6595 struct netdev_adjacent
*upper
;
6597 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6599 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6601 if (&upper
->list
== &dev
->adj_list
.upper
)
6604 *iter
= &upper
->list
;
6608 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
6610 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
6611 struct list_head
**iter
)
6613 struct netdev_adjacent
*upper
;
6615 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6617 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6619 if (&upper
->list
== &dev
->adj_list
.upper
)
6622 *iter
= &upper
->list
;
6627 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
6628 int (*fn
)(struct net_device
*dev
,
6632 struct net_device
*udev
;
6633 struct list_head
*iter
;
6636 for (iter
= &dev
->adj_list
.upper
,
6637 udev
= netdev_next_upper_dev_rcu(dev
, &iter
);
6639 udev
= netdev_next_upper_dev_rcu(dev
, &iter
)) {
6640 /* first is the upper device itself */
6641 ret
= fn(udev
, data
);
6645 /* then look at all of its upper devices */
6646 ret
= netdev_walk_all_upper_dev_rcu(udev
, fn
, data
);
6653 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
6656 * netdev_lower_get_next_private - Get the next ->private from the
6657 * lower neighbour list
6659 * @iter: list_head ** of the current position
6661 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6662 * list, starting from iter position. The caller must hold either hold the
6663 * RTNL lock or its own locking that guarantees that the neighbour lower
6664 * list will remain unchanged.
6666 void *netdev_lower_get_next_private(struct net_device
*dev
,
6667 struct list_head
**iter
)
6669 struct netdev_adjacent
*lower
;
6671 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6673 if (&lower
->list
== &dev
->adj_list
.lower
)
6676 *iter
= lower
->list
.next
;
6678 return lower
->private;
6680 EXPORT_SYMBOL(netdev_lower_get_next_private
);
6683 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6684 * lower neighbour list, RCU
6687 * @iter: list_head ** of the current position
6689 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6690 * list, starting from iter position. The caller must hold RCU read lock.
6692 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
6693 struct list_head
**iter
)
6695 struct netdev_adjacent
*lower
;
6697 WARN_ON_ONCE(!rcu_read_lock_held());
6699 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6701 if (&lower
->list
== &dev
->adj_list
.lower
)
6704 *iter
= &lower
->list
;
6706 return lower
->private;
6708 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
6711 * netdev_lower_get_next - Get the next device from the lower neighbour
6714 * @iter: list_head ** of the current position
6716 * Gets the next netdev_adjacent from the dev's lower neighbour
6717 * list, starting from iter position. The caller must hold RTNL lock or
6718 * its own locking that guarantees that the neighbour lower
6719 * list will remain unchanged.
6721 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
6723 struct netdev_adjacent
*lower
;
6725 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6727 if (&lower
->list
== &dev
->adj_list
.lower
)
6730 *iter
= lower
->list
.next
;
6734 EXPORT_SYMBOL(netdev_lower_get_next
);
6736 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
6737 struct list_head
**iter
)
6739 struct netdev_adjacent
*lower
;
6741 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6743 if (&lower
->list
== &dev
->adj_list
.lower
)
6746 *iter
= &lower
->list
;
6751 int netdev_walk_all_lower_dev(struct net_device
*dev
,
6752 int (*fn
)(struct net_device
*dev
,
6756 struct net_device
*ldev
;
6757 struct list_head
*iter
;
6760 for (iter
= &dev
->adj_list
.lower
,
6761 ldev
= netdev_next_lower_dev(dev
, &iter
);
6763 ldev
= netdev_next_lower_dev(dev
, &iter
)) {
6764 /* first is the lower device itself */
6765 ret
= fn(ldev
, data
);
6769 /* then look at all of its lower devices */
6770 ret
= netdev_walk_all_lower_dev(ldev
, fn
, data
);
6777 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
6779 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
6780 struct list_head
**iter
)
6782 struct netdev_adjacent
*lower
;
6784 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6785 if (&lower
->list
== &dev
->adj_list
.lower
)
6788 *iter
= &lower
->list
;
6793 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
6794 int (*fn
)(struct net_device
*dev
,
6798 struct net_device
*ldev
;
6799 struct list_head
*iter
;
6802 for (iter
= &dev
->adj_list
.lower
,
6803 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
);
6805 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
)) {
6806 /* first is the lower device itself */
6807 ret
= fn(ldev
, data
);
6811 /* then look at all of its lower devices */
6812 ret
= netdev_walk_all_lower_dev_rcu(ldev
, fn
, data
);
6819 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
6822 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6823 * lower neighbour list, RCU
6827 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6828 * list. The caller must hold RCU read lock.
6830 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
6832 struct netdev_adjacent
*lower
;
6834 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
6835 struct netdev_adjacent
, list
);
6837 return lower
->private;
6840 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
6843 * netdev_master_upper_dev_get_rcu - Get master upper device
6846 * Find a master upper device and return pointer to it or NULL in case
6847 * it's not there. The caller must hold the RCU read lock.
6849 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
6851 struct netdev_adjacent
*upper
;
6853 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
6854 struct netdev_adjacent
, list
);
6855 if (upper
&& likely(upper
->master
))
6859 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
6861 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
6862 struct net_device
*adj_dev
,
6863 struct list_head
*dev_list
)
6865 char linkname
[IFNAMSIZ
+7];
6867 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6868 "upper_%s" : "lower_%s", adj_dev
->name
);
6869 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
6872 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
6874 struct list_head
*dev_list
)
6876 char linkname
[IFNAMSIZ
+7];
6878 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6879 "upper_%s" : "lower_%s", name
);
6880 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
6883 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
6884 struct net_device
*adj_dev
,
6885 struct list_head
*dev_list
)
6887 return (dev_list
== &dev
->adj_list
.upper
||
6888 dev_list
== &dev
->adj_list
.lower
) &&
6889 net_eq(dev_net(dev
), dev_net(adj_dev
));
6892 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
6893 struct net_device
*adj_dev
,
6894 struct list_head
*dev_list
,
6895 void *private, bool master
)
6897 struct netdev_adjacent
*adj
;
6900 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6904 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6905 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
6910 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
6915 adj
->master
= master
;
6917 adj
->private = private;
6920 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6921 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
6923 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
6924 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
6929 /* Ensure that master link is always the first item in list. */
6931 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
6932 &(adj_dev
->dev
.kobj
), "master");
6934 goto remove_symlinks
;
6936 list_add_rcu(&adj
->list
, dev_list
);
6938 list_add_tail_rcu(&adj
->list
, dev_list
);
6944 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6945 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6953 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
6954 struct net_device
*adj_dev
,
6956 struct list_head
*dev_list
)
6958 struct netdev_adjacent
*adj
;
6960 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6961 dev
->name
, adj_dev
->name
, ref_nr
);
6963 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6966 pr_err("Adjacency does not exist for device %s from %s\n",
6967 dev
->name
, adj_dev
->name
);
6972 if (adj
->ref_nr
> ref_nr
) {
6973 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6974 dev
->name
, adj_dev
->name
, ref_nr
,
6975 adj
->ref_nr
- ref_nr
);
6976 adj
->ref_nr
-= ref_nr
;
6981 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
6983 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6984 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6986 list_del_rcu(&adj
->list
);
6987 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6988 adj_dev
->name
, dev
->name
, adj_dev
->name
);
6990 kfree_rcu(adj
, rcu
);
6993 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
6994 struct net_device
*upper_dev
,
6995 struct list_head
*up_list
,
6996 struct list_head
*down_list
,
6997 void *private, bool master
)
7001 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
7006 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
7009 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
7016 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
7017 struct net_device
*upper_dev
,
7019 struct list_head
*up_list
,
7020 struct list_head
*down_list
)
7022 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
7023 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
7026 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
7027 struct net_device
*upper_dev
,
7028 void *private, bool master
)
7030 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
7031 &dev
->adj_list
.upper
,
7032 &upper_dev
->adj_list
.lower
,
7036 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
7037 struct net_device
*upper_dev
)
7039 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
7040 &dev
->adj_list
.upper
,
7041 &upper_dev
->adj_list
.lower
);
7044 static int __netdev_upper_dev_link(struct net_device
*dev
,
7045 struct net_device
*upper_dev
, bool master
,
7046 void *upper_priv
, void *upper_info
,
7047 struct netlink_ext_ack
*extack
)
7049 struct netdev_notifier_changeupper_info changeupper_info
= {
7054 .upper_dev
= upper_dev
,
7057 .upper_info
= upper_info
,
7059 struct net_device
*master_dev
;
7064 if (dev
== upper_dev
)
7067 /* To prevent loops, check if dev is not upper device to upper_dev. */
7068 if (netdev_has_upper_dev(upper_dev
, dev
))
7072 if (netdev_has_upper_dev(dev
, upper_dev
))
7075 master_dev
= netdev_master_upper_dev_get(dev
);
7077 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
7080 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7081 &changeupper_info
.info
);
7082 ret
= notifier_to_errno(ret
);
7086 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
7091 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7092 &changeupper_info
.info
);
7093 ret
= notifier_to_errno(ret
);
7100 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7106 * netdev_upper_dev_link - Add a link to the upper device
7108 * @upper_dev: new upper device
7109 * @extack: netlink extended ack
7111 * Adds a link to device which is upper to this one. The caller must hold
7112 * the RTNL lock. On a failure a negative errno code is returned.
7113 * On success the reference counts are adjusted and the function
7116 int netdev_upper_dev_link(struct net_device
*dev
,
7117 struct net_device
*upper_dev
,
7118 struct netlink_ext_ack
*extack
)
7120 return __netdev_upper_dev_link(dev
, upper_dev
, false,
7121 NULL
, NULL
, extack
);
7123 EXPORT_SYMBOL(netdev_upper_dev_link
);
7126 * netdev_master_upper_dev_link - Add a master link to the upper device
7128 * @upper_dev: new upper device
7129 * @upper_priv: upper device private
7130 * @upper_info: upper info to be passed down via notifier
7131 * @extack: netlink extended ack
7133 * Adds a link to device which is upper to this one. In this case, only
7134 * one master upper device can be linked, although other non-master devices
7135 * might be linked as well. The caller must hold the RTNL lock.
7136 * On a failure a negative errno code is returned. On success the reference
7137 * counts are adjusted and the function returns zero.
7139 int netdev_master_upper_dev_link(struct net_device
*dev
,
7140 struct net_device
*upper_dev
,
7141 void *upper_priv
, void *upper_info
,
7142 struct netlink_ext_ack
*extack
)
7144 return __netdev_upper_dev_link(dev
, upper_dev
, true,
7145 upper_priv
, upper_info
, extack
);
7147 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
7150 * netdev_upper_dev_unlink - Removes a link to upper device
7152 * @upper_dev: new upper device
7154 * Removes a link to device which is upper to this one. The caller must hold
7157 void netdev_upper_dev_unlink(struct net_device
*dev
,
7158 struct net_device
*upper_dev
)
7160 struct netdev_notifier_changeupper_info changeupper_info
= {
7164 .upper_dev
= upper_dev
,
7170 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
7172 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7173 &changeupper_info
.info
);
7175 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7177 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7178 &changeupper_info
.info
);
7180 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
7183 * netdev_bonding_info_change - Dispatch event about slave change
7185 * @bonding_info: info to dispatch
7187 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7188 * The caller must hold the RTNL lock.
7190 void netdev_bonding_info_change(struct net_device
*dev
,
7191 struct netdev_bonding_info
*bonding_info
)
7193 struct netdev_notifier_bonding_info info
= {
7197 memcpy(&info
.bonding_info
, bonding_info
,
7198 sizeof(struct netdev_bonding_info
));
7199 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
7202 EXPORT_SYMBOL(netdev_bonding_info_change
);
7204 static void netdev_adjacent_add_links(struct net_device
*dev
)
7206 struct netdev_adjacent
*iter
;
7208 struct net
*net
= dev_net(dev
);
7210 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7211 if (!net_eq(net
, dev_net(iter
->dev
)))
7213 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7214 &iter
->dev
->adj_list
.lower
);
7215 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7216 &dev
->adj_list
.upper
);
7219 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7220 if (!net_eq(net
, dev_net(iter
->dev
)))
7222 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7223 &iter
->dev
->adj_list
.upper
);
7224 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7225 &dev
->adj_list
.lower
);
7229 static void netdev_adjacent_del_links(struct net_device
*dev
)
7231 struct netdev_adjacent
*iter
;
7233 struct net
*net
= dev_net(dev
);
7235 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7236 if (!net_eq(net
, dev_net(iter
->dev
)))
7238 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7239 &iter
->dev
->adj_list
.lower
);
7240 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7241 &dev
->adj_list
.upper
);
7244 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7245 if (!net_eq(net
, dev_net(iter
->dev
)))
7247 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7248 &iter
->dev
->adj_list
.upper
);
7249 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7250 &dev
->adj_list
.lower
);
7254 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
7256 struct netdev_adjacent
*iter
;
7258 struct net
*net
= dev_net(dev
);
7260 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7261 if (!net_eq(net
, dev_net(iter
->dev
)))
7263 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7264 &iter
->dev
->adj_list
.lower
);
7265 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7266 &iter
->dev
->adj_list
.lower
);
7269 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7270 if (!net_eq(net
, dev_net(iter
->dev
)))
7272 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7273 &iter
->dev
->adj_list
.upper
);
7274 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7275 &iter
->dev
->adj_list
.upper
);
7279 void *netdev_lower_dev_get_private(struct net_device
*dev
,
7280 struct net_device
*lower_dev
)
7282 struct netdev_adjacent
*lower
;
7286 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
7290 return lower
->private;
7292 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
7295 int dev_get_nest_level(struct net_device
*dev
)
7297 struct net_device
*lower
= NULL
;
7298 struct list_head
*iter
;
7304 netdev_for_each_lower_dev(dev
, lower
, iter
) {
7305 nest
= dev_get_nest_level(lower
);
7306 if (max_nest
< nest
)
7310 return max_nest
+ 1;
7312 EXPORT_SYMBOL(dev_get_nest_level
);
7315 * netdev_lower_change - Dispatch event about lower device state change
7316 * @lower_dev: device
7317 * @lower_state_info: state to dispatch
7319 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7320 * The caller must hold the RTNL lock.
7322 void netdev_lower_state_changed(struct net_device
*lower_dev
,
7323 void *lower_state_info
)
7325 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
7326 .info
.dev
= lower_dev
,
7330 changelowerstate_info
.lower_state_info
= lower_state_info
;
7331 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
7332 &changelowerstate_info
.info
);
7334 EXPORT_SYMBOL(netdev_lower_state_changed
);
7336 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
7338 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7340 if (ops
->ndo_change_rx_flags
)
7341 ops
->ndo_change_rx_flags(dev
, flags
);
7344 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
7346 unsigned int old_flags
= dev
->flags
;
7352 dev
->flags
|= IFF_PROMISC
;
7353 dev
->promiscuity
+= inc
;
7354 if (dev
->promiscuity
== 0) {
7357 * If inc causes overflow, untouch promisc and return error.
7360 dev
->flags
&= ~IFF_PROMISC
;
7362 dev
->promiscuity
-= inc
;
7363 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7368 if (dev
->flags
!= old_flags
) {
7369 pr_info("device %s %s promiscuous mode\n",
7371 dev
->flags
& IFF_PROMISC
? "entered" : "left");
7372 if (audit_enabled
) {
7373 current_uid_gid(&uid
, &gid
);
7374 audit_log(audit_context(), GFP_ATOMIC
,
7375 AUDIT_ANOM_PROMISCUOUS
,
7376 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7377 dev
->name
, (dev
->flags
& IFF_PROMISC
),
7378 (old_flags
& IFF_PROMISC
),
7379 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
7380 from_kuid(&init_user_ns
, uid
),
7381 from_kgid(&init_user_ns
, gid
),
7382 audit_get_sessionid(current
));
7385 dev_change_rx_flags(dev
, IFF_PROMISC
);
7388 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
7393 * dev_set_promiscuity - update promiscuity count on a device
7397 * Add or remove promiscuity from a device. While the count in the device
7398 * remains above zero the interface remains promiscuous. Once it hits zero
7399 * the device reverts back to normal filtering operation. A negative inc
7400 * value is used to drop promiscuity on the device.
7401 * Return 0 if successful or a negative errno code on error.
7403 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
7405 unsigned int old_flags
= dev
->flags
;
7408 err
= __dev_set_promiscuity(dev
, inc
, true);
7411 if (dev
->flags
!= old_flags
)
7412 dev_set_rx_mode(dev
);
7415 EXPORT_SYMBOL(dev_set_promiscuity
);
7417 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
7419 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7423 dev
->flags
|= IFF_ALLMULTI
;
7424 dev
->allmulti
+= inc
;
7425 if (dev
->allmulti
== 0) {
7428 * If inc causes overflow, untouch allmulti and return error.
7431 dev
->flags
&= ~IFF_ALLMULTI
;
7433 dev
->allmulti
-= inc
;
7434 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7439 if (dev
->flags
^ old_flags
) {
7440 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
7441 dev_set_rx_mode(dev
);
7443 __dev_notify_flags(dev
, old_flags
,
7444 dev
->gflags
^ old_gflags
);
7450 * dev_set_allmulti - update allmulti count on a device
7454 * Add or remove reception of all multicast frames to a device. While the
7455 * count in the device remains above zero the interface remains listening
7456 * to all interfaces. Once it hits zero the device reverts back to normal
7457 * filtering operation. A negative @inc value is used to drop the counter
7458 * when releasing a resource needing all multicasts.
7459 * Return 0 if successful or a negative errno code on error.
7462 int dev_set_allmulti(struct net_device
*dev
, int inc
)
7464 return __dev_set_allmulti(dev
, inc
, true);
7466 EXPORT_SYMBOL(dev_set_allmulti
);
7469 * Upload unicast and multicast address lists to device and
7470 * configure RX filtering. When the device doesn't support unicast
7471 * filtering it is put in promiscuous mode while unicast addresses
7474 void __dev_set_rx_mode(struct net_device
*dev
)
7476 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7478 /* dev_open will call this function so the list will stay sane. */
7479 if (!(dev
->flags
&IFF_UP
))
7482 if (!netif_device_present(dev
))
7485 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
7486 /* Unicast addresses changes may only happen under the rtnl,
7487 * therefore calling __dev_set_promiscuity here is safe.
7489 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
7490 __dev_set_promiscuity(dev
, 1, false);
7491 dev
->uc_promisc
= true;
7492 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
7493 __dev_set_promiscuity(dev
, -1, false);
7494 dev
->uc_promisc
= false;
7498 if (ops
->ndo_set_rx_mode
)
7499 ops
->ndo_set_rx_mode(dev
);
7502 void dev_set_rx_mode(struct net_device
*dev
)
7504 netif_addr_lock_bh(dev
);
7505 __dev_set_rx_mode(dev
);
7506 netif_addr_unlock_bh(dev
);
7510 * dev_get_flags - get flags reported to userspace
7513 * Get the combination of flag bits exported through APIs to userspace.
7515 unsigned int dev_get_flags(const struct net_device
*dev
)
7519 flags
= (dev
->flags
& ~(IFF_PROMISC
|
7524 (dev
->gflags
& (IFF_PROMISC
|
7527 if (netif_running(dev
)) {
7528 if (netif_oper_up(dev
))
7529 flags
|= IFF_RUNNING
;
7530 if (netif_carrier_ok(dev
))
7531 flags
|= IFF_LOWER_UP
;
7532 if (netif_dormant(dev
))
7533 flags
|= IFF_DORMANT
;
7538 EXPORT_SYMBOL(dev_get_flags
);
7540 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
,
7541 struct netlink_ext_ack
*extack
)
7543 unsigned int old_flags
= dev
->flags
;
7549 * Set the flags on our device.
7552 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
7553 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
7555 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
7559 * Load in the correct multicast list now the flags have changed.
7562 if ((old_flags
^ flags
) & IFF_MULTICAST
)
7563 dev_change_rx_flags(dev
, IFF_MULTICAST
);
7565 dev_set_rx_mode(dev
);
7568 * Have we downed the interface. We handle IFF_UP ourselves
7569 * according to user attempts to set it, rather than blindly
7574 if ((old_flags
^ flags
) & IFF_UP
) {
7575 if (old_flags
& IFF_UP
)
7578 ret
= __dev_open(dev
, extack
);
7581 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
7582 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
7583 unsigned int old_flags
= dev
->flags
;
7585 dev
->gflags
^= IFF_PROMISC
;
7587 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
7588 if (dev
->flags
!= old_flags
)
7589 dev_set_rx_mode(dev
);
7592 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7593 * is important. Some (broken) drivers set IFF_PROMISC, when
7594 * IFF_ALLMULTI is requested not asking us and not reporting.
7596 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
7597 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
7599 dev
->gflags
^= IFF_ALLMULTI
;
7600 __dev_set_allmulti(dev
, inc
, false);
7606 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
7607 unsigned int gchanges
)
7609 unsigned int changes
= dev
->flags
^ old_flags
;
7612 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
7614 if (changes
& IFF_UP
) {
7615 if (dev
->flags
& IFF_UP
)
7616 call_netdevice_notifiers(NETDEV_UP
, dev
);
7618 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
7621 if (dev
->flags
& IFF_UP
&&
7622 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
7623 struct netdev_notifier_change_info change_info
= {
7627 .flags_changed
= changes
,
7630 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
7635 * dev_change_flags - change device settings
7637 * @flags: device state flags
7638 * @extack: netlink extended ack
7640 * Change settings on device based state flags. The flags are
7641 * in the userspace exported format.
7643 int dev_change_flags(struct net_device
*dev
, unsigned int flags
,
7644 struct netlink_ext_ack
*extack
)
7647 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7649 ret
= __dev_change_flags(dev
, flags
, extack
);
7653 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
7654 __dev_notify_flags(dev
, old_flags
, changes
);
7657 EXPORT_SYMBOL(dev_change_flags
);
7659 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7661 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7663 if (ops
->ndo_change_mtu
)
7664 return ops
->ndo_change_mtu(dev
, new_mtu
);
7669 EXPORT_SYMBOL(__dev_set_mtu
);
7672 * dev_set_mtu_ext - Change maximum transfer unit
7674 * @new_mtu: new transfer unit
7675 * @extack: netlink extended ack
7677 * Change the maximum transfer size of the network device.
7679 int dev_set_mtu_ext(struct net_device
*dev
, int new_mtu
,
7680 struct netlink_ext_ack
*extack
)
7684 if (new_mtu
== dev
->mtu
)
7687 /* MTU must be positive, and in range */
7688 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
7689 NL_SET_ERR_MSG(extack
, "mtu less than device minimum");
7693 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
7694 NL_SET_ERR_MSG(extack
, "mtu greater than device maximum");
7698 if (!netif_device_present(dev
))
7701 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
7702 err
= notifier_to_errno(err
);
7706 orig_mtu
= dev
->mtu
;
7707 err
= __dev_set_mtu(dev
, new_mtu
);
7710 err
= call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
7712 err
= notifier_to_errno(err
);
7714 /* setting mtu back and notifying everyone again,
7715 * so that they have a chance to revert changes.
7717 __dev_set_mtu(dev
, orig_mtu
);
7718 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
7725 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7727 struct netlink_ext_ack extack
;
7730 memset(&extack
, 0, sizeof(extack
));
7731 err
= dev_set_mtu_ext(dev
, new_mtu
, &extack
);
7732 if (err
&& extack
._msg
)
7733 net_err_ratelimited("%s: %s\n", dev
->name
, extack
._msg
);
7736 EXPORT_SYMBOL(dev_set_mtu
);
7739 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7741 * @new_len: new tx queue length
7743 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
7745 unsigned int orig_len
= dev
->tx_queue_len
;
7748 if (new_len
!= (unsigned int)new_len
)
7751 if (new_len
!= orig_len
) {
7752 dev
->tx_queue_len
= new_len
;
7753 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
7754 res
= notifier_to_errno(res
);
7757 res
= dev_qdisc_change_tx_queue_len(dev
);
7765 netdev_err(dev
, "refused to change device tx_queue_len\n");
7766 dev
->tx_queue_len
= orig_len
;
7771 * dev_set_group - Change group this device belongs to
7773 * @new_group: group this device should belong to
7775 void dev_set_group(struct net_device
*dev
, int new_group
)
7777 dev
->group
= new_group
;
7779 EXPORT_SYMBOL(dev_set_group
);
7782 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7784 * @addr: new address
7785 * @extack: netlink extended ack
7787 int dev_pre_changeaddr_notify(struct net_device
*dev
, const char *addr
,
7788 struct netlink_ext_ack
*extack
)
7790 struct netdev_notifier_pre_changeaddr_info info
= {
7792 .info
.extack
= extack
,
7797 rc
= call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR
, &info
.info
);
7798 return notifier_to_errno(rc
);
7800 EXPORT_SYMBOL(dev_pre_changeaddr_notify
);
7803 * dev_set_mac_address - Change Media Access Control Address
7806 * @extack: netlink extended ack
7808 * Change the hardware (MAC) address of the device
7810 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
,
7811 struct netlink_ext_ack
*extack
)
7813 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7816 if (!ops
->ndo_set_mac_address
)
7818 if (sa
->sa_family
!= dev
->type
)
7820 if (!netif_device_present(dev
))
7822 err
= dev_pre_changeaddr_notify(dev
, sa
->sa_data
, extack
);
7825 err
= ops
->ndo_set_mac_address(dev
, sa
);
7828 dev
->addr_assign_type
= NET_ADDR_SET
;
7829 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
7830 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7833 EXPORT_SYMBOL(dev_set_mac_address
);
7836 * dev_change_carrier - Change device carrier
7838 * @new_carrier: new value
7840 * Change device carrier
7842 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
7844 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7846 if (!ops
->ndo_change_carrier
)
7848 if (!netif_device_present(dev
))
7850 return ops
->ndo_change_carrier(dev
, new_carrier
);
7852 EXPORT_SYMBOL(dev_change_carrier
);
7855 * dev_get_phys_port_id - Get device physical port ID
7859 * Get device physical port ID
7861 int dev_get_phys_port_id(struct net_device
*dev
,
7862 struct netdev_phys_item_id
*ppid
)
7864 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7866 if (!ops
->ndo_get_phys_port_id
)
7868 return ops
->ndo_get_phys_port_id(dev
, ppid
);
7870 EXPORT_SYMBOL(dev_get_phys_port_id
);
7873 * dev_get_phys_port_name - Get device physical port name
7876 * @len: limit of bytes to copy to name
7878 * Get device physical port name
7880 int dev_get_phys_port_name(struct net_device
*dev
,
7881 char *name
, size_t len
)
7883 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7886 if (ops
->ndo_get_phys_port_name
) {
7887 err
= ops
->ndo_get_phys_port_name(dev
, name
, len
);
7888 if (err
!= -EOPNOTSUPP
)
7891 return devlink_compat_phys_port_name_get(dev
, name
, len
);
7893 EXPORT_SYMBOL(dev_get_phys_port_name
);
7896 * dev_get_port_parent_id - Get the device's port parent identifier
7897 * @dev: network device
7898 * @ppid: pointer to a storage for the port's parent identifier
7899 * @recurse: allow/disallow recursion to lower devices
7901 * Get the devices's port parent identifier
7903 int dev_get_port_parent_id(struct net_device
*dev
,
7904 struct netdev_phys_item_id
*ppid
,
7907 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7908 struct netdev_phys_item_id first
= { };
7909 struct net_device
*lower_dev
;
7910 struct list_head
*iter
;
7913 if (ops
->ndo_get_port_parent_id
) {
7914 err
= ops
->ndo_get_port_parent_id(dev
, ppid
);
7915 if (err
!= -EOPNOTSUPP
)
7919 err
= devlink_compat_switch_id_get(dev
, ppid
);
7920 if (!err
|| err
!= -EOPNOTSUPP
)
7926 netdev_for_each_lower_dev(dev
, lower_dev
, iter
) {
7927 err
= dev_get_port_parent_id(lower_dev
, ppid
, recurse
);
7932 else if (memcmp(&first
, ppid
, sizeof(*ppid
)))
7938 EXPORT_SYMBOL(dev_get_port_parent_id
);
7941 * netdev_port_same_parent_id - Indicate if two network devices have
7942 * the same port parent identifier
7943 * @a: first network device
7944 * @b: second network device
7946 bool netdev_port_same_parent_id(struct net_device
*a
, struct net_device
*b
)
7948 struct netdev_phys_item_id a_id
= { };
7949 struct netdev_phys_item_id b_id
= { };
7951 if (dev_get_port_parent_id(a
, &a_id
, true) ||
7952 dev_get_port_parent_id(b
, &b_id
, true))
7955 return netdev_phys_item_id_same(&a_id
, &b_id
);
7957 EXPORT_SYMBOL(netdev_port_same_parent_id
);
7960 * dev_change_proto_down - update protocol port state information
7962 * @proto_down: new value
7964 * This info can be used by switch drivers to set the phys state of the
7967 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
7969 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7971 if (!ops
->ndo_change_proto_down
)
7973 if (!netif_device_present(dev
))
7975 return ops
->ndo_change_proto_down(dev
, proto_down
);
7977 EXPORT_SYMBOL(dev_change_proto_down
);
7980 * dev_change_proto_down_generic - generic implementation for
7981 * ndo_change_proto_down that sets carrier according to
7985 * @proto_down: new value
7987 int dev_change_proto_down_generic(struct net_device
*dev
, bool proto_down
)
7990 netif_carrier_off(dev
);
7992 netif_carrier_on(dev
);
7993 dev
->proto_down
= proto_down
;
7996 EXPORT_SYMBOL(dev_change_proto_down_generic
);
7998 u32
__dev_xdp_query(struct net_device
*dev
, bpf_op_t bpf_op
,
7999 enum bpf_netdev_command cmd
)
8001 struct netdev_bpf xdp
;
8006 memset(&xdp
, 0, sizeof(xdp
));
8009 /* Query must always succeed. */
8010 WARN_ON(bpf_op(dev
, &xdp
) < 0 && cmd
== XDP_QUERY_PROG
);
8015 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
8016 struct netlink_ext_ack
*extack
, u32 flags
,
8017 struct bpf_prog
*prog
)
8019 struct netdev_bpf xdp
;
8021 memset(&xdp
, 0, sizeof(xdp
));
8022 if (flags
& XDP_FLAGS_HW_MODE
)
8023 xdp
.command
= XDP_SETUP_PROG_HW
;
8025 xdp
.command
= XDP_SETUP_PROG
;
8026 xdp
.extack
= extack
;
8030 return bpf_op(dev
, &xdp
);
8033 static void dev_xdp_uninstall(struct net_device
*dev
)
8035 struct netdev_bpf xdp
;
8038 /* Remove generic XDP */
8039 WARN_ON(dev_xdp_install(dev
, generic_xdp_install
, NULL
, 0, NULL
));
8041 /* Remove from the driver */
8042 ndo_bpf
= dev
->netdev_ops
->ndo_bpf
;
8046 memset(&xdp
, 0, sizeof(xdp
));
8047 xdp
.command
= XDP_QUERY_PROG
;
8048 WARN_ON(ndo_bpf(dev
, &xdp
));
8050 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8053 /* Remove HW offload */
8054 memset(&xdp
, 0, sizeof(xdp
));
8055 xdp
.command
= XDP_QUERY_PROG_HW
;
8056 if (!ndo_bpf(dev
, &xdp
) && xdp
.prog_id
)
8057 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8062 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8064 * @extack: netlink extended ack
8065 * @fd: new program fd or negative value to clear
8066 * @flags: xdp-related flags
8068 * Set or clear a bpf program for a device
8070 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
8073 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8074 enum bpf_netdev_command query
;
8075 struct bpf_prog
*prog
= NULL
;
8076 bpf_op_t bpf_op
, bpf_chk
;
8082 offload
= flags
& XDP_FLAGS_HW_MODE
;
8083 query
= offload
? XDP_QUERY_PROG_HW
: XDP_QUERY_PROG
;
8085 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
8086 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
))) {
8087 NL_SET_ERR_MSG(extack
, "underlying driver does not support XDP in native mode");
8090 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
8091 bpf_op
= generic_xdp_install
;
8092 if (bpf_op
== bpf_chk
)
8093 bpf_chk
= generic_xdp_install
;
8096 if (!offload
&& __dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG
)) {
8097 NL_SET_ERR_MSG(extack
, "native and generic XDP can't be active at the same time");
8100 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) &&
8101 __dev_xdp_query(dev
, bpf_op
, query
)) {
8102 NL_SET_ERR_MSG(extack
, "XDP program already attached");
8106 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
8107 bpf_op
== ops
->ndo_bpf
);
8109 return PTR_ERR(prog
);
8111 if (!offload
&& bpf_prog_is_dev_bound(prog
->aux
)) {
8112 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
8118 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
8119 if (err
< 0 && prog
)
8126 * dev_new_index - allocate an ifindex
8127 * @net: the applicable net namespace
8129 * Returns a suitable unique value for a new device interface
8130 * number. The caller must hold the rtnl semaphore or the
8131 * dev_base_lock to be sure it remains unique.
8133 static int dev_new_index(struct net
*net
)
8135 int ifindex
= net
->ifindex
;
8140 if (!__dev_get_by_index(net
, ifindex
))
8141 return net
->ifindex
= ifindex
;
8145 /* Delayed registration/unregisteration */
8146 static LIST_HEAD(net_todo_list
);
8147 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
8149 static void net_set_todo(struct net_device
*dev
)
8151 list_add_tail(&dev
->todo_list
, &net_todo_list
);
8152 dev_net(dev
)->dev_unreg_count
++;
8155 static void rollback_registered_many(struct list_head
*head
)
8157 struct net_device
*dev
, *tmp
;
8158 LIST_HEAD(close_head
);
8160 BUG_ON(dev_boot_phase
);
8163 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
8164 /* Some devices call without registering
8165 * for initialization unwind. Remove those
8166 * devices and proceed with the remaining.
8168 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
8169 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8173 list_del(&dev
->unreg_list
);
8176 dev
->dismantle
= true;
8177 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
8180 /* If device is running, close it first. */
8181 list_for_each_entry(dev
, head
, unreg_list
)
8182 list_add_tail(&dev
->close_list
, &close_head
);
8183 dev_close_many(&close_head
, true);
8185 list_for_each_entry(dev
, head
, unreg_list
) {
8186 /* And unlink it from device chain. */
8187 unlist_netdevice(dev
);
8189 dev
->reg_state
= NETREG_UNREGISTERING
;
8191 flush_all_backlogs();
8195 list_for_each_entry(dev
, head
, unreg_list
) {
8196 struct sk_buff
*skb
= NULL
;
8198 /* Shutdown queueing discipline. */
8201 dev_xdp_uninstall(dev
);
8203 /* Notify protocols, that we are about to destroy
8204 * this device. They should clean all the things.
8206 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8208 if (!dev
->rtnl_link_ops
||
8209 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8210 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
8211 GFP_KERNEL
, NULL
, 0);
8214 * Flush the unicast and multicast chains
8219 if (dev
->netdev_ops
->ndo_uninit
)
8220 dev
->netdev_ops
->ndo_uninit(dev
);
8223 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
8225 /* Notifier chain MUST detach us all upper devices. */
8226 WARN_ON(netdev_has_any_upper_dev(dev
));
8227 WARN_ON(netdev_has_any_lower_dev(dev
));
8229 /* Remove entries from kobject tree */
8230 netdev_unregister_kobject(dev
);
8232 /* Remove XPS queueing entries */
8233 netif_reset_xps_queues_gt(dev
, 0);
8239 list_for_each_entry(dev
, head
, unreg_list
)
8243 static void rollback_registered(struct net_device
*dev
)
8247 list_add(&dev
->unreg_list
, &single
);
8248 rollback_registered_many(&single
);
8252 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
8253 struct net_device
*upper
, netdev_features_t features
)
8255 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8256 netdev_features_t feature
;
8259 for_each_netdev_feature(upper_disables
, feature_bit
) {
8260 feature
= __NETIF_F_BIT(feature_bit
);
8261 if (!(upper
->wanted_features
& feature
)
8262 && (features
& feature
)) {
8263 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
8264 &feature
, upper
->name
);
8265 features
&= ~feature
;
8272 static void netdev_sync_lower_features(struct net_device
*upper
,
8273 struct net_device
*lower
, netdev_features_t features
)
8275 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8276 netdev_features_t feature
;
8279 for_each_netdev_feature(upper_disables
, feature_bit
) {
8280 feature
= __NETIF_F_BIT(feature_bit
);
8281 if (!(features
& feature
) && (lower
->features
& feature
)) {
8282 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
8283 &feature
, lower
->name
);
8284 lower
->wanted_features
&= ~feature
;
8285 netdev_update_features(lower
);
8287 if (unlikely(lower
->features
& feature
))
8288 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
8289 &feature
, lower
->name
);
8294 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
8295 netdev_features_t features
)
8297 /* Fix illegal checksum combinations */
8298 if ((features
& NETIF_F_HW_CSUM
) &&
8299 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
8300 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
8301 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
8304 /* TSO requires that SG is present as well. */
8305 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
8306 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
8307 features
&= ~NETIF_F_ALL_TSO
;
8310 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
8311 !(features
& NETIF_F_IP_CSUM
)) {
8312 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
8313 features
&= ~NETIF_F_TSO
;
8314 features
&= ~NETIF_F_TSO_ECN
;
8317 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
8318 !(features
& NETIF_F_IPV6_CSUM
)) {
8319 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
8320 features
&= ~NETIF_F_TSO6
;
8323 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8324 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
8325 features
&= ~NETIF_F_TSO_MANGLEID
;
8327 /* TSO ECN requires that TSO is present as well. */
8328 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
8329 features
&= ~NETIF_F_TSO_ECN
;
8331 /* Software GSO depends on SG. */
8332 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
8333 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
8334 features
&= ~NETIF_F_GSO
;
8337 /* GSO partial features require GSO partial be set */
8338 if ((features
& dev
->gso_partial_features
) &&
8339 !(features
& NETIF_F_GSO_PARTIAL
)) {
8341 "Dropping partially supported GSO features since no GSO partial.\n");
8342 features
&= ~dev
->gso_partial_features
;
8345 if (!(features
& NETIF_F_RXCSUM
)) {
8346 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8347 * successfully merged by hardware must also have the
8348 * checksum verified by hardware. If the user does not
8349 * want to enable RXCSUM, logically, we should disable GRO_HW.
8351 if (features
& NETIF_F_GRO_HW
) {
8352 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8353 features
&= ~NETIF_F_GRO_HW
;
8357 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8358 if (features
& NETIF_F_RXFCS
) {
8359 if (features
& NETIF_F_LRO
) {
8360 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
8361 features
&= ~NETIF_F_LRO
;
8364 if (features
& NETIF_F_GRO_HW
) {
8365 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8366 features
&= ~NETIF_F_GRO_HW
;
8373 int __netdev_update_features(struct net_device
*dev
)
8375 struct net_device
*upper
, *lower
;
8376 netdev_features_t features
;
8377 struct list_head
*iter
;
8382 features
= netdev_get_wanted_features(dev
);
8384 if (dev
->netdev_ops
->ndo_fix_features
)
8385 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
8387 /* driver might be less strict about feature dependencies */
8388 features
= netdev_fix_features(dev
, features
);
8390 /* some features can't be enabled if they're off an an upper device */
8391 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
8392 features
= netdev_sync_upper_features(dev
, upper
, features
);
8394 if (dev
->features
== features
)
8397 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
8398 &dev
->features
, &features
);
8400 if (dev
->netdev_ops
->ndo_set_features
)
8401 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
8405 if (unlikely(err
< 0)) {
8407 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8408 err
, &features
, &dev
->features
);
8409 /* return non-0 since some features might have changed and
8410 * it's better to fire a spurious notification than miss it
8416 /* some features must be disabled on lower devices when disabled
8417 * on an upper device (think: bonding master or bridge)
8419 netdev_for_each_lower_dev(dev
, lower
, iter
)
8420 netdev_sync_lower_features(dev
, lower
, features
);
8423 netdev_features_t diff
= features
^ dev
->features
;
8425 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8426 /* udp_tunnel_{get,drop}_rx_info both need
8427 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8428 * device, or they won't do anything.
8429 * Thus we need to update dev->features
8430 * *before* calling udp_tunnel_get_rx_info,
8431 * but *after* calling udp_tunnel_drop_rx_info.
8433 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8434 dev
->features
= features
;
8435 udp_tunnel_get_rx_info(dev
);
8437 udp_tunnel_drop_rx_info(dev
);
8441 if (diff
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8442 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8443 dev
->features
= features
;
8444 err
|= vlan_get_rx_ctag_filter_info(dev
);
8446 vlan_drop_rx_ctag_filter_info(dev
);
8450 if (diff
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8451 if (features
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8452 dev
->features
= features
;
8453 err
|= vlan_get_rx_stag_filter_info(dev
);
8455 vlan_drop_rx_stag_filter_info(dev
);
8459 dev
->features
= features
;
8462 return err
< 0 ? 0 : 1;
8466 * netdev_update_features - recalculate device features
8467 * @dev: the device to check
8469 * Recalculate dev->features set and send notifications if it
8470 * has changed. Should be called after driver or hardware dependent
8471 * conditions might have changed that influence the features.
8473 void netdev_update_features(struct net_device
*dev
)
8475 if (__netdev_update_features(dev
))
8476 netdev_features_change(dev
);
8478 EXPORT_SYMBOL(netdev_update_features
);
8481 * netdev_change_features - recalculate device features
8482 * @dev: the device to check
8484 * Recalculate dev->features set and send notifications even
8485 * if they have not changed. Should be called instead of
8486 * netdev_update_features() if also dev->vlan_features might
8487 * have changed to allow the changes to be propagated to stacked
8490 void netdev_change_features(struct net_device
*dev
)
8492 __netdev_update_features(dev
);
8493 netdev_features_change(dev
);
8495 EXPORT_SYMBOL(netdev_change_features
);
8498 * netif_stacked_transfer_operstate - transfer operstate
8499 * @rootdev: the root or lower level device to transfer state from
8500 * @dev: the device to transfer operstate to
8502 * Transfer operational state from root to device. This is normally
8503 * called when a stacking relationship exists between the root
8504 * device and the device(a leaf device).
8506 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
8507 struct net_device
*dev
)
8509 if (rootdev
->operstate
== IF_OPER_DORMANT
)
8510 netif_dormant_on(dev
);
8512 netif_dormant_off(dev
);
8514 if (netif_carrier_ok(rootdev
))
8515 netif_carrier_on(dev
);
8517 netif_carrier_off(dev
);
8519 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
8521 static int netif_alloc_rx_queues(struct net_device
*dev
)
8523 unsigned int i
, count
= dev
->num_rx_queues
;
8524 struct netdev_rx_queue
*rx
;
8525 size_t sz
= count
* sizeof(*rx
);
8530 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8536 for (i
= 0; i
< count
; i
++) {
8539 /* XDP RX-queue setup */
8540 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
);
8547 /* Rollback successful reg's and free other resources */
8549 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
8555 static void netif_free_rx_queues(struct net_device
*dev
)
8557 unsigned int i
, count
= dev
->num_rx_queues
;
8559 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8563 for (i
= 0; i
< count
; i
++)
8564 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
8569 static void netdev_init_one_queue(struct net_device
*dev
,
8570 struct netdev_queue
*queue
, void *_unused
)
8572 /* Initialize queue lock */
8573 spin_lock_init(&queue
->_xmit_lock
);
8574 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
8575 queue
->xmit_lock_owner
= -1;
8576 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
8579 dql_init(&queue
->dql
, HZ
);
8583 static void netif_free_tx_queues(struct net_device
*dev
)
8588 static int netif_alloc_netdev_queues(struct net_device
*dev
)
8590 unsigned int count
= dev
->num_tx_queues
;
8591 struct netdev_queue
*tx
;
8592 size_t sz
= count
* sizeof(*tx
);
8594 if (count
< 1 || count
> 0xffff)
8597 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8603 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
8604 spin_lock_init(&dev
->tx_global_lock
);
8609 void netif_tx_stop_all_queues(struct net_device
*dev
)
8613 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
8614 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
8616 netif_tx_stop_queue(txq
);
8619 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
8622 * register_netdevice - register a network device
8623 * @dev: device to register
8625 * Take a completed network device structure and add it to the kernel
8626 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8627 * chain. 0 is returned on success. A negative errno code is returned
8628 * on a failure to set up the device, or if the name is a duplicate.
8630 * Callers must hold the rtnl semaphore. You may want
8631 * register_netdev() instead of this.
8634 * The locking appears insufficient to guarantee two parallel registers
8635 * will not get the same name.
8638 int register_netdevice(struct net_device
*dev
)
8641 struct net
*net
= dev_net(dev
);
8643 BUILD_BUG_ON(sizeof(netdev_features_t
) * BITS_PER_BYTE
<
8644 NETDEV_FEATURE_COUNT
);
8645 BUG_ON(dev_boot_phase
);
8650 /* When net_device's are persistent, this will be fatal. */
8651 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
8654 spin_lock_init(&dev
->addr_list_lock
);
8655 netdev_set_addr_lockdep_class(dev
);
8657 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
8661 /* Init, if this function is available */
8662 if (dev
->netdev_ops
->ndo_init
) {
8663 ret
= dev
->netdev_ops
->ndo_init(dev
);
8671 if (((dev
->hw_features
| dev
->features
) &
8672 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
8673 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
8674 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
8675 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
8682 dev
->ifindex
= dev_new_index(net
);
8683 else if (__dev_get_by_index(net
, dev
->ifindex
))
8686 /* Transfer changeable features to wanted_features and enable
8687 * software offloads (GSO and GRO).
8689 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
8690 dev
->features
|= NETIF_F_SOFT_FEATURES
;
8692 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
8693 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8694 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8697 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
8699 if (!(dev
->flags
& IFF_LOOPBACK
))
8700 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
8702 /* If IPv4 TCP segmentation offload is supported we should also
8703 * allow the device to enable segmenting the frame with the option
8704 * of ignoring a static IP ID value. This doesn't enable the
8705 * feature itself but allows the user to enable it later.
8707 if (dev
->hw_features
& NETIF_F_TSO
)
8708 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
8709 if (dev
->vlan_features
& NETIF_F_TSO
)
8710 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
8711 if (dev
->mpls_features
& NETIF_F_TSO
)
8712 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
8713 if (dev
->hw_enc_features
& NETIF_F_TSO
)
8714 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
8716 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8718 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
8720 /* Make NETIF_F_SG inheritable to tunnel devices.
8722 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
8724 /* Make NETIF_F_SG inheritable to MPLS.
8726 dev
->mpls_features
|= NETIF_F_SG
;
8728 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
8729 ret
= notifier_to_errno(ret
);
8733 ret
= netdev_register_kobject(dev
);
8736 dev
->reg_state
= NETREG_REGISTERED
;
8738 __netdev_update_features(dev
);
8741 * Default initial state at registry is that the
8742 * device is present.
8745 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8747 linkwatch_init_dev(dev
);
8749 dev_init_scheduler(dev
);
8751 list_netdevice(dev
);
8752 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
8754 /* If the device has permanent device address, driver should
8755 * set dev_addr and also addr_assign_type should be set to
8756 * NET_ADDR_PERM (default value).
8758 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
8759 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
8761 /* Notify protocols, that a new device appeared. */
8762 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
8763 ret
= notifier_to_errno(ret
);
8765 rollback_registered(dev
);
8766 dev
->reg_state
= NETREG_UNREGISTERED
;
8769 * Prevent userspace races by waiting until the network
8770 * device is fully setup before sending notifications.
8772 if (!dev
->rtnl_link_ops
||
8773 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8774 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
8780 if (dev
->netdev_ops
->ndo_uninit
)
8781 dev
->netdev_ops
->ndo_uninit(dev
);
8782 if (dev
->priv_destructor
)
8783 dev
->priv_destructor(dev
);
8786 EXPORT_SYMBOL(register_netdevice
);
8789 * init_dummy_netdev - init a dummy network device for NAPI
8790 * @dev: device to init
8792 * This takes a network device structure and initialize the minimum
8793 * amount of fields so it can be used to schedule NAPI polls without
8794 * registering a full blown interface. This is to be used by drivers
8795 * that need to tie several hardware interfaces to a single NAPI
8796 * poll scheduler due to HW limitations.
8798 int init_dummy_netdev(struct net_device
*dev
)
8800 /* Clear everything. Note we don't initialize spinlocks
8801 * are they aren't supposed to be taken by any of the
8802 * NAPI code and this dummy netdev is supposed to be
8803 * only ever used for NAPI polls
8805 memset(dev
, 0, sizeof(struct net_device
));
8807 /* make sure we BUG if trying to hit standard
8808 * register/unregister code path
8810 dev
->reg_state
= NETREG_DUMMY
;
8812 /* NAPI wants this */
8813 INIT_LIST_HEAD(&dev
->napi_list
);
8815 /* a dummy interface is started by default */
8816 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8817 set_bit(__LINK_STATE_START
, &dev
->state
);
8819 /* napi_busy_loop stats accounting wants this */
8820 dev_net_set(dev
, &init_net
);
8822 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8823 * because users of this 'device' dont need to change
8829 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
8833 * register_netdev - register a network device
8834 * @dev: device to register
8836 * Take a completed network device structure and add it to the kernel
8837 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8838 * chain. 0 is returned on success. A negative errno code is returned
8839 * on a failure to set up the device, or if the name is a duplicate.
8841 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8842 * and expands the device name if you passed a format string to
8845 int register_netdev(struct net_device
*dev
)
8849 if (rtnl_lock_killable())
8851 err
= register_netdevice(dev
);
8855 EXPORT_SYMBOL(register_netdev
);
8857 int netdev_refcnt_read(const struct net_device
*dev
)
8861 for_each_possible_cpu(i
)
8862 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
8865 EXPORT_SYMBOL(netdev_refcnt_read
);
8868 * netdev_wait_allrefs - wait until all references are gone.
8869 * @dev: target net_device
8871 * This is called when unregistering network devices.
8873 * Any protocol or device that holds a reference should register
8874 * for netdevice notification, and cleanup and put back the
8875 * reference if they receive an UNREGISTER event.
8876 * We can get stuck here if buggy protocols don't correctly
8879 static void netdev_wait_allrefs(struct net_device
*dev
)
8881 unsigned long rebroadcast_time
, warning_time
;
8884 linkwatch_forget_dev(dev
);
8886 rebroadcast_time
= warning_time
= jiffies
;
8887 refcnt
= netdev_refcnt_read(dev
);
8889 while (refcnt
!= 0) {
8890 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
8893 /* Rebroadcast unregister notification */
8894 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8900 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
8902 /* We must not have linkwatch events
8903 * pending on unregister. If this
8904 * happens, we simply run the queue
8905 * unscheduled, resulting in a noop
8908 linkwatch_run_queue();
8913 rebroadcast_time
= jiffies
;
8918 refcnt
= netdev_refcnt_read(dev
);
8920 if (refcnt
&& time_after(jiffies
, warning_time
+ 10 * HZ
)) {
8921 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8923 warning_time
= jiffies
;
8932 * register_netdevice(x1);
8933 * register_netdevice(x2);
8935 * unregister_netdevice(y1);
8936 * unregister_netdevice(y2);
8942 * We are invoked by rtnl_unlock().
8943 * This allows us to deal with problems:
8944 * 1) We can delete sysfs objects which invoke hotplug
8945 * without deadlocking with linkwatch via keventd.
8946 * 2) Since we run with the RTNL semaphore not held, we can sleep
8947 * safely in order to wait for the netdev refcnt to drop to zero.
8949 * We must not return until all unregister events added during
8950 * the interval the lock was held have been completed.
8952 void netdev_run_todo(void)
8954 struct list_head list
;
8956 /* Snapshot list, allow later requests */
8957 list_replace_init(&net_todo_list
, &list
);
8962 /* Wait for rcu callbacks to finish before next phase */
8963 if (!list_empty(&list
))
8966 while (!list_empty(&list
)) {
8967 struct net_device
*dev
8968 = list_first_entry(&list
, struct net_device
, todo_list
);
8969 list_del(&dev
->todo_list
);
8971 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
8972 pr_err("network todo '%s' but state %d\n",
8973 dev
->name
, dev
->reg_state
);
8978 dev
->reg_state
= NETREG_UNREGISTERED
;
8980 netdev_wait_allrefs(dev
);
8983 BUG_ON(netdev_refcnt_read(dev
));
8984 BUG_ON(!list_empty(&dev
->ptype_all
));
8985 BUG_ON(!list_empty(&dev
->ptype_specific
));
8986 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
8987 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
8988 #if IS_ENABLED(CONFIG_DECNET)
8989 WARN_ON(dev
->dn_ptr
);
8991 if (dev
->priv_destructor
)
8992 dev
->priv_destructor(dev
);
8993 if (dev
->needs_free_netdev
)
8996 /* Report a network device has been unregistered */
8998 dev_net(dev
)->dev_unreg_count
--;
9000 wake_up(&netdev_unregistering_wq
);
9002 /* Free network device */
9003 kobject_put(&dev
->dev
.kobj
);
9007 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9008 * all the same fields in the same order as net_device_stats, with only
9009 * the type differing, but rtnl_link_stats64 may have additional fields
9010 * at the end for newer counters.
9012 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
9013 const struct net_device_stats
*netdev_stats
)
9015 #if BITS_PER_LONG == 64
9016 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
9017 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
9018 /* zero out counters that only exist in rtnl_link_stats64 */
9019 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
9020 sizeof(*stats64
) - sizeof(*netdev_stats
));
9022 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
9023 const unsigned long *src
= (const unsigned long *)netdev_stats
;
9024 u64
*dst
= (u64
*)stats64
;
9026 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
9027 for (i
= 0; i
< n
; i
++)
9029 /* zero out counters that only exist in rtnl_link_stats64 */
9030 memset((char *)stats64
+ n
* sizeof(u64
), 0,
9031 sizeof(*stats64
) - n
* sizeof(u64
));
9034 EXPORT_SYMBOL(netdev_stats_to_stats64
);
9037 * dev_get_stats - get network device statistics
9038 * @dev: device to get statistics from
9039 * @storage: place to store stats
9041 * Get network statistics from device. Return @storage.
9042 * The device driver may provide its own method by setting
9043 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9044 * otherwise the internal statistics structure is used.
9046 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
9047 struct rtnl_link_stats64
*storage
)
9049 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9051 if (ops
->ndo_get_stats64
) {
9052 memset(storage
, 0, sizeof(*storage
));
9053 ops
->ndo_get_stats64(dev
, storage
);
9054 } else if (ops
->ndo_get_stats
) {
9055 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
9057 netdev_stats_to_stats64(storage
, &dev
->stats
);
9059 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
9060 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
9061 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
9064 EXPORT_SYMBOL(dev_get_stats
);
9066 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
9068 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
9070 #ifdef CONFIG_NET_CLS_ACT
9073 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
9076 netdev_init_one_queue(dev
, queue
, NULL
);
9077 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
9078 queue
->qdisc_sleeping
= &noop_qdisc
;
9079 rcu_assign_pointer(dev
->ingress_queue
, queue
);
9084 static const struct ethtool_ops default_ethtool_ops
;
9086 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
9087 const struct ethtool_ops
*ops
)
9089 if (dev
->ethtool_ops
== &default_ethtool_ops
)
9090 dev
->ethtool_ops
= ops
;
9092 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
9094 void netdev_freemem(struct net_device
*dev
)
9096 char *addr
= (char *)dev
- dev
->padded
;
9102 * alloc_netdev_mqs - allocate network device
9103 * @sizeof_priv: size of private data to allocate space for
9104 * @name: device name format string
9105 * @name_assign_type: origin of device name
9106 * @setup: callback to initialize device
9107 * @txqs: the number of TX subqueues to allocate
9108 * @rxqs: the number of RX subqueues to allocate
9110 * Allocates a struct net_device with private data area for driver use
9111 * and performs basic initialization. Also allocates subqueue structs
9112 * for each queue on the device.
9114 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
9115 unsigned char name_assign_type
,
9116 void (*setup
)(struct net_device
*),
9117 unsigned int txqs
, unsigned int rxqs
)
9119 struct net_device
*dev
;
9120 unsigned int alloc_size
;
9121 struct net_device
*p
;
9123 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
9126 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9131 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9135 alloc_size
= sizeof(struct net_device
);
9137 /* ensure 32-byte alignment of private area */
9138 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
9139 alloc_size
+= sizeof_priv
;
9141 /* ensure 32-byte alignment of whole construct */
9142 alloc_size
+= NETDEV_ALIGN
- 1;
9144 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9148 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
9149 dev
->padded
= (char *)dev
- (char *)p
;
9151 dev
->pcpu_refcnt
= alloc_percpu(int);
9152 if (!dev
->pcpu_refcnt
)
9155 if (dev_addr_init(dev
))
9161 dev_net_set(dev
, &init_net
);
9163 dev
->gso_max_size
= GSO_MAX_SIZE
;
9164 dev
->gso_max_segs
= GSO_MAX_SEGS
;
9166 INIT_LIST_HEAD(&dev
->napi_list
);
9167 INIT_LIST_HEAD(&dev
->unreg_list
);
9168 INIT_LIST_HEAD(&dev
->close_list
);
9169 INIT_LIST_HEAD(&dev
->link_watch_list
);
9170 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
9171 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
9172 INIT_LIST_HEAD(&dev
->ptype_all
);
9173 INIT_LIST_HEAD(&dev
->ptype_specific
);
9174 #ifdef CONFIG_NET_SCHED
9175 hash_init(dev
->qdisc_hash
);
9177 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
9180 if (!dev
->tx_queue_len
) {
9181 dev
->priv_flags
|= IFF_NO_QUEUE
;
9182 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
9185 dev
->num_tx_queues
= txqs
;
9186 dev
->real_num_tx_queues
= txqs
;
9187 if (netif_alloc_netdev_queues(dev
))
9190 dev
->num_rx_queues
= rxqs
;
9191 dev
->real_num_rx_queues
= rxqs
;
9192 if (netif_alloc_rx_queues(dev
))
9195 strcpy(dev
->name
, name
);
9196 dev
->name_assign_type
= name_assign_type
;
9197 dev
->group
= INIT_NETDEV_GROUP
;
9198 if (!dev
->ethtool_ops
)
9199 dev
->ethtool_ops
= &default_ethtool_ops
;
9201 nf_hook_ingress_init(dev
);
9210 free_percpu(dev
->pcpu_refcnt
);
9212 netdev_freemem(dev
);
9215 EXPORT_SYMBOL(alloc_netdev_mqs
);
9218 * free_netdev - free network device
9221 * This function does the last stage of destroying an allocated device
9222 * interface. The reference to the device object is released. If this
9223 * is the last reference then it will be freed.Must be called in process
9226 void free_netdev(struct net_device
*dev
)
9228 struct napi_struct
*p
, *n
;
9231 netif_free_tx_queues(dev
);
9232 netif_free_rx_queues(dev
);
9234 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
9236 /* Flush device addresses */
9237 dev_addr_flush(dev
);
9239 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
9242 free_percpu(dev
->pcpu_refcnt
);
9243 dev
->pcpu_refcnt
= NULL
;
9245 /* Compatibility with error handling in drivers */
9246 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
9247 netdev_freemem(dev
);
9251 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
9252 dev
->reg_state
= NETREG_RELEASED
;
9254 /* will free via device release */
9255 put_device(&dev
->dev
);
9257 EXPORT_SYMBOL(free_netdev
);
9260 * synchronize_net - Synchronize with packet receive processing
9262 * Wait for packets currently being received to be done.
9263 * Does not block later packets from starting.
9265 void synchronize_net(void)
9268 if (rtnl_is_locked())
9269 synchronize_rcu_expedited();
9273 EXPORT_SYMBOL(synchronize_net
);
9276 * unregister_netdevice_queue - remove device from the kernel
9280 * This function shuts down a device interface and removes it
9281 * from the kernel tables.
9282 * If head not NULL, device is queued to be unregistered later.
9284 * Callers must hold the rtnl semaphore. You may want
9285 * unregister_netdev() instead of this.
9288 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
9293 list_move_tail(&dev
->unreg_list
, head
);
9295 rollback_registered(dev
);
9296 /* Finish processing unregister after unlock */
9300 EXPORT_SYMBOL(unregister_netdevice_queue
);
9303 * unregister_netdevice_many - unregister many devices
9304 * @head: list of devices
9306 * Note: As most callers use a stack allocated list_head,
9307 * we force a list_del() to make sure stack wont be corrupted later.
9309 void unregister_netdevice_many(struct list_head
*head
)
9311 struct net_device
*dev
;
9313 if (!list_empty(head
)) {
9314 rollback_registered_many(head
);
9315 list_for_each_entry(dev
, head
, unreg_list
)
9320 EXPORT_SYMBOL(unregister_netdevice_many
);
9323 * unregister_netdev - remove device from the kernel
9326 * This function shuts down a device interface and removes it
9327 * from the kernel tables.
9329 * This is just a wrapper for unregister_netdevice that takes
9330 * the rtnl semaphore. In general you want to use this and not
9331 * unregister_netdevice.
9333 void unregister_netdev(struct net_device
*dev
)
9336 unregister_netdevice(dev
);
9339 EXPORT_SYMBOL(unregister_netdev
);
9342 * dev_change_net_namespace - move device to different nethost namespace
9344 * @net: network namespace
9345 * @pat: If not NULL name pattern to try if the current device name
9346 * is already taken in the destination network namespace.
9348 * This function shuts down a device interface and moves it
9349 * to a new network namespace. On success 0 is returned, on
9350 * a failure a netagive errno code is returned.
9352 * Callers must hold the rtnl semaphore.
9355 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
9357 int err
, new_nsid
, new_ifindex
;
9361 /* Don't allow namespace local devices to be moved. */
9363 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9366 /* Ensure the device has been registrered */
9367 if (dev
->reg_state
!= NETREG_REGISTERED
)
9370 /* Get out if there is nothing todo */
9372 if (net_eq(dev_net(dev
), net
))
9375 /* Pick the destination device name, and ensure
9376 * we can use it in the destination network namespace.
9379 if (__dev_get_by_name(net
, dev
->name
)) {
9380 /* We get here if we can't use the current device name */
9383 err
= dev_get_valid_name(net
, dev
, pat
);
9389 * And now a mini version of register_netdevice unregister_netdevice.
9392 /* If device is running close it first. */
9395 /* And unlink it from device chain */
9396 unlist_netdevice(dev
);
9400 /* Shutdown queueing discipline. */
9403 /* Notify protocols, that we are about to destroy
9404 * this device. They should clean all the things.
9406 * Note that dev->reg_state stays at NETREG_REGISTERED.
9407 * This is wanted because this way 8021q and macvlan know
9408 * the device is just moving and can keep their slaves up.
9410 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
9413 new_nsid
= peernet2id_alloc(dev_net(dev
), net
);
9414 /* If there is an ifindex conflict assign a new one */
9415 if (__dev_get_by_index(net
, dev
->ifindex
))
9416 new_ifindex
= dev_new_index(net
);
9418 new_ifindex
= dev
->ifindex
;
9420 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
9424 * Flush the unicast and multicast chains
9429 /* Send a netdev-removed uevent to the old namespace */
9430 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
9431 netdev_adjacent_del_links(dev
);
9433 /* Actually switch the network namespace */
9434 dev_net_set(dev
, net
);
9435 dev
->ifindex
= new_ifindex
;
9437 /* Send a netdev-add uevent to the new namespace */
9438 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
9439 netdev_adjacent_add_links(dev
);
9441 /* Fixup kobjects */
9442 err
= device_rename(&dev
->dev
, dev
->name
);
9445 /* Add the device back in the hashes */
9446 list_netdevice(dev
);
9448 /* Notify protocols, that a new device appeared. */
9449 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
9452 * Prevent userspace races by waiting until the network
9453 * device is fully setup before sending notifications.
9455 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
9462 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
9464 static int dev_cpu_dead(unsigned int oldcpu
)
9466 struct sk_buff
**list_skb
;
9467 struct sk_buff
*skb
;
9469 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
9471 local_irq_disable();
9472 cpu
= smp_processor_id();
9473 sd
= &per_cpu(softnet_data
, cpu
);
9474 oldsd
= &per_cpu(softnet_data
, oldcpu
);
9476 /* Find end of our completion_queue. */
9477 list_skb
= &sd
->completion_queue
;
9479 list_skb
= &(*list_skb
)->next
;
9480 /* Append completion queue from offline CPU. */
9481 *list_skb
= oldsd
->completion_queue
;
9482 oldsd
->completion_queue
= NULL
;
9484 /* Append output queue from offline CPU. */
9485 if (oldsd
->output_queue
) {
9486 *sd
->output_queue_tailp
= oldsd
->output_queue
;
9487 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
9488 oldsd
->output_queue
= NULL
;
9489 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
9491 /* Append NAPI poll list from offline CPU, with one exception :
9492 * process_backlog() must be called by cpu owning percpu backlog.
9493 * We properly handle process_queue & input_pkt_queue later.
9495 while (!list_empty(&oldsd
->poll_list
)) {
9496 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
9500 list_del_init(&napi
->poll_list
);
9501 if (napi
->poll
== process_backlog
)
9504 ____napi_schedule(sd
, napi
);
9507 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
9511 remsd
= oldsd
->rps_ipi_list
;
9512 oldsd
->rps_ipi_list
= NULL
;
9514 /* send out pending IPI's on offline CPU */
9515 net_rps_send_ipi(remsd
);
9517 /* Process offline CPU's input_pkt_queue */
9518 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
9520 input_queue_head_incr(oldsd
);
9522 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
9524 input_queue_head_incr(oldsd
);
9531 * netdev_increment_features - increment feature set by one
9532 * @all: current feature set
9533 * @one: new feature set
9534 * @mask: mask feature set
9536 * Computes a new feature set after adding a device with feature set
9537 * @one to the master device with current feature set @all. Will not
9538 * enable anything that is off in @mask. Returns the new feature set.
9540 netdev_features_t
netdev_increment_features(netdev_features_t all
,
9541 netdev_features_t one
, netdev_features_t mask
)
9543 if (mask
& NETIF_F_HW_CSUM
)
9544 mask
|= NETIF_F_CSUM_MASK
;
9545 mask
|= NETIF_F_VLAN_CHALLENGED
;
9547 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
9548 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
9550 /* If one device supports hw checksumming, set for all. */
9551 if (all
& NETIF_F_HW_CSUM
)
9552 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
9556 EXPORT_SYMBOL(netdev_increment_features
);
9558 static struct hlist_head
* __net_init
netdev_create_hash(void)
9561 struct hlist_head
*hash
;
9563 hash
= kmalloc_array(NETDEV_HASHENTRIES
, sizeof(*hash
), GFP_KERNEL
);
9565 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
9566 INIT_HLIST_HEAD(&hash
[i
]);
9571 /* Initialize per network namespace state */
9572 static int __net_init
netdev_init(struct net
*net
)
9574 BUILD_BUG_ON(GRO_HASH_BUCKETS
>
9575 8 * FIELD_SIZEOF(struct napi_struct
, gro_bitmask
));
9577 if (net
!= &init_net
)
9578 INIT_LIST_HEAD(&net
->dev_base_head
);
9580 net
->dev_name_head
= netdev_create_hash();
9581 if (net
->dev_name_head
== NULL
)
9584 net
->dev_index_head
= netdev_create_hash();
9585 if (net
->dev_index_head
== NULL
)
9591 kfree(net
->dev_name_head
);
9597 * netdev_drivername - network driver for the device
9598 * @dev: network device
9600 * Determine network driver for device.
9602 const char *netdev_drivername(const struct net_device
*dev
)
9604 const struct device_driver
*driver
;
9605 const struct device
*parent
;
9606 const char *empty
= "";
9608 parent
= dev
->dev
.parent
;
9612 driver
= parent
->driver
;
9613 if (driver
&& driver
->name
)
9614 return driver
->name
;
9618 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
9619 struct va_format
*vaf
)
9621 if (dev
&& dev
->dev
.parent
) {
9622 dev_printk_emit(level
[1] - '0',
9625 dev_driver_string(dev
->dev
.parent
),
9626 dev_name(dev
->dev
.parent
),
9627 netdev_name(dev
), netdev_reg_state(dev
),
9630 printk("%s%s%s: %pV",
9631 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
9633 printk("%s(NULL net_device): %pV", level
, vaf
);
9637 void netdev_printk(const char *level
, const struct net_device
*dev
,
9638 const char *format
, ...)
9640 struct va_format vaf
;
9643 va_start(args
, format
);
9648 __netdev_printk(level
, dev
, &vaf
);
9652 EXPORT_SYMBOL(netdev_printk
);
9654 #define define_netdev_printk_level(func, level) \
9655 void func(const struct net_device *dev, const char *fmt, ...) \
9657 struct va_format vaf; \
9660 va_start(args, fmt); \
9665 __netdev_printk(level, dev, &vaf); \
9669 EXPORT_SYMBOL(func);
9671 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
9672 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
9673 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
9674 define_netdev_printk_level(netdev_err
, KERN_ERR
);
9675 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
9676 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
9677 define_netdev_printk_level(netdev_info
, KERN_INFO
);
9679 static void __net_exit
netdev_exit(struct net
*net
)
9681 kfree(net
->dev_name_head
);
9682 kfree(net
->dev_index_head
);
9683 if (net
!= &init_net
)
9684 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
9687 static struct pernet_operations __net_initdata netdev_net_ops
= {
9688 .init
= netdev_init
,
9689 .exit
= netdev_exit
,
9692 static void __net_exit
default_device_exit(struct net
*net
)
9694 struct net_device
*dev
, *aux
;
9696 * Push all migratable network devices back to the
9697 * initial network namespace
9700 for_each_netdev_safe(net
, dev
, aux
) {
9702 char fb_name
[IFNAMSIZ
];
9704 /* Ignore unmoveable devices (i.e. loopback) */
9705 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9708 /* Leave virtual devices for the generic cleanup */
9709 if (dev
->rtnl_link_ops
)
9712 /* Push remaining network devices to init_net */
9713 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
9714 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
9716 pr_emerg("%s: failed to move %s to init_net: %d\n",
9717 __func__
, dev
->name
, err
);
9724 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
9726 /* Return with the rtnl_lock held when there are no network
9727 * devices unregistering in any network namespace in net_list.
9731 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
9733 add_wait_queue(&netdev_unregistering_wq
, &wait
);
9735 unregistering
= false;
9737 list_for_each_entry(net
, net_list
, exit_list
) {
9738 if (net
->dev_unreg_count
> 0) {
9739 unregistering
= true;
9747 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
9749 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
9752 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
9754 /* At exit all network devices most be removed from a network
9755 * namespace. Do this in the reverse order of registration.
9756 * Do this across as many network namespaces as possible to
9757 * improve batching efficiency.
9759 struct net_device
*dev
;
9761 LIST_HEAD(dev_kill_list
);
9763 /* To prevent network device cleanup code from dereferencing
9764 * loopback devices or network devices that have been freed
9765 * wait here for all pending unregistrations to complete,
9766 * before unregistring the loopback device and allowing the
9767 * network namespace be freed.
9769 * The netdev todo list containing all network devices
9770 * unregistrations that happen in default_device_exit_batch
9771 * will run in the rtnl_unlock() at the end of
9772 * default_device_exit_batch.
9774 rtnl_lock_unregistering(net_list
);
9775 list_for_each_entry(net
, net_list
, exit_list
) {
9776 for_each_netdev_reverse(net
, dev
) {
9777 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
9778 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
9780 unregister_netdevice_queue(dev
, &dev_kill_list
);
9783 unregister_netdevice_many(&dev_kill_list
);
9787 static struct pernet_operations __net_initdata default_device_ops
= {
9788 .exit
= default_device_exit
,
9789 .exit_batch
= default_device_exit_batch
,
9793 * Initialize the DEV module. At boot time this walks the device list and
9794 * unhooks any devices that fail to initialise (normally hardware not
9795 * present) and leaves us with a valid list of present and active devices.
9800 * This is called single threaded during boot, so no need
9801 * to take the rtnl semaphore.
9803 static int __init
net_dev_init(void)
9805 int i
, rc
= -ENOMEM
;
9807 BUG_ON(!dev_boot_phase
);
9809 if (dev_proc_init())
9812 if (netdev_kobject_init())
9815 INIT_LIST_HEAD(&ptype_all
);
9816 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
9817 INIT_LIST_HEAD(&ptype_base
[i
]);
9819 INIT_LIST_HEAD(&offload_base
);
9821 if (register_pernet_subsys(&netdev_net_ops
))
9825 * Initialise the packet receive queues.
9828 for_each_possible_cpu(i
) {
9829 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
9830 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
9832 INIT_WORK(flush
, flush_backlog
);
9834 skb_queue_head_init(&sd
->input_pkt_queue
);
9835 skb_queue_head_init(&sd
->process_queue
);
9836 #ifdef CONFIG_XFRM_OFFLOAD
9837 skb_queue_head_init(&sd
->xfrm_backlog
);
9839 INIT_LIST_HEAD(&sd
->poll_list
);
9840 sd
->output_queue_tailp
= &sd
->output_queue
;
9842 sd
->csd
.func
= rps_trigger_softirq
;
9847 init_gro_hash(&sd
->backlog
);
9848 sd
->backlog
.poll
= process_backlog
;
9849 sd
->backlog
.weight
= weight_p
;
9854 /* The loopback device is special if any other network devices
9855 * is present in a network namespace the loopback device must
9856 * be present. Since we now dynamically allocate and free the
9857 * loopback device ensure this invariant is maintained by
9858 * keeping the loopback device as the first device on the
9859 * list of network devices. Ensuring the loopback devices
9860 * is the first device that appears and the last network device
9863 if (register_pernet_device(&loopback_net_ops
))
9866 if (register_pernet_device(&default_device_ops
))
9869 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
9870 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
9872 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
9873 NULL
, dev_cpu_dead
);
9880 subsys_initcall(net_dev_init
);