Merge tag 'nfsd-5.2-2' of git://linux-nfs.org/~bfields/linux
[linux-2.6/linux-2.6-arm.git] / net / core / dev.c
blobd6edd218babdde1ee35da7c0823ddf90dd5ba7cb
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
189 static DEFINE_MUTEX(ifalias_mutex);
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 static seqcount_t devnet_rename_seq;
199 static inline void dev_base_seq_inc(struct net *net)
201 while (++net->dev_base_seq == 0)
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 static inline void rps_lock(struct softnet_data *sd)
219 #ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221 #endif
224 static inline void rps_unlock(struct softnet_data *sd)
226 #ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
234 struct net *net = dev_net(dev);
236 ASSERT_RTNL();
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
245 dev_base_seq_inc(net);
248 /* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
251 static void unlist_netdevice(struct net_device *dev)
253 ASSERT_RTNL();
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
262 dev_base_seq_inc(dev_net(dev));
266 * Our notifier list
269 static RAW_NOTIFIER_HEAD(netdev_chain);
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 #ifdef CONFIG_LOCKDEP
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
284 static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301 static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 int i;
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
335 int i;
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 int i;
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 #endif
361 /*******************************************************************************
363 * Protocol management and registration routines
365 *******************************************************************************/
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 else
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
406 void dev_add_pack(struct packet_type *pt)
408 struct list_head *head = ptype_head(pt);
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
414 EXPORT_SYMBOL(dev_add_pack);
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
423 * returns.
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
429 void __dev_remove_pack(struct packet_type *pt)
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
434 spin_lock(&ptype_lock);
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
443 pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 spin_unlock(&ptype_lock);
447 EXPORT_SYMBOL(__dev_remove_pack);
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
461 void dev_remove_pack(struct packet_type *pt)
463 __dev_remove_pack(pt);
465 synchronize_net();
467 EXPORT_SYMBOL(dev_remove_pack);
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
482 void dev_add_offload(struct packet_offload *po)
484 struct packet_offload *elem;
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
494 EXPORT_SYMBOL(dev_add_offload);
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
509 static void __dev_remove_offload(struct packet_offload *po)
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
514 spin_lock(&offload_lock);
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
523 pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 spin_unlock(&offload_lock);
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
540 void dev_remove_offload(struct packet_offload *po)
542 __dev_remove_offload(po);
544 synchronize_net();
546 EXPORT_SYMBOL(dev_remove_offload);
548 /******************************************************************************
550 * Device Boot-time Settings Routines
552 ******************************************************************************/
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 struct netdev_boot_setup *s;
569 int i;
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
593 int netdev_boot_setup_check(struct net_device *dev)
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
605 return 1;
608 return 0;
610 EXPORT_SYMBOL(netdev_boot_setup_check);
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
623 unsigned long netdev_boot_base(const char *prefix, int unit)
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
629 sprintf(name, "%s%d", prefix, unit);
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
635 if (__dev_get_by_name(&init_net, name))
636 return 1;
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
645 * Saves at boot time configured settings for any netdevice.
647 int __init netdev_boot_setup(char *str)
649 int ints[5];
650 struct ifmap map;
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
671 __setup("netdev=", netdev_boot_setup);
673 /*******************************************************************************
675 * Device Interface Subroutines
677 *******************************************************************************/
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 int dev_get_iflink(const struct net_device *dev)
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
692 return dev->ifindex;
694 EXPORT_SYMBOL(dev_get_iflink);
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 struct ip_tunnel_info *info;
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
743 return NULL;
745 EXPORT_SYMBOL(__dev_get_by_name);
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
768 return NULL;
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 struct net_device *dev;
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
795 EXPORT_SYMBOL(dev_get_by_name);
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
816 return dev;
818 return NULL;
820 EXPORT_SYMBOL(__dev_get_by_index);
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
840 return dev;
842 return NULL;
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 struct net_device *dev;
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
864 if (dev)
865 dev_hold(dev);
866 rcu_read_unlock();
867 return dev;
869 EXPORT_SYMBOL(dev_get_by_index);
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 struct napi_struct *napi;
885 WARN_ON_ONCE(!rcu_read_lock_held());
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
890 napi = napi_by_id(napi_id);
892 return napi ? napi->dev : NULL;
894 EXPORT_SYMBOL(dev_get_by_napi_id);
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
906 int netdev_get_name(struct net *net, char *name, int ifindex)
908 struct net_device *dev;
909 unsigned int seq;
911 retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
927 return 0;
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
947 struct net_device *dev;
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
952 return dev;
954 return NULL;
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 struct net_device *dev;
962 ASSERT_RTNL();
963 for_each_netdev(net, dev)
964 if (dev->type == type)
965 return dev;
967 return NULL;
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 struct net_device *dev, *ret = NULL;
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
982 rcu_read_unlock();
983 return ret;
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1001 struct net_device *dev, *ret;
1003 ASSERT_RTNL();
1005 ret = NULL;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1008 ret = dev;
1009 break;
1012 return ret;
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1024 bool dev_valid_name(const char *name)
1026 if (*name == '\0')
1027 return false;
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 return false;
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 return false;
1033 while (*name) {
1034 if (*name == '/' || *name == ':' || isspace(*name))
1035 return false;
1036 name++;
1038 return true;
1040 EXPORT_SYMBOL(dev_valid_name);
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 int i = 0;
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1068 p = strchr(name, '%');
1069 if (p) {
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 if (!inuse)
1081 return -ENOMEM;
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1101 return i;
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1107 return -ENFILE;
1110 static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1114 char buf[IFNAMSIZ];
1115 int ret;
1117 BUG_ON(!net);
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 EXPORT_SYMBOL(dev_alloc_name);
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
1147 BUG_ON(!net);
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1159 return 0;
1161 EXPORT_SYMBOL(dev_get_valid_name);
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1171 int dev_change_name(struct net_device *dev, const char *newname)
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1175 int err = 0;
1176 int ret;
1177 struct net *net;
1179 ASSERT_RTNL();
1180 BUG_ON(!dev_net(dev));
1182 net = dev_net(dev);
1184 /* Some auto-enslaved devices e.g. failover slaves are
1185 * special, as userspace might rename the device after
1186 * the interface had been brought up and running since
1187 * the point kernel initiated auto-enslavement. Allow
1188 * live name change even when these slave devices are
1189 * up and running.
1191 * Typically, users of these auto-enslaving devices
1192 * don't actually care about slave name change, as
1193 * they are supposed to operate on master interface
1194 * directly.
1196 if (dev->flags & IFF_UP &&
1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198 return -EBUSY;
1200 write_seqcount_begin(&devnet_rename_seq);
1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 write_seqcount_end(&devnet_rename_seq);
1204 return 0;
1207 memcpy(oldname, dev->name, IFNAMSIZ);
1209 err = dev_get_valid_name(net, dev, newname);
1210 if (err < 0) {
1211 write_seqcount_end(&devnet_rename_seq);
1212 return err;
1215 if (oldname[0] && !strchr(oldname, '%'))
1216 netdev_info(dev, "renamed from %s\n", oldname);
1218 old_assign_type = dev->name_assign_type;
1219 dev->name_assign_type = NET_NAME_RENAMED;
1221 rollback:
1222 ret = device_rename(&dev->dev, dev->name);
1223 if (ret) {
1224 memcpy(dev->name, oldname, IFNAMSIZ);
1225 dev->name_assign_type = old_assign_type;
1226 write_seqcount_end(&devnet_rename_seq);
1227 return ret;
1230 write_seqcount_end(&devnet_rename_seq);
1232 netdev_adjacent_rename_links(dev, oldname);
1234 write_lock_bh(&dev_base_lock);
1235 hlist_del_rcu(&dev->name_hlist);
1236 write_unlock_bh(&dev_base_lock);
1238 synchronize_rcu();
1240 write_lock_bh(&dev_base_lock);
1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 write_unlock_bh(&dev_base_lock);
1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 ret = notifier_to_errno(ret);
1247 if (ret) {
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249 if (err >= 0) {
1250 err = ret;
1251 write_seqcount_begin(&devnet_rename_seq);
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 memcpy(oldname, newname, IFNAMSIZ);
1254 dev->name_assign_type = old_assign_type;
1255 old_assign_type = NET_NAME_RENAMED;
1256 goto rollback;
1257 } else {
1258 pr_err("%s: name change rollback failed: %d\n",
1259 dev->name, ret);
1263 return err;
1267 * dev_set_alias - change ifalias of a device
1268 * @dev: device
1269 * @alias: name up to IFALIASZ
1270 * @len: limit of bytes to copy from info
1272 * Set ifalias for a device,
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1276 struct dev_ifalias *new_alias = NULL;
1278 if (len >= IFALIASZ)
1279 return -EINVAL;
1281 if (len) {
1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 if (!new_alias)
1284 return -ENOMEM;
1286 memcpy(new_alias->ifalias, alias, len);
1287 new_alias->ifalias[len] = 0;
1290 mutex_lock(&ifalias_mutex);
1291 rcu_swap_protected(dev->ifalias, new_alias,
1292 mutex_is_locked(&ifalias_mutex));
1293 mutex_unlock(&ifalias_mutex);
1295 if (new_alias)
1296 kfree_rcu(new_alias, rcuhead);
1298 return len;
1300 EXPORT_SYMBOL(dev_set_alias);
1303 * dev_get_alias - get ifalias of a device
1304 * @dev: device
1305 * @name: buffer to store name of ifalias
1306 * @len: size of buffer
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1313 const struct dev_ifalias *alias;
1314 int ret = 0;
1316 rcu_read_lock();
1317 alias = rcu_dereference(dev->ifalias);
1318 if (alias)
1319 ret = snprintf(name, len, "%s", alias->ifalias);
1320 rcu_read_unlock();
1322 return ret;
1326 * netdev_features_change - device changes features
1327 * @dev: device to cause notification
1329 * Called to indicate a device has changed features.
1331 void netdev_features_change(struct net_device *dev)
1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1335 EXPORT_SYMBOL(netdev_features_change);
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1345 void netdev_state_change(struct net_device *dev)
1347 if (dev->flags & IFF_UP) {
1348 struct netdev_notifier_change_info change_info = {
1349 .info.dev = dev,
1352 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 &change_info.info);
1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1357 EXPORT_SYMBOL(netdev_state_change);
1360 * netdev_notify_peers - notify network peers about existence of @dev
1361 * @dev: network device
1363 * Generate traffic such that interested network peers are aware of
1364 * @dev, such as by generating a gratuitous ARP. This may be used when
1365 * a device wants to inform the rest of the network about some sort of
1366 * reconfiguration such as a failover event or virtual machine
1367 * migration.
1369 void netdev_notify_peers(struct net_device *dev)
1371 rtnl_lock();
1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374 rtnl_unlock();
1376 EXPORT_SYMBOL(netdev_notify_peers);
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1380 const struct net_device_ops *ops = dev->netdev_ops;
1381 int ret;
1383 ASSERT_RTNL();
1385 if (!netif_device_present(dev))
1386 return -ENODEV;
1388 /* Block netpoll from trying to do any rx path servicing.
1389 * If we don't do this there is a chance ndo_poll_controller
1390 * or ndo_poll may be running while we open the device
1392 netpoll_poll_disable(dev);
1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 ret = notifier_to_errno(ret);
1396 if (ret)
1397 return ret;
1399 set_bit(__LINK_STATE_START, &dev->state);
1401 if (ops->ndo_validate_addr)
1402 ret = ops->ndo_validate_addr(dev);
1404 if (!ret && ops->ndo_open)
1405 ret = ops->ndo_open(dev);
1407 netpoll_poll_enable(dev);
1409 if (ret)
1410 clear_bit(__LINK_STATE_START, &dev->state);
1411 else {
1412 dev->flags |= IFF_UP;
1413 dev_set_rx_mode(dev);
1414 dev_activate(dev);
1415 add_device_randomness(dev->dev_addr, dev->addr_len);
1418 return ret;
1422 * dev_open - prepare an interface for use.
1423 * @dev: device to open
1424 * @extack: netlink extended ack
1426 * Takes a device from down to up state. The device's private open
1427 * function is invoked and then the multicast lists are loaded. Finally
1428 * the device is moved into the up state and a %NETDEV_UP message is
1429 * sent to the netdev notifier chain.
1431 * Calling this function on an active interface is a nop. On a failure
1432 * a negative errno code is returned.
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1436 int ret;
1438 if (dev->flags & IFF_UP)
1439 return 0;
1441 ret = __dev_open(dev, extack);
1442 if (ret < 0)
1443 return ret;
1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 call_netdevice_notifiers(NETDEV_UP, dev);
1448 return ret;
1450 EXPORT_SYMBOL(dev_open);
1452 static void __dev_close_many(struct list_head *head)
1454 struct net_device *dev;
1456 ASSERT_RTNL();
1457 might_sleep();
1459 list_for_each_entry(dev, head, close_list) {
1460 /* Temporarily disable netpoll until the interface is down */
1461 netpoll_poll_disable(dev);
1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1465 clear_bit(__LINK_STATE_START, &dev->state);
1467 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468 * can be even on different cpu. So just clear netif_running().
1470 * dev->stop() will invoke napi_disable() on all of it's
1471 * napi_struct instances on this device.
1473 smp_mb__after_atomic(); /* Commit netif_running(). */
1476 dev_deactivate_many(head);
1478 list_for_each_entry(dev, head, close_list) {
1479 const struct net_device_ops *ops = dev->netdev_ops;
1482 * Call the device specific close. This cannot fail.
1483 * Only if device is UP
1485 * We allow it to be called even after a DETACH hot-plug
1486 * event.
1488 if (ops->ndo_stop)
1489 ops->ndo_stop(dev);
1491 dev->flags &= ~IFF_UP;
1492 netpoll_poll_enable(dev);
1496 static void __dev_close(struct net_device *dev)
1498 LIST_HEAD(single);
1500 list_add(&dev->close_list, &single);
1501 __dev_close_many(&single);
1502 list_del(&single);
1505 void dev_close_many(struct list_head *head, bool unlink)
1507 struct net_device *dev, *tmp;
1509 /* Remove the devices that don't need to be closed */
1510 list_for_each_entry_safe(dev, tmp, head, close_list)
1511 if (!(dev->flags & IFF_UP))
1512 list_del_init(&dev->close_list);
1514 __dev_close_many(head);
1516 list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 call_netdevice_notifiers(NETDEV_DOWN, dev);
1519 if (unlink)
1520 list_del_init(&dev->close_list);
1523 EXPORT_SYMBOL(dev_close_many);
1526 * dev_close - shutdown an interface.
1527 * @dev: device to shutdown
1529 * This function moves an active device into down state. A
1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532 * chain.
1534 void dev_close(struct net_device *dev)
1536 if (dev->flags & IFF_UP) {
1537 LIST_HEAD(single);
1539 list_add(&dev->close_list, &single);
1540 dev_close_many(&single, true);
1541 list_del(&single);
1544 EXPORT_SYMBOL(dev_close);
1548 * dev_disable_lro - disable Large Receive Offload on a device
1549 * @dev: device
1551 * Disable Large Receive Offload (LRO) on a net device. Must be
1552 * called under RTNL. This is needed if received packets may be
1553 * forwarded to another interface.
1555 void dev_disable_lro(struct net_device *dev)
1557 struct net_device *lower_dev;
1558 struct list_head *iter;
1560 dev->wanted_features &= ~NETIF_F_LRO;
1561 netdev_update_features(dev);
1563 if (unlikely(dev->features & NETIF_F_LRO))
1564 netdev_WARN(dev, "failed to disable LRO!\n");
1566 netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 dev_disable_lro(lower_dev);
1569 EXPORT_SYMBOL(dev_disable_lro);
1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573 * @dev: device
1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1576 * called under RTNL. This is needed if Generic XDP is installed on
1577 * the device.
1579 static void dev_disable_gro_hw(struct net_device *dev)
1581 dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 netdev_update_features(dev);
1584 if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1590 #define N(val) \
1591 case NETDEV_##val: \
1592 return "NETDEV_" __stringify(val);
1593 switch (cmd) {
1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603 N(PRE_CHANGEADDR)
1605 #undef N
1606 return "UNKNOWN_NETDEV_EVENT";
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 struct net_device *dev)
1613 struct netdev_notifier_info info = {
1614 .dev = dev,
1617 return nb->notifier_call(nb, val, &info);
1620 static int dev_boot_phase = 1;
1623 * register_netdevice_notifier - register a network notifier block
1624 * @nb: notifier
1626 * Register a notifier to be called when network device events occur.
1627 * The notifier passed is linked into the kernel structures and must
1628 * not be reused until it has been unregistered. A negative errno code
1629 * is returned on a failure.
1631 * When registered all registration and up events are replayed
1632 * to the new notifier to allow device to have a race free
1633 * view of the network device list.
1636 int register_netdevice_notifier(struct notifier_block *nb)
1638 struct net_device *dev;
1639 struct net_device *last;
1640 struct net *net;
1641 int err;
1643 /* Close race with setup_net() and cleanup_net() */
1644 down_write(&pernet_ops_rwsem);
1645 rtnl_lock();
1646 err = raw_notifier_chain_register(&netdev_chain, nb);
1647 if (err)
1648 goto unlock;
1649 if (dev_boot_phase)
1650 goto unlock;
1651 for_each_net(net) {
1652 for_each_netdev(net, dev) {
1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 err = notifier_to_errno(err);
1655 if (err)
1656 goto rollback;
1658 if (!(dev->flags & IFF_UP))
1659 continue;
1661 call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 unlock:
1666 rtnl_unlock();
1667 up_write(&pernet_ops_rwsem);
1668 return err;
1670 rollback:
1671 last = dev;
1672 for_each_net(net) {
1673 for_each_netdev(net, dev) {
1674 if (dev == last)
1675 goto outroll;
1677 if (dev->flags & IFF_UP) {
1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 dev);
1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686 outroll:
1687 raw_notifier_chain_unregister(&netdev_chain, nb);
1688 goto unlock;
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1693 * unregister_netdevice_notifier - unregister a network notifier block
1694 * @nb: notifier
1696 * Unregister a notifier previously registered by
1697 * register_netdevice_notifier(). The notifier is unlinked into the
1698 * kernel structures and may then be reused. A negative errno code
1699 * is returned on a failure.
1701 * After unregistering unregister and down device events are synthesized
1702 * for all devices on the device list to the removed notifier to remove
1703 * the need for special case cleanup code.
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1708 struct net_device *dev;
1709 struct net *net;
1710 int err;
1712 /* Close race with setup_net() and cleanup_net() */
1713 down_write(&pernet_ops_rwsem);
1714 rtnl_lock();
1715 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716 if (err)
1717 goto unlock;
1719 for_each_net(net) {
1720 for_each_netdev(net, dev) {
1721 if (dev->flags & IFF_UP) {
1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 dev);
1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1729 unlock:
1730 rtnl_unlock();
1731 up_write(&pernet_ops_rwsem);
1732 return err;
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1737 * call_netdevice_notifiers_info - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @info: notifier information data
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746 struct netdev_notifier_info *info)
1748 ASSERT_RTNL();
1749 return raw_notifier_call_chain(&netdev_chain, val, info);
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753 struct net_device *dev,
1754 struct netlink_ext_ack *extack)
1756 struct netdev_notifier_info info = {
1757 .dev = dev,
1758 .extack = extack,
1761 return call_netdevice_notifiers_info(val, &info);
1765 * call_netdevice_notifiers - call all network notifier blocks
1766 * @val: value passed unmodified to notifier function
1767 * @dev: net_device pointer passed unmodified to notifier function
1769 * Call all network notifier blocks. Parameters and return value
1770 * are as for raw_notifier_call_chain().
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1775 return call_netdevice_notifiers_extack(val, dev, NULL);
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1780 * call_netdevice_notifiers_mtu - call all network notifier blocks
1781 * @val: value passed unmodified to notifier function
1782 * @dev: net_device pointer passed unmodified to notifier function
1783 * @arg: additional u32 argument passed to the notifier function
1785 * Call all network notifier blocks. Parameters and return value
1786 * are as for raw_notifier_call_chain().
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789 struct net_device *dev, u32 arg)
1791 struct netdev_notifier_info_ext info = {
1792 .info.dev = dev,
1793 .ext.mtu = arg,
1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1798 return call_netdevice_notifiers_info(val, &info.info);
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1804 void net_inc_ingress_queue(void)
1806 static_branch_inc(&ingress_needed_key);
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1810 void net_dec_ingress_queue(void)
1812 static_branch_dec(&ingress_needed_key);
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1820 void net_inc_egress_queue(void)
1822 static_branch_inc(&egress_needed_key);
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1826 void net_dec_egress_queue(void)
1828 static_branch_dec(&egress_needed_key);
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840 int wanted;
1842 wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 if (wanted > 0)
1844 static_branch_enable(&netstamp_needed_key);
1845 else
1846 static_branch_disable(&netstamp_needed_key);
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1851 void net_enable_timestamp(void)
1853 #ifdef CONFIG_JUMP_LABEL
1854 int wanted;
1856 while (1) {
1857 wanted = atomic_read(&netstamp_wanted);
1858 if (wanted <= 0)
1859 break;
1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 return;
1863 atomic_inc(&netstamp_needed_deferred);
1864 schedule_work(&netstamp_work);
1865 #else
1866 static_branch_inc(&netstamp_needed_key);
1867 #endif
1869 EXPORT_SYMBOL(net_enable_timestamp);
1871 void net_disable_timestamp(void)
1873 #ifdef CONFIG_JUMP_LABEL
1874 int wanted;
1876 while (1) {
1877 wanted = atomic_read(&netstamp_wanted);
1878 if (wanted <= 1)
1879 break;
1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 return;
1883 atomic_dec(&netstamp_needed_deferred);
1884 schedule_work(&netstamp_work);
1885 #else
1886 static_branch_dec(&netstamp_needed_key);
1887 #endif
1889 EXPORT_SYMBOL(net_disable_timestamp);
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1893 skb->tstamp = 0;
1894 if (static_branch_unlikely(&netstamp_needed_key))
1895 __net_timestamp(skb);
1898 #define net_timestamp_check(COND, SKB) \
1899 if (static_branch_unlikely(&netstamp_needed_key)) { \
1900 if ((COND) && !(SKB)->tstamp) \
1901 __net_timestamp(SKB); \
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1906 unsigned int len;
1908 if (!(dev->flags & IFF_UP))
1909 return false;
1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 if (skb->len <= len)
1913 return true;
1915 /* if TSO is enabled, we don't care about the length as the packet
1916 * could be forwarded without being segmented before
1918 if (skb_is_gso(skb))
1919 return true;
1921 return false;
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1927 int ret = ____dev_forward_skb(dev, skb);
1929 if (likely(!ret)) {
1930 skb->protocol = eth_type_trans(skb, dev);
1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1934 return ret;
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1939 * dev_forward_skb - loopback an skb to another netif
1941 * @dev: destination network device
1942 * @skb: buffer to forward
1944 * return values:
1945 * NET_RX_SUCCESS (no congestion)
1946 * NET_RX_DROP (packet was dropped, but freed)
1948 * dev_forward_skb can be used for injecting an skb from the
1949 * start_xmit function of one device into the receive queue
1950 * of another device.
1952 * The receiving device may be in another namespace, so
1953 * we have to clear all information in the skb that could
1954 * impact namespace isolation.
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1962 static inline int deliver_skb(struct sk_buff *skb,
1963 struct packet_type *pt_prev,
1964 struct net_device *orig_dev)
1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967 return -ENOMEM;
1968 refcount_inc(&skb->users);
1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 struct packet_type **pt,
1974 struct net_device *orig_dev,
1975 __be16 type,
1976 struct list_head *ptype_list)
1978 struct packet_type *ptype, *pt_prev = *pt;
1980 list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 if (ptype->type != type)
1982 continue;
1983 if (pt_prev)
1984 deliver_skb(skb, pt_prev, orig_dev);
1985 pt_prev = ptype;
1987 *pt = pt_prev;
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1992 if (!ptype->af_packet_priv || !skb->sk)
1993 return false;
1995 if (ptype->id_match)
1996 return ptype->id_match(ptype, skb->sk);
1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 return true;
2000 return false;
2004 * dev_nit_active - return true if any network interface taps are in use
2006 * @dev: network device to check for the presence of taps
2008 bool dev_nit_active(struct net_device *dev)
2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2015 * Support routine. Sends outgoing frames to any network
2016 * taps currently in use.
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2021 struct packet_type *ptype;
2022 struct sk_buff *skb2 = NULL;
2023 struct packet_type *pt_prev = NULL;
2024 struct list_head *ptype_list = &ptype_all;
2026 rcu_read_lock();
2027 again:
2028 list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 if (ptype->ignore_outgoing)
2030 continue;
2032 /* Never send packets back to the socket
2033 * they originated from - MvS (miquels@drinkel.ow.org)
2035 if (skb_loop_sk(ptype, skb))
2036 continue;
2038 if (pt_prev) {
2039 deliver_skb(skb2, pt_prev, skb->dev);
2040 pt_prev = ptype;
2041 continue;
2044 /* need to clone skb, done only once */
2045 skb2 = skb_clone(skb, GFP_ATOMIC);
2046 if (!skb2)
2047 goto out_unlock;
2049 net_timestamp_set(skb2);
2051 /* skb->nh should be correctly
2052 * set by sender, so that the second statement is
2053 * just protection against buggy protocols.
2055 skb_reset_mac_header(skb2);
2057 if (skb_network_header(skb2) < skb2->data ||
2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 ntohs(skb2->protocol),
2061 dev->name);
2062 skb_reset_network_header(skb2);
2065 skb2->transport_header = skb2->network_header;
2066 skb2->pkt_type = PACKET_OUTGOING;
2067 pt_prev = ptype;
2070 if (ptype_list == &ptype_all) {
2071 ptype_list = &dev->ptype_all;
2072 goto again;
2074 out_unlock:
2075 if (pt_prev) {
2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 else
2079 kfree_skb(skb2);
2081 rcu_read_unlock();
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087 * @dev: Network device
2088 * @txq: number of queues available
2090 * If real_num_tx_queues is changed the tc mappings may no longer be
2091 * valid. To resolve this verify the tc mapping remains valid and if
2092 * not NULL the mapping. With no priorities mapping to this
2093 * offset/count pair it will no longer be used. In the worst case TC0
2094 * is invalid nothing can be done so disable priority mappings. If is
2095 * expected that drivers will fix this mapping if they can before
2096 * calling netif_set_real_num_tx_queues.
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2100 int i;
2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103 /* If TC0 is invalidated disable TC mapping */
2104 if (tc->offset + tc->count > txq) {
2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106 dev->num_tc = 0;
2107 return;
2110 /* Invalidated prio to tc mappings set to TC0 */
2111 for (i = 1; i < TC_BITMASK + 1; i++) {
2112 int q = netdev_get_prio_tc_map(dev, i);
2114 tc = &dev->tc_to_txq[q];
2115 if (tc->offset + tc->count > txq) {
2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 i, q);
2118 netdev_set_prio_tc_map(dev, i, 0);
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2125 if (dev->num_tc) {
2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 int i;
2129 /* walk through the TCs and see if it falls into any of them */
2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 if ((txq - tc->offset) < tc->count)
2132 return i;
2135 /* didn't find it, just return -1 to indicate no match */
2136 return -1;
2139 return 0;
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P) \
2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 int tci, u16 index)
2155 struct xps_map *map = NULL;
2156 int pos;
2158 if (dev_maps)
2159 map = xmap_dereference(dev_maps->attr_map[tci]);
2160 if (!map)
2161 return false;
2163 for (pos = map->len; pos--;) {
2164 if (map->queues[pos] != index)
2165 continue;
2167 if (map->len > 1) {
2168 map->queues[pos] = map->queues[--map->len];
2169 break;
2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 kfree_rcu(map, rcu);
2174 return false;
2177 return true;
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181 struct xps_dev_maps *dev_maps,
2182 int cpu, u16 offset, u16 count)
2184 int num_tc = dev->num_tc ? : 1;
2185 bool active = false;
2186 int tci;
2188 for (tci = cpu * num_tc; num_tc--; tci++) {
2189 int i, j;
2191 for (i = count, j = offset; i--; j++) {
2192 if (!remove_xps_queue(dev_maps, tci, j))
2193 break;
2196 active |= i < 0;
2199 return active;
2202 static void reset_xps_maps(struct net_device *dev,
2203 struct xps_dev_maps *dev_maps,
2204 bool is_rxqs_map)
2206 if (is_rxqs_map) {
2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 } else {
2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2212 static_key_slow_dec_cpuslocked(&xps_needed);
2213 kfree_rcu(dev_maps, rcu);
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 u16 offset, u16 count, bool is_rxqs_map)
2220 bool active = false;
2221 int i, j;
2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 j < nr_ids;)
2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 count);
2227 if (!active)
2228 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2230 if (!is_rxqs_map) {
2231 for (i = offset + (count - 1); count--; i--) {
2232 netdev_queue_numa_node_write(
2233 netdev_get_tx_queue(dev, i),
2234 NUMA_NO_NODE);
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 u16 count)
2242 const unsigned long *possible_mask = NULL;
2243 struct xps_dev_maps *dev_maps;
2244 unsigned int nr_ids;
2246 if (!static_key_false(&xps_needed))
2247 return;
2249 cpus_read_lock();
2250 mutex_lock(&xps_map_mutex);
2252 if (static_key_false(&xps_rxqs_needed)) {
2253 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 if (dev_maps) {
2255 nr_ids = dev->num_rx_queues;
2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 offset, count, true);
2261 dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 if (!dev_maps)
2263 goto out_no_maps;
2265 if (num_possible_cpus() > 1)
2266 possible_mask = cpumask_bits(cpu_possible_mask);
2267 nr_ids = nr_cpu_ids;
2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 false);
2271 out_no_maps:
2272 mutex_unlock(&xps_map_mutex);
2273 cpus_read_unlock();
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 u16 index, bool is_rxqs_map)
2284 struct xps_map *new_map;
2285 int alloc_len = XPS_MIN_MAP_ALLOC;
2286 int i, pos;
2288 for (pos = 0; map && pos < map->len; pos++) {
2289 if (map->queues[pos] != index)
2290 continue;
2291 return map;
2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295 if (map) {
2296 if (pos < map->alloc_len)
2297 return map;
2299 alloc_len = map->alloc_len * 2;
2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 * map
2305 if (is_rxqs_map)
2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 else
2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 cpu_to_node(attr_index));
2310 if (!new_map)
2311 return NULL;
2313 for (i = 0; i < pos; i++)
2314 new_map->queues[i] = map->queues[i];
2315 new_map->alloc_len = alloc_len;
2316 new_map->len = pos;
2318 return new_map;
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 u16 index, bool is_rxqs_map)
2325 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 int i, j, tci, numa_node_id = -2;
2328 int maps_sz, num_tc = 1, tc = 0;
2329 struct xps_map *map, *new_map;
2330 bool active = false;
2331 unsigned int nr_ids;
2333 if (dev->num_tc) {
2334 /* Do not allow XPS on subordinate device directly */
2335 num_tc = dev->num_tc;
2336 if (num_tc < 0)
2337 return -EINVAL;
2339 /* If queue belongs to subordinate dev use its map */
2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2342 tc = netdev_txq_to_tc(dev, index);
2343 if (tc < 0)
2344 return -EINVAL;
2347 mutex_lock(&xps_map_mutex);
2348 if (is_rxqs_map) {
2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 nr_ids = dev->num_rx_queues;
2352 } else {
2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 if (num_possible_cpus() > 1) {
2355 online_mask = cpumask_bits(cpu_online_mask);
2356 possible_mask = cpumask_bits(cpu_possible_mask);
2358 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 nr_ids = nr_cpu_ids;
2362 if (maps_sz < L1_CACHE_BYTES)
2363 maps_sz = L1_CACHE_BYTES;
2365 /* allocate memory for queue storage */
2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 j < nr_ids;) {
2368 if (!new_dev_maps)
2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 if (!new_dev_maps) {
2371 mutex_unlock(&xps_map_mutex);
2372 return -ENOMEM;
2375 tci = j * num_tc + tc;
2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377 NULL;
2379 map = expand_xps_map(map, j, index, is_rxqs_map);
2380 if (!map)
2381 goto error;
2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2386 if (!new_dev_maps)
2387 goto out_no_new_maps;
2389 if (!dev_maps) {
2390 /* Increment static keys at most once per type */
2391 static_key_slow_inc_cpuslocked(&xps_needed);
2392 if (is_rxqs_map)
2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 j < nr_ids;) {
2398 /* copy maps belonging to foreign traffic classes */
2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 /* fill in the new device map from the old device map */
2401 map = xmap_dereference(dev_maps->attr_map[tci]);
2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2405 /* We need to explicitly update tci as prevous loop
2406 * could break out early if dev_maps is NULL.
2408 tci = j * num_tc + tc;
2410 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 netif_attr_test_online(j, online_mask, nr_ids)) {
2412 /* add tx-queue to CPU/rx-queue maps */
2413 int pos = 0;
2415 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 while ((pos < map->len) && (map->queues[pos] != index))
2417 pos++;
2419 if (pos == map->len)
2420 map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422 if (!is_rxqs_map) {
2423 if (numa_node_id == -2)
2424 numa_node_id = cpu_to_node(j);
2425 else if (numa_node_id != cpu_to_node(j))
2426 numa_node_id = -1;
2428 #endif
2429 } else if (dev_maps) {
2430 /* fill in the new device map from the old device map */
2431 map = xmap_dereference(dev_maps->attr_map[tci]);
2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2435 /* copy maps belonging to foreign traffic classes */
2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 /* fill in the new device map from the old device map */
2438 map = xmap_dereference(dev_maps->attr_map[tci]);
2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2443 if (is_rxqs_map)
2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 else
2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2448 /* Cleanup old maps */
2449 if (!dev_maps)
2450 goto out_no_old_maps;
2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 j < nr_ids;) {
2454 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 map = xmap_dereference(dev_maps->attr_map[tci]);
2457 if (map && map != new_map)
2458 kfree_rcu(map, rcu);
2462 kfree_rcu(dev_maps, rcu);
2464 out_no_old_maps:
2465 dev_maps = new_dev_maps;
2466 active = true;
2468 out_no_new_maps:
2469 if (!is_rxqs_map) {
2470 /* update Tx queue numa node */
2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 (numa_node_id >= 0) ?
2473 numa_node_id : NUMA_NO_NODE);
2476 if (!dev_maps)
2477 goto out_no_maps;
2479 /* removes tx-queue from unused CPUs/rx-queues */
2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 j < nr_ids;) {
2482 for (i = tc, tci = j * num_tc; i--; tci++)
2483 active |= remove_xps_queue(dev_maps, tci, index);
2484 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 !netif_attr_test_online(j, online_mask, nr_ids))
2486 active |= remove_xps_queue(dev_maps, tci, index);
2487 for (i = num_tc - tc, tci++; --i; tci++)
2488 active |= remove_xps_queue(dev_maps, tci, index);
2491 /* free map if not active */
2492 if (!active)
2493 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2495 out_no_maps:
2496 mutex_unlock(&xps_map_mutex);
2498 return 0;
2499 error:
2500 /* remove any maps that we added */
2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 j < nr_ids;) {
2503 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505 map = dev_maps ?
2506 xmap_dereference(dev_maps->attr_map[tci]) :
2507 NULL;
2508 if (new_map && new_map != map)
2509 kfree(new_map);
2513 mutex_unlock(&xps_map_mutex);
2515 kfree(new_dev_maps);
2516 return -ENOMEM;
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 u16 index)
2523 int ret;
2525 cpus_read_lock();
2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 cpus_read_unlock();
2529 return ret;
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2538 /* Unbind any subordinate channels */
2539 while (txq-- != &dev->_tx[0]) {
2540 if (txq->sb_dev)
2541 netdev_unbind_sb_channel(dev, txq->sb_dev);
2545 void netdev_reset_tc(struct net_device *dev)
2547 #ifdef CONFIG_XPS
2548 netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550 netdev_unbind_all_sb_channels(dev);
2552 /* Reset TC configuration of device */
2553 dev->num_tc = 0;
2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2557 EXPORT_SYMBOL(netdev_reset_tc);
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2561 if (tc >= dev->num_tc)
2562 return -EINVAL;
2564 #ifdef CONFIG_XPS
2565 netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567 dev->tc_to_txq[tc].count = count;
2568 dev->tc_to_txq[tc].offset = offset;
2569 return 0;
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2575 if (num_tc > TC_MAX_QUEUE)
2576 return -EINVAL;
2578 #ifdef CONFIG_XPS
2579 netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581 netdev_unbind_all_sb_channels(dev);
2583 dev->num_tc = num_tc;
2584 return 0;
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589 struct net_device *sb_dev)
2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2593 #ifdef CONFIG_XPS
2594 netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2599 while (txq-- != &dev->_tx[0]) {
2600 if (txq->sb_dev == sb_dev)
2601 txq->sb_dev = NULL;
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 struct net_device *sb_dev,
2608 u8 tc, u16 count, u16 offset)
2610 /* Make certain the sb_dev and dev are already configured */
2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 return -EINVAL;
2614 /* We cannot hand out queues we don't have */
2615 if ((offset + count) > dev->real_num_tx_queues)
2616 return -EINVAL;
2618 /* Record the mapping */
2619 sb_dev->tc_to_txq[tc].count = count;
2620 sb_dev->tc_to_txq[tc].offset = offset;
2622 /* Provide a way for Tx queue to find the tc_to_txq map or
2623 * XPS map for itself.
2625 while (count--)
2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2628 return 0;
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2634 /* Do not use a multiqueue device to represent a subordinate channel */
2635 if (netif_is_multiqueue(dev))
2636 return -ENODEV;
2638 /* We allow channels 1 - 32767 to be used for subordinate channels.
2639 * Channel 0 is meant to be "native" mode and used only to represent
2640 * the main root device. We allow writing 0 to reset the device back
2641 * to normal mode after being used as a subordinate channel.
2643 if (channel > S16_MAX)
2644 return -EINVAL;
2646 dev->num_tc = -channel;
2648 return 0;
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2658 bool disabling;
2659 int rc;
2661 disabling = txq < dev->real_num_tx_queues;
2663 if (txq < 1 || txq > dev->num_tx_queues)
2664 return -EINVAL;
2666 if (dev->reg_state == NETREG_REGISTERED ||
2667 dev->reg_state == NETREG_UNREGISTERING) {
2668 ASSERT_RTNL();
2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 txq);
2672 if (rc)
2673 return rc;
2675 if (dev->num_tc)
2676 netif_setup_tc(dev, txq);
2678 dev->real_num_tx_queues = txq;
2680 if (disabling) {
2681 synchronize_net();
2682 qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684 netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2687 } else {
2688 dev->real_num_tx_queues = txq;
2691 return 0;
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2695 #ifdef CONFIG_SYSFS
2697 * netif_set_real_num_rx_queues - set actual number of RX queues used
2698 * @dev: Network device
2699 * @rxq: Actual number of RX queues
2701 * This must be called either with the rtnl_lock held or before
2702 * registration of the net device. Returns 0 on success, or a
2703 * negative error code. If called before registration, it always
2704 * succeeds.
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2708 int rc;
2710 if (rxq < 1 || rxq > dev->num_rx_queues)
2711 return -EINVAL;
2713 if (dev->reg_state == NETREG_REGISTERED) {
2714 ASSERT_RTNL();
2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 rxq);
2718 if (rc)
2719 return rc;
2722 dev->real_num_rx_queues = rxq;
2723 return 0;
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2729 * netif_get_num_default_rss_queues - default number of RSS queues
2731 * This routine should set an upper limit on the number of RSS queues
2732 * used by default by multiqueue devices.
2734 int netif_get_num_default_rss_queues(void)
2736 return is_kdump_kernel() ?
2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2741 static void __netif_reschedule(struct Qdisc *q)
2743 struct softnet_data *sd;
2744 unsigned long flags;
2746 local_irq_save(flags);
2747 sd = this_cpu_ptr(&softnet_data);
2748 q->next_sched = NULL;
2749 *sd->output_queue_tailp = q;
2750 sd->output_queue_tailp = &q->next_sched;
2751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 local_irq_restore(flags);
2755 void __netif_schedule(struct Qdisc *q)
2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 __netif_reschedule(q);
2760 EXPORT_SYMBOL(__netif_schedule);
2762 struct dev_kfree_skb_cb {
2763 enum skb_free_reason reason;
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2768 return (struct dev_kfree_skb_cb *)skb->cb;
2771 void netif_schedule_queue(struct netdev_queue *txq)
2773 rcu_read_lock();
2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 struct Qdisc *q = rcu_dereference(txq->qdisc);
2777 __netif_schedule(q);
2779 rcu_read_unlock();
2781 EXPORT_SYMBOL(netif_schedule_queue);
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 struct Qdisc *q;
2788 rcu_read_lock();
2789 q = rcu_dereference(dev_queue->qdisc);
2790 __netif_schedule(q);
2791 rcu_read_unlock();
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2798 unsigned long flags;
2800 if (unlikely(!skb))
2801 return;
2803 if (likely(refcount_read(&skb->users) == 1)) {
2804 smp_rmb();
2805 refcount_set(&skb->users, 0);
2806 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2807 return;
2809 get_kfree_skb_cb(skb)->reason = reason;
2810 local_irq_save(flags);
2811 skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 __this_cpu_write(softnet_data.completion_queue, skb);
2813 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 local_irq_restore(flags);
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2820 if (in_irq() || irqs_disabled())
2821 __dev_kfree_skb_irq(skb, reason);
2822 else
2823 dev_kfree_skb(skb);
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2829 * netif_device_detach - mark device as removed
2830 * @dev: network device
2832 * Mark device as removed from system and therefore no longer available.
2834 void netif_device_detach(struct net_device *dev)
2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 netif_running(dev)) {
2838 netif_tx_stop_all_queues(dev);
2841 EXPORT_SYMBOL(netif_device_detach);
2844 * netif_device_attach - mark device as attached
2845 * @dev: network device
2847 * Mark device as attached from system and restart if needed.
2849 void netif_device_attach(struct net_device *dev)
2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 netif_running(dev)) {
2853 netif_tx_wake_all_queues(dev);
2854 __netdev_watchdog_up(dev);
2857 EXPORT_SYMBOL(netif_device_attach);
2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861 * to be used as a distribution range.
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864 const struct net_device *sb_dev,
2865 struct sk_buff *skb)
2867 u32 hash;
2868 u16 qoffset = 0;
2869 u16 qcount = dev->real_num_tx_queues;
2871 if (dev->num_tc) {
2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2874 qoffset = sb_dev->tc_to_txq[tc].offset;
2875 qcount = sb_dev->tc_to_txq[tc].count;
2878 if (skb_rx_queue_recorded(skb)) {
2879 hash = skb_get_rx_queue(skb);
2880 while (unlikely(hash >= qcount))
2881 hash -= qcount;
2882 return hash + qoffset;
2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2890 static const netdev_features_t null_features;
2891 struct net_device *dev = skb->dev;
2892 const char *name = "";
2894 if (!net_ratelimit())
2895 return;
2897 if (dev) {
2898 if (dev->dev.parent)
2899 name = dev_driver_string(dev->dev.parent);
2900 else
2901 name = netdev_name(dev);
2903 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904 "gso_type=%d ip_summed=%d\n",
2905 name, dev ? &dev->features : &null_features,
2906 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2907 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2908 skb_shinfo(skb)->gso_type, skb->ip_summed);
2912 * Invalidate hardware checksum when packet is to be mangled, and
2913 * complete checksum manually on outgoing path.
2915 int skb_checksum_help(struct sk_buff *skb)
2917 __wsum csum;
2918 int ret = 0, offset;
2920 if (skb->ip_summed == CHECKSUM_COMPLETE)
2921 goto out_set_summed;
2923 if (unlikely(skb_shinfo(skb)->gso_size)) {
2924 skb_warn_bad_offload(skb);
2925 return -EINVAL;
2928 /* Before computing a checksum, we should make sure no frag could
2929 * be modified by an external entity : checksum could be wrong.
2931 if (skb_has_shared_frag(skb)) {
2932 ret = __skb_linearize(skb);
2933 if (ret)
2934 goto out;
2937 offset = skb_checksum_start_offset(skb);
2938 BUG_ON(offset >= skb_headlen(skb));
2939 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2941 offset += skb->csum_offset;
2942 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2944 if (skb_cloned(skb) &&
2945 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2946 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947 if (ret)
2948 goto out;
2951 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2952 out_set_summed:
2953 skb->ip_summed = CHECKSUM_NONE;
2954 out:
2955 return ret;
2957 EXPORT_SYMBOL(skb_checksum_help);
2959 int skb_crc32c_csum_help(struct sk_buff *skb)
2961 __le32 crc32c_csum;
2962 int ret = 0, offset, start;
2964 if (skb->ip_summed != CHECKSUM_PARTIAL)
2965 goto out;
2967 if (unlikely(skb_is_gso(skb)))
2968 goto out;
2970 /* Before computing a checksum, we should make sure no frag could
2971 * be modified by an external entity : checksum could be wrong.
2973 if (unlikely(skb_has_shared_frag(skb))) {
2974 ret = __skb_linearize(skb);
2975 if (ret)
2976 goto out;
2978 start = skb_checksum_start_offset(skb);
2979 offset = start + offsetof(struct sctphdr, checksum);
2980 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2981 ret = -EINVAL;
2982 goto out;
2984 if (skb_cloned(skb) &&
2985 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2986 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2987 if (ret)
2988 goto out;
2990 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2991 skb->len - start, ~(__u32)0,
2992 crc32c_csum_stub));
2993 *(__le32 *)(skb->data + offset) = crc32c_csum;
2994 skb->ip_summed = CHECKSUM_NONE;
2995 skb->csum_not_inet = 0;
2996 out:
2997 return ret;
3000 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3002 __be16 type = skb->protocol;
3004 /* Tunnel gso handlers can set protocol to ethernet. */
3005 if (type == htons(ETH_P_TEB)) {
3006 struct ethhdr *eth;
3008 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009 return 0;
3011 eth = (struct ethhdr *)skb->data;
3012 type = eth->h_proto;
3015 return __vlan_get_protocol(skb, type, depth);
3019 * skb_mac_gso_segment - mac layer segmentation handler.
3020 * @skb: buffer to segment
3021 * @features: features for the output path (see dev->features)
3023 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3024 netdev_features_t features)
3026 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3027 struct packet_offload *ptype;
3028 int vlan_depth = skb->mac_len;
3029 __be16 type = skb_network_protocol(skb, &vlan_depth);
3031 if (unlikely(!type))
3032 return ERR_PTR(-EINVAL);
3034 __skb_pull(skb, vlan_depth);
3036 rcu_read_lock();
3037 list_for_each_entry_rcu(ptype, &offload_base, list) {
3038 if (ptype->type == type && ptype->callbacks.gso_segment) {
3039 segs = ptype->callbacks.gso_segment(skb, features);
3040 break;
3043 rcu_read_unlock();
3045 __skb_push(skb, skb->data - skb_mac_header(skb));
3047 return segs;
3049 EXPORT_SYMBOL(skb_mac_gso_segment);
3052 /* openvswitch calls this on rx path, so we need a different check.
3054 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3056 if (tx_path)
3057 return skb->ip_summed != CHECKSUM_PARTIAL &&
3058 skb->ip_summed != CHECKSUM_UNNECESSARY;
3060 return skb->ip_summed == CHECKSUM_NONE;
3064 * __skb_gso_segment - Perform segmentation on skb.
3065 * @skb: buffer to segment
3066 * @features: features for the output path (see dev->features)
3067 * @tx_path: whether it is called in TX path
3069 * This function segments the given skb and returns a list of segments.
3071 * It may return NULL if the skb requires no segmentation. This is
3072 * only possible when GSO is used for verifying header integrity.
3074 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3076 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3077 netdev_features_t features, bool tx_path)
3079 struct sk_buff *segs;
3081 if (unlikely(skb_needs_check(skb, tx_path))) {
3082 int err;
3084 /* We're going to init ->check field in TCP or UDP header */
3085 err = skb_cow_head(skb, 0);
3086 if (err < 0)
3087 return ERR_PTR(err);
3090 /* Only report GSO partial support if it will enable us to
3091 * support segmentation on this frame without needing additional
3092 * work.
3094 if (features & NETIF_F_GSO_PARTIAL) {
3095 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3096 struct net_device *dev = skb->dev;
3098 partial_features |= dev->features & dev->gso_partial_features;
3099 if (!skb_gso_ok(skb, features | partial_features))
3100 features &= ~NETIF_F_GSO_PARTIAL;
3103 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3104 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3106 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3107 SKB_GSO_CB(skb)->encap_level = 0;
3109 skb_reset_mac_header(skb);
3110 skb_reset_mac_len(skb);
3112 segs = skb_mac_gso_segment(skb, features);
3114 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3115 skb_warn_bad_offload(skb);
3117 return segs;
3119 EXPORT_SYMBOL(__skb_gso_segment);
3121 /* Take action when hardware reception checksum errors are detected. */
3122 #ifdef CONFIG_BUG
3123 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3125 if (net_ratelimit()) {
3126 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3127 if (dev)
3128 pr_err("dev features: %pNF\n", &dev->features);
3129 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130 skb->len, skb->data_len, skb->pkt_type,
3131 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3132 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3133 skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3134 dump_stack();
3137 EXPORT_SYMBOL(netdev_rx_csum_fault);
3138 #endif
3140 /* XXX: check that highmem exists at all on the given machine. */
3141 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3143 #ifdef CONFIG_HIGHMEM
3144 int i;
3146 if (!(dev->features & NETIF_F_HIGHDMA)) {
3147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3148 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3150 if (PageHighMem(skb_frag_page(frag)))
3151 return 1;
3154 #endif
3155 return 0;
3158 /* If MPLS offload request, verify we are testing hardware MPLS features
3159 * instead of standard features for the netdev.
3161 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 netdev_features_t features,
3164 __be16 type)
3166 if (eth_p_mpls(type))
3167 features &= skb->dev->mpls_features;
3169 return features;
3171 #else
3172 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3173 netdev_features_t features,
3174 __be16 type)
3176 return features;
3178 #endif
3180 static netdev_features_t harmonize_features(struct sk_buff *skb,
3181 netdev_features_t features)
3183 int tmp;
3184 __be16 type;
3186 type = skb_network_protocol(skb, &tmp);
3187 features = net_mpls_features(skb, features, type);
3189 if (skb->ip_summed != CHECKSUM_NONE &&
3190 !can_checksum_protocol(features, type)) {
3191 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3193 if (illegal_highdma(skb->dev, skb))
3194 features &= ~NETIF_F_SG;
3196 return features;
3199 netdev_features_t passthru_features_check(struct sk_buff *skb,
3200 struct net_device *dev,
3201 netdev_features_t features)
3203 return features;
3205 EXPORT_SYMBOL(passthru_features_check);
3207 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3208 struct net_device *dev,
3209 netdev_features_t features)
3211 return vlan_features_check(skb, features);
3214 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3215 struct net_device *dev,
3216 netdev_features_t features)
3218 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3220 if (gso_segs > dev->gso_max_segs)
3221 return features & ~NETIF_F_GSO_MASK;
3223 /* Support for GSO partial features requires software
3224 * intervention before we can actually process the packets
3225 * so we need to strip support for any partial features now
3226 * and we can pull them back in after we have partially
3227 * segmented the frame.
3229 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3230 features &= ~dev->gso_partial_features;
3232 /* Make sure to clear the IPv4 ID mangling feature if the
3233 * IPv4 header has the potential to be fragmented.
3235 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3236 struct iphdr *iph = skb->encapsulation ?
3237 inner_ip_hdr(skb) : ip_hdr(skb);
3239 if (!(iph->frag_off & htons(IP_DF)))
3240 features &= ~NETIF_F_TSO_MANGLEID;
3243 return features;
3246 netdev_features_t netif_skb_features(struct sk_buff *skb)
3248 struct net_device *dev = skb->dev;
3249 netdev_features_t features = dev->features;
3251 if (skb_is_gso(skb))
3252 features = gso_features_check(skb, dev, features);
3254 /* If encapsulation offload request, verify we are testing
3255 * hardware encapsulation features instead of standard
3256 * features for the netdev
3258 if (skb->encapsulation)
3259 features &= dev->hw_enc_features;
3261 if (skb_vlan_tagged(skb))
3262 features = netdev_intersect_features(features,
3263 dev->vlan_features |
3264 NETIF_F_HW_VLAN_CTAG_TX |
3265 NETIF_F_HW_VLAN_STAG_TX);
3267 if (dev->netdev_ops->ndo_features_check)
3268 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3269 features);
3270 else
3271 features &= dflt_features_check(skb, dev, features);
3273 return harmonize_features(skb, features);
3275 EXPORT_SYMBOL(netif_skb_features);
3277 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3278 struct netdev_queue *txq, bool more)
3280 unsigned int len;
3281 int rc;
3283 if (dev_nit_active(dev))
3284 dev_queue_xmit_nit(skb, dev);
3286 len = skb->len;
3287 trace_net_dev_start_xmit(skb, dev);
3288 rc = netdev_start_xmit(skb, dev, txq, more);
3289 trace_net_dev_xmit(skb, rc, dev, len);
3291 return rc;
3294 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3295 struct netdev_queue *txq, int *ret)
3297 struct sk_buff *skb = first;
3298 int rc = NETDEV_TX_OK;
3300 while (skb) {
3301 struct sk_buff *next = skb->next;
3303 skb_mark_not_on_list(skb);
3304 rc = xmit_one(skb, dev, txq, next != NULL);
3305 if (unlikely(!dev_xmit_complete(rc))) {
3306 skb->next = next;
3307 goto out;
3310 skb = next;
3311 if (netif_tx_queue_stopped(txq) && skb) {
3312 rc = NETDEV_TX_BUSY;
3313 break;
3317 out:
3318 *ret = rc;
3319 return skb;
3322 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3323 netdev_features_t features)
3325 if (skb_vlan_tag_present(skb) &&
3326 !vlan_hw_offload_capable(features, skb->vlan_proto))
3327 skb = __vlan_hwaccel_push_inside(skb);
3328 return skb;
3331 int skb_csum_hwoffload_help(struct sk_buff *skb,
3332 const netdev_features_t features)
3334 if (unlikely(skb->csum_not_inet))
3335 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3336 skb_crc32c_csum_help(skb);
3338 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3340 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3342 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3344 netdev_features_t features;
3346 features = netif_skb_features(skb);
3347 skb = validate_xmit_vlan(skb, features);
3348 if (unlikely(!skb))
3349 goto out_null;
3351 skb = sk_validate_xmit_skb(skb, dev);
3352 if (unlikely(!skb))
3353 goto out_null;
3355 if (netif_needs_gso(skb, features)) {
3356 struct sk_buff *segs;
3358 segs = skb_gso_segment(skb, features);
3359 if (IS_ERR(segs)) {
3360 goto out_kfree_skb;
3361 } else if (segs) {
3362 consume_skb(skb);
3363 skb = segs;
3365 } else {
3366 if (skb_needs_linearize(skb, features) &&
3367 __skb_linearize(skb))
3368 goto out_kfree_skb;
3370 /* If packet is not checksummed and device does not
3371 * support checksumming for this protocol, complete
3372 * checksumming here.
3374 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3375 if (skb->encapsulation)
3376 skb_set_inner_transport_header(skb,
3377 skb_checksum_start_offset(skb));
3378 else
3379 skb_set_transport_header(skb,
3380 skb_checksum_start_offset(skb));
3381 if (skb_csum_hwoffload_help(skb, features))
3382 goto out_kfree_skb;
3386 skb = validate_xmit_xfrm(skb, features, again);
3388 return skb;
3390 out_kfree_skb:
3391 kfree_skb(skb);
3392 out_null:
3393 atomic_long_inc(&dev->tx_dropped);
3394 return NULL;
3397 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3399 struct sk_buff *next, *head = NULL, *tail;
3401 for (; skb != NULL; skb = next) {
3402 next = skb->next;
3403 skb_mark_not_on_list(skb);
3405 /* in case skb wont be segmented, point to itself */
3406 skb->prev = skb;
3408 skb = validate_xmit_skb(skb, dev, again);
3409 if (!skb)
3410 continue;
3412 if (!head)
3413 head = skb;
3414 else
3415 tail->next = skb;
3416 /* If skb was segmented, skb->prev points to
3417 * the last segment. If not, it still contains skb.
3419 tail = skb->prev;
3421 return head;
3423 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3425 static void qdisc_pkt_len_init(struct sk_buff *skb)
3427 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3429 qdisc_skb_cb(skb)->pkt_len = skb->len;
3431 /* To get more precise estimation of bytes sent on wire,
3432 * we add to pkt_len the headers size of all segments
3434 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3435 unsigned int hdr_len;
3436 u16 gso_segs = shinfo->gso_segs;
3438 /* mac layer + network layer */
3439 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3441 /* + transport layer */
3442 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3443 const struct tcphdr *th;
3444 struct tcphdr _tcphdr;
3446 th = skb_header_pointer(skb, skb_transport_offset(skb),
3447 sizeof(_tcphdr), &_tcphdr);
3448 if (likely(th))
3449 hdr_len += __tcp_hdrlen(th);
3450 } else {
3451 struct udphdr _udphdr;
3453 if (skb_header_pointer(skb, skb_transport_offset(skb),
3454 sizeof(_udphdr), &_udphdr))
3455 hdr_len += sizeof(struct udphdr);
3458 if (shinfo->gso_type & SKB_GSO_DODGY)
3459 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3460 shinfo->gso_size);
3462 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3466 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3467 struct net_device *dev,
3468 struct netdev_queue *txq)
3470 spinlock_t *root_lock = qdisc_lock(q);
3471 struct sk_buff *to_free = NULL;
3472 bool contended;
3473 int rc;
3475 qdisc_calculate_pkt_len(skb, q);
3477 if (q->flags & TCQ_F_NOLOCK) {
3478 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479 __qdisc_drop(skb, &to_free);
3480 rc = NET_XMIT_DROP;
3481 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3482 qdisc_run_begin(q)) {
3483 qdisc_bstats_cpu_update(q, skb);
3485 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3486 __qdisc_run(q);
3488 qdisc_run_end(q);
3489 rc = NET_XMIT_SUCCESS;
3490 } else {
3491 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3492 qdisc_run(q);
3495 if (unlikely(to_free))
3496 kfree_skb_list(to_free);
3497 return rc;
3501 * Heuristic to force contended enqueues to serialize on a
3502 * separate lock before trying to get qdisc main lock.
3503 * This permits qdisc->running owner to get the lock more
3504 * often and dequeue packets faster.
3506 contended = qdisc_is_running(q);
3507 if (unlikely(contended))
3508 spin_lock(&q->busylock);
3510 spin_lock(root_lock);
3511 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3512 __qdisc_drop(skb, &to_free);
3513 rc = NET_XMIT_DROP;
3514 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3515 qdisc_run_begin(q)) {
3517 * This is a work-conserving queue; there are no old skbs
3518 * waiting to be sent out; and the qdisc is not running -
3519 * xmit the skb directly.
3522 qdisc_bstats_update(q, skb);
3524 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3525 if (unlikely(contended)) {
3526 spin_unlock(&q->busylock);
3527 contended = false;
3529 __qdisc_run(q);
3532 qdisc_run_end(q);
3533 rc = NET_XMIT_SUCCESS;
3534 } else {
3535 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3536 if (qdisc_run_begin(q)) {
3537 if (unlikely(contended)) {
3538 spin_unlock(&q->busylock);
3539 contended = false;
3541 __qdisc_run(q);
3542 qdisc_run_end(q);
3545 spin_unlock(root_lock);
3546 if (unlikely(to_free))
3547 kfree_skb_list(to_free);
3548 if (unlikely(contended))
3549 spin_unlock(&q->busylock);
3550 return rc;
3553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3554 static void skb_update_prio(struct sk_buff *skb)
3556 const struct netprio_map *map;
3557 const struct sock *sk;
3558 unsigned int prioidx;
3560 if (skb->priority)
3561 return;
3562 map = rcu_dereference_bh(skb->dev->priomap);
3563 if (!map)
3564 return;
3565 sk = skb_to_full_sk(skb);
3566 if (!sk)
3567 return;
3569 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3571 if (prioidx < map->priomap_len)
3572 skb->priority = map->priomap[prioidx];
3574 #else
3575 #define skb_update_prio(skb)
3576 #endif
3579 * dev_loopback_xmit - loop back @skb
3580 * @net: network namespace this loopback is happening in
3581 * @sk: sk needed to be a netfilter okfn
3582 * @skb: buffer to transmit
3584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3586 skb_reset_mac_header(skb);
3587 __skb_pull(skb, skb_network_offset(skb));
3588 skb->pkt_type = PACKET_LOOPBACK;
3589 skb->ip_summed = CHECKSUM_UNNECESSARY;
3590 WARN_ON(!skb_dst(skb));
3591 skb_dst_force(skb);
3592 netif_rx_ni(skb);
3593 return 0;
3595 EXPORT_SYMBOL(dev_loopback_xmit);
3597 #ifdef CONFIG_NET_EGRESS
3598 static struct sk_buff *
3599 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3601 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3602 struct tcf_result cl_res;
3604 if (!miniq)
3605 return skb;
3607 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3608 mini_qdisc_bstats_cpu_update(miniq, skb);
3610 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3611 case TC_ACT_OK:
3612 case TC_ACT_RECLASSIFY:
3613 skb->tc_index = TC_H_MIN(cl_res.classid);
3614 break;
3615 case TC_ACT_SHOT:
3616 mini_qdisc_qstats_cpu_drop(miniq);
3617 *ret = NET_XMIT_DROP;
3618 kfree_skb(skb);
3619 return NULL;
3620 case TC_ACT_STOLEN:
3621 case TC_ACT_QUEUED:
3622 case TC_ACT_TRAP:
3623 *ret = NET_XMIT_SUCCESS;
3624 consume_skb(skb);
3625 return NULL;
3626 case TC_ACT_REDIRECT:
3627 /* No need to push/pop skb's mac_header here on egress! */
3628 skb_do_redirect(skb);
3629 *ret = NET_XMIT_SUCCESS;
3630 return NULL;
3631 default:
3632 break;
3635 return skb;
3637 #endif /* CONFIG_NET_EGRESS */
3639 #ifdef CONFIG_XPS
3640 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3641 struct xps_dev_maps *dev_maps, unsigned int tci)
3643 struct xps_map *map;
3644 int queue_index = -1;
3646 if (dev->num_tc) {
3647 tci *= dev->num_tc;
3648 tci += netdev_get_prio_tc_map(dev, skb->priority);
3651 map = rcu_dereference(dev_maps->attr_map[tci]);
3652 if (map) {
3653 if (map->len == 1)
3654 queue_index = map->queues[0];
3655 else
3656 queue_index = map->queues[reciprocal_scale(
3657 skb_get_hash(skb), map->len)];
3658 if (unlikely(queue_index >= dev->real_num_tx_queues))
3659 queue_index = -1;
3661 return queue_index;
3663 #endif
3665 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3666 struct sk_buff *skb)
3668 #ifdef CONFIG_XPS
3669 struct xps_dev_maps *dev_maps;
3670 struct sock *sk = skb->sk;
3671 int queue_index = -1;
3673 if (!static_key_false(&xps_needed))
3674 return -1;
3676 rcu_read_lock();
3677 if (!static_key_false(&xps_rxqs_needed))
3678 goto get_cpus_map;
3680 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3681 if (dev_maps) {
3682 int tci = sk_rx_queue_get(sk);
3684 if (tci >= 0 && tci < dev->num_rx_queues)
3685 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 tci);
3689 get_cpus_map:
3690 if (queue_index < 0) {
3691 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3692 if (dev_maps) {
3693 unsigned int tci = skb->sender_cpu - 1;
3695 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3696 tci);
3699 rcu_read_unlock();
3701 return queue_index;
3702 #else
3703 return -1;
3704 #endif
3707 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3708 struct net_device *sb_dev)
3710 return 0;
3712 EXPORT_SYMBOL(dev_pick_tx_zero);
3714 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3715 struct net_device *sb_dev)
3717 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3721 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722 struct net_device *sb_dev)
3724 struct sock *sk = skb->sk;
3725 int queue_index = sk_tx_queue_get(sk);
3727 sb_dev = sb_dev ? : dev;
3729 if (queue_index < 0 || skb->ooo_okay ||
3730 queue_index >= dev->real_num_tx_queues) {
3731 int new_index = get_xps_queue(dev, sb_dev, skb);
3733 if (new_index < 0)
3734 new_index = skb_tx_hash(dev, sb_dev, skb);
3736 if (queue_index != new_index && sk &&
3737 sk_fullsock(sk) &&
3738 rcu_access_pointer(sk->sk_dst_cache))
3739 sk_tx_queue_set(sk, new_index);
3741 queue_index = new_index;
3744 return queue_index;
3746 EXPORT_SYMBOL(netdev_pick_tx);
3748 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3749 struct sk_buff *skb,
3750 struct net_device *sb_dev)
3752 int queue_index = 0;
3754 #ifdef CONFIG_XPS
3755 u32 sender_cpu = skb->sender_cpu - 1;
3757 if (sender_cpu >= (u32)NR_CPUS)
3758 skb->sender_cpu = raw_smp_processor_id() + 1;
3759 #endif
3761 if (dev->real_num_tx_queues != 1) {
3762 const struct net_device_ops *ops = dev->netdev_ops;
3764 if (ops->ndo_select_queue)
3765 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3766 else
3767 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3769 queue_index = netdev_cap_txqueue(dev, queue_index);
3772 skb_set_queue_mapping(skb, queue_index);
3773 return netdev_get_tx_queue(dev, queue_index);
3777 * __dev_queue_xmit - transmit a buffer
3778 * @skb: buffer to transmit
3779 * @sb_dev: suboordinate device used for L2 forwarding offload
3781 * Queue a buffer for transmission to a network device. The caller must
3782 * have set the device and priority and built the buffer before calling
3783 * this function. The function can be called from an interrupt.
3785 * A negative errno code is returned on a failure. A success does not
3786 * guarantee the frame will be transmitted as it may be dropped due
3787 * to congestion or traffic shaping.
3789 * -----------------------------------------------------------------------------------
3790 * I notice this method can also return errors from the queue disciplines,
3791 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3792 * be positive.
3794 * Regardless of the return value, the skb is consumed, so it is currently
3795 * difficult to retry a send to this method. (You can bump the ref count
3796 * before sending to hold a reference for retry if you are careful.)
3798 * When calling this method, interrupts MUST be enabled. This is because
3799 * the BH enable code must have IRQs enabled so that it will not deadlock.
3800 * --BLG
3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3804 struct net_device *dev = skb->dev;
3805 struct netdev_queue *txq;
3806 struct Qdisc *q;
3807 int rc = -ENOMEM;
3808 bool again = false;
3810 skb_reset_mac_header(skb);
3812 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3815 /* Disable soft irqs for various locks below. Also
3816 * stops preemption for RCU.
3818 rcu_read_lock_bh();
3820 skb_update_prio(skb);
3822 qdisc_pkt_len_init(skb);
3823 #ifdef CONFIG_NET_CLS_ACT
3824 skb->tc_at_ingress = 0;
3825 # ifdef CONFIG_NET_EGRESS
3826 if (static_branch_unlikely(&egress_needed_key)) {
3827 skb = sch_handle_egress(skb, &rc, dev);
3828 if (!skb)
3829 goto out;
3831 # endif
3832 #endif
3833 /* If device/qdisc don't need skb->dst, release it right now while
3834 * its hot in this cpu cache.
3836 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 skb_dst_drop(skb);
3838 else
3839 skb_dst_force(skb);
3841 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3842 q = rcu_dereference_bh(txq->qdisc);
3844 trace_net_dev_queue(skb);
3845 if (q->enqueue) {
3846 rc = __dev_xmit_skb(skb, q, dev, txq);
3847 goto out;
3850 /* The device has no queue. Common case for software devices:
3851 * loopback, all the sorts of tunnels...
3853 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3855 * counters.)
3856 * However, it is possible, that they rely on protection
3857 * made by us here.
3859 * Check this and shot the lock. It is not prone from deadlocks.
3860 *Either shot noqueue qdisc, it is even simpler 8)
3862 if (dev->flags & IFF_UP) {
3863 int cpu = smp_processor_id(); /* ok because BHs are off */
3865 if (txq->xmit_lock_owner != cpu) {
3866 if (dev_xmit_recursion())
3867 goto recursion_alert;
3869 skb = validate_xmit_skb(skb, dev, &again);
3870 if (!skb)
3871 goto out;
3873 HARD_TX_LOCK(dev, txq, cpu);
3875 if (!netif_xmit_stopped(txq)) {
3876 dev_xmit_recursion_inc();
3877 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3878 dev_xmit_recursion_dec();
3879 if (dev_xmit_complete(rc)) {
3880 HARD_TX_UNLOCK(dev, txq);
3881 goto out;
3884 HARD_TX_UNLOCK(dev, txq);
3885 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3886 dev->name);
3887 } else {
3888 /* Recursion is detected! It is possible,
3889 * unfortunately
3891 recursion_alert:
3892 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3893 dev->name);
3897 rc = -ENETDOWN;
3898 rcu_read_unlock_bh();
3900 atomic_long_inc(&dev->tx_dropped);
3901 kfree_skb_list(skb);
3902 return rc;
3903 out:
3904 rcu_read_unlock_bh();
3905 return rc;
3908 int dev_queue_xmit(struct sk_buff *skb)
3910 return __dev_queue_xmit(skb, NULL);
3912 EXPORT_SYMBOL(dev_queue_xmit);
3914 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3916 return __dev_queue_xmit(skb, sb_dev);
3918 EXPORT_SYMBOL(dev_queue_xmit_accel);
3920 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3922 struct net_device *dev = skb->dev;
3923 struct sk_buff *orig_skb = skb;
3924 struct netdev_queue *txq;
3925 int ret = NETDEV_TX_BUSY;
3926 bool again = false;
3928 if (unlikely(!netif_running(dev) ||
3929 !netif_carrier_ok(dev)))
3930 goto drop;
3932 skb = validate_xmit_skb_list(skb, dev, &again);
3933 if (skb != orig_skb)
3934 goto drop;
3936 skb_set_queue_mapping(skb, queue_id);
3937 txq = skb_get_tx_queue(dev, skb);
3939 local_bh_disable();
3941 HARD_TX_LOCK(dev, txq, smp_processor_id());
3942 if (!netif_xmit_frozen_or_drv_stopped(txq))
3943 ret = netdev_start_xmit(skb, dev, txq, false);
3944 HARD_TX_UNLOCK(dev, txq);
3946 local_bh_enable();
3948 if (!dev_xmit_complete(ret))
3949 kfree_skb(skb);
3951 return ret;
3952 drop:
3953 atomic_long_inc(&dev->tx_dropped);
3954 kfree_skb_list(skb);
3955 return NET_XMIT_DROP;
3957 EXPORT_SYMBOL(dev_direct_xmit);
3959 /*************************************************************************
3960 * Receiver routines
3961 *************************************************************************/
3963 int netdev_max_backlog __read_mostly = 1000;
3964 EXPORT_SYMBOL(netdev_max_backlog);
3966 int netdev_tstamp_prequeue __read_mostly = 1;
3967 int netdev_budget __read_mostly = 300;
3968 unsigned int __read_mostly netdev_budget_usecs = 2000;
3969 int weight_p __read_mostly = 64; /* old backlog weight */
3970 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3971 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3972 int dev_rx_weight __read_mostly = 64;
3973 int dev_tx_weight __read_mostly = 64;
3975 /* Called with irq disabled */
3976 static inline void ____napi_schedule(struct softnet_data *sd,
3977 struct napi_struct *napi)
3979 list_add_tail(&napi->poll_list, &sd->poll_list);
3980 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3983 #ifdef CONFIG_RPS
3985 /* One global table that all flow-based protocols share. */
3986 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3987 EXPORT_SYMBOL(rps_sock_flow_table);
3988 u32 rps_cpu_mask __read_mostly;
3989 EXPORT_SYMBOL(rps_cpu_mask);
3991 struct static_key_false rps_needed __read_mostly;
3992 EXPORT_SYMBOL(rps_needed);
3993 struct static_key_false rfs_needed __read_mostly;
3994 EXPORT_SYMBOL(rfs_needed);
3996 static struct rps_dev_flow *
3997 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3998 struct rps_dev_flow *rflow, u16 next_cpu)
4000 if (next_cpu < nr_cpu_ids) {
4001 #ifdef CONFIG_RFS_ACCEL
4002 struct netdev_rx_queue *rxqueue;
4003 struct rps_dev_flow_table *flow_table;
4004 struct rps_dev_flow *old_rflow;
4005 u32 flow_id;
4006 u16 rxq_index;
4007 int rc;
4009 /* Should we steer this flow to a different hardware queue? */
4010 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4011 !(dev->features & NETIF_F_NTUPLE))
4012 goto out;
4013 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4014 if (rxq_index == skb_get_rx_queue(skb))
4015 goto out;
4017 rxqueue = dev->_rx + rxq_index;
4018 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019 if (!flow_table)
4020 goto out;
4021 flow_id = skb_get_hash(skb) & flow_table->mask;
4022 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4023 rxq_index, flow_id);
4024 if (rc < 0)
4025 goto out;
4026 old_rflow = rflow;
4027 rflow = &flow_table->flows[flow_id];
4028 rflow->filter = rc;
4029 if (old_rflow->filter == rflow->filter)
4030 old_rflow->filter = RPS_NO_FILTER;
4031 out:
4032 #endif
4033 rflow->last_qtail =
4034 per_cpu(softnet_data, next_cpu).input_queue_head;
4037 rflow->cpu = next_cpu;
4038 return rflow;
4042 * get_rps_cpu is called from netif_receive_skb and returns the target
4043 * CPU from the RPS map of the receiving queue for a given skb.
4044 * rcu_read_lock must be held on entry.
4046 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4047 struct rps_dev_flow **rflowp)
4049 const struct rps_sock_flow_table *sock_flow_table;
4050 struct netdev_rx_queue *rxqueue = dev->_rx;
4051 struct rps_dev_flow_table *flow_table;
4052 struct rps_map *map;
4053 int cpu = -1;
4054 u32 tcpu;
4055 u32 hash;
4057 if (skb_rx_queue_recorded(skb)) {
4058 u16 index = skb_get_rx_queue(skb);
4060 if (unlikely(index >= dev->real_num_rx_queues)) {
4061 WARN_ONCE(dev->real_num_rx_queues > 1,
4062 "%s received packet on queue %u, but number "
4063 "of RX queues is %u\n",
4064 dev->name, index, dev->real_num_rx_queues);
4065 goto done;
4067 rxqueue += index;
4070 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4072 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4073 map = rcu_dereference(rxqueue->rps_map);
4074 if (!flow_table && !map)
4075 goto done;
4077 skb_reset_network_header(skb);
4078 hash = skb_get_hash(skb);
4079 if (!hash)
4080 goto done;
4082 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4083 if (flow_table && sock_flow_table) {
4084 struct rps_dev_flow *rflow;
4085 u32 next_cpu;
4086 u32 ident;
4088 /* First check into global flow table if there is a match */
4089 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4090 if ((ident ^ hash) & ~rps_cpu_mask)
4091 goto try_rps;
4093 next_cpu = ident & rps_cpu_mask;
4095 /* OK, now we know there is a match,
4096 * we can look at the local (per receive queue) flow table
4098 rflow = &flow_table->flows[hash & flow_table->mask];
4099 tcpu = rflow->cpu;
4102 * If the desired CPU (where last recvmsg was done) is
4103 * different from current CPU (one in the rx-queue flow
4104 * table entry), switch if one of the following holds:
4105 * - Current CPU is unset (>= nr_cpu_ids).
4106 * - Current CPU is offline.
4107 * - The current CPU's queue tail has advanced beyond the
4108 * last packet that was enqueued using this table entry.
4109 * This guarantees that all previous packets for the flow
4110 * have been dequeued, thus preserving in order delivery.
4112 if (unlikely(tcpu != next_cpu) &&
4113 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4114 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4115 rflow->last_qtail)) >= 0)) {
4116 tcpu = next_cpu;
4117 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4120 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4121 *rflowp = rflow;
4122 cpu = tcpu;
4123 goto done;
4127 try_rps:
4129 if (map) {
4130 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4131 if (cpu_online(tcpu)) {
4132 cpu = tcpu;
4133 goto done;
4137 done:
4138 return cpu;
4141 #ifdef CONFIG_RFS_ACCEL
4144 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145 * @dev: Device on which the filter was set
4146 * @rxq_index: RX queue index
4147 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4150 * Drivers that implement ndo_rx_flow_steer() should periodically call
4151 * this function for each installed filter and remove the filters for
4152 * which it returns %true.
4154 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4155 u32 flow_id, u16 filter_id)
4157 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4158 struct rps_dev_flow_table *flow_table;
4159 struct rps_dev_flow *rflow;
4160 bool expire = true;
4161 unsigned int cpu;
4163 rcu_read_lock();
4164 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4165 if (flow_table && flow_id <= flow_table->mask) {
4166 rflow = &flow_table->flows[flow_id];
4167 cpu = READ_ONCE(rflow->cpu);
4168 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4169 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4170 rflow->last_qtail) <
4171 (int)(10 * flow_table->mask)))
4172 expire = false;
4174 rcu_read_unlock();
4175 return expire;
4177 EXPORT_SYMBOL(rps_may_expire_flow);
4179 #endif /* CONFIG_RFS_ACCEL */
4181 /* Called from hardirq (IPI) context */
4182 static void rps_trigger_softirq(void *data)
4184 struct softnet_data *sd = data;
4186 ____napi_schedule(sd, &sd->backlog);
4187 sd->received_rps++;
4190 #endif /* CONFIG_RPS */
4193 * Check if this softnet_data structure is another cpu one
4194 * If yes, queue it to our IPI list and return 1
4195 * If no, return 0
4197 static int rps_ipi_queued(struct softnet_data *sd)
4199 #ifdef CONFIG_RPS
4200 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4202 if (sd != mysd) {
4203 sd->rps_ipi_next = mysd->rps_ipi_list;
4204 mysd->rps_ipi_list = sd;
4206 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 return 1;
4209 #endif /* CONFIG_RPS */
4210 return 0;
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215 #endif
4217 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4219 #ifdef CONFIG_NET_FLOW_LIMIT
4220 struct sd_flow_limit *fl;
4221 struct softnet_data *sd;
4222 unsigned int old_flow, new_flow;
4224 if (qlen < (netdev_max_backlog >> 1))
4225 return false;
4227 sd = this_cpu_ptr(&softnet_data);
4229 rcu_read_lock();
4230 fl = rcu_dereference(sd->flow_limit);
4231 if (fl) {
4232 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4233 old_flow = fl->history[fl->history_head];
4234 fl->history[fl->history_head] = new_flow;
4236 fl->history_head++;
4237 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4239 if (likely(fl->buckets[old_flow]))
4240 fl->buckets[old_flow]--;
4242 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4243 fl->count++;
4244 rcu_read_unlock();
4245 return true;
4248 rcu_read_unlock();
4249 #endif
4250 return false;
4254 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255 * queue (may be a remote CPU queue).
4257 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4258 unsigned int *qtail)
4260 struct softnet_data *sd;
4261 unsigned long flags;
4262 unsigned int qlen;
4264 sd = &per_cpu(softnet_data, cpu);
4266 local_irq_save(flags);
4268 rps_lock(sd);
4269 if (!netif_running(skb->dev))
4270 goto drop;
4271 qlen = skb_queue_len(&sd->input_pkt_queue);
4272 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4273 if (qlen) {
4274 enqueue:
4275 __skb_queue_tail(&sd->input_pkt_queue, skb);
4276 input_queue_tail_incr_save(sd, qtail);
4277 rps_unlock(sd);
4278 local_irq_restore(flags);
4279 return NET_RX_SUCCESS;
4282 /* Schedule NAPI for backlog device
4283 * We can use non atomic operation since we own the queue lock
4285 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4286 if (!rps_ipi_queued(sd))
4287 ____napi_schedule(sd, &sd->backlog);
4289 goto enqueue;
4292 drop:
4293 sd->dropped++;
4294 rps_unlock(sd);
4296 local_irq_restore(flags);
4298 atomic_long_inc(&skb->dev->rx_dropped);
4299 kfree_skb(skb);
4300 return NET_RX_DROP;
4303 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4305 struct net_device *dev = skb->dev;
4306 struct netdev_rx_queue *rxqueue;
4308 rxqueue = dev->_rx;
4310 if (skb_rx_queue_recorded(skb)) {
4311 u16 index = skb_get_rx_queue(skb);
4313 if (unlikely(index >= dev->real_num_rx_queues)) {
4314 WARN_ONCE(dev->real_num_rx_queues > 1,
4315 "%s received packet on queue %u, but number "
4316 "of RX queues is %u\n",
4317 dev->name, index, dev->real_num_rx_queues);
4319 return rxqueue; /* Return first rxqueue */
4321 rxqueue += index;
4323 return rxqueue;
4326 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4327 struct xdp_buff *xdp,
4328 struct bpf_prog *xdp_prog)
4330 struct netdev_rx_queue *rxqueue;
4331 void *orig_data, *orig_data_end;
4332 u32 metalen, act = XDP_DROP;
4333 __be16 orig_eth_type;
4334 struct ethhdr *eth;
4335 bool orig_bcast;
4336 int hlen, off;
4337 u32 mac_len;
4339 /* Reinjected packets coming from act_mirred or similar should
4340 * not get XDP generic processing.
4342 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4343 return XDP_PASS;
4345 /* XDP packets must be linear and must have sufficient headroom
4346 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347 * native XDP provides, thus we need to do it here as well.
4349 if (skb_is_nonlinear(skb) ||
4350 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4351 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4352 int troom = skb->tail + skb->data_len - skb->end;
4354 /* In case we have to go down the path and also linearize,
4355 * then lets do the pskb_expand_head() work just once here.
4357 if (pskb_expand_head(skb,
4358 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4359 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4360 goto do_drop;
4361 if (skb_linearize(skb))
4362 goto do_drop;
4365 /* The XDP program wants to see the packet starting at the MAC
4366 * header.
4368 mac_len = skb->data - skb_mac_header(skb);
4369 hlen = skb_headlen(skb) + mac_len;
4370 xdp->data = skb->data - mac_len;
4371 xdp->data_meta = xdp->data;
4372 xdp->data_end = xdp->data + hlen;
4373 xdp->data_hard_start = skb->data - skb_headroom(skb);
4374 orig_data_end = xdp->data_end;
4375 orig_data = xdp->data;
4376 eth = (struct ethhdr *)xdp->data;
4377 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4378 orig_eth_type = eth->h_proto;
4380 rxqueue = netif_get_rxqueue(skb);
4381 xdp->rxq = &rxqueue->xdp_rxq;
4383 act = bpf_prog_run_xdp(xdp_prog, xdp);
4385 off = xdp->data - orig_data;
4386 if (off > 0)
4387 __skb_pull(skb, off);
4388 else if (off < 0)
4389 __skb_push(skb, -off);
4390 skb->mac_header += off;
4392 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4393 * pckt.
4395 off = orig_data_end - xdp->data_end;
4396 if (off != 0) {
4397 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4398 skb->len -= off;
4402 /* check if XDP changed eth hdr such SKB needs update */
4403 eth = (struct ethhdr *)xdp->data;
4404 if ((orig_eth_type != eth->h_proto) ||
4405 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4406 __skb_push(skb, ETH_HLEN);
4407 skb->protocol = eth_type_trans(skb, skb->dev);
4410 switch (act) {
4411 case XDP_REDIRECT:
4412 case XDP_TX:
4413 __skb_push(skb, mac_len);
4414 break;
4415 case XDP_PASS:
4416 metalen = xdp->data - xdp->data_meta;
4417 if (metalen)
4418 skb_metadata_set(skb, metalen);
4419 break;
4420 default:
4421 bpf_warn_invalid_xdp_action(act);
4422 /* fall through */
4423 case XDP_ABORTED:
4424 trace_xdp_exception(skb->dev, xdp_prog, act);
4425 /* fall through */
4426 case XDP_DROP:
4427 do_drop:
4428 kfree_skb(skb);
4429 break;
4432 return act;
4435 /* When doing generic XDP we have to bypass the qdisc layer and the
4436 * network taps in order to match in-driver-XDP behavior.
4438 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4440 struct net_device *dev = skb->dev;
4441 struct netdev_queue *txq;
4442 bool free_skb = true;
4443 int cpu, rc;
4445 txq = netdev_core_pick_tx(dev, skb, NULL);
4446 cpu = smp_processor_id();
4447 HARD_TX_LOCK(dev, txq, cpu);
4448 if (!netif_xmit_stopped(txq)) {
4449 rc = netdev_start_xmit(skb, dev, txq, 0);
4450 if (dev_xmit_complete(rc))
4451 free_skb = false;
4453 HARD_TX_UNLOCK(dev, txq);
4454 if (free_skb) {
4455 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4456 kfree_skb(skb);
4459 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4461 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4463 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4465 if (xdp_prog) {
4466 struct xdp_buff xdp;
4467 u32 act;
4468 int err;
4470 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4471 if (act != XDP_PASS) {
4472 switch (act) {
4473 case XDP_REDIRECT:
4474 err = xdp_do_generic_redirect(skb->dev, skb,
4475 &xdp, xdp_prog);
4476 if (err)
4477 goto out_redir;
4478 break;
4479 case XDP_TX:
4480 generic_xdp_tx(skb, xdp_prog);
4481 break;
4483 return XDP_DROP;
4486 return XDP_PASS;
4487 out_redir:
4488 kfree_skb(skb);
4489 return XDP_DROP;
4491 EXPORT_SYMBOL_GPL(do_xdp_generic);
4493 static int netif_rx_internal(struct sk_buff *skb)
4495 int ret;
4497 net_timestamp_check(netdev_tstamp_prequeue, skb);
4499 trace_netif_rx(skb);
4501 #ifdef CONFIG_RPS
4502 if (static_branch_unlikely(&rps_needed)) {
4503 struct rps_dev_flow voidflow, *rflow = &voidflow;
4504 int cpu;
4506 preempt_disable();
4507 rcu_read_lock();
4509 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4510 if (cpu < 0)
4511 cpu = smp_processor_id();
4513 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4515 rcu_read_unlock();
4516 preempt_enable();
4517 } else
4518 #endif
4520 unsigned int qtail;
4522 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4523 put_cpu();
4525 return ret;
4529 * netif_rx - post buffer to the network code
4530 * @skb: buffer to post
4532 * This function receives a packet from a device driver and queues it for
4533 * the upper (protocol) levels to process. It always succeeds. The buffer
4534 * may be dropped during processing for congestion control or by the
4535 * protocol layers.
4537 * return values:
4538 * NET_RX_SUCCESS (no congestion)
4539 * NET_RX_DROP (packet was dropped)
4543 int netif_rx(struct sk_buff *skb)
4545 int ret;
4547 trace_netif_rx_entry(skb);
4549 ret = netif_rx_internal(skb);
4550 trace_netif_rx_exit(ret);
4552 return ret;
4554 EXPORT_SYMBOL(netif_rx);
4556 int netif_rx_ni(struct sk_buff *skb)
4558 int err;
4560 trace_netif_rx_ni_entry(skb);
4562 preempt_disable();
4563 err = netif_rx_internal(skb);
4564 if (local_softirq_pending())
4565 do_softirq();
4566 preempt_enable();
4567 trace_netif_rx_ni_exit(err);
4569 return err;
4571 EXPORT_SYMBOL(netif_rx_ni);
4573 static __latent_entropy void net_tx_action(struct softirq_action *h)
4575 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4577 if (sd->completion_queue) {
4578 struct sk_buff *clist;
4580 local_irq_disable();
4581 clist = sd->completion_queue;
4582 sd->completion_queue = NULL;
4583 local_irq_enable();
4585 while (clist) {
4586 struct sk_buff *skb = clist;
4588 clist = clist->next;
4590 WARN_ON(refcount_read(&skb->users));
4591 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4592 trace_consume_skb(skb);
4593 else
4594 trace_kfree_skb(skb, net_tx_action);
4596 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4597 __kfree_skb(skb);
4598 else
4599 __kfree_skb_defer(skb);
4602 __kfree_skb_flush();
4605 if (sd->output_queue) {
4606 struct Qdisc *head;
4608 local_irq_disable();
4609 head = sd->output_queue;
4610 sd->output_queue = NULL;
4611 sd->output_queue_tailp = &sd->output_queue;
4612 local_irq_enable();
4614 while (head) {
4615 struct Qdisc *q = head;
4616 spinlock_t *root_lock = NULL;
4618 head = head->next_sched;
4620 if (!(q->flags & TCQ_F_NOLOCK)) {
4621 root_lock = qdisc_lock(q);
4622 spin_lock(root_lock);
4624 /* We need to make sure head->next_sched is read
4625 * before clearing __QDISC_STATE_SCHED
4627 smp_mb__before_atomic();
4628 clear_bit(__QDISC_STATE_SCHED, &q->state);
4629 qdisc_run(q);
4630 if (root_lock)
4631 spin_unlock(root_lock);
4635 xfrm_dev_backlog(sd);
4638 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4639 /* This hook is defined here for ATM LANE */
4640 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4641 unsigned char *addr) __read_mostly;
4642 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4643 #endif
4645 static inline struct sk_buff *
4646 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4647 struct net_device *orig_dev)
4649 #ifdef CONFIG_NET_CLS_ACT
4650 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4651 struct tcf_result cl_res;
4653 /* If there's at least one ingress present somewhere (so
4654 * we get here via enabled static key), remaining devices
4655 * that are not configured with an ingress qdisc will bail
4656 * out here.
4658 if (!miniq)
4659 return skb;
4661 if (*pt_prev) {
4662 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4663 *pt_prev = NULL;
4666 qdisc_skb_cb(skb)->pkt_len = skb->len;
4667 skb->tc_at_ingress = 1;
4668 mini_qdisc_bstats_cpu_update(miniq, skb);
4670 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4671 case TC_ACT_OK:
4672 case TC_ACT_RECLASSIFY:
4673 skb->tc_index = TC_H_MIN(cl_res.classid);
4674 break;
4675 case TC_ACT_SHOT:
4676 mini_qdisc_qstats_cpu_drop(miniq);
4677 kfree_skb(skb);
4678 return NULL;
4679 case TC_ACT_STOLEN:
4680 case TC_ACT_QUEUED:
4681 case TC_ACT_TRAP:
4682 consume_skb(skb);
4683 return NULL;
4684 case TC_ACT_REDIRECT:
4685 /* skb_mac_header check was done by cls/act_bpf, so
4686 * we can safely push the L2 header back before
4687 * redirecting to another netdev
4689 __skb_push(skb, skb->mac_len);
4690 skb_do_redirect(skb);
4691 return NULL;
4692 case TC_ACT_REINSERT:
4693 /* this does not scrub the packet, and updates stats on error */
4694 skb_tc_reinsert(skb, &cl_res);
4695 return NULL;
4696 default:
4697 break;
4699 #endif /* CONFIG_NET_CLS_ACT */
4700 return skb;
4704 * netdev_is_rx_handler_busy - check if receive handler is registered
4705 * @dev: device to check
4707 * Check if a receive handler is already registered for a given device.
4708 * Return true if there one.
4710 * The caller must hold the rtnl_mutex.
4712 bool netdev_is_rx_handler_busy(struct net_device *dev)
4714 ASSERT_RTNL();
4715 return dev && rtnl_dereference(dev->rx_handler);
4717 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4720 * netdev_rx_handler_register - register receive handler
4721 * @dev: device to register a handler for
4722 * @rx_handler: receive handler to register
4723 * @rx_handler_data: data pointer that is used by rx handler
4725 * Register a receive handler for a device. This handler will then be
4726 * called from __netif_receive_skb. A negative errno code is returned
4727 * on a failure.
4729 * The caller must hold the rtnl_mutex.
4731 * For a general description of rx_handler, see enum rx_handler_result.
4733 int netdev_rx_handler_register(struct net_device *dev,
4734 rx_handler_func_t *rx_handler,
4735 void *rx_handler_data)
4737 if (netdev_is_rx_handler_busy(dev))
4738 return -EBUSY;
4740 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4741 return -EINVAL;
4743 /* Note: rx_handler_data must be set before rx_handler */
4744 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4745 rcu_assign_pointer(dev->rx_handler, rx_handler);
4747 return 0;
4749 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4752 * netdev_rx_handler_unregister - unregister receive handler
4753 * @dev: device to unregister a handler from
4755 * Unregister a receive handler from a device.
4757 * The caller must hold the rtnl_mutex.
4759 void netdev_rx_handler_unregister(struct net_device *dev)
4762 ASSERT_RTNL();
4763 RCU_INIT_POINTER(dev->rx_handler, NULL);
4764 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4765 * section has a guarantee to see a non NULL rx_handler_data
4766 * as well.
4768 synchronize_net();
4769 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4771 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4774 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4775 * the special handling of PFMEMALLOC skbs.
4777 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4779 switch (skb->protocol) {
4780 case htons(ETH_P_ARP):
4781 case htons(ETH_P_IP):
4782 case htons(ETH_P_IPV6):
4783 case htons(ETH_P_8021Q):
4784 case htons(ETH_P_8021AD):
4785 return true;
4786 default:
4787 return false;
4791 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4792 int *ret, struct net_device *orig_dev)
4794 #ifdef CONFIG_NETFILTER_INGRESS
4795 if (nf_hook_ingress_active(skb)) {
4796 int ingress_retval;
4798 if (*pt_prev) {
4799 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4800 *pt_prev = NULL;
4803 rcu_read_lock();
4804 ingress_retval = nf_hook_ingress(skb);
4805 rcu_read_unlock();
4806 return ingress_retval;
4808 #endif /* CONFIG_NETFILTER_INGRESS */
4809 return 0;
4812 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4813 struct packet_type **ppt_prev)
4815 struct packet_type *ptype, *pt_prev;
4816 rx_handler_func_t *rx_handler;
4817 struct net_device *orig_dev;
4818 bool deliver_exact = false;
4819 int ret = NET_RX_DROP;
4820 __be16 type;
4822 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4824 trace_netif_receive_skb(skb);
4826 orig_dev = skb->dev;
4828 skb_reset_network_header(skb);
4829 if (!skb_transport_header_was_set(skb))
4830 skb_reset_transport_header(skb);
4831 skb_reset_mac_len(skb);
4833 pt_prev = NULL;
4835 another_round:
4836 skb->skb_iif = skb->dev->ifindex;
4838 __this_cpu_inc(softnet_data.processed);
4840 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4841 int ret2;
4843 preempt_disable();
4844 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4845 preempt_enable();
4847 if (ret2 != XDP_PASS)
4848 return NET_RX_DROP;
4849 skb_reset_mac_len(skb);
4852 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854 skb = skb_vlan_untag(skb);
4855 if (unlikely(!skb))
4856 goto out;
4859 if (skb_skip_tc_classify(skb))
4860 goto skip_classify;
4862 if (pfmemalloc)
4863 goto skip_taps;
4865 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4866 if (pt_prev)
4867 ret = deliver_skb(skb, pt_prev, orig_dev);
4868 pt_prev = ptype;
4871 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4872 if (pt_prev)
4873 ret = deliver_skb(skb, pt_prev, orig_dev);
4874 pt_prev = ptype;
4877 skip_taps:
4878 #ifdef CONFIG_NET_INGRESS
4879 if (static_branch_unlikely(&ingress_needed_key)) {
4880 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4881 if (!skb)
4882 goto out;
4884 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4885 goto out;
4887 #endif
4888 skb_reset_tc(skb);
4889 skip_classify:
4890 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4891 goto drop;
4893 if (skb_vlan_tag_present(skb)) {
4894 if (pt_prev) {
4895 ret = deliver_skb(skb, pt_prev, orig_dev);
4896 pt_prev = NULL;
4898 if (vlan_do_receive(&skb))
4899 goto another_round;
4900 else if (unlikely(!skb))
4901 goto out;
4904 rx_handler = rcu_dereference(skb->dev->rx_handler);
4905 if (rx_handler) {
4906 if (pt_prev) {
4907 ret = deliver_skb(skb, pt_prev, orig_dev);
4908 pt_prev = NULL;
4910 switch (rx_handler(&skb)) {
4911 case RX_HANDLER_CONSUMED:
4912 ret = NET_RX_SUCCESS;
4913 goto out;
4914 case RX_HANDLER_ANOTHER:
4915 goto another_round;
4916 case RX_HANDLER_EXACT:
4917 deliver_exact = true;
4918 case RX_HANDLER_PASS:
4919 break;
4920 default:
4921 BUG();
4925 if (unlikely(skb_vlan_tag_present(skb))) {
4926 check_vlan_id:
4927 if (skb_vlan_tag_get_id(skb)) {
4928 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4929 * find vlan device.
4931 skb->pkt_type = PACKET_OTHERHOST;
4932 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4933 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4934 /* Outer header is 802.1P with vlan 0, inner header is
4935 * 802.1Q or 802.1AD and vlan_do_receive() above could
4936 * not find vlan dev for vlan id 0.
4938 __vlan_hwaccel_clear_tag(skb);
4939 skb = skb_vlan_untag(skb);
4940 if (unlikely(!skb))
4941 goto out;
4942 if (vlan_do_receive(&skb))
4943 /* After stripping off 802.1P header with vlan 0
4944 * vlan dev is found for inner header.
4946 goto another_round;
4947 else if (unlikely(!skb))
4948 goto out;
4949 else
4950 /* We have stripped outer 802.1P vlan 0 header.
4951 * But could not find vlan dev.
4952 * check again for vlan id to set OTHERHOST.
4954 goto check_vlan_id;
4956 /* Note: we might in the future use prio bits
4957 * and set skb->priority like in vlan_do_receive()
4958 * For the time being, just ignore Priority Code Point
4960 __vlan_hwaccel_clear_tag(skb);
4963 type = skb->protocol;
4965 /* deliver only exact match when indicated */
4966 if (likely(!deliver_exact)) {
4967 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4968 &ptype_base[ntohs(type) &
4969 PTYPE_HASH_MASK]);
4972 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4973 &orig_dev->ptype_specific);
4975 if (unlikely(skb->dev != orig_dev)) {
4976 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4977 &skb->dev->ptype_specific);
4980 if (pt_prev) {
4981 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4982 goto drop;
4983 *ppt_prev = pt_prev;
4984 } else {
4985 drop:
4986 if (!deliver_exact)
4987 atomic_long_inc(&skb->dev->rx_dropped);
4988 else
4989 atomic_long_inc(&skb->dev->rx_nohandler);
4990 kfree_skb(skb);
4991 /* Jamal, now you will not able to escape explaining
4992 * me how you were going to use this. :-)
4994 ret = NET_RX_DROP;
4997 out:
4998 return ret;
5001 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5003 struct net_device *orig_dev = skb->dev;
5004 struct packet_type *pt_prev = NULL;
5005 int ret;
5007 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5008 if (pt_prev)
5009 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5010 skb->dev, pt_prev, orig_dev);
5011 return ret;
5015 * netif_receive_skb_core - special purpose version of netif_receive_skb
5016 * @skb: buffer to process
5018 * More direct receive version of netif_receive_skb(). It should
5019 * only be used by callers that have a need to skip RPS and Generic XDP.
5020 * Caller must also take care of handling if (page_is_)pfmemalloc.
5022 * This function may only be called from softirq context and interrupts
5023 * should be enabled.
5025 * Return values (usually ignored):
5026 * NET_RX_SUCCESS: no congestion
5027 * NET_RX_DROP: packet was dropped
5029 int netif_receive_skb_core(struct sk_buff *skb)
5031 int ret;
5033 rcu_read_lock();
5034 ret = __netif_receive_skb_one_core(skb, false);
5035 rcu_read_unlock();
5037 return ret;
5039 EXPORT_SYMBOL(netif_receive_skb_core);
5041 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5042 struct packet_type *pt_prev,
5043 struct net_device *orig_dev)
5045 struct sk_buff *skb, *next;
5047 if (!pt_prev)
5048 return;
5049 if (list_empty(head))
5050 return;
5051 if (pt_prev->list_func != NULL)
5052 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5053 ip_list_rcv, head, pt_prev, orig_dev);
5054 else
5055 list_for_each_entry_safe(skb, next, head, list) {
5056 skb_list_del_init(skb);
5057 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5061 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5063 /* Fast-path assumptions:
5064 * - There is no RX handler.
5065 * - Only one packet_type matches.
5066 * If either of these fails, we will end up doing some per-packet
5067 * processing in-line, then handling the 'last ptype' for the whole
5068 * sublist. This can't cause out-of-order delivery to any single ptype,
5069 * because the 'last ptype' must be constant across the sublist, and all
5070 * other ptypes are handled per-packet.
5072 /* Current (common) ptype of sublist */
5073 struct packet_type *pt_curr = NULL;
5074 /* Current (common) orig_dev of sublist */
5075 struct net_device *od_curr = NULL;
5076 struct list_head sublist;
5077 struct sk_buff *skb, *next;
5079 INIT_LIST_HEAD(&sublist);
5080 list_for_each_entry_safe(skb, next, head, list) {
5081 struct net_device *orig_dev = skb->dev;
5082 struct packet_type *pt_prev = NULL;
5084 skb_list_del_init(skb);
5085 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5086 if (!pt_prev)
5087 continue;
5088 if (pt_curr != pt_prev || od_curr != orig_dev) {
5089 /* dispatch old sublist */
5090 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5091 /* start new sublist */
5092 INIT_LIST_HEAD(&sublist);
5093 pt_curr = pt_prev;
5094 od_curr = orig_dev;
5096 list_add_tail(&skb->list, &sublist);
5099 /* dispatch final sublist */
5100 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5103 static int __netif_receive_skb(struct sk_buff *skb)
5105 int ret;
5107 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5108 unsigned int noreclaim_flag;
5111 * PFMEMALLOC skbs are special, they should
5112 * - be delivered to SOCK_MEMALLOC sockets only
5113 * - stay away from userspace
5114 * - have bounded memory usage
5116 * Use PF_MEMALLOC as this saves us from propagating the allocation
5117 * context down to all allocation sites.
5119 noreclaim_flag = memalloc_noreclaim_save();
5120 ret = __netif_receive_skb_one_core(skb, true);
5121 memalloc_noreclaim_restore(noreclaim_flag);
5122 } else
5123 ret = __netif_receive_skb_one_core(skb, false);
5125 return ret;
5128 static void __netif_receive_skb_list(struct list_head *head)
5130 unsigned long noreclaim_flag = 0;
5131 struct sk_buff *skb, *next;
5132 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5134 list_for_each_entry_safe(skb, next, head, list) {
5135 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5136 struct list_head sublist;
5138 /* Handle the previous sublist */
5139 list_cut_before(&sublist, head, &skb->list);
5140 if (!list_empty(&sublist))
5141 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5142 pfmemalloc = !pfmemalloc;
5143 /* See comments in __netif_receive_skb */
5144 if (pfmemalloc)
5145 noreclaim_flag = memalloc_noreclaim_save();
5146 else
5147 memalloc_noreclaim_restore(noreclaim_flag);
5150 /* Handle the remaining sublist */
5151 if (!list_empty(head))
5152 __netif_receive_skb_list_core(head, pfmemalloc);
5153 /* Restore pflags */
5154 if (pfmemalloc)
5155 memalloc_noreclaim_restore(noreclaim_flag);
5158 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5160 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5161 struct bpf_prog *new = xdp->prog;
5162 int ret = 0;
5164 switch (xdp->command) {
5165 case XDP_SETUP_PROG:
5166 rcu_assign_pointer(dev->xdp_prog, new);
5167 if (old)
5168 bpf_prog_put(old);
5170 if (old && !new) {
5171 static_branch_dec(&generic_xdp_needed_key);
5172 } else if (new && !old) {
5173 static_branch_inc(&generic_xdp_needed_key);
5174 dev_disable_lro(dev);
5175 dev_disable_gro_hw(dev);
5177 break;
5179 case XDP_QUERY_PROG:
5180 xdp->prog_id = old ? old->aux->id : 0;
5181 break;
5183 default:
5184 ret = -EINVAL;
5185 break;
5188 return ret;
5191 static int netif_receive_skb_internal(struct sk_buff *skb)
5193 int ret;
5195 net_timestamp_check(netdev_tstamp_prequeue, skb);
5197 if (skb_defer_rx_timestamp(skb))
5198 return NET_RX_SUCCESS;
5200 rcu_read_lock();
5201 #ifdef CONFIG_RPS
5202 if (static_branch_unlikely(&rps_needed)) {
5203 struct rps_dev_flow voidflow, *rflow = &voidflow;
5204 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5206 if (cpu >= 0) {
5207 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5208 rcu_read_unlock();
5209 return ret;
5212 #endif
5213 ret = __netif_receive_skb(skb);
5214 rcu_read_unlock();
5215 return ret;
5218 static void netif_receive_skb_list_internal(struct list_head *head)
5220 struct sk_buff *skb, *next;
5221 struct list_head sublist;
5223 INIT_LIST_HEAD(&sublist);
5224 list_for_each_entry_safe(skb, next, head, list) {
5225 net_timestamp_check(netdev_tstamp_prequeue, skb);
5226 skb_list_del_init(skb);
5227 if (!skb_defer_rx_timestamp(skb))
5228 list_add_tail(&skb->list, &sublist);
5230 list_splice_init(&sublist, head);
5232 rcu_read_lock();
5233 #ifdef CONFIG_RPS
5234 if (static_branch_unlikely(&rps_needed)) {
5235 list_for_each_entry_safe(skb, next, head, list) {
5236 struct rps_dev_flow voidflow, *rflow = &voidflow;
5237 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5239 if (cpu >= 0) {
5240 /* Will be handled, remove from list */
5241 skb_list_del_init(skb);
5242 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5246 #endif
5247 __netif_receive_skb_list(head);
5248 rcu_read_unlock();
5252 * netif_receive_skb - process receive buffer from network
5253 * @skb: buffer to process
5255 * netif_receive_skb() is the main receive data processing function.
5256 * It always succeeds. The buffer may be dropped during processing
5257 * for congestion control or by the protocol layers.
5259 * This function may only be called from softirq context and interrupts
5260 * should be enabled.
5262 * Return values (usually ignored):
5263 * NET_RX_SUCCESS: no congestion
5264 * NET_RX_DROP: packet was dropped
5266 int netif_receive_skb(struct sk_buff *skb)
5268 int ret;
5270 trace_netif_receive_skb_entry(skb);
5272 ret = netif_receive_skb_internal(skb);
5273 trace_netif_receive_skb_exit(ret);
5275 return ret;
5277 EXPORT_SYMBOL(netif_receive_skb);
5280 * netif_receive_skb_list - process many receive buffers from network
5281 * @head: list of skbs to process.
5283 * Since return value of netif_receive_skb() is normally ignored, and
5284 * wouldn't be meaningful for a list, this function returns void.
5286 * This function may only be called from softirq context and interrupts
5287 * should be enabled.
5289 void netif_receive_skb_list(struct list_head *head)
5291 struct sk_buff *skb;
5293 if (list_empty(head))
5294 return;
5295 if (trace_netif_receive_skb_list_entry_enabled()) {
5296 list_for_each_entry(skb, head, list)
5297 trace_netif_receive_skb_list_entry(skb);
5299 netif_receive_skb_list_internal(head);
5300 trace_netif_receive_skb_list_exit(0);
5302 EXPORT_SYMBOL(netif_receive_skb_list);
5304 DEFINE_PER_CPU(struct work_struct, flush_works);
5306 /* Network device is going away, flush any packets still pending */
5307 static void flush_backlog(struct work_struct *work)
5309 struct sk_buff *skb, *tmp;
5310 struct softnet_data *sd;
5312 local_bh_disable();
5313 sd = this_cpu_ptr(&softnet_data);
5315 local_irq_disable();
5316 rps_lock(sd);
5317 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5318 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5319 __skb_unlink(skb, &sd->input_pkt_queue);
5320 kfree_skb(skb);
5321 input_queue_head_incr(sd);
5324 rps_unlock(sd);
5325 local_irq_enable();
5327 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5328 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5329 __skb_unlink(skb, &sd->process_queue);
5330 kfree_skb(skb);
5331 input_queue_head_incr(sd);
5334 local_bh_enable();
5337 static void flush_all_backlogs(void)
5339 unsigned int cpu;
5341 get_online_cpus();
5343 for_each_online_cpu(cpu)
5344 queue_work_on(cpu, system_highpri_wq,
5345 per_cpu_ptr(&flush_works, cpu));
5347 for_each_online_cpu(cpu)
5348 flush_work(per_cpu_ptr(&flush_works, cpu));
5350 put_online_cpus();
5353 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5354 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5355 static int napi_gro_complete(struct sk_buff *skb)
5357 struct packet_offload *ptype;
5358 __be16 type = skb->protocol;
5359 struct list_head *head = &offload_base;
5360 int err = -ENOENT;
5362 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5364 if (NAPI_GRO_CB(skb)->count == 1) {
5365 skb_shinfo(skb)->gso_size = 0;
5366 goto out;
5369 rcu_read_lock();
5370 list_for_each_entry_rcu(ptype, head, list) {
5371 if (ptype->type != type || !ptype->callbacks.gro_complete)
5372 continue;
5374 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5375 ipv6_gro_complete, inet_gro_complete,
5376 skb, 0);
5377 break;
5379 rcu_read_unlock();
5381 if (err) {
5382 WARN_ON(&ptype->list == head);
5383 kfree_skb(skb);
5384 return NET_RX_SUCCESS;
5387 out:
5388 return netif_receive_skb_internal(skb);
5391 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5392 bool flush_old)
5394 struct list_head *head = &napi->gro_hash[index].list;
5395 struct sk_buff *skb, *p;
5397 list_for_each_entry_safe_reverse(skb, p, head, list) {
5398 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5399 return;
5400 skb_list_del_init(skb);
5401 napi_gro_complete(skb);
5402 napi->gro_hash[index].count--;
5405 if (!napi->gro_hash[index].count)
5406 __clear_bit(index, &napi->gro_bitmask);
5409 /* napi->gro_hash[].list contains packets ordered by age.
5410 * youngest packets at the head of it.
5411 * Complete skbs in reverse order to reduce latencies.
5413 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5415 unsigned long bitmask = napi->gro_bitmask;
5416 unsigned int i, base = ~0U;
5418 while ((i = ffs(bitmask)) != 0) {
5419 bitmask >>= i;
5420 base += i;
5421 __napi_gro_flush_chain(napi, base, flush_old);
5424 EXPORT_SYMBOL(napi_gro_flush);
5426 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5427 struct sk_buff *skb)
5429 unsigned int maclen = skb->dev->hard_header_len;
5430 u32 hash = skb_get_hash_raw(skb);
5431 struct list_head *head;
5432 struct sk_buff *p;
5434 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5435 list_for_each_entry(p, head, list) {
5436 unsigned long diffs;
5438 NAPI_GRO_CB(p)->flush = 0;
5440 if (hash != skb_get_hash_raw(p)) {
5441 NAPI_GRO_CB(p)->same_flow = 0;
5442 continue;
5445 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5446 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5447 if (skb_vlan_tag_present(p))
5448 diffs |= p->vlan_tci ^ skb->vlan_tci;
5449 diffs |= skb_metadata_dst_cmp(p, skb);
5450 diffs |= skb_metadata_differs(p, skb);
5451 if (maclen == ETH_HLEN)
5452 diffs |= compare_ether_header(skb_mac_header(p),
5453 skb_mac_header(skb));
5454 else if (!diffs)
5455 diffs = memcmp(skb_mac_header(p),
5456 skb_mac_header(skb),
5457 maclen);
5458 NAPI_GRO_CB(p)->same_flow = !diffs;
5461 return head;
5464 static void skb_gro_reset_offset(struct sk_buff *skb)
5466 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5467 const skb_frag_t *frag0 = &pinfo->frags[0];
5469 NAPI_GRO_CB(skb)->data_offset = 0;
5470 NAPI_GRO_CB(skb)->frag0 = NULL;
5471 NAPI_GRO_CB(skb)->frag0_len = 0;
5473 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5474 pinfo->nr_frags &&
5475 !PageHighMem(skb_frag_page(frag0))) {
5476 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5477 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5478 skb_frag_size(frag0),
5479 skb->end - skb->tail);
5483 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5485 struct skb_shared_info *pinfo = skb_shinfo(skb);
5487 BUG_ON(skb->end - skb->tail < grow);
5489 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5491 skb->data_len -= grow;
5492 skb->tail += grow;
5494 pinfo->frags[0].page_offset += grow;
5495 skb_frag_size_sub(&pinfo->frags[0], grow);
5497 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5498 skb_frag_unref(skb, 0);
5499 memmove(pinfo->frags, pinfo->frags + 1,
5500 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5504 static void gro_flush_oldest(struct list_head *head)
5506 struct sk_buff *oldest;
5508 oldest = list_last_entry(head, struct sk_buff, list);
5510 /* We are called with head length >= MAX_GRO_SKBS, so this is
5511 * impossible.
5513 if (WARN_ON_ONCE(!oldest))
5514 return;
5516 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5517 * SKB to the chain.
5519 skb_list_del_init(oldest);
5520 napi_gro_complete(oldest);
5523 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5524 struct sk_buff *));
5525 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5526 struct sk_buff *));
5527 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5529 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5530 struct list_head *head = &offload_base;
5531 struct packet_offload *ptype;
5532 __be16 type = skb->protocol;
5533 struct list_head *gro_head;
5534 struct sk_buff *pp = NULL;
5535 enum gro_result ret;
5536 int same_flow;
5537 int grow;
5539 if (netif_elide_gro(skb->dev))
5540 goto normal;
5542 gro_head = gro_list_prepare(napi, skb);
5544 rcu_read_lock();
5545 list_for_each_entry_rcu(ptype, head, list) {
5546 if (ptype->type != type || !ptype->callbacks.gro_receive)
5547 continue;
5549 skb_set_network_header(skb, skb_gro_offset(skb));
5550 skb_reset_mac_len(skb);
5551 NAPI_GRO_CB(skb)->same_flow = 0;
5552 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5553 NAPI_GRO_CB(skb)->free = 0;
5554 NAPI_GRO_CB(skb)->encap_mark = 0;
5555 NAPI_GRO_CB(skb)->recursion_counter = 0;
5556 NAPI_GRO_CB(skb)->is_fou = 0;
5557 NAPI_GRO_CB(skb)->is_atomic = 1;
5558 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5560 /* Setup for GRO checksum validation */
5561 switch (skb->ip_summed) {
5562 case CHECKSUM_COMPLETE:
5563 NAPI_GRO_CB(skb)->csum = skb->csum;
5564 NAPI_GRO_CB(skb)->csum_valid = 1;
5565 NAPI_GRO_CB(skb)->csum_cnt = 0;
5566 break;
5567 case CHECKSUM_UNNECESSARY:
5568 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5569 NAPI_GRO_CB(skb)->csum_valid = 0;
5570 break;
5571 default:
5572 NAPI_GRO_CB(skb)->csum_cnt = 0;
5573 NAPI_GRO_CB(skb)->csum_valid = 0;
5576 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5577 ipv6_gro_receive, inet_gro_receive,
5578 gro_head, skb);
5579 break;
5581 rcu_read_unlock();
5583 if (&ptype->list == head)
5584 goto normal;
5586 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5587 ret = GRO_CONSUMED;
5588 goto ok;
5591 same_flow = NAPI_GRO_CB(skb)->same_flow;
5592 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5594 if (pp) {
5595 skb_list_del_init(pp);
5596 napi_gro_complete(pp);
5597 napi->gro_hash[hash].count--;
5600 if (same_flow)
5601 goto ok;
5603 if (NAPI_GRO_CB(skb)->flush)
5604 goto normal;
5606 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5607 gro_flush_oldest(gro_head);
5608 } else {
5609 napi->gro_hash[hash].count++;
5611 NAPI_GRO_CB(skb)->count = 1;
5612 NAPI_GRO_CB(skb)->age = jiffies;
5613 NAPI_GRO_CB(skb)->last = skb;
5614 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5615 list_add(&skb->list, gro_head);
5616 ret = GRO_HELD;
5618 pull:
5619 grow = skb_gro_offset(skb) - skb_headlen(skb);
5620 if (grow > 0)
5621 gro_pull_from_frag0(skb, grow);
5623 if (napi->gro_hash[hash].count) {
5624 if (!test_bit(hash, &napi->gro_bitmask))
5625 __set_bit(hash, &napi->gro_bitmask);
5626 } else if (test_bit(hash, &napi->gro_bitmask)) {
5627 __clear_bit(hash, &napi->gro_bitmask);
5630 return ret;
5632 normal:
5633 ret = GRO_NORMAL;
5634 goto pull;
5637 struct packet_offload *gro_find_receive_by_type(__be16 type)
5639 struct list_head *offload_head = &offload_base;
5640 struct packet_offload *ptype;
5642 list_for_each_entry_rcu(ptype, offload_head, list) {
5643 if (ptype->type != type || !ptype->callbacks.gro_receive)
5644 continue;
5645 return ptype;
5647 return NULL;
5649 EXPORT_SYMBOL(gro_find_receive_by_type);
5651 struct packet_offload *gro_find_complete_by_type(__be16 type)
5653 struct list_head *offload_head = &offload_base;
5654 struct packet_offload *ptype;
5656 list_for_each_entry_rcu(ptype, offload_head, list) {
5657 if (ptype->type != type || !ptype->callbacks.gro_complete)
5658 continue;
5659 return ptype;
5661 return NULL;
5663 EXPORT_SYMBOL(gro_find_complete_by_type);
5665 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5667 skb_dst_drop(skb);
5668 secpath_reset(skb);
5669 kmem_cache_free(skbuff_head_cache, skb);
5672 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5674 switch (ret) {
5675 case GRO_NORMAL:
5676 if (netif_receive_skb_internal(skb))
5677 ret = GRO_DROP;
5678 break;
5680 case GRO_DROP:
5681 kfree_skb(skb);
5682 break;
5684 case GRO_MERGED_FREE:
5685 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5686 napi_skb_free_stolen_head(skb);
5687 else
5688 __kfree_skb(skb);
5689 break;
5691 case GRO_HELD:
5692 case GRO_MERGED:
5693 case GRO_CONSUMED:
5694 break;
5697 return ret;
5700 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5702 gro_result_t ret;
5704 skb_mark_napi_id(skb, napi);
5705 trace_napi_gro_receive_entry(skb);
5707 skb_gro_reset_offset(skb);
5709 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5710 trace_napi_gro_receive_exit(ret);
5712 return ret;
5714 EXPORT_SYMBOL(napi_gro_receive);
5716 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5718 if (unlikely(skb->pfmemalloc)) {
5719 consume_skb(skb);
5720 return;
5722 __skb_pull(skb, skb_headlen(skb));
5723 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5724 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5725 __vlan_hwaccel_clear_tag(skb);
5726 skb->dev = napi->dev;
5727 skb->skb_iif = 0;
5729 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5730 skb->pkt_type = PACKET_HOST;
5732 skb->encapsulation = 0;
5733 skb_shinfo(skb)->gso_type = 0;
5734 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5735 secpath_reset(skb);
5737 napi->skb = skb;
5740 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5742 struct sk_buff *skb = napi->skb;
5744 if (!skb) {
5745 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5746 if (skb) {
5747 napi->skb = skb;
5748 skb_mark_napi_id(skb, napi);
5751 return skb;
5753 EXPORT_SYMBOL(napi_get_frags);
5755 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5756 struct sk_buff *skb,
5757 gro_result_t ret)
5759 switch (ret) {
5760 case GRO_NORMAL:
5761 case GRO_HELD:
5762 __skb_push(skb, ETH_HLEN);
5763 skb->protocol = eth_type_trans(skb, skb->dev);
5764 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5765 ret = GRO_DROP;
5766 break;
5768 case GRO_DROP:
5769 napi_reuse_skb(napi, skb);
5770 break;
5772 case GRO_MERGED_FREE:
5773 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5774 napi_skb_free_stolen_head(skb);
5775 else
5776 napi_reuse_skb(napi, skb);
5777 break;
5779 case GRO_MERGED:
5780 case GRO_CONSUMED:
5781 break;
5784 return ret;
5787 /* Upper GRO stack assumes network header starts at gro_offset=0
5788 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5789 * We copy ethernet header into skb->data to have a common layout.
5791 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5793 struct sk_buff *skb = napi->skb;
5794 const struct ethhdr *eth;
5795 unsigned int hlen = sizeof(*eth);
5797 napi->skb = NULL;
5799 skb_reset_mac_header(skb);
5800 skb_gro_reset_offset(skb);
5802 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5803 eth = skb_gro_header_slow(skb, hlen, 0);
5804 if (unlikely(!eth)) {
5805 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5806 __func__, napi->dev->name);
5807 napi_reuse_skb(napi, skb);
5808 return NULL;
5810 } else {
5811 eth = (const struct ethhdr *)skb->data;
5812 gro_pull_from_frag0(skb, hlen);
5813 NAPI_GRO_CB(skb)->frag0 += hlen;
5814 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5816 __skb_pull(skb, hlen);
5819 * This works because the only protocols we care about don't require
5820 * special handling.
5821 * We'll fix it up properly in napi_frags_finish()
5823 skb->protocol = eth->h_proto;
5825 return skb;
5828 gro_result_t napi_gro_frags(struct napi_struct *napi)
5830 gro_result_t ret;
5831 struct sk_buff *skb = napi_frags_skb(napi);
5833 if (!skb)
5834 return GRO_DROP;
5836 trace_napi_gro_frags_entry(skb);
5838 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5839 trace_napi_gro_frags_exit(ret);
5841 return ret;
5843 EXPORT_SYMBOL(napi_gro_frags);
5845 /* Compute the checksum from gro_offset and return the folded value
5846 * after adding in any pseudo checksum.
5848 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5850 __wsum wsum;
5851 __sum16 sum;
5853 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5855 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5856 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5857 /* See comments in __skb_checksum_complete(). */
5858 if (likely(!sum)) {
5859 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5860 !skb->csum_complete_sw)
5861 netdev_rx_csum_fault(skb->dev, skb);
5864 NAPI_GRO_CB(skb)->csum = wsum;
5865 NAPI_GRO_CB(skb)->csum_valid = 1;
5867 return sum;
5869 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5871 static void net_rps_send_ipi(struct softnet_data *remsd)
5873 #ifdef CONFIG_RPS
5874 while (remsd) {
5875 struct softnet_data *next = remsd->rps_ipi_next;
5877 if (cpu_online(remsd->cpu))
5878 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5879 remsd = next;
5881 #endif
5885 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5886 * Note: called with local irq disabled, but exits with local irq enabled.
5888 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5890 #ifdef CONFIG_RPS
5891 struct softnet_data *remsd = sd->rps_ipi_list;
5893 if (remsd) {
5894 sd->rps_ipi_list = NULL;
5896 local_irq_enable();
5898 /* Send pending IPI's to kick RPS processing on remote cpus. */
5899 net_rps_send_ipi(remsd);
5900 } else
5901 #endif
5902 local_irq_enable();
5905 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5907 #ifdef CONFIG_RPS
5908 return sd->rps_ipi_list != NULL;
5909 #else
5910 return false;
5911 #endif
5914 static int process_backlog(struct napi_struct *napi, int quota)
5916 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5917 bool again = true;
5918 int work = 0;
5920 /* Check if we have pending ipi, its better to send them now,
5921 * not waiting net_rx_action() end.
5923 if (sd_has_rps_ipi_waiting(sd)) {
5924 local_irq_disable();
5925 net_rps_action_and_irq_enable(sd);
5928 napi->weight = dev_rx_weight;
5929 while (again) {
5930 struct sk_buff *skb;
5932 while ((skb = __skb_dequeue(&sd->process_queue))) {
5933 rcu_read_lock();
5934 __netif_receive_skb(skb);
5935 rcu_read_unlock();
5936 input_queue_head_incr(sd);
5937 if (++work >= quota)
5938 return work;
5942 local_irq_disable();
5943 rps_lock(sd);
5944 if (skb_queue_empty(&sd->input_pkt_queue)) {
5946 * Inline a custom version of __napi_complete().
5947 * only current cpu owns and manipulates this napi,
5948 * and NAPI_STATE_SCHED is the only possible flag set
5949 * on backlog.
5950 * We can use a plain write instead of clear_bit(),
5951 * and we dont need an smp_mb() memory barrier.
5953 napi->state = 0;
5954 again = false;
5955 } else {
5956 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5957 &sd->process_queue);
5959 rps_unlock(sd);
5960 local_irq_enable();
5963 return work;
5967 * __napi_schedule - schedule for receive
5968 * @n: entry to schedule
5970 * The entry's receive function will be scheduled to run.
5971 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5973 void __napi_schedule(struct napi_struct *n)
5975 unsigned long flags;
5977 local_irq_save(flags);
5978 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5979 local_irq_restore(flags);
5981 EXPORT_SYMBOL(__napi_schedule);
5984 * napi_schedule_prep - check if napi can be scheduled
5985 * @n: napi context
5987 * Test if NAPI routine is already running, and if not mark
5988 * it as running. This is used as a condition variable
5989 * insure only one NAPI poll instance runs. We also make
5990 * sure there is no pending NAPI disable.
5992 bool napi_schedule_prep(struct napi_struct *n)
5994 unsigned long val, new;
5996 do {
5997 val = READ_ONCE(n->state);
5998 if (unlikely(val & NAPIF_STATE_DISABLE))
5999 return false;
6000 new = val | NAPIF_STATE_SCHED;
6002 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6003 * This was suggested by Alexander Duyck, as compiler
6004 * emits better code than :
6005 * if (val & NAPIF_STATE_SCHED)
6006 * new |= NAPIF_STATE_MISSED;
6008 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6009 NAPIF_STATE_MISSED;
6010 } while (cmpxchg(&n->state, val, new) != val);
6012 return !(val & NAPIF_STATE_SCHED);
6014 EXPORT_SYMBOL(napi_schedule_prep);
6017 * __napi_schedule_irqoff - schedule for receive
6018 * @n: entry to schedule
6020 * Variant of __napi_schedule() assuming hard irqs are masked
6022 void __napi_schedule_irqoff(struct napi_struct *n)
6024 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6026 EXPORT_SYMBOL(__napi_schedule_irqoff);
6028 bool napi_complete_done(struct napi_struct *n, int work_done)
6030 unsigned long flags, val, new;
6033 * 1) Don't let napi dequeue from the cpu poll list
6034 * just in case its running on a different cpu.
6035 * 2) If we are busy polling, do nothing here, we have
6036 * the guarantee we will be called later.
6038 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6039 NAPIF_STATE_IN_BUSY_POLL)))
6040 return false;
6042 if (n->gro_bitmask) {
6043 unsigned long timeout = 0;
6045 if (work_done)
6046 timeout = n->dev->gro_flush_timeout;
6048 /* When the NAPI instance uses a timeout and keeps postponing
6049 * it, we need to bound somehow the time packets are kept in
6050 * the GRO layer
6052 napi_gro_flush(n, !!timeout);
6053 if (timeout)
6054 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6055 HRTIMER_MODE_REL_PINNED);
6057 if (unlikely(!list_empty(&n->poll_list))) {
6058 /* If n->poll_list is not empty, we need to mask irqs */
6059 local_irq_save(flags);
6060 list_del_init(&n->poll_list);
6061 local_irq_restore(flags);
6064 do {
6065 val = READ_ONCE(n->state);
6067 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6069 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6071 /* If STATE_MISSED was set, leave STATE_SCHED set,
6072 * because we will call napi->poll() one more time.
6073 * This C code was suggested by Alexander Duyck to help gcc.
6075 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6076 NAPIF_STATE_SCHED;
6077 } while (cmpxchg(&n->state, val, new) != val);
6079 if (unlikely(val & NAPIF_STATE_MISSED)) {
6080 __napi_schedule(n);
6081 return false;
6084 return true;
6086 EXPORT_SYMBOL(napi_complete_done);
6088 /* must be called under rcu_read_lock(), as we dont take a reference */
6089 static struct napi_struct *napi_by_id(unsigned int napi_id)
6091 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6092 struct napi_struct *napi;
6094 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6095 if (napi->napi_id == napi_id)
6096 return napi;
6098 return NULL;
6101 #if defined(CONFIG_NET_RX_BUSY_POLL)
6103 #define BUSY_POLL_BUDGET 8
6105 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6107 int rc;
6109 /* Busy polling means there is a high chance device driver hard irq
6110 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6111 * set in napi_schedule_prep().
6112 * Since we are about to call napi->poll() once more, we can safely
6113 * clear NAPI_STATE_MISSED.
6115 * Note: x86 could use a single "lock and ..." instruction
6116 * to perform these two clear_bit()
6118 clear_bit(NAPI_STATE_MISSED, &napi->state);
6119 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6121 local_bh_disable();
6123 /* All we really want here is to re-enable device interrupts.
6124 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6126 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6127 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6128 netpoll_poll_unlock(have_poll_lock);
6129 if (rc == BUSY_POLL_BUDGET)
6130 __napi_schedule(napi);
6131 local_bh_enable();
6134 void napi_busy_loop(unsigned int napi_id,
6135 bool (*loop_end)(void *, unsigned long),
6136 void *loop_end_arg)
6138 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6139 int (*napi_poll)(struct napi_struct *napi, int budget);
6140 void *have_poll_lock = NULL;
6141 struct napi_struct *napi;
6143 restart:
6144 napi_poll = NULL;
6146 rcu_read_lock();
6148 napi = napi_by_id(napi_id);
6149 if (!napi)
6150 goto out;
6152 preempt_disable();
6153 for (;;) {
6154 int work = 0;
6156 local_bh_disable();
6157 if (!napi_poll) {
6158 unsigned long val = READ_ONCE(napi->state);
6160 /* If multiple threads are competing for this napi,
6161 * we avoid dirtying napi->state as much as we can.
6163 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6164 NAPIF_STATE_IN_BUSY_POLL))
6165 goto count;
6166 if (cmpxchg(&napi->state, val,
6167 val | NAPIF_STATE_IN_BUSY_POLL |
6168 NAPIF_STATE_SCHED) != val)
6169 goto count;
6170 have_poll_lock = netpoll_poll_lock(napi);
6171 napi_poll = napi->poll;
6173 work = napi_poll(napi, BUSY_POLL_BUDGET);
6174 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6175 count:
6176 if (work > 0)
6177 __NET_ADD_STATS(dev_net(napi->dev),
6178 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6179 local_bh_enable();
6181 if (!loop_end || loop_end(loop_end_arg, start_time))
6182 break;
6184 if (unlikely(need_resched())) {
6185 if (napi_poll)
6186 busy_poll_stop(napi, have_poll_lock);
6187 preempt_enable();
6188 rcu_read_unlock();
6189 cond_resched();
6190 if (loop_end(loop_end_arg, start_time))
6191 return;
6192 goto restart;
6194 cpu_relax();
6196 if (napi_poll)
6197 busy_poll_stop(napi, have_poll_lock);
6198 preempt_enable();
6199 out:
6200 rcu_read_unlock();
6202 EXPORT_SYMBOL(napi_busy_loop);
6204 #endif /* CONFIG_NET_RX_BUSY_POLL */
6206 static void napi_hash_add(struct napi_struct *napi)
6208 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6209 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6210 return;
6212 spin_lock(&napi_hash_lock);
6214 /* 0..NR_CPUS range is reserved for sender_cpu use */
6215 do {
6216 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6217 napi_gen_id = MIN_NAPI_ID;
6218 } while (napi_by_id(napi_gen_id));
6219 napi->napi_id = napi_gen_id;
6221 hlist_add_head_rcu(&napi->napi_hash_node,
6222 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6224 spin_unlock(&napi_hash_lock);
6227 /* Warning : caller is responsible to make sure rcu grace period
6228 * is respected before freeing memory containing @napi
6230 bool napi_hash_del(struct napi_struct *napi)
6232 bool rcu_sync_needed = false;
6234 spin_lock(&napi_hash_lock);
6236 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6237 rcu_sync_needed = true;
6238 hlist_del_rcu(&napi->napi_hash_node);
6240 spin_unlock(&napi_hash_lock);
6241 return rcu_sync_needed;
6243 EXPORT_SYMBOL_GPL(napi_hash_del);
6245 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6247 struct napi_struct *napi;
6249 napi = container_of(timer, struct napi_struct, timer);
6251 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6252 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6254 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6255 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6256 __napi_schedule_irqoff(napi);
6258 return HRTIMER_NORESTART;
6261 static void init_gro_hash(struct napi_struct *napi)
6263 int i;
6265 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6266 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6267 napi->gro_hash[i].count = 0;
6269 napi->gro_bitmask = 0;
6272 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6273 int (*poll)(struct napi_struct *, int), int weight)
6275 INIT_LIST_HEAD(&napi->poll_list);
6276 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6277 napi->timer.function = napi_watchdog;
6278 init_gro_hash(napi);
6279 napi->skb = NULL;
6280 napi->poll = poll;
6281 if (weight > NAPI_POLL_WEIGHT)
6282 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6283 weight);
6284 napi->weight = weight;
6285 list_add(&napi->dev_list, &dev->napi_list);
6286 napi->dev = dev;
6287 #ifdef CONFIG_NETPOLL
6288 napi->poll_owner = -1;
6289 #endif
6290 set_bit(NAPI_STATE_SCHED, &napi->state);
6291 napi_hash_add(napi);
6293 EXPORT_SYMBOL(netif_napi_add);
6295 void napi_disable(struct napi_struct *n)
6297 might_sleep();
6298 set_bit(NAPI_STATE_DISABLE, &n->state);
6300 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6301 msleep(1);
6302 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6303 msleep(1);
6305 hrtimer_cancel(&n->timer);
6307 clear_bit(NAPI_STATE_DISABLE, &n->state);
6309 EXPORT_SYMBOL(napi_disable);
6311 static void flush_gro_hash(struct napi_struct *napi)
6313 int i;
6315 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6316 struct sk_buff *skb, *n;
6318 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6319 kfree_skb(skb);
6320 napi->gro_hash[i].count = 0;
6324 /* Must be called in process context */
6325 void netif_napi_del(struct napi_struct *napi)
6327 might_sleep();
6328 if (napi_hash_del(napi))
6329 synchronize_net();
6330 list_del_init(&napi->dev_list);
6331 napi_free_frags(napi);
6333 flush_gro_hash(napi);
6334 napi->gro_bitmask = 0;
6336 EXPORT_SYMBOL(netif_napi_del);
6338 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6340 void *have;
6341 int work, weight;
6343 list_del_init(&n->poll_list);
6345 have = netpoll_poll_lock(n);
6347 weight = n->weight;
6349 /* This NAPI_STATE_SCHED test is for avoiding a race
6350 * with netpoll's poll_napi(). Only the entity which
6351 * obtains the lock and sees NAPI_STATE_SCHED set will
6352 * actually make the ->poll() call. Therefore we avoid
6353 * accidentally calling ->poll() when NAPI is not scheduled.
6355 work = 0;
6356 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6357 work = n->poll(n, weight);
6358 trace_napi_poll(n, work, weight);
6361 WARN_ON_ONCE(work > weight);
6363 if (likely(work < weight))
6364 goto out_unlock;
6366 /* Drivers must not modify the NAPI state if they
6367 * consume the entire weight. In such cases this code
6368 * still "owns" the NAPI instance and therefore can
6369 * move the instance around on the list at-will.
6371 if (unlikely(napi_disable_pending(n))) {
6372 napi_complete(n);
6373 goto out_unlock;
6376 if (n->gro_bitmask) {
6377 /* flush too old packets
6378 * If HZ < 1000, flush all packets.
6380 napi_gro_flush(n, HZ >= 1000);
6383 /* Some drivers may have called napi_schedule
6384 * prior to exhausting their budget.
6386 if (unlikely(!list_empty(&n->poll_list))) {
6387 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6388 n->dev ? n->dev->name : "backlog");
6389 goto out_unlock;
6392 list_add_tail(&n->poll_list, repoll);
6394 out_unlock:
6395 netpoll_poll_unlock(have);
6397 return work;
6400 static __latent_entropy void net_rx_action(struct softirq_action *h)
6402 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6403 unsigned long time_limit = jiffies +
6404 usecs_to_jiffies(netdev_budget_usecs);
6405 int budget = netdev_budget;
6406 LIST_HEAD(list);
6407 LIST_HEAD(repoll);
6409 local_irq_disable();
6410 list_splice_init(&sd->poll_list, &list);
6411 local_irq_enable();
6413 for (;;) {
6414 struct napi_struct *n;
6416 if (list_empty(&list)) {
6417 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6418 goto out;
6419 break;
6422 n = list_first_entry(&list, struct napi_struct, poll_list);
6423 budget -= napi_poll(n, &repoll);
6425 /* If softirq window is exhausted then punt.
6426 * Allow this to run for 2 jiffies since which will allow
6427 * an average latency of 1.5/HZ.
6429 if (unlikely(budget <= 0 ||
6430 time_after_eq(jiffies, time_limit))) {
6431 sd->time_squeeze++;
6432 break;
6436 local_irq_disable();
6438 list_splice_tail_init(&sd->poll_list, &list);
6439 list_splice_tail(&repoll, &list);
6440 list_splice(&list, &sd->poll_list);
6441 if (!list_empty(&sd->poll_list))
6442 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6444 net_rps_action_and_irq_enable(sd);
6445 out:
6446 __kfree_skb_flush();
6449 struct netdev_adjacent {
6450 struct net_device *dev;
6452 /* upper master flag, there can only be one master device per list */
6453 bool master;
6455 /* counter for the number of times this device was added to us */
6456 u16 ref_nr;
6458 /* private field for the users */
6459 void *private;
6461 struct list_head list;
6462 struct rcu_head rcu;
6465 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6466 struct list_head *adj_list)
6468 struct netdev_adjacent *adj;
6470 list_for_each_entry(adj, adj_list, list) {
6471 if (adj->dev == adj_dev)
6472 return adj;
6474 return NULL;
6477 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6479 struct net_device *dev = data;
6481 return upper_dev == dev;
6485 * netdev_has_upper_dev - Check if device is linked to an upper device
6486 * @dev: device
6487 * @upper_dev: upper device to check
6489 * Find out if a device is linked to specified upper device and return true
6490 * in case it is. Note that this checks only immediate upper device,
6491 * not through a complete stack of devices. The caller must hold the RTNL lock.
6493 bool netdev_has_upper_dev(struct net_device *dev,
6494 struct net_device *upper_dev)
6496 ASSERT_RTNL();
6498 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6499 upper_dev);
6501 EXPORT_SYMBOL(netdev_has_upper_dev);
6504 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6505 * @dev: device
6506 * @upper_dev: upper device to check
6508 * Find out if a device is linked to specified upper device and return true
6509 * in case it is. Note that this checks the entire upper device chain.
6510 * The caller must hold rcu lock.
6513 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6514 struct net_device *upper_dev)
6516 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6517 upper_dev);
6519 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6522 * netdev_has_any_upper_dev - Check if device is linked to some device
6523 * @dev: device
6525 * Find out if a device is linked to an upper device and return true in case
6526 * it is. The caller must hold the RTNL lock.
6528 bool netdev_has_any_upper_dev(struct net_device *dev)
6530 ASSERT_RTNL();
6532 return !list_empty(&dev->adj_list.upper);
6534 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6537 * netdev_master_upper_dev_get - Get master upper device
6538 * @dev: device
6540 * Find a master upper device and return pointer to it or NULL in case
6541 * it's not there. The caller must hold the RTNL lock.
6543 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6545 struct netdev_adjacent *upper;
6547 ASSERT_RTNL();
6549 if (list_empty(&dev->adj_list.upper))
6550 return NULL;
6552 upper = list_first_entry(&dev->adj_list.upper,
6553 struct netdev_adjacent, list);
6554 if (likely(upper->master))
6555 return upper->dev;
6556 return NULL;
6558 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6561 * netdev_has_any_lower_dev - Check if device is linked to some device
6562 * @dev: device
6564 * Find out if a device is linked to a lower device and return true in case
6565 * it is. The caller must hold the RTNL lock.
6567 static bool netdev_has_any_lower_dev(struct net_device *dev)
6569 ASSERT_RTNL();
6571 return !list_empty(&dev->adj_list.lower);
6574 void *netdev_adjacent_get_private(struct list_head *adj_list)
6576 struct netdev_adjacent *adj;
6578 adj = list_entry(adj_list, struct netdev_adjacent, list);
6580 return adj->private;
6582 EXPORT_SYMBOL(netdev_adjacent_get_private);
6585 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6586 * @dev: device
6587 * @iter: list_head ** of the current position
6589 * Gets the next device from the dev's upper list, starting from iter
6590 * position. The caller must hold RCU read lock.
6592 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6593 struct list_head **iter)
6595 struct netdev_adjacent *upper;
6597 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6599 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6601 if (&upper->list == &dev->adj_list.upper)
6602 return NULL;
6604 *iter = &upper->list;
6606 return upper->dev;
6608 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6610 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6611 struct list_head **iter)
6613 struct netdev_adjacent *upper;
6615 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6617 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6619 if (&upper->list == &dev->adj_list.upper)
6620 return NULL;
6622 *iter = &upper->list;
6624 return upper->dev;
6627 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6628 int (*fn)(struct net_device *dev,
6629 void *data),
6630 void *data)
6632 struct net_device *udev;
6633 struct list_head *iter;
6634 int ret;
6636 for (iter = &dev->adj_list.upper,
6637 udev = netdev_next_upper_dev_rcu(dev, &iter);
6638 udev;
6639 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6640 /* first is the upper device itself */
6641 ret = fn(udev, data);
6642 if (ret)
6643 return ret;
6645 /* then look at all of its upper devices */
6646 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6647 if (ret)
6648 return ret;
6651 return 0;
6653 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6656 * netdev_lower_get_next_private - Get the next ->private from the
6657 * lower neighbour list
6658 * @dev: device
6659 * @iter: list_head ** of the current position
6661 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6662 * list, starting from iter position. The caller must hold either hold the
6663 * RTNL lock or its own locking that guarantees that the neighbour lower
6664 * list will remain unchanged.
6666 void *netdev_lower_get_next_private(struct net_device *dev,
6667 struct list_head **iter)
6669 struct netdev_adjacent *lower;
6671 lower = list_entry(*iter, struct netdev_adjacent, list);
6673 if (&lower->list == &dev->adj_list.lower)
6674 return NULL;
6676 *iter = lower->list.next;
6678 return lower->private;
6680 EXPORT_SYMBOL(netdev_lower_get_next_private);
6683 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6684 * lower neighbour list, RCU
6685 * variant
6686 * @dev: device
6687 * @iter: list_head ** of the current position
6689 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6690 * list, starting from iter position. The caller must hold RCU read lock.
6692 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6693 struct list_head **iter)
6695 struct netdev_adjacent *lower;
6697 WARN_ON_ONCE(!rcu_read_lock_held());
6699 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6701 if (&lower->list == &dev->adj_list.lower)
6702 return NULL;
6704 *iter = &lower->list;
6706 return lower->private;
6708 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6711 * netdev_lower_get_next - Get the next device from the lower neighbour
6712 * list
6713 * @dev: device
6714 * @iter: list_head ** of the current position
6716 * Gets the next netdev_adjacent from the dev's lower neighbour
6717 * list, starting from iter position. The caller must hold RTNL lock or
6718 * its own locking that guarantees that the neighbour lower
6719 * list will remain unchanged.
6721 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6723 struct netdev_adjacent *lower;
6725 lower = list_entry(*iter, struct netdev_adjacent, list);
6727 if (&lower->list == &dev->adj_list.lower)
6728 return NULL;
6730 *iter = lower->list.next;
6732 return lower->dev;
6734 EXPORT_SYMBOL(netdev_lower_get_next);
6736 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6737 struct list_head **iter)
6739 struct netdev_adjacent *lower;
6741 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6743 if (&lower->list == &dev->adj_list.lower)
6744 return NULL;
6746 *iter = &lower->list;
6748 return lower->dev;
6751 int netdev_walk_all_lower_dev(struct net_device *dev,
6752 int (*fn)(struct net_device *dev,
6753 void *data),
6754 void *data)
6756 struct net_device *ldev;
6757 struct list_head *iter;
6758 int ret;
6760 for (iter = &dev->adj_list.lower,
6761 ldev = netdev_next_lower_dev(dev, &iter);
6762 ldev;
6763 ldev = netdev_next_lower_dev(dev, &iter)) {
6764 /* first is the lower device itself */
6765 ret = fn(ldev, data);
6766 if (ret)
6767 return ret;
6769 /* then look at all of its lower devices */
6770 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6771 if (ret)
6772 return ret;
6775 return 0;
6777 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6779 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6780 struct list_head **iter)
6782 struct netdev_adjacent *lower;
6784 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6785 if (&lower->list == &dev->adj_list.lower)
6786 return NULL;
6788 *iter = &lower->list;
6790 return lower->dev;
6793 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6794 int (*fn)(struct net_device *dev,
6795 void *data),
6796 void *data)
6798 struct net_device *ldev;
6799 struct list_head *iter;
6800 int ret;
6802 for (iter = &dev->adj_list.lower,
6803 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6804 ldev;
6805 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6806 /* first is the lower device itself */
6807 ret = fn(ldev, data);
6808 if (ret)
6809 return ret;
6811 /* then look at all of its lower devices */
6812 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6813 if (ret)
6814 return ret;
6817 return 0;
6819 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6822 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6823 * lower neighbour list, RCU
6824 * variant
6825 * @dev: device
6827 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6828 * list. The caller must hold RCU read lock.
6830 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6832 struct netdev_adjacent *lower;
6834 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6835 struct netdev_adjacent, list);
6836 if (lower)
6837 return lower->private;
6838 return NULL;
6840 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6843 * netdev_master_upper_dev_get_rcu - Get master upper device
6844 * @dev: device
6846 * Find a master upper device and return pointer to it or NULL in case
6847 * it's not there. The caller must hold the RCU read lock.
6849 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6851 struct netdev_adjacent *upper;
6853 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6854 struct netdev_adjacent, list);
6855 if (upper && likely(upper->master))
6856 return upper->dev;
6857 return NULL;
6859 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6861 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6862 struct net_device *adj_dev,
6863 struct list_head *dev_list)
6865 char linkname[IFNAMSIZ+7];
6867 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6868 "upper_%s" : "lower_%s", adj_dev->name);
6869 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6870 linkname);
6872 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6873 char *name,
6874 struct list_head *dev_list)
6876 char linkname[IFNAMSIZ+7];
6878 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6879 "upper_%s" : "lower_%s", name);
6880 sysfs_remove_link(&(dev->dev.kobj), linkname);
6883 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6884 struct net_device *adj_dev,
6885 struct list_head *dev_list)
6887 return (dev_list == &dev->adj_list.upper ||
6888 dev_list == &dev->adj_list.lower) &&
6889 net_eq(dev_net(dev), dev_net(adj_dev));
6892 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6893 struct net_device *adj_dev,
6894 struct list_head *dev_list,
6895 void *private, bool master)
6897 struct netdev_adjacent *adj;
6898 int ret;
6900 adj = __netdev_find_adj(adj_dev, dev_list);
6902 if (adj) {
6903 adj->ref_nr += 1;
6904 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6905 dev->name, adj_dev->name, adj->ref_nr);
6907 return 0;
6910 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6911 if (!adj)
6912 return -ENOMEM;
6914 adj->dev = adj_dev;
6915 adj->master = master;
6916 adj->ref_nr = 1;
6917 adj->private = private;
6918 dev_hold(adj_dev);
6920 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6921 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6923 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6924 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6925 if (ret)
6926 goto free_adj;
6929 /* Ensure that master link is always the first item in list. */
6930 if (master) {
6931 ret = sysfs_create_link(&(dev->dev.kobj),
6932 &(adj_dev->dev.kobj), "master");
6933 if (ret)
6934 goto remove_symlinks;
6936 list_add_rcu(&adj->list, dev_list);
6937 } else {
6938 list_add_tail_rcu(&adj->list, dev_list);
6941 return 0;
6943 remove_symlinks:
6944 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6945 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6946 free_adj:
6947 kfree(adj);
6948 dev_put(adj_dev);
6950 return ret;
6953 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6954 struct net_device *adj_dev,
6955 u16 ref_nr,
6956 struct list_head *dev_list)
6958 struct netdev_adjacent *adj;
6960 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6961 dev->name, adj_dev->name, ref_nr);
6963 adj = __netdev_find_adj(adj_dev, dev_list);
6965 if (!adj) {
6966 pr_err("Adjacency does not exist for device %s from %s\n",
6967 dev->name, adj_dev->name);
6968 WARN_ON(1);
6969 return;
6972 if (adj->ref_nr > ref_nr) {
6973 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6974 dev->name, adj_dev->name, ref_nr,
6975 adj->ref_nr - ref_nr);
6976 adj->ref_nr -= ref_nr;
6977 return;
6980 if (adj->master)
6981 sysfs_remove_link(&(dev->dev.kobj), "master");
6983 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6984 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6986 list_del_rcu(&adj->list);
6987 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6988 adj_dev->name, dev->name, adj_dev->name);
6989 dev_put(adj_dev);
6990 kfree_rcu(adj, rcu);
6993 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6994 struct net_device *upper_dev,
6995 struct list_head *up_list,
6996 struct list_head *down_list,
6997 void *private, bool master)
6999 int ret;
7001 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7002 private, master);
7003 if (ret)
7004 return ret;
7006 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7007 private, false);
7008 if (ret) {
7009 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7010 return ret;
7013 return 0;
7016 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7017 struct net_device *upper_dev,
7018 u16 ref_nr,
7019 struct list_head *up_list,
7020 struct list_head *down_list)
7022 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7023 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7026 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7027 struct net_device *upper_dev,
7028 void *private, bool master)
7030 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7031 &dev->adj_list.upper,
7032 &upper_dev->adj_list.lower,
7033 private, master);
7036 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7037 struct net_device *upper_dev)
7039 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7040 &dev->adj_list.upper,
7041 &upper_dev->adj_list.lower);
7044 static int __netdev_upper_dev_link(struct net_device *dev,
7045 struct net_device *upper_dev, bool master,
7046 void *upper_priv, void *upper_info,
7047 struct netlink_ext_ack *extack)
7049 struct netdev_notifier_changeupper_info changeupper_info = {
7050 .info = {
7051 .dev = dev,
7052 .extack = extack,
7054 .upper_dev = upper_dev,
7055 .master = master,
7056 .linking = true,
7057 .upper_info = upper_info,
7059 struct net_device *master_dev;
7060 int ret = 0;
7062 ASSERT_RTNL();
7064 if (dev == upper_dev)
7065 return -EBUSY;
7067 /* To prevent loops, check if dev is not upper device to upper_dev. */
7068 if (netdev_has_upper_dev(upper_dev, dev))
7069 return -EBUSY;
7071 if (!master) {
7072 if (netdev_has_upper_dev(dev, upper_dev))
7073 return -EEXIST;
7074 } else {
7075 master_dev = netdev_master_upper_dev_get(dev);
7076 if (master_dev)
7077 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7080 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7081 &changeupper_info.info);
7082 ret = notifier_to_errno(ret);
7083 if (ret)
7084 return ret;
7086 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7087 master);
7088 if (ret)
7089 return ret;
7091 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7092 &changeupper_info.info);
7093 ret = notifier_to_errno(ret);
7094 if (ret)
7095 goto rollback;
7097 return 0;
7099 rollback:
7100 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7102 return ret;
7106 * netdev_upper_dev_link - Add a link to the upper device
7107 * @dev: device
7108 * @upper_dev: new upper device
7109 * @extack: netlink extended ack
7111 * Adds a link to device which is upper to this one. The caller must hold
7112 * the RTNL lock. On a failure a negative errno code is returned.
7113 * On success the reference counts are adjusted and the function
7114 * returns zero.
7116 int netdev_upper_dev_link(struct net_device *dev,
7117 struct net_device *upper_dev,
7118 struct netlink_ext_ack *extack)
7120 return __netdev_upper_dev_link(dev, upper_dev, false,
7121 NULL, NULL, extack);
7123 EXPORT_SYMBOL(netdev_upper_dev_link);
7126 * netdev_master_upper_dev_link - Add a master link to the upper device
7127 * @dev: device
7128 * @upper_dev: new upper device
7129 * @upper_priv: upper device private
7130 * @upper_info: upper info to be passed down via notifier
7131 * @extack: netlink extended ack
7133 * Adds a link to device which is upper to this one. In this case, only
7134 * one master upper device can be linked, although other non-master devices
7135 * might be linked as well. The caller must hold the RTNL lock.
7136 * On a failure a negative errno code is returned. On success the reference
7137 * counts are adjusted and the function returns zero.
7139 int netdev_master_upper_dev_link(struct net_device *dev,
7140 struct net_device *upper_dev,
7141 void *upper_priv, void *upper_info,
7142 struct netlink_ext_ack *extack)
7144 return __netdev_upper_dev_link(dev, upper_dev, true,
7145 upper_priv, upper_info, extack);
7147 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7150 * netdev_upper_dev_unlink - Removes a link to upper device
7151 * @dev: device
7152 * @upper_dev: new upper device
7154 * Removes a link to device which is upper to this one. The caller must hold
7155 * the RTNL lock.
7157 void netdev_upper_dev_unlink(struct net_device *dev,
7158 struct net_device *upper_dev)
7160 struct netdev_notifier_changeupper_info changeupper_info = {
7161 .info = {
7162 .dev = dev,
7164 .upper_dev = upper_dev,
7165 .linking = false,
7168 ASSERT_RTNL();
7170 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7172 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7173 &changeupper_info.info);
7175 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7177 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7178 &changeupper_info.info);
7180 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7183 * netdev_bonding_info_change - Dispatch event about slave change
7184 * @dev: device
7185 * @bonding_info: info to dispatch
7187 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7188 * The caller must hold the RTNL lock.
7190 void netdev_bonding_info_change(struct net_device *dev,
7191 struct netdev_bonding_info *bonding_info)
7193 struct netdev_notifier_bonding_info info = {
7194 .info.dev = dev,
7197 memcpy(&info.bonding_info, bonding_info,
7198 sizeof(struct netdev_bonding_info));
7199 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7200 &info.info);
7202 EXPORT_SYMBOL(netdev_bonding_info_change);
7204 static void netdev_adjacent_add_links(struct net_device *dev)
7206 struct netdev_adjacent *iter;
7208 struct net *net = dev_net(dev);
7210 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7211 if (!net_eq(net, dev_net(iter->dev)))
7212 continue;
7213 netdev_adjacent_sysfs_add(iter->dev, dev,
7214 &iter->dev->adj_list.lower);
7215 netdev_adjacent_sysfs_add(dev, iter->dev,
7216 &dev->adj_list.upper);
7219 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7220 if (!net_eq(net, dev_net(iter->dev)))
7221 continue;
7222 netdev_adjacent_sysfs_add(iter->dev, dev,
7223 &iter->dev->adj_list.upper);
7224 netdev_adjacent_sysfs_add(dev, iter->dev,
7225 &dev->adj_list.lower);
7229 static void netdev_adjacent_del_links(struct net_device *dev)
7231 struct netdev_adjacent *iter;
7233 struct net *net = dev_net(dev);
7235 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7236 if (!net_eq(net, dev_net(iter->dev)))
7237 continue;
7238 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7239 &iter->dev->adj_list.lower);
7240 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7241 &dev->adj_list.upper);
7244 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7245 if (!net_eq(net, dev_net(iter->dev)))
7246 continue;
7247 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7248 &iter->dev->adj_list.upper);
7249 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7250 &dev->adj_list.lower);
7254 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7256 struct netdev_adjacent *iter;
7258 struct net *net = dev_net(dev);
7260 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7261 if (!net_eq(net, dev_net(iter->dev)))
7262 continue;
7263 netdev_adjacent_sysfs_del(iter->dev, oldname,
7264 &iter->dev->adj_list.lower);
7265 netdev_adjacent_sysfs_add(iter->dev, dev,
7266 &iter->dev->adj_list.lower);
7269 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7270 if (!net_eq(net, dev_net(iter->dev)))
7271 continue;
7272 netdev_adjacent_sysfs_del(iter->dev, oldname,
7273 &iter->dev->adj_list.upper);
7274 netdev_adjacent_sysfs_add(iter->dev, dev,
7275 &iter->dev->adj_list.upper);
7279 void *netdev_lower_dev_get_private(struct net_device *dev,
7280 struct net_device *lower_dev)
7282 struct netdev_adjacent *lower;
7284 if (!lower_dev)
7285 return NULL;
7286 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7287 if (!lower)
7288 return NULL;
7290 return lower->private;
7292 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7295 int dev_get_nest_level(struct net_device *dev)
7297 struct net_device *lower = NULL;
7298 struct list_head *iter;
7299 int max_nest = -1;
7300 int nest;
7302 ASSERT_RTNL();
7304 netdev_for_each_lower_dev(dev, lower, iter) {
7305 nest = dev_get_nest_level(lower);
7306 if (max_nest < nest)
7307 max_nest = nest;
7310 return max_nest + 1;
7312 EXPORT_SYMBOL(dev_get_nest_level);
7315 * netdev_lower_change - Dispatch event about lower device state change
7316 * @lower_dev: device
7317 * @lower_state_info: state to dispatch
7319 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7320 * The caller must hold the RTNL lock.
7322 void netdev_lower_state_changed(struct net_device *lower_dev,
7323 void *lower_state_info)
7325 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7326 .info.dev = lower_dev,
7329 ASSERT_RTNL();
7330 changelowerstate_info.lower_state_info = lower_state_info;
7331 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7332 &changelowerstate_info.info);
7334 EXPORT_SYMBOL(netdev_lower_state_changed);
7336 static void dev_change_rx_flags(struct net_device *dev, int flags)
7338 const struct net_device_ops *ops = dev->netdev_ops;
7340 if (ops->ndo_change_rx_flags)
7341 ops->ndo_change_rx_flags(dev, flags);
7344 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7346 unsigned int old_flags = dev->flags;
7347 kuid_t uid;
7348 kgid_t gid;
7350 ASSERT_RTNL();
7352 dev->flags |= IFF_PROMISC;
7353 dev->promiscuity += inc;
7354 if (dev->promiscuity == 0) {
7356 * Avoid overflow.
7357 * If inc causes overflow, untouch promisc and return error.
7359 if (inc < 0)
7360 dev->flags &= ~IFF_PROMISC;
7361 else {
7362 dev->promiscuity -= inc;
7363 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7364 dev->name);
7365 return -EOVERFLOW;
7368 if (dev->flags != old_flags) {
7369 pr_info("device %s %s promiscuous mode\n",
7370 dev->name,
7371 dev->flags & IFF_PROMISC ? "entered" : "left");
7372 if (audit_enabled) {
7373 current_uid_gid(&uid, &gid);
7374 audit_log(audit_context(), GFP_ATOMIC,
7375 AUDIT_ANOM_PROMISCUOUS,
7376 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7377 dev->name, (dev->flags & IFF_PROMISC),
7378 (old_flags & IFF_PROMISC),
7379 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7380 from_kuid(&init_user_ns, uid),
7381 from_kgid(&init_user_ns, gid),
7382 audit_get_sessionid(current));
7385 dev_change_rx_flags(dev, IFF_PROMISC);
7387 if (notify)
7388 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7389 return 0;
7393 * dev_set_promiscuity - update promiscuity count on a device
7394 * @dev: device
7395 * @inc: modifier
7397 * Add or remove promiscuity from a device. While the count in the device
7398 * remains above zero the interface remains promiscuous. Once it hits zero
7399 * the device reverts back to normal filtering operation. A negative inc
7400 * value is used to drop promiscuity on the device.
7401 * Return 0 if successful or a negative errno code on error.
7403 int dev_set_promiscuity(struct net_device *dev, int inc)
7405 unsigned int old_flags = dev->flags;
7406 int err;
7408 err = __dev_set_promiscuity(dev, inc, true);
7409 if (err < 0)
7410 return err;
7411 if (dev->flags != old_flags)
7412 dev_set_rx_mode(dev);
7413 return err;
7415 EXPORT_SYMBOL(dev_set_promiscuity);
7417 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7419 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7421 ASSERT_RTNL();
7423 dev->flags |= IFF_ALLMULTI;
7424 dev->allmulti += inc;
7425 if (dev->allmulti == 0) {
7427 * Avoid overflow.
7428 * If inc causes overflow, untouch allmulti and return error.
7430 if (inc < 0)
7431 dev->flags &= ~IFF_ALLMULTI;
7432 else {
7433 dev->allmulti -= inc;
7434 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7435 dev->name);
7436 return -EOVERFLOW;
7439 if (dev->flags ^ old_flags) {
7440 dev_change_rx_flags(dev, IFF_ALLMULTI);
7441 dev_set_rx_mode(dev);
7442 if (notify)
7443 __dev_notify_flags(dev, old_flags,
7444 dev->gflags ^ old_gflags);
7446 return 0;
7450 * dev_set_allmulti - update allmulti count on a device
7451 * @dev: device
7452 * @inc: modifier
7454 * Add or remove reception of all multicast frames to a device. While the
7455 * count in the device remains above zero the interface remains listening
7456 * to all interfaces. Once it hits zero the device reverts back to normal
7457 * filtering operation. A negative @inc value is used to drop the counter
7458 * when releasing a resource needing all multicasts.
7459 * Return 0 if successful or a negative errno code on error.
7462 int dev_set_allmulti(struct net_device *dev, int inc)
7464 return __dev_set_allmulti(dev, inc, true);
7466 EXPORT_SYMBOL(dev_set_allmulti);
7469 * Upload unicast and multicast address lists to device and
7470 * configure RX filtering. When the device doesn't support unicast
7471 * filtering it is put in promiscuous mode while unicast addresses
7472 * are present.
7474 void __dev_set_rx_mode(struct net_device *dev)
7476 const struct net_device_ops *ops = dev->netdev_ops;
7478 /* dev_open will call this function so the list will stay sane. */
7479 if (!(dev->flags&IFF_UP))
7480 return;
7482 if (!netif_device_present(dev))
7483 return;
7485 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7486 /* Unicast addresses changes may only happen under the rtnl,
7487 * therefore calling __dev_set_promiscuity here is safe.
7489 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7490 __dev_set_promiscuity(dev, 1, false);
7491 dev->uc_promisc = true;
7492 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7493 __dev_set_promiscuity(dev, -1, false);
7494 dev->uc_promisc = false;
7498 if (ops->ndo_set_rx_mode)
7499 ops->ndo_set_rx_mode(dev);
7502 void dev_set_rx_mode(struct net_device *dev)
7504 netif_addr_lock_bh(dev);
7505 __dev_set_rx_mode(dev);
7506 netif_addr_unlock_bh(dev);
7510 * dev_get_flags - get flags reported to userspace
7511 * @dev: device
7513 * Get the combination of flag bits exported through APIs to userspace.
7515 unsigned int dev_get_flags(const struct net_device *dev)
7517 unsigned int flags;
7519 flags = (dev->flags & ~(IFF_PROMISC |
7520 IFF_ALLMULTI |
7521 IFF_RUNNING |
7522 IFF_LOWER_UP |
7523 IFF_DORMANT)) |
7524 (dev->gflags & (IFF_PROMISC |
7525 IFF_ALLMULTI));
7527 if (netif_running(dev)) {
7528 if (netif_oper_up(dev))
7529 flags |= IFF_RUNNING;
7530 if (netif_carrier_ok(dev))
7531 flags |= IFF_LOWER_UP;
7532 if (netif_dormant(dev))
7533 flags |= IFF_DORMANT;
7536 return flags;
7538 EXPORT_SYMBOL(dev_get_flags);
7540 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7541 struct netlink_ext_ack *extack)
7543 unsigned int old_flags = dev->flags;
7544 int ret;
7546 ASSERT_RTNL();
7549 * Set the flags on our device.
7552 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7553 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7554 IFF_AUTOMEDIA)) |
7555 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7556 IFF_ALLMULTI));
7559 * Load in the correct multicast list now the flags have changed.
7562 if ((old_flags ^ flags) & IFF_MULTICAST)
7563 dev_change_rx_flags(dev, IFF_MULTICAST);
7565 dev_set_rx_mode(dev);
7568 * Have we downed the interface. We handle IFF_UP ourselves
7569 * according to user attempts to set it, rather than blindly
7570 * setting it.
7573 ret = 0;
7574 if ((old_flags ^ flags) & IFF_UP) {
7575 if (old_flags & IFF_UP)
7576 __dev_close(dev);
7577 else
7578 ret = __dev_open(dev, extack);
7581 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7582 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7583 unsigned int old_flags = dev->flags;
7585 dev->gflags ^= IFF_PROMISC;
7587 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7588 if (dev->flags != old_flags)
7589 dev_set_rx_mode(dev);
7592 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7593 * is important. Some (broken) drivers set IFF_PROMISC, when
7594 * IFF_ALLMULTI is requested not asking us and not reporting.
7596 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7597 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7599 dev->gflags ^= IFF_ALLMULTI;
7600 __dev_set_allmulti(dev, inc, false);
7603 return ret;
7606 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7607 unsigned int gchanges)
7609 unsigned int changes = dev->flags ^ old_flags;
7611 if (gchanges)
7612 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7614 if (changes & IFF_UP) {
7615 if (dev->flags & IFF_UP)
7616 call_netdevice_notifiers(NETDEV_UP, dev);
7617 else
7618 call_netdevice_notifiers(NETDEV_DOWN, dev);
7621 if (dev->flags & IFF_UP &&
7622 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7623 struct netdev_notifier_change_info change_info = {
7624 .info = {
7625 .dev = dev,
7627 .flags_changed = changes,
7630 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7635 * dev_change_flags - change device settings
7636 * @dev: device
7637 * @flags: device state flags
7638 * @extack: netlink extended ack
7640 * Change settings on device based state flags. The flags are
7641 * in the userspace exported format.
7643 int dev_change_flags(struct net_device *dev, unsigned int flags,
7644 struct netlink_ext_ack *extack)
7646 int ret;
7647 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7649 ret = __dev_change_flags(dev, flags, extack);
7650 if (ret < 0)
7651 return ret;
7653 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7654 __dev_notify_flags(dev, old_flags, changes);
7655 return ret;
7657 EXPORT_SYMBOL(dev_change_flags);
7659 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7661 const struct net_device_ops *ops = dev->netdev_ops;
7663 if (ops->ndo_change_mtu)
7664 return ops->ndo_change_mtu(dev, new_mtu);
7666 dev->mtu = new_mtu;
7667 return 0;
7669 EXPORT_SYMBOL(__dev_set_mtu);
7672 * dev_set_mtu_ext - Change maximum transfer unit
7673 * @dev: device
7674 * @new_mtu: new transfer unit
7675 * @extack: netlink extended ack
7677 * Change the maximum transfer size of the network device.
7679 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7680 struct netlink_ext_ack *extack)
7682 int err, orig_mtu;
7684 if (new_mtu == dev->mtu)
7685 return 0;
7687 /* MTU must be positive, and in range */
7688 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7689 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7690 return -EINVAL;
7693 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7694 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7695 return -EINVAL;
7698 if (!netif_device_present(dev))
7699 return -ENODEV;
7701 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7702 err = notifier_to_errno(err);
7703 if (err)
7704 return err;
7706 orig_mtu = dev->mtu;
7707 err = __dev_set_mtu(dev, new_mtu);
7709 if (!err) {
7710 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7711 orig_mtu);
7712 err = notifier_to_errno(err);
7713 if (err) {
7714 /* setting mtu back and notifying everyone again,
7715 * so that they have a chance to revert changes.
7717 __dev_set_mtu(dev, orig_mtu);
7718 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7719 new_mtu);
7722 return err;
7725 int dev_set_mtu(struct net_device *dev, int new_mtu)
7727 struct netlink_ext_ack extack;
7728 int err;
7730 memset(&extack, 0, sizeof(extack));
7731 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7732 if (err && extack._msg)
7733 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7734 return err;
7736 EXPORT_SYMBOL(dev_set_mtu);
7739 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7740 * @dev: device
7741 * @new_len: new tx queue length
7743 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7745 unsigned int orig_len = dev->tx_queue_len;
7746 int res;
7748 if (new_len != (unsigned int)new_len)
7749 return -ERANGE;
7751 if (new_len != orig_len) {
7752 dev->tx_queue_len = new_len;
7753 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7754 res = notifier_to_errno(res);
7755 if (res)
7756 goto err_rollback;
7757 res = dev_qdisc_change_tx_queue_len(dev);
7758 if (res)
7759 goto err_rollback;
7762 return 0;
7764 err_rollback:
7765 netdev_err(dev, "refused to change device tx_queue_len\n");
7766 dev->tx_queue_len = orig_len;
7767 return res;
7771 * dev_set_group - Change group this device belongs to
7772 * @dev: device
7773 * @new_group: group this device should belong to
7775 void dev_set_group(struct net_device *dev, int new_group)
7777 dev->group = new_group;
7779 EXPORT_SYMBOL(dev_set_group);
7782 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7783 * @dev: device
7784 * @addr: new address
7785 * @extack: netlink extended ack
7787 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7788 struct netlink_ext_ack *extack)
7790 struct netdev_notifier_pre_changeaddr_info info = {
7791 .info.dev = dev,
7792 .info.extack = extack,
7793 .dev_addr = addr,
7795 int rc;
7797 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7798 return notifier_to_errno(rc);
7800 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7803 * dev_set_mac_address - Change Media Access Control Address
7804 * @dev: device
7805 * @sa: new address
7806 * @extack: netlink extended ack
7808 * Change the hardware (MAC) address of the device
7810 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7811 struct netlink_ext_ack *extack)
7813 const struct net_device_ops *ops = dev->netdev_ops;
7814 int err;
7816 if (!ops->ndo_set_mac_address)
7817 return -EOPNOTSUPP;
7818 if (sa->sa_family != dev->type)
7819 return -EINVAL;
7820 if (!netif_device_present(dev))
7821 return -ENODEV;
7822 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7823 if (err)
7824 return err;
7825 err = ops->ndo_set_mac_address(dev, sa);
7826 if (err)
7827 return err;
7828 dev->addr_assign_type = NET_ADDR_SET;
7829 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7830 add_device_randomness(dev->dev_addr, dev->addr_len);
7831 return 0;
7833 EXPORT_SYMBOL(dev_set_mac_address);
7836 * dev_change_carrier - Change device carrier
7837 * @dev: device
7838 * @new_carrier: new value
7840 * Change device carrier
7842 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7844 const struct net_device_ops *ops = dev->netdev_ops;
7846 if (!ops->ndo_change_carrier)
7847 return -EOPNOTSUPP;
7848 if (!netif_device_present(dev))
7849 return -ENODEV;
7850 return ops->ndo_change_carrier(dev, new_carrier);
7852 EXPORT_SYMBOL(dev_change_carrier);
7855 * dev_get_phys_port_id - Get device physical port ID
7856 * @dev: device
7857 * @ppid: port ID
7859 * Get device physical port ID
7861 int dev_get_phys_port_id(struct net_device *dev,
7862 struct netdev_phys_item_id *ppid)
7864 const struct net_device_ops *ops = dev->netdev_ops;
7866 if (!ops->ndo_get_phys_port_id)
7867 return -EOPNOTSUPP;
7868 return ops->ndo_get_phys_port_id(dev, ppid);
7870 EXPORT_SYMBOL(dev_get_phys_port_id);
7873 * dev_get_phys_port_name - Get device physical port name
7874 * @dev: device
7875 * @name: port name
7876 * @len: limit of bytes to copy to name
7878 * Get device physical port name
7880 int dev_get_phys_port_name(struct net_device *dev,
7881 char *name, size_t len)
7883 const struct net_device_ops *ops = dev->netdev_ops;
7884 int err;
7886 if (ops->ndo_get_phys_port_name) {
7887 err = ops->ndo_get_phys_port_name(dev, name, len);
7888 if (err != -EOPNOTSUPP)
7889 return err;
7891 return devlink_compat_phys_port_name_get(dev, name, len);
7893 EXPORT_SYMBOL(dev_get_phys_port_name);
7896 * dev_get_port_parent_id - Get the device's port parent identifier
7897 * @dev: network device
7898 * @ppid: pointer to a storage for the port's parent identifier
7899 * @recurse: allow/disallow recursion to lower devices
7901 * Get the devices's port parent identifier
7903 int dev_get_port_parent_id(struct net_device *dev,
7904 struct netdev_phys_item_id *ppid,
7905 bool recurse)
7907 const struct net_device_ops *ops = dev->netdev_ops;
7908 struct netdev_phys_item_id first = { };
7909 struct net_device *lower_dev;
7910 struct list_head *iter;
7911 int err;
7913 if (ops->ndo_get_port_parent_id) {
7914 err = ops->ndo_get_port_parent_id(dev, ppid);
7915 if (err != -EOPNOTSUPP)
7916 return err;
7919 err = devlink_compat_switch_id_get(dev, ppid);
7920 if (!err || err != -EOPNOTSUPP)
7921 return err;
7923 if (!recurse)
7924 return -EOPNOTSUPP;
7926 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7927 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7928 if (err)
7929 break;
7930 if (!first.id_len)
7931 first = *ppid;
7932 else if (memcmp(&first, ppid, sizeof(*ppid)))
7933 return -ENODATA;
7936 return err;
7938 EXPORT_SYMBOL(dev_get_port_parent_id);
7941 * netdev_port_same_parent_id - Indicate if two network devices have
7942 * the same port parent identifier
7943 * @a: first network device
7944 * @b: second network device
7946 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7948 struct netdev_phys_item_id a_id = { };
7949 struct netdev_phys_item_id b_id = { };
7951 if (dev_get_port_parent_id(a, &a_id, true) ||
7952 dev_get_port_parent_id(b, &b_id, true))
7953 return false;
7955 return netdev_phys_item_id_same(&a_id, &b_id);
7957 EXPORT_SYMBOL(netdev_port_same_parent_id);
7960 * dev_change_proto_down - update protocol port state information
7961 * @dev: device
7962 * @proto_down: new value
7964 * This info can be used by switch drivers to set the phys state of the
7965 * port.
7967 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7969 const struct net_device_ops *ops = dev->netdev_ops;
7971 if (!ops->ndo_change_proto_down)
7972 return -EOPNOTSUPP;
7973 if (!netif_device_present(dev))
7974 return -ENODEV;
7975 return ops->ndo_change_proto_down(dev, proto_down);
7977 EXPORT_SYMBOL(dev_change_proto_down);
7980 * dev_change_proto_down_generic - generic implementation for
7981 * ndo_change_proto_down that sets carrier according to
7982 * proto_down.
7984 * @dev: device
7985 * @proto_down: new value
7987 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7989 if (proto_down)
7990 netif_carrier_off(dev);
7991 else
7992 netif_carrier_on(dev);
7993 dev->proto_down = proto_down;
7994 return 0;
7996 EXPORT_SYMBOL(dev_change_proto_down_generic);
7998 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7999 enum bpf_netdev_command cmd)
8001 struct netdev_bpf xdp;
8003 if (!bpf_op)
8004 return 0;
8006 memset(&xdp, 0, sizeof(xdp));
8007 xdp.command = cmd;
8009 /* Query must always succeed. */
8010 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8012 return xdp.prog_id;
8015 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8016 struct netlink_ext_ack *extack, u32 flags,
8017 struct bpf_prog *prog)
8019 struct netdev_bpf xdp;
8021 memset(&xdp, 0, sizeof(xdp));
8022 if (flags & XDP_FLAGS_HW_MODE)
8023 xdp.command = XDP_SETUP_PROG_HW;
8024 else
8025 xdp.command = XDP_SETUP_PROG;
8026 xdp.extack = extack;
8027 xdp.flags = flags;
8028 xdp.prog = prog;
8030 return bpf_op(dev, &xdp);
8033 static void dev_xdp_uninstall(struct net_device *dev)
8035 struct netdev_bpf xdp;
8036 bpf_op_t ndo_bpf;
8038 /* Remove generic XDP */
8039 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8041 /* Remove from the driver */
8042 ndo_bpf = dev->netdev_ops->ndo_bpf;
8043 if (!ndo_bpf)
8044 return;
8046 memset(&xdp, 0, sizeof(xdp));
8047 xdp.command = XDP_QUERY_PROG;
8048 WARN_ON(ndo_bpf(dev, &xdp));
8049 if (xdp.prog_id)
8050 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8051 NULL));
8053 /* Remove HW offload */
8054 memset(&xdp, 0, sizeof(xdp));
8055 xdp.command = XDP_QUERY_PROG_HW;
8056 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8057 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8058 NULL));
8062 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8063 * @dev: device
8064 * @extack: netlink extended ack
8065 * @fd: new program fd or negative value to clear
8066 * @flags: xdp-related flags
8068 * Set or clear a bpf program for a device
8070 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8071 int fd, u32 flags)
8073 const struct net_device_ops *ops = dev->netdev_ops;
8074 enum bpf_netdev_command query;
8075 struct bpf_prog *prog = NULL;
8076 bpf_op_t bpf_op, bpf_chk;
8077 bool offload;
8078 int err;
8080 ASSERT_RTNL();
8082 offload = flags & XDP_FLAGS_HW_MODE;
8083 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8085 bpf_op = bpf_chk = ops->ndo_bpf;
8086 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8087 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8088 return -EOPNOTSUPP;
8090 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8091 bpf_op = generic_xdp_install;
8092 if (bpf_op == bpf_chk)
8093 bpf_chk = generic_xdp_install;
8095 if (fd >= 0) {
8096 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8097 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8098 return -EEXIST;
8100 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8101 __dev_xdp_query(dev, bpf_op, query)) {
8102 NL_SET_ERR_MSG(extack, "XDP program already attached");
8103 return -EBUSY;
8106 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8107 bpf_op == ops->ndo_bpf);
8108 if (IS_ERR(prog))
8109 return PTR_ERR(prog);
8111 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8112 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8113 bpf_prog_put(prog);
8114 return -EINVAL;
8118 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8119 if (err < 0 && prog)
8120 bpf_prog_put(prog);
8122 return err;
8126 * dev_new_index - allocate an ifindex
8127 * @net: the applicable net namespace
8129 * Returns a suitable unique value for a new device interface
8130 * number. The caller must hold the rtnl semaphore or the
8131 * dev_base_lock to be sure it remains unique.
8133 static int dev_new_index(struct net *net)
8135 int ifindex = net->ifindex;
8137 for (;;) {
8138 if (++ifindex <= 0)
8139 ifindex = 1;
8140 if (!__dev_get_by_index(net, ifindex))
8141 return net->ifindex = ifindex;
8145 /* Delayed registration/unregisteration */
8146 static LIST_HEAD(net_todo_list);
8147 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8149 static void net_set_todo(struct net_device *dev)
8151 list_add_tail(&dev->todo_list, &net_todo_list);
8152 dev_net(dev)->dev_unreg_count++;
8155 static void rollback_registered_many(struct list_head *head)
8157 struct net_device *dev, *tmp;
8158 LIST_HEAD(close_head);
8160 BUG_ON(dev_boot_phase);
8161 ASSERT_RTNL();
8163 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8164 /* Some devices call without registering
8165 * for initialization unwind. Remove those
8166 * devices and proceed with the remaining.
8168 if (dev->reg_state == NETREG_UNINITIALIZED) {
8169 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8170 dev->name, dev);
8172 WARN_ON(1);
8173 list_del(&dev->unreg_list);
8174 continue;
8176 dev->dismantle = true;
8177 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8180 /* If device is running, close it first. */
8181 list_for_each_entry(dev, head, unreg_list)
8182 list_add_tail(&dev->close_list, &close_head);
8183 dev_close_many(&close_head, true);
8185 list_for_each_entry(dev, head, unreg_list) {
8186 /* And unlink it from device chain. */
8187 unlist_netdevice(dev);
8189 dev->reg_state = NETREG_UNREGISTERING;
8191 flush_all_backlogs();
8193 synchronize_net();
8195 list_for_each_entry(dev, head, unreg_list) {
8196 struct sk_buff *skb = NULL;
8198 /* Shutdown queueing discipline. */
8199 dev_shutdown(dev);
8201 dev_xdp_uninstall(dev);
8203 /* Notify protocols, that we are about to destroy
8204 * this device. They should clean all the things.
8206 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8208 if (!dev->rtnl_link_ops ||
8209 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8210 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8211 GFP_KERNEL, NULL, 0);
8214 * Flush the unicast and multicast chains
8216 dev_uc_flush(dev);
8217 dev_mc_flush(dev);
8219 if (dev->netdev_ops->ndo_uninit)
8220 dev->netdev_ops->ndo_uninit(dev);
8222 if (skb)
8223 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8225 /* Notifier chain MUST detach us all upper devices. */
8226 WARN_ON(netdev_has_any_upper_dev(dev));
8227 WARN_ON(netdev_has_any_lower_dev(dev));
8229 /* Remove entries from kobject tree */
8230 netdev_unregister_kobject(dev);
8231 #ifdef CONFIG_XPS
8232 /* Remove XPS queueing entries */
8233 netif_reset_xps_queues_gt(dev, 0);
8234 #endif
8237 synchronize_net();
8239 list_for_each_entry(dev, head, unreg_list)
8240 dev_put(dev);
8243 static void rollback_registered(struct net_device *dev)
8245 LIST_HEAD(single);
8247 list_add(&dev->unreg_list, &single);
8248 rollback_registered_many(&single);
8249 list_del(&single);
8252 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8253 struct net_device *upper, netdev_features_t features)
8255 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8256 netdev_features_t feature;
8257 int feature_bit;
8259 for_each_netdev_feature(upper_disables, feature_bit) {
8260 feature = __NETIF_F_BIT(feature_bit);
8261 if (!(upper->wanted_features & feature)
8262 && (features & feature)) {
8263 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8264 &feature, upper->name);
8265 features &= ~feature;
8269 return features;
8272 static void netdev_sync_lower_features(struct net_device *upper,
8273 struct net_device *lower, netdev_features_t features)
8275 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8276 netdev_features_t feature;
8277 int feature_bit;
8279 for_each_netdev_feature(upper_disables, feature_bit) {
8280 feature = __NETIF_F_BIT(feature_bit);
8281 if (!(features & feature) && (lower->features & feature)) {
8282 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8283 &feature, lower->name);
8284 lower->wanted_features &= ~feature;
8285 netdev_update_features(lower);
8287 if (unlikely(lower->features & feature))
8288 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8289 &feature, lower->name);
8294 static netdev_features_t netdev_fix_features(struct net_device *dev,
8295 netdev_features_t features)
8297 /* Fix illegal checksum combinations */
8298 if ((features & NETIF_F_HW_CSUM) &&
8299 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8300 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8301 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8304 /* TSO requires that SG is present as well. */
8305 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8306 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8307 features &= ~NETIF_F_ALL_TSO;
8310 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8311 !(features & NETIF_F_IP_CSUM)) {
8312 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8313 features &= ~NETIF_F_TSO;
8314 features &= ~NETIF_F_TSO_ECN;
8317 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8318 !(features & NETIF_F_IPV6_CSUM)) {
8319 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8320 features &= ~NETIF_F_TSO6;
8323 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8324 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8325 features &= ~NETIF_F_TSO_MANGLEID;
8327 /* TSO ECN requires that TSO is present as well. */
8328 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8329 features &= ~NETIF_F_TSO_ECN;
8331 /* Software GSO depends on SG. */
8332 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8333 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8334 features &= ~NETIF_F_GSO;
8337 /* GSO partial features require GSO partial be set */
8338 if ((features & dev->gso_partial_features) &&
8339 !(features & NETIF_F_GSO_PARTIAL)) {
8340 netdev_dbg(dev,
8341 "Dropping partially supported GSO features since no GSO partial.\n");
8342 features &= ~dev->gso_partial_features;
8345 if (!(features & NETIF_F_RXCSUM)) {
8346 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8347 * successfully merged by hardware must also have the
8348 * checksum verified by hardware. If the user does not
8349 * want to enable RXCSUM, logically, we should disable GRO_HW.
8351 if (features & NETIF_F_GRO_HW) {
8352 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8353 features &= ~NETIF_F_GRO_HW;
8357 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8358 if (features & NETIF_F_RXFCS) {
8359 if (features & NETIF_F_LRO) {
8360 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8361 features &= ~NETIF_F_LRO;
8364 if (features & NETIF_F_GRO_HW) {
8365 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8366 features &= ~NETIF_F_GRO_HW;
8370 return features;
8373 int __netdev_update_features(struct net_device *dev)
8375 struct net_device *upper, *lower;
8376 netdev_features_t features;
8377 struct list_head *iter;
8378 int err = -1;
8380 ASSERT_RTNL();
8382 features = netdev_get_wanted_features(dev);
8384 if (dev->netdev_ops->ndo_fix_features)
8385 features = dev->netdev_ops->ndo_fix_features(dev, features);
8387 /* driver might be less strict about feature dependencies */
8388 features = netdev_fix_features(dev, features);
8390 /* some features can't be enabled if they're off an an upper device */
8391 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8392 features = netdev_sync_upper_features(dev, upper, features);
8394 if (dev->features == features)
8395 goto sync_lower;
8397 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8398 &dev->features, &features);
8400 if (dev->netdev_ops->ndo_set_features)
8401 err = dev->netdev_ops->ndo_set_features(dev, features);
8402 else
8403 err = 0;
8405 if (unlikely(err < 0)) {
8406 netdev_err(dev,
8407 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8408 err, &features, &dev->features);
8409 /* return non-0 since some features might have changed and
8410 * it's better to fire a spurious notification than miss it
8412 return -1;
8415 sync_lower:
8416 /* some features must be disabled on lower devices when disabled
8417 * on an upper device (think: bonding master or bridge)
8419 netdev_for_each_lower_dev(dev, lower, iter)
8420 netdev_sync_lower_features(dev, lower, features);
8422 if (!err) {
8423 netdev_features_t diff = features ^ dev->features;
8425 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8426 /* udp_tunnel_{get,drop}_rx_info both need
8427 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8428 * device, or they won't do anything.
8429 * Thus we need to update dev->features
8430 * *before* calling udp_tunnel_get_rx_info,
8431 * but *after* calling udp_tunnel_drop_rx_info.
8433 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8434 dev->features = features;
8435 udp_tunnel_get_rx_info(dev);
8436 } else {
8437 udp_tunnel_drop_rx_info(dev);
8441 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8442 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8443 dev->features = features;
8444 err |= vlan_get_rx_ctag_filter_info(dev);
8445 } else {
8446 vlan_drop_rx_ctag_filter_info(dev);
8450 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8451 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8452 dev->features = features;
8453 err |= vlan_get_rx_stag_filter_info(dev);
8454 } else {
8455 vlan_drop_rx_stag_filter_info(dev);
8459 dev->features = features;
8462 return err < 0 ? 0 : 1;
8466 * netdev_update_features - recalculate device features
8467 * @dev: the device to check
8469 * Recalculate dev->features set and send notifications if it
8470 * has changed. Should be called after driver or hardware dependent
8471 * conditions might have changed that influence the features.
8473 void netdev_update_features(struct net_device *dev)
8475 if (__netdev_update_features(dev))
8476 netdev_features_change(dev);
8478 EXPORT_SYMBOL(netdev_update_features);
8481 * netdev_change_features - recalculate device features
8482 * @dev: the device to check
8484 * Recalculate dev->features set and send notifications even
8485 * if they have not changed. Should be called instead of
8486 * netdev_update_features() if also dev->vlan_features might
8487 * have changed to allow the changes to be propagated to stacked
8488 * VLAN devices.
8490 void netdev_change_features(struct net_device *dev)
8492 __netdev_update_features(dev);
8493 netdev_features_change(dev);
8495 EXPORT_SYMBOL(netdev_change_features);
8498 * netif_stacked_transfer_operstate - transfer operstate
8499 * @rootdev: the root or lower level device to transfer state from
8500 * @dev: the device to transfer operstate to
8502 * Transfer operational state from root to device. This is normally
8503 * called when a stacking relationship exists between the root
8504 * device and the device(a leaf device).
8506 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8507 struct net_device *dev)
8509 if (rootdev->operstate == IF_OPER_DORMANT)
8510 netif_dormant_on(dev);
8511 else
8512 netif_dormant_off(dev);
8514 if (netif_carrier_ok(rootdev))
8515 netif_carrier_on(dev);
8516 else
8517 netif_carrier_off(dev);
8519 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8521 static int netif_alloc_rx_queues(struct net_device *dev)
8523 unsigned int i, count = dev->num_rx_queues;
8524 struct netdev_rx_queue *rx;
8525 size_t sz = count * sizeof(*rx);
8526 int err = 0;
8528 BUG_ON(count < 1);
8530 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8531 if (!rx)
8532 return -ENOMEM;
8534 dev->_rx = rx;
8536 for (i = 0; i < count; i++) {
8537 rx[i].dev = dev;
8539 /* XDP RX-queue setup */
8540 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8541 if (err < 0)
8542 goto err_rxq_info;
8544 return 0;
8546 err_rxq_info:
8547 /* Rollback successful reg's and free other resources */
8548 while (i--)
8549 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8550 kvfree(dev->_rx);
8551 dev->_rx = NULL;
8552 return err;
8555 static void netif_free_rx_queues(struct net_device *dev)
8557 unsigned int i, count = dev->num_rx_queues;
8559 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8560 if (!dev->_rx)
8561 return;
8563 for (i = 0; i < count; i++)
8564 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8566 kvfree(dev->_rx);
8569 static void netdev_init_one_queue(struct net_device *dev,
8570 struct netdev_queue *queue, void *_unused)
8572 /* Initialize queue lock */
8573 spin_lock_init(&queue->_xmit_lock);
8574 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8575 queue->xmit_lock_owner = -1;
8576 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8577 queue->dev = dev;
8578 #ifdef CONFIG_BQL
8579 dql_init(&queue->dql, HZ);
8580 #endif
8583 static void netif_free_tx_queues(struct net_device *dev)
8585 kvfree(dev->_tx);
8588 static int netif_alloc_netdev_queues(struct net_device *dev)
8590 unsigned int count = dev->num_tx_queues;
8591 struct netdev_queue *tx;
8592 size_t sz = count * sizeof(*tx);
8594 if (count < 1 || count > 0xffff)
8595 return -EINVAL;
8597 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8598 if (!tx)
8599 return -ENOMEM;
8601 dev->_tx = tx;
8603 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8604 spin_lock_init(&dev->tx_global_lock);
8606 return 0;
8609 void netif_tx_stop_all_queues(struct net_device *dev)
8611 unsigned int i;
8613 for (i = 0; i < dev->num_tx_queues; i++) {
8614 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8616 netif_tx_stop_queue(txq);
8619 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8622 * register_netdevice - register a network device
8623 * @dev: device to register
8625 * Take a completed network device structure and add it to the kernel
8626 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8627 * chain. 0 is returned on success. A negative errno code is returned
8628 * on a failure to set up the device, or if the name is a duplicate.
8630 * Callers must hold the rtnl semaphore. You may want
8631 * register_netdev() instead of this.
8633 * BUGS:
8634 * The locking appears insufficient to guarantee two parallel registers
8635 * will not get the same name.
8638 int register_netdevice(struct net_device *dev)
8640 int ret;
8641 struct net *net = dev_net(dev);
8643 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8644 NETDEV_FEATURE_COUNT);
8645 BUG_ON(dev_boot_phase);
8646 ASSERT_RTNL();
8648 might_sleep();
8650 /* When net_device's are persistent, this will be fatal. */
8651 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8652 BUG_ON(!net);
8654 spin_lock_init(&dev->addr_list_lock);
8655 netdev_set_addr_lockdep_class(dev);
8657 ret = dev_get_valid_name(net, dev, dev->name);
8658 if (ret < 0)
8659 goto out;
8661 /* Init, if this function is available */
8662 if (dev->netdev_ops->ndo_init) {
8663 ret = dev->netdev_ops->ndo_init(dev);
8664 if (ret) {
8665 if (ret > 0)
8666 ret = -EIO;
8667 goto out;
8671 if (((dev->hw_features | dev->features) &
8672 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8673 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8674 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8675 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8676 ret = -EINVAL;
8677 goto err_uninit;
8680 ret = -EBUSY;
8681 if (!dev->ifindex)
8682 dev->ifindex = dev_new_index(net);
8683 else if (__dev_get_by_index(net, dev->ifindex))
8684 goto err_uninit;
8686 /* Transfer changeable features to wanted_features and enable
8687 * software offloads (GSO and GRO).
8689 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8690 dev->features |= NETIF_F_SOFT_FEATURES;
8692 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8693 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8694 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8697 dev->wanted_features = dev->features & dev->hw_features;
8699 if (!(dev->flags & IFF_LOOPBACK))
8700 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8702 /* If IPv4 TCP segmentation offload is supported we should also
8703 * allow the device to enable segmenting the frame with the option
8704 * of ignoring a static IP ID value. This doesn't enable the
8705 * feature itself but allows the user to enable it later.
8707 if (dev->hw_features & NETIF_F_TSO)
8708 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8709 if (dev->vlan_features & NETIF_F_TSO)
8710 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8711 if (dev->mpls_features & NETIF_F_TSO)
8712 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8713 if (dev->hw_enc_features & NETIF_F_TSO)
8714 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8716 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8718 dev->vlan_features |= NETIF_F_HIGHDMA;
8720 /* Make NETIF_F_SG inheritable to tunnel devices.
8722 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8724 /* Make NETIF_F_SG inheritable to MPLS.
8726 dev->mpls_features |= NETIF_F_SG;
8728 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8729 ret = notifier_to_errno(ret);
8730 if (ret)
8731 goto err_uninit;
8733 ret = netdev_register_kobject(dev);
8734 if (ret)
8735 goto err_uninit;
8736 dev->reg_state = NETREG_REGISTERED;
8738 __netdev_update_features(dev);
8741 * Default initial state at registry is that the
8742 * device is present.
8745 set_bit(__LINK_STATE_PRESENT, &dev->state);
8747 linkwatch_init_dev(dev);
8749 dev_init_scheduler(dev);
8750 dev_hold(dev);
8751 list_netdevice(dev);
8752 add_device_randomness(dev->dev_addr, dev->addr_len);
8754 /* If the device has permanent device address, driver should
8755 * set dev_addr and also addr_assign_type should be set to
8756 * NET_ADDR_PERM (default value).
8758 if (dev->addr_assign_type == NET_ADDR_PERM)
8759 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8761 /* Notify protocols, that a new device appeared. */
8762 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8763 ret = notifier_to_errno(ret);
8764 if (ret) {
8765 rollback_registered(dev);
8766 dev->reg_state = NETREG_UNREGISTERED;
8769 * Prevent userspace races by waiting until the network
8770 * device is fully setup before sending notifications.
8772 if (!dev->rtnl_link_ops ||
8773 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8774 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8776 out:
8777 return ret;
8779 err_uninit:
8780 if (dev->netdev_ops->ndo_uninit)
8781 dev->netdev_ops->ndo_uninit(dev);
8782 if (dev->priv_destructor)
8783 dev->priv_destructor(dev);
8784 goto out;
8786 EXPORT_SYMBOL(register_netdevice);
8789 * init_dummy_netdev - init a dummy network device for NAPI
8790 * @dev: device to init
8792 * This takes a network device structure and initialize the minimum
8793 * amount of fields so it can be used to schedule NAPI polls without
8794 * registering a full blown interface. This is to be used by drivers
8795 * that need to tie several hardware interfaces to a single NAPI
8796 * poll scheduler due to HW limitations.
8798 int init_dummy_netdev(struct net_device *dev)
8800 /* Clear everything. Note we don't initialize spinlocks
8801 * are they aren't supposed to be taken by any of the
8802 * NAPI code and this dummy netdev is supposed to be
8803 * only ever used for NAPI polls
8805 memset(dev, 0, sizeof(struct net_device));
8807 /* make sure we BUG if trying to hit standard
8808 * register/unregister code path
8810 dev->reg_state = NETREG_DUMMY;
8812 /* NAPI wants this */
8813 INIT_LIST_HEAD(&dev->napi_list);
8815 /* a dummy interface is started by default */
8816 set_bit(__LINK_STATE_PRESENT, &dev->state);
8817 set_bit(__LINK_STATE_START, &dev->state);
8819 /* napi_busy_loop stats accounting wants this */
8820 dev_net_set(dev, &init_net);
8822 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8823 * because users of this 'device' dont need to change
8824 * its refcount.
8827 return 0;
8829 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8833 * register_netdev - register a network device
8834 * @dev: device to register
8836 * Take a completed network device structure and add it to the kernel
8837 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8838 * chain. 0 is returned on success. A negative errno code is returned
8839 * on a failure to set up the device, or if the name is a duplicate.
8841 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8842 * and expands the device name if you passed a format string to
8843 * alloc_netdev.
8845 int register_netdev(struct net_device *dev)
8847 int err;
8849 if (rtnl_lock_killable())
8850 return -EINTR;
8851 err = register_netdevice(dev);
8852 rtnl_unlock();
8853 return err;
8855 EXPORT_SYMBOL(register_netdev);
8857 int netdev_refcnt_read(const struct net_device *dev)
8859 int i, refcnt = 0;
8861 for_each_possible_cpu(i)
8862 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8863 return refcnt;
8865 EXPORT_SYMBOL(netdev_refcnt_read);
8868 * netdev_wait_allrefs - wait until all references are gone.
8869 * @dev: target net_device
8871 * This is called when unregistering network devices.
8873 * Any protocol or device that holds a reference should register
8874 * for netdevice notification, and cleanup and put back the
8875 * reference if they receive an UNREGISTER event.
8876 * We can get stuck here if buggy protocols don't correctly
8877 * call dev_put.
8879 static void netdev_wait_allrefs(struct net_device *dev)
8881 unsigned long rebroadcast_time, warning_time;
8882 int refcnt;
8884 linkwatch_forget_dev(dev);
8886 rebroadcast_time = warning_time = jiffies;
8887 refcnt = netdev_refcnt_read(dev);
8889 while (refcnt != 0) {
8890 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8891 rtnl_lock();
8893 /* Rebroadcast unregister notification */
8894 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8896 __rtnl_unlock();
8897 rcu_barrier();
8898 rtnl_lock();
8900 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8901 &dev->state)) {
8902 /* We must not have linkwatch events
8903 * pending on unregister. If this
8904 * happens, we simply run the queue
8905 * unscheduled, resulting in a noop
8906 * for this device.
8908 linkwatch_run_queue();
8911 __rtnl_unlock();
8913 rebroadcast_time = jiffies;
8916 msleep(250);
8918 refcnt = netdev_refcnt_read(dev);
8920 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8921 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8922 dev->name, refcnt);
8923 warning_time = jiffies;
8928 /* The sequence is:
8930 * rtnl_lock();
8931 * ...
8932 * register_netdevice(x1);
8933 * register_netdevice(x2);
8934 * ...
8935 * unregister_netdevice(y1);
8936 * unregister_netdevice(y2);
8937 * ...
8938 * rtnl_unlock();
8939 * free_netdev(y1);
8940 * free_netdev(y2);
8942 * We are invoked by rtnl_unlock().
8943 * This allows us to deal with problems:
8944 * 1) We can delete sysfs objects which invoke hotplug
8945 * without deadlocking with linkwatch via keventd.
8946 * 2) Since we run with the RTNL semaphore not held, we can sleep
8947 * safely in order to wait for the netdev refcnt to drop to zero.
8949 * We must not return until all unregister events added during
8950 * the interval the lock was held have been completed.
8952 void netdev_run_todo(void)
8954 struct list_head list;
8956 /* Snapshot list, allow later requests */
8957 list_replace_init(&net_todo_list, &list);
8959 __rtnl_unlock();
8962 /* Wait for rcu callbacks to finish before next phase */
8963 if (!list_empty(&list))
8964 rcu_barrier();
8966 while (!list_empty(&list)) {
8967 struct net_device *dev
8968 = list_first_entry(&list, struct net_device, todo_list);
8969 list_del(&dev->todo_list);
8971 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8972 pr_err("network todo '%s' but state %d\n",
8973 dev->name, dev->reg_state);
8974 dump_stack();
8975 continue;
8978 dev->reg_state = NETREG_UNREGISTERED;
8980 netdev_wait_allrefs(dev);
8982 /* paranoia */
8983 BUG_ON(netdev_refcnt_read(dev));
8984 BUG_ON(!list_empty(&dev->ptype_all));
8985 BUG_ON(!list_empty(&dev->ptype_specific));
8986 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8987 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8988 #if IS_ENABLED(CONFIG_DECNET)
8989 WARN_ON(dev->dn_ptr);
8990 #endif
8991 if (dev->priv_destructor)
8992 dev->priv_destructor(dev);
8993 if (dev->needs_free_netdev)
8994 free_netdev(dev);
8996 /* Report a network device has been unregistered */
8997 rtnl_lock();
8998 dev_net(dev)->dev_unreg_count--;
8999 __rtnl_unlock();
9000 wake_up(&netdev_unregistering_wq);
9002 /* Free network device */
9003 kobject_put(&dev->dev.kobj);
9007 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9008 * all the same fields in the same order as net_device_stats, with only
9009 * the type differing, but rtnl_link_stats64 may have additional fields
9010 * at the end for newer counters.
9012 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9013 const struct net_device_stats *netdev_stats)
9015 #if BITS_PER_LONG == 64
9016 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9017 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9018 /* zero out counters that only exist in rtnl_link_stats64 */
9019 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9020 sizeof(*stats64) - sizeof(*netdev_stats));
9021 #else
9022 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9023 const unsigned long *src = (const unsigned long *)netdev_stats;
9024 u64 *dst = (u64 *)stats64;
9026 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9027 for (i = 0; i < n; i++)
9028 dst[i] = src[i];
9029 /* zero out counters that only exist in rtnl_link_stats64 */
9030 memset((char *)stats64 + n * sizeof(u64), 0,
9031 sizeof(*stats64) - n * sizeof(u64));
9032 #endif
9034 EXPORT_SYMBOL(netdev_stats_to_stats64);
9037 * dev_get_stats - get network device statistics
9038 * @dev: device to get statistics from
9039 * @storage: place to store stats
9041 * Get network statistics from device. Return @storage.
9042 * The device driver may provide its own method by setting
9043 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9044 * otherwise the internal statistics structure is used.
9046 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9047 struct rtnl_link_stats64 *storage)
9049 const struct net_device_ops *ops = dev->netdev_ops;
9051 if (ops->ndo_get_stats64) {
9052 memset(storage, 0, sizeof(*storage));
9053 ops->ndo_get_stats64(dev, storage);
9054 } else if (ops->ndo_get_stats) {
9055 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9056 } else {
9057 netdev_stats_to_stats64(storage, &dev->stats);
9059 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9060 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9061 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9062 return storage;
9064 EXPORT_SYMBOL(dev_get_stats);
9066 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9068 struct netdev_queue *queue = dev_ingress_queue(dev);
9070 #ifdef CONFIG_NET_CLS_ACT
9071 if (queue)
9072 return queue;
9073 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9074 if (!queue)
9075 return NULL;
9076 netdev_init_one_queue(dev, queue, NULL);
9077 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9078 queue->qdisc_sleeping = &noop_qdisc;
9079 rcu_assign_pointer(dev->ingress_queue, queue);
9080 #endif
9081 return queue;
9084 static const struct ethtool_ops default_ethtool_ops;
9086 void netdev_set_default_ethtool_ops(struct net_device *dev,
9087 const struct ethtool_ops *ops)
9089 if (dev->ethtool_ops == &default_ethtool_ops)
9090 dev->ethtool_ops = ops;
9092 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9094 void netdev_freemem(struct net_device *dev)
9096 char *addr = (char *)dev - dev->padded;
9098 kvfree(addr);
9102 * alloc_netdev_mqs - allocate network device
9103 * @sizeof_priv: size of private data to allocate space for
9104 * @name: device name format string
9105 * @name_assign_type: origin of device name
9106 * @setup: callback to initialize device
9107 * @txqs: the number of TX subqueues to allocate
9108 * @rxqs: the number of RX subqueues to allocate
9110 * Allocates a struct net_device with private data area for driver use
9111 * and performs basic initialization. Also allocates subqueue structs
9112 * for each queue on the device.
9114 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9115 unsigned char name_assign_type,
9116 void (*setup)(struct net_device *),
9117 unsigned int txqs, unsigned int rxqs)
9119 struct net_device *dev;
9120 unsigned int alloc_size;
9121 struct net_device *p;
9123 BUG_ON(strlen(name) >= sizeof(dev->name));
9125 if (txqs < 1) {
9126 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9127 return NULL;
9130 if (rxqs < 1) {
9131 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9132 return NULL;
9135 alloc_size = sizeof(struct net_device);
9136 if (sizeof_priv) {
9137 /* ensure 32-byte alignment of private area */
9138 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9139 alloc_size += sizeof_priv;
9141 /* ensure 32-byte alignment of whole construct */
9142 alloc_size += NETDEV_ALIGN - 1;
9144 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9145 if (!p)
9146 return NULL;
9148 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9149 dev->padded = (char *)dev - (char *)p;
9151 dev->pcpu_refcnt = alloc_percpu(int);
9152 if (!dev->pcpu_refcnt)
9153 goto free_dev;
9155 if (dev_addr_init(dev))
9156 goto free_pcpu;
9158 dev_mc_init(dev);
9159 dev_uc_init(dev);
9161 dev_net_set(dev, &init_net);
9163 dev->gso_max_size = GSO_MAX_SIZE;
9164 dev->gso_max_segs = GSO_MAX_SEGS;
9166 INIT_LIST_HEAD(&dev->napi_list);
9167 INIT_LIST_HEAD(&dev->unreg_list);
9168 INIT_LIST_HEAD(&dev->close_list);
9169 INIT_LIST_HEAD(&dev->link_watch_list);
9170 INIT_LIST_HEAD(&dev->adj_list.upper);
9171 INIT_LIST_HEAD(&dev->adj_list.lower);
9172 INIT_LIST_HEAD(&dev->ptype_all);
9173 INIT_LIST_HEAD(&dev->ptype_specific);
9174 #ifdef CONFIG_NET_SCHED
9175 hash_init(dev->qdisc_hash);
9176 #endif
9177 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9178 setup(dev);
9180 if (!dev->tx_queue_len) {
9181 dev->priv_flags |= IFF_NO_QUEUE;
9182 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9185 dev->num_tx_queues = txqs;
9186 dev->real_num_tx_queues = txqs;
9187 if (netif_alloc_netdev_queues(dev))
9188 goto free_all;
9190 dev->num_rx_queues = rxqs;
9191 dev->real_num_rx_queues = rxqs;
9192 if (netif_alloc_rx_queues(dev))
9193 goto free_all;
9195 strcpy(dev->name, name);
9196 dev->name_assign_type = name_assign_type;
9197 dev->group = INIT_NETDEV_GROUP;
9198 if (!dev->ethtool_ops)
9199 dev->ethtool_ops = &default_ethtool_ops;
9201 nf_hook_ingress_init(dev);
9203 return dev;
9205 free_all:
9206 free_netdev(dev);
9207 return NULL;
9209 free_pcpu:
9210 free_percpu(dev->pcpu_refcnt);
9211 free_dev:
9212 netdev_freemem(dev);
9213 return NULL;
9215 EXPORT_SYMBOL(alloc_netdev_mqs);
9218 * free_netdev - free network device
9219 * @dev: device
9221 * This function does the last stage of destroying an allocated device
9222 * interface. The reference to the device object is released. If this
9223 * is the last reference then it will be freed.Must be called in process
9224 * context.
9226 void free_netdev(struct net_device *dev)
9228 struct napi_struct *p, *n;
9230 might_sleep();
9231 netif_free_tx_queues(dev);
9232 netif_free_rx_queues(dev);
9234 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9236 /* Flush device addresses */
9237 dev_addr_flush(dev);
9239 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9240 netif_napi_del(p);
9242 free_percpu(dev->pcpu_refcnt);
9243 dev->pcpu_refcnt = NULL;
9245 /* Compatibility with error handling in drivers */
9246 if (dev->reg_state == NETREG_UNINITIALIZED) {
9247 netdev_freemem(dev);
9248 return;
9251 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9252 dev->reg_state = NETREG_RELEASED;
9254 /* will free via device release */
9255 put_device(&dev->dev);
9257 EXPORT_SYMBOL(free_netdev);
9260 * synchronize_net - Synchronize with packet receive processing
9262 * Wait for packets currently being received to be done.
9263 * Does not block later packets from starting.
9265 void synchronize_net(void)
9267 might_sleep();
9268 if (rtnl_is_locked())
9269 synchronize_rcu_expedited();
9270 else
9271 synchronize_rcu();
9273 EXPORT_SYMBOL(synchronize_net);
9276 * unregister_netdevice_queue - remove device from the kernel
9277 * @dev: device
9278 * @head: list
9280 * This function shuts down a device interface and removes it
9281 * from the kernel tables.
9282 * If head not NULL, device is queued to be unregistered later.
9284 * Callers must hold the rtnl semaphore. You may want
9285 * unregister_netdev() instead of this.
9288 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9290 ASSERT_RTNL();
9292 if (head) {
9293 list_move_tail(&dev->unreg_list, head);
9294 } else {
9295 rollback_registered(dev);
9296 /* Finish processing unregister after unlock */
9297 net_set_todo(dev);
9300 EXPORT_SYMBOL(unregister_netdevice_queue);
9303 * unregister_netdevice_many - unregister many devices
9304 * @head: list of devices
9306 * Note: As most callers use a stack allocated list_head,
9307 * we force a list_del() to make sure stack wont be corrupted later.
9309 void unregister_netdevice_many(struct list_head *head)
9311 struct net_device *dev;
9313 if (!list_empty(head)) {
9314 rollback_registered_many(head);
9315 list_for_each_entry(dev, head, unreg_list)
9316 net_set_todo(dev);
9317 list_del(head);
9320 EXPORT_SYMBOL(unregister_netdevice_many);
9323 * unregister_netdev - remove device from the kernel
9324 * @dev: device
9326 * This function shuts down a device interface and removes it
9327 * from the kernel tables.
9329 * This is just a wrapper for unregister_netdevice that takes
9330 * the rtnl semaphore. In general you want to use this and not
9331 * unregister_netdevice.
9333 void unregister_netdev(struct net_device *dev)
9335 rtnl_lock();
9336 unregister_netdevice(dev);
9337 rtnl_unlock();
9339 EXPORT_SYMBOL(unregister_netdev);
9342 * dev_change_net_namespace - move device to different nethost namespace
9343 * @dev: device
9344 * @net: network namespace
9345 * @pat: If not NULL name pattern to try if the current device name
9346 * is already taken in the destination network namespace.
9348 * This function shuts down a device interface and moves it
9349 * to a new network namespace. On success 0 is returned, on
9350 * a failure a netagive errno code is returned.
9352 * Callers must hold the rtnl semaphore.
9355 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9357 int err, new_nsid, new_ifindex;
9359 ASSERT_RTNL();
9361 /* Don't allow namespace local devices to be moved. */
9362 err = -EINVAL;
9363 if (dev->features & NETIF_F_NETNS_LOCAL)
9364 goto out;
9366 /* Ensure the device has been registrered */
9367 if (dev->reg_state != NETREG_REGISTERED)
9368 goto out;
9370 /* Get out if there is nothing todo */
9371 err = 0;
9372 if (net_eq(dev_net(dev), net))
9373 goto out;
9375 /* Pick the destination device name, and ensure
9376 * we can use it in the destination network namespace.
9378 err = -EEXIST;
9379 if (__dev_get_by_name(net, dev->name)) {
9380 /* We get here if we can't use the current device name */
9381 if (!pat)
9382 goto out;
9383 err = dev_get_valid_name(net, dev, pat);
9384 if (err < 0)
9385 goto out;
9389 * And now a mini version of register_netdevice unregister_netdevice.
9392 /* If device is running close it first. */
9393 dev_close(dev);
9395 /* And unlink it from device chain */
9396 unlist_netdevice(dev);
9398 synchronize_net();
9400 /* Shutdown queueing discipline. */
9401 dev_shutdown(dev);
9403 /* Notify protocols, that we are about to destroy
9404 * this device. They should clean all the things.
9406 * Note that dev->reg_state stays at NETREG_REGISTERED.
9407 * This is wanted because this way 8021q and macvlan know
9408 * the device is just moving and can keep their slaves up.
9410 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9411 rcu_barrier();
9413 new_nsid = peernet2id_alloc(dev_net(dev), net);
9414 /* If there is an ifindex conflict assign a new one */
9415 if (__dev_get_by_index(net, dev->ifindex))
9416 new_ifindex = dev_new_index(net);
9417 else
9418 new_ifindex = dev->ifindex;
9420 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9421 new_ifindex);
9424 * Flush the unicast and multicast chains
9426 dev_uc_flush(dev);
9427 dev_mc_flush(dev);
9429 /* Send a netdev-removed uevent to the old namespace */
9430 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9431 netdev_adjacent_del_links(dev);
9433 /* Actually switch the network namespace */
9434 dev_net_set(dev, net);
9435 dev->ifindex = new_ifindex;
9437 /* Send a netdev-add uevent to the new namespace */
9438 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9439 netdev_adjacent_add_links(dev);
9441 /* Fixup kobjects */
9442 err = device_rename(&dev->dev, dev->name);
9443 WARN_ON(err);
9445 /* Add the device back in the hashes */
9446 list_netdevice(dev);
9448 /* Notify protocols, that a new device appeared. */
9449 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9452 * Prevent userspace races by waiting until the network
9453 * device is fully setup before sending notifications.
9455 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9457 synchronize_net();
9458 err = 0;
9459 out:
9460 return err;
9462 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9464 static int dev_cpu_dead(unsigned int oldcpu)
9466 struct sk_buff **list_skb;
9467 struct sk_buff *skb;
9468 unsigned int cpu;
9469 struct softnet_data *sd, *oldsd, *remsd = NULL;
9471 local_irq_disable();
9472 cpu = smp_processor_id();
9473 sd = &per_cpu(softnet_data, cpu);
9474 oldsd = &per_cpu(softnet_data, oldcpu);
9476 /* Find end of our completion_queue. */
9477 list_skb = &sd->completion_queue;
9478 while (*list_skb)
9479 list_skb = &(*list_skb)->next;
9480 /* Append completion queue from offline CPU. */
9481 *list_skb = oldsd->completion_queue;
9482 oldsd->completion_queue = NULL;
9484 /* Append output queue from offline CPU. */
9485 if (oldsd->output_queue) {
9486 *sd->output_queue_tailp = oldsd->output_queue;
9487 sd->output_queue_tailp = oldsd->output_queue_tailp;
9488 oldsd->output_queue = NULL;
9489 oldsd->output_queue_tailp = &oldsd->output_queue;
9491 /* Append NAPI poll list from offline CPU, with one exception :
9492 * process_backlog() must be called by cpu owning percpu backlog.
9493 * We properly handle process_queue & input_pkt_queue later.
9495 while (!list_empty(&oldsd->poll_list)) {
9496 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9497 struct napi_struct,
9498 poll_list);
9500 list_del_init(&napi->poll_list);
9501 if (napi->poll == process_backlog)
9502 napi->state = 0;
9503 else
9504 ____napi_schedule(sd, napi);
9507 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9508 local_irq_enable();
9510 #ifdef CONFIG_RPS
9511 remsd = oldsd->rps_ipi_list;
9512 oldsd->rps_ipi_list = NULL;
9513 #endif
9514 /* send out pending IPI's on offline CPU */
9515 net_rps_send_ipi(remsd);
9517 /* Process offline CPU's input_pkt_queue */
9518 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9519 netif_rx_ni(skb);
9520 input_queue_head_incr(oldsd);
9522 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9523 netif_rx_ni(skb);
9524 input_queue_head_incr(oldsd);
9527 return 0;
9531 * netdev_increment_features - increment feature set by one
9532 * @all: current feature set
9533 * @one: new feature set
9534 * @mask: mask feature set
9536 * Computes a new feature set after adding a device with feature set
9537 * @one to the master device with current feature set @all. Will not
9538 * enable anything that is off in @mask. Returns the new feature set.
9540 netdev_features_t netdev_increment_features(netdev_features_t all,
9541 netdev_features_t one, netdev_features_t mask)
9543 if (mask & NETIF_F_HW_CSUM)
9544 mask |= NETIF_F_CSUM_MASK;
9545 mask |= NETIF_F_VLAN_CHALLENGED;
9547 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9548 all &= one | ~NETIF_F_ALL_FOR_ALL;
9550 /* If one device supports hw checksumming, set for all. */
9551 if (all & NETIF_F_HW_CSUM)
9552 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9554 return all;
9556 EXPORT_SYMBOL(netdev_increment_features);
9558 static struct hlist_head * __net_init netdev_create_hash(void)
9560 int i;
9561 struct hlist_head *hash;
9563 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9564 if (hash != NULL)
9565 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9566 INIT_HLIST_HEAD(&hash[i]);
9568 return hash;
9571 /* Initialize per network namespace state */
9572 static int __net_init netdev_init(struct net *net)
9574 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9575 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9577 if (net != &init_net)
9578 INIT_LIST_HEAD(&net->dev_base_head);
9580 net->dev_name_head = netdev_create_hash();
9581 if (net->dev_name_head == NULL)
9582 goto err_name;
9584 net->dev_index_head = netdev_create_hash();
9585 if (net->dev_index_head == NULL)
9586 goto err_idx;
9588 return 0;
9590 err_idx:
9591 kfree(net->dev_name_head);
9592 err_name:
9593 return -ENOMEM;
9597 * netdev_drivername - network driver for the device
9598 * @dev: network device
9600 * Determine network driver for device.
9602 const char *netdev_drivername(const struct net_device *dev)
9604 const struct device_driver *driver;
9605 const struct device *parent;
9606 const char *empty = "";
9608 parent = dev->dev.parent;
9609 if (!parent)
9610 return empty;
9612 driver = parent->driver;
9613 if (driver && driver->name)
9614 return driver->name;
9615 return empty;
9618 static void __netdev_printk(const char *level, const struct net_device *dev,
9619 struct va_format *vaf)
9621 if (dev && dev->dev.parent) {
9622 dev_printk_emit(level[1] - '0',
9623 dev->dev.parent,
9624 "%s %s %s%s: %pV",
9625 dev_driver_string(dev->dev.parent),
9626 dev_name(dev->dev.parent),
9627 netdev_name(dev), netdev_reg_state(dev),
9628 vaf);
9629 } else if (dev) {
9630 printk("%s%s%s: %pV",
9631 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9632 } else {
9633 printk("%s(NULL net_device): %pV", level, vaf);
9637 void netdev_printk(const char *level, const struct net_device *dev,
9638 const char *format, ...)
9640 struct va_format vaf;
9641 va_list args;
9643 va_start(args, format);
9645 vaf.fmt = format;
9646 vaf.va = &args;
9648 __netdev_printk(level, dev, &vaf);
9650 va_end(args);
9652 EXPORT_SYMBOL(netdev_printk);
9654 #define define_netdev_printk_level(func, level) \
9655 void func(const struct net_device *dev, const char *fmt, ...) \
9657 struct va_format vaf; \
9658 va_list args; \
9660 va_start(args, fmt); \
9662 vaf.fmt = fmt; \
9663 vaf.va = &args; \
9665 __netdev_printk(level, dev, &vaf); \
9667 va_end(args); \
9669 EXPORT_SYMBOL(func);
9671 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9672 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9673 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9674 define_netdev_printk_level(netdev_err, KERN_ERR);
9675 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9676 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9677 define_netdev_printk_level(netdev_info, KERN_INFO);
9679 static void __net_exit netdev_exit(struct net *net)
9681 kfree(net->dev_name_head);
9682 kfree(net->dev_index_head);
9683 if (net != &init_net)
9684 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9687 static struct pernet_operations __net_initdata netdev_net_ops = {
9688 .init = netdev_init,
9689 .exit = netdev_exit,
9692 static void __net_exit default_device_exit(struct net *net)
9694 struct net_device *dev, *aux;
9696 * Push all migratable network devices back to the
9697 * initial network namespace
9699 rtnl_lock();
9700 for_each_netdev_safe(net, dev, aux) {
9701 int err;
9702 char fb_name[IFNAMSIZ];
9704 /* Ignore unmoveable devices (i.e. loopback) */
9705 if (dev->features & NETIF_F_NETNS_LOCAL)
9706 continue;
9708 /* Leave virtual devices for the generic cleanup */
9709 if (dev->rtnl_link_ops)
9710 continue;
9712 /* Push remaining network devices to init_net */
9713 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9714 err = dev_change_net_namespace(dev, &init_net, fb_name);
9715 if (err) {
9716 pr_emerg("%s: failed to move %s to init_net: %d\n",
9717 __func__, dev->name, err);
9718 BUG();
9721 rtnl_unlock();
9724 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9726 /* Return with the rtnl_lock held when there are no network
9727 * devices unregistering in any network namespace in net_list.
9729 struct net *net;
9730 bool unregistering;
9731 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9733 add_wait_queue(&netdev_unregistering_wq, &wait);
9734 for (;;) {
9735 unregistering = false;
9736 rtnl_lock();
9737 list_for_each_entry(net, net_list, exit_list) {
9738 if (net->dev_unreg_count > 0) {
9739 unregistering = true;
9740 break;
9743 if (!unregistering)
9744 break;
9745 __rtnl_unlock();
9747 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9749 remove_wait_queue(&netdev_unregistering_wq, &wait);
9752 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9754 /* At exit all network devices most be removed from a network
9755 * namespace. Do this in the reverse order of registration.
9756 * Do this across as many network namespaces as possible to
9757 * improve batching efficiency.
9759 struct net_device *dev;
9760 struct net *net;
9761 LIST_HEAD(dev_kill_list);
9763 /* To prevent network device cleanup code from dereferencing
9764 * loopback devices or network devices that have been freed
9765 * wait here for all pending unregistrations to complete,
9766 * before unregistring the loopback device and allowing the
9767 * network namespace be freed.
9769 * The netdev todo list containing all network devices
9770 * unregistrations that happen in default_device_exit_batch
9771 * will run in the rtnl_unlock() at the end of
9772 * default_device_exit_batch.
9774 rtnl_lock_unregistering(net_list);
9775 list_for_each_entry(net, net_list, exit_list) {
9776 for_each_netdev_reverse(net, dev) {
9777 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9778 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9779 else
9780 unregister_netdevice_queue(dev, &dev_kill_list);
9783 unregister_netdevice_many(&dev_kill_list);
9784 rtnl_unlock();
9787 static struct pernet_operations __net_initdata default_device_ops = {
9788 .exit = default_device_exit,
9789 .exit_batch = default_device_exit_batch,
9793 * Initialize the DEV module. At boot time this walks the device list and
9794 * unhooks any devices that fail to initialise (normally hardware not
9795 * present) and leaves us with a valid list of present and active devices.
9800 * This is called single threaded during boot, so no need
9801 * to take the rtnl semaphore.
9803 static int __init net_dev_init(void)
9805 int i, rc = -ENOMEM;
9807 BUG_ON(!dev_boot_phase);
9809 if (dev_proc_init())
9810 goto out;
9812 if (netdev_kobject_init())
9813 goto out;
9815 INIT_LIST_HEAD(&ptype_all);
9816 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9817 INIT_LIST_HEAD(&ptype_base[i]);
9819 INIT_LIST_HEAD(&offload_base);
9821 if (register_pernet_subsys(&netdev_net_ops))
9822 goto out;
9825 * Initialise the packet receive queues.
9828 for_each_possible_cpu(i) {
9829 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9830 struct softnet_data *sd = &per_cpu(softnet_data, i);
9832 INIT_WORK(flush, flush_backlog);
9834 skb_queue_head_init(&sd->input_pkt_queue);
9835 skb_queue_head_init(&sd->process_queue);
9836 #ifdef CONFIG_XFRM_OFFLOAD
9837 skb_queue_head_init(&sd->xfrm_backlog);
9838 #endif
9839 INIT_LIST_HEAD(&sd->poll_list);
9840 sd->output_queue_tailp = &sd->output_queue;
9841 #ifdef CONFIG_RPS
9842 sd->csd.func = rps_trigger_softirq;
9843 sd->csd.info = sd;
9844 sd->cpu = i;
9845 #endif
9847 init_gro_hash(&sd->backlog);
9848 sd->backlog.poll = process_backlog;
9849 sd->backlog.weight = weight_p;
9852 dev_boot_phase = 0;
9854 /* The loopback device is special if any other network devices
9855 * is present in a network namespace the loopback device must
9856 * be present. Since we now dynamically allocate and free the
9857 * loopback device ensure this invariant is maintained by
9858 * keeping the loopback device as the first device on the
9859 * list of network devices. Ensuring the loopback devices
9860 * is the first device that appears and the last network device
9861 * that disappears.
9863 if (register_pernet_device(&loopback_net_ops))
9864 goto out;
9866 if (register_pernet_device(&default_device_ops))
9867 goto out;
9869 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9870 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9872 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9873 NULL, dev_cpu_dead);
9874 WARN_ON(rc < 0);
9875 rc = 0;
9876 out:
9877 return rc;
9880 subsys_initcall(net_dev_init);