1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
12 * This work is based on the LPC-trie which is originally described in:
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
21 * Code from fib_hash has been reused which includes the following header:
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
27 * IPv4 FIB: lookup engine and maintenance routines.
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
31 * Substantial contributions to this work comes from:
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
39 #define VERSION "0.409"
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
77 static int call_fib_entry_notifier(struct notifier_block
*nb
, struct net
*net
,
78 enum fib_event_type event_type
, u32 dst
,
79 int dst_len
, struct fib_alias
*fa
)
81 struct fib_entry_notifier_info info
= {
89 return call_fib4_notifier(nb
, net
, event_type
, &info
.info
);
92 static int call_fib_entry_notifiers(struct net
*net
,
93 enum fib_event_type event_type
, u32 dst
,
94 int dst_len
, struct fib_alias
*fa
,
95 struct netlink_ext_ack
*extack
)
97 struct fib_entry_notifier_info info
= {
98 .info
.extack
= extack
,
106 return call_fib4_notifiers(net
, event_type
, &info
.info
);
109 #define MAX_STAT_DEPTH 32
111 #define KEYLENGTH (8*sizeof(t_key))
112 #define KEY_MAX ((t_key)~0)
114 typedef unsigned int t_key
;
116 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
117 #define IS_TNODE(n) ((n)->bits)
118 #define IS_LEAF(n) (!(n)->bits)
122 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127 struct hlist_head leaf
;
128 /* This array is valid if (pos | bits) > 0 (TNODE) */
129 struct key_vector __rcu
*tnode
[0];
135 t_key empty_children
; /* KEYLENGTH bits needed */
136 t_key full_children
; /* KEYLENGTH bits needed */
137 struct key_vector __rcu
*parent
;
138 struct key_vector kv
[1];
139 #define tn_bits kv[0].bits
142 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
143 #define LEAF_SIZE TNODE_SIZE(1)
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats
{
148 unsigned int backtrack
;
149 unsigned int semantic_match_passed
;
150 unsigned int semantic_match_miss
;
151 unsigned int null_node_hit
;
152 unsigned int resize_node_skipped
;
157 unsigned int totdepth
;
158 unsigned int maxdepth
;
161 unsigned int nullpointers
;
162 unsigned int prefixes
;
163 unsigned int nodesizes
[MAX_STAT_DEPTH
];
167 struct key_vector kv
[1];
168 #ifdef CONFIG_IP_FIB_TRIE_STATS
169 struct trie_use_stats __percpu
*stats
;
173 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
174 static unsigned int tnode_free_size
;
177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178 * especially useful before resizing the root node with PREEMPT_NONE configs;
179 * the value was obtained experimentally, aiming to avoid visible slowdown.
181 unsigned int sysctl_fib_sync_mem
= 512 * 1024;
182 unsigned int sysctl_fib_sync_mem_min
= 64 * 1024;
183 unsigned int sysctl_fib_sync_mem_max
= 64 * 1024 * 1024;
185 static struct kmem_cache
*fn_alias_kmem __ro_after_init
;
186 static struct kmem_cache
*trie_leaf_kmem __ro_after_init
;
188 static inline struct tnode
*tn_info(struct key_vector
*kv
)
190 return container_of(kv
, struct tnode
, kv
[0]);
193 /* caller must hold RTNL */
194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197 /* caller must hold RCU read lock or RTNL */
198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201 /* wrapper for rcu_assign_pointer */
202 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
205 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210 /* This provides us with the number of children in this node, in the case of a
211 * leaf this will return 0 meaning none of the children are accessible.
213 static inline unsigned long child_length(const struct key_vector
*tn
)
215 return (1ul << tn
->bits
) & ~(1ul);
218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
222 unsigned long index
= key
^ kv
->key
;
224 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
227 return index
>> kv
->pos
;
230 /* To understand this stuff, an understanding of keys and all their bits is
231 * necessary. Every node in the trie has a key associated with it, but not
232 * all of the bits in that key are significant.
234 * Consider a node 'n' and its parent 'tp'.
236 * If n is a leaf, every bit in its key is significant. Its presence is
237 * necessitated by path compression, since during a tree traversal (when
238 * searching for a leaf - unless we are doing an insertion) we will completely
239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240 * a potentially successful search, that we have indeed been walking the
243 * Note that we can never "miss" the correct key in the tree if present by
244 * following the wrong path. Path compression ensures that segments of the key
245 * that are the same for all keys with a given prefix are skipped, but the
246 * skipped part *is* identical for each node in the subtrie below the skipped
247 * bit! trie_insert() in this implementation takes care of that.
249 * if n is an internal node - a 'tnode' here, the various parts of its key
250 * have many different meanings.
253 * _________________________________________________________________
254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255 * -----------------------------------------------------------------
256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
258 * _________________________________________________________________
259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260 * -----------------------------------------------------------------
261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
268 * First, let's just ignore the bits that come before the parent tp, that is
269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270 * point we do not use them for anything.
272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273 * index into the parent's child array. That is, they will be used to find
274 * 'n' among tp's children.
276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
279 * All the bits we have seen so far are significant to the node n. The rest
280 * of the bits are really not needed or indeed known in n->key.
282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283 * n's child array, and will of course be different for each child.
285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
289 static const int halve_threshold
= 25;
290 static const int inflate_threshold
= 50;
291 static const int halve_threshold_root
= 15;
292 static const int inflate_threshold_root
= 30;
294 static void __alias_free_mem(struct rcu_head
*head
)
296 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
297 kmem_cache_free(fn_alias_kmem
, fa
);
300 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
302 call_rcu(&fa
->rcu
, __alias_free_mem
);
305 #define TNODE_KMALLOC_MAX \
306 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307 #define TNODE_VMALLOC_MAX \
308 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
310 static void __node_free_rcu(struct rcu_head
*head
)
312 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
315 kmem_cache_free(trie_leaf_kmem
, n
);
320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
322 static struct tnode
*tnode_alloc(int bits
)
326 /* verify bits is within bounds */
327 if (bits
> TNODE_VMALLOC_MAX
)
330 /* determine size and verify it is non-zero and didn't overflow */
331 size
= TNODE_SIZE(1ul << bits
);
333 if (size
<= PAGE_SIZE
)
334 return kzalloc(size
, GFP_KERNEL
);
336 return vzalloc(size
);
339 static inline void empty_child_inc(struct key_vector
*n
)
341 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
344 static inline void empty_child_dec(struct key_vector
*n
)
346 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
349 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
351 struct key_vector
*l
;
354 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
358 /* initialize key vector */
363 l
->slen
= fa
->fa_slen
;
365 /* link leaf to fib alias */
366 INIT_HLIST_HEAD(&l
->leaf
);
367 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
372 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
374 unsigned int shift
= pos
+ bits
;
375 struct key_vector
*tn
;
378 /* verify bits and pos their msb bits clear and values are valid */
379 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
381 tnode
= tnode_alloc(bits
);
385 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
386 sizeof(struct key_vector
*) << bits
);
388 if (bits
== KEYLENGTH
)
389 tnode
->full_children
= 1;
391 tnode
->empty_children
= 1ul << bits
;
394 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
402 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
403 * and no bits are skipped. See discussion in dyntree paper p. 6
405 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
407 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
410 /* Add a child at position i overwriting the old value.
411 * Update the value of full_children and empty_children.
413 static void put_child(struct key_vector
*tn
, unsigned long i
,
414 struct key_vector
*n
)
416 struct key_vector
*chi
= get_child(tn
, i
);
419 BUG_ON(i
>= child_length(tn
));
421 /* update emptyChildren, overflow into fullChildren */
427 /* update fullChildren */
428 wasfull
= tnode_full(tn
, chi
);
429 isfull
= tnode_full(tn
, n
);
431 if (wasfull
&& !isfull
)
432 tn_info(tn
)->full_children
--;
433 else if (!wasfull
&& isfull
)
434 tn_info(tn
)->full_children
++;
436 if (n
&& (tn
->slen
< n
->slen
))
439 rcu_assign_pointer(tn
->tnode
[i
], n
);
442 static void update_children(struct key_vector
*tn
)
446 /* update all of the child parent pointers */
447 for (i
= child_length(tn
); i
;) {
448 struct key_vector
*inode
= get_child(tn
, --i
);
453 /* Either update the children of a tnode that
454 * already belongs to us or update the child
455 * to point to ourselves.
457 if (node_parent(inode
) == tn
)
458 update_children(inode
);
460 node_set_parent(inode
, tn
);
464 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
465 struct key_vector
*n
)
468 rcu_assign_pointer(tp
->tnode
[0], n
);
470 put_child(tp
, get_index(key
, tp
), n
);
473 static inline void tnode_free_init(struct key_vector
*tn
)
475 tn_info(tn
)->rcu
.next
= NULL
;
478 static inline void tnode_free_append(struct key_vector
*tn
,
479 struct key_vector
*n
)
481 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
482 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
485 static void tnode_free(struct key_vector
*tn
)
487 struct callback_head
*head
= &tn_info(tn
)->rcu
;
491 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
494 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
497 if (tnode_free_size
>= sysctl_fib_sync_mem
) {
503 static struct key_vector
*replace(struct trie
*t
,
504 struct key_vector
*oldtnode
,
505 struct key_vector
*tn
)
507 struct key_vector
*tp
= node_parent(oldtnode
);
510 /* setup the parent pointer out of and back into this node */
511 NODE_INIT_PARENT(tn
, tp
);
512 put_child_root(tp
, tn
->key
, tn
);
514 /* update all of the child parent pointers */
517 /* all pointers should be clean so we are done */
518 tnode_free(oldtnode
);
520 /* resize children now that oldtnode is freed */
521 for (i
= child_length(tn
); i
;) {
522 struct key_vector
*inode
= get_child(tn
, --i
);
524 /* resize child node */
525 if (tnode_full(tn
, inode
))
526 tn
= resize(t
, inode
);
532 static struct key_vector
*inflate(struct trie
*t
,
533 struct key_vector
*oldtnode
)
535 struct key_vector
*tn
;
539 pr_debug("In inflate\n");
541 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
545 /* prepare oldtnode to be freed */
546 tnode_free_init(oldtnode
);
548 /* Assemble all of the pointers in our cluster, in this case that
549 * represents all of the pointers out of our allocated nodes that
550 * point to existing tnodes and the links between our allocated
553 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
554 struct key_vector
*inode
= get_child(oldtnode
, --i
);
555 struct key_vector
*node0
, *node1
;
562 /* A leaf or an internal node with skipped bits */
563 if (!tnode_full(oldtnode
, inode
)) {
564 put_child(tn
, get_index(inode
->key
, tn
), inode
);
568 /* drop the node in the old tnode free list */
569 tnode_free_append(oldtnode
, inode
);
571 /* An internal node with two children */
572 if (inode
->bits
== 1) {
573 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
574 put_child(tn
, 2 * i
, get_child(inode
, 0));
578 /* We will replace this node 'inode' with two new
579 * ones, 'node0' and 'node1', each with half of the
580 * original children. The two new nodes will have
581 * a position one bit further down the key and this
582 * means that the "significant" part of their keys
583 * (see the discussion near the top of this file)
584 * will differ by one bit, which will be "0" in
585 * node0's key and "1" in node1's key. Since we are
586 * moving the key position by one step, the bit that
587 * we are moving away from - the bit at position
588 * (tn->pos) - is the one that will differ between
589 * node0 and node1. So... we synthesize that bit in the
592 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
595 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
597 tnode_free_append(tn
, node1
);
600 tnode_free_append(tn
, node0
);
602 /* populate child pointers in new nodes */
603 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
604 put_child(node1
, --j
, get_child(inode
, --k
));
605 put_child(node0
, j
, get_child(inode
, j
));
606 put_child(node1
, --j
, get_child(inode
, --k
));
607 put_child(node0
, j
, get_child(inode
, j
));
610 /* link new nodes to parent */
611 NODE_INIT_PARENT(node1
, tn
);
612 NODE_INIT_PARENT(node0
, tn
);
614 /* link parent to nodes */
615 put_child(tn
, 2 * i
+ 1, node1
);
616 put_child(tn
, 2 * i
, node0
);
619 /* setup the parent pointers into and out of this node */
620 return replace(t
, oldtnode
, tn
);
622 /* all pointers should be clean so we are done */
628 static struct key_vector
*halve(struct trie
*t
,
629 struct key_vector
*oldtnode
)
631 struct key_vector
*tn
;
634 pr_debug("In halve\n");
636 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
640 /* prepare oldtnode to be freed */
641 tnode_free_init(oldtnode
);
643 /* Assemble all of the pointers in our cluster, in this case that
644 * represents all of the pointers out of our allocated nodes that
645 * point to existing tnodes and the links between our allocated
648 for (i
= child_length(oldtnode
); i
;) {
649 struct key_vector
*node1
= get_child(oldtnode
, --i
);
650 struct key_vector
*node0
= get_child(oldtnode
, --i
);
651 struct key_vector
*inode
;
653 /* At least one of the children is empty */
654 if (!node1
|| !node0
) {
655 put_child(tn
, i
/ 2, node1
? : node0
);
659 /* Two nonempty children */
660 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
663 tnode_free_append(tn
, inode
);
665 /* initialize pointers out of node */
666 put_child(inode
, 1, node1
);
667 put_child(inode
, 0, node0
);
668 NODE_INIT_PARENT(inode
, tn
);
670 /* link parent to node */
671 put_child(tn
, i
/ 2, inode
);
674 /* setup the parent pointers into and out of this node */
675 return replace(t
, oldtnode
, tn
);
677 /* all pointers should be clean so we are done */
683 static struct key_vector
*collapse(struct trie
*t
,
684 struct key_vector
*oldtnode
)
686 struct key_vector
*n
, *tp
;
689 /* scan the tnode looking for that one child that might still exist */
690 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
691 n
= get_child(oldtnode
, --i
);
693 /* compress one level */
694 tp
= node_parent(oldtnode
);
695 put_child_root(tp
, oldtnode
->key
, n
);
696 node_set_parent(n
, tp
);
704 static unsigned char update_suffix(struct key_vector
*tn
)
706 unsigned char slen
= tn
->pos
;
707 unsigned long stride
, i
;
708 unsigned char slen_max
;
710 /* only vector 0 can have a suffix length greater than or equal to
711 * tn->pos + tn->bits, the second highest node will have a suffix
712 * length at most of tn->pos + tn->bits - 1
714 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
716 /* search though the list of children looking for nodes that might
717 * have a suffix greater than the one we currently have. This is
718 * why we start with a stride of 2 since a stride of 1 would
719 * represent the nodes with suffix length equal to tn->pos
721 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
722 struct key_vector
*n
= get_child(tn
, i
);
724 if (!n
|| (n
->slen
<= slen
))
727 /* update stride and slen based on new value */
728 stride
<<= (n
->slen
- slen
);
732 /* stop searching if we have hit the maximum possible value */
733 if (slen
>= slen_max
)
742 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
743 * the Helsinki University of Technology and Matti Tikkanen of Nokia
744 * Telecommunications, page 6:
745 * "A node is doubled if the ratio of non-empty children to all
746 * children in the *doubled* node is at least 'high'."
748 * 'high' in this instance is the variable 'inflate_threshold'. It
749 * is expressed as a percentage, so we multiply it with
750 * child_length() and instead of multiplying by 2 (since the
751 * child array will be doubled by inflate()) and multiplying
752 * the left-hand side by 100 (to handle the percentage thing) we
753 * multiply the left-hand side by 50.
755 * The left-hand side may look a bit weird: child_length(tn)
756 * - tn->empty_children is of course the number of non-null children
757 * in the current node. tn->full_children is the number of "full"
758 * children, that is non-null tnodes with a skip value of 0.
759 * All of those will be doubled in the resulting inflated tnode, so
760 * we just count them one extra time here.
762 * A clearer way to write this would be:
764 * to_be_doubled = tn->full_children;
765 * not_to_be_doubled = child_length(tn) - tn->empty_children -
768 * new_child_length = child_length(tn) * 2;
770 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
772 * if (new_fill_factor >= inflate_threshold)
774 * ...and so on, tho it would mess up the while () loop.
777 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
782 * inflate_threshold * new_child_length
784 * expand not_to_be_doubled and to_be_doubled, and shorten:
785 * 100 * (child_length(tn) - tn->empty_children +
786 * tn->full_children) >= inflate_threshold * new_child_length
788 * expand new_child_length:
789 * 100 * (child_length(tn) - tn->empty_children +
790 * tn->full_children) >=
791 * inflate_threshold * child_length(tn) * 2
794 * 50 * (tn->full_children + child_length(tn) -
795 * tn->empty_children) >= inflate_threshold *
799 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
801 unsigned long used
= child_length(tn
);
802 unsigned long threshold
= used
;
804 /* Keep root node larger */
805 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
806 used
-= tn_info(tn
)->empty_children
;
807 used
+= tn_info(tn
)->full_children
;
809 /* if bits == KEYLENGTH then pos = 0, and will fail below */
811 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
814 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
816 unsigned long used
= child_length(tn
);
817 unsigned long threshold
= used
;
819 /* Keep root node larger */
820 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
821 used
-= tn_info(tn
)->empty_children
;
823 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
825 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
828 static inline bool should_collapse(struct key_vector
*tn
)
830 unsigned long used
= child_length(tn
);
832 used
-= tn_info(tn
)->empty_children
;
834 /* account for bits == KEYLENGTH case */
835 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
838 /* One child or none, time to drop us from the trie */
843 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
845 #ifdef CONFIG_IP_FIB_TRIE_STATS
846 struct trie_use_stats __percpu
*stats
= t
->stats
;
848 struct key_vector
*tp
= node_parent(tn
);
849 unsigned long cindex
= get_index(tn
->key
, tp
);
850 int max_work
= MAX_WORK
;
852 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
853 tn
, inflate_threshold
, halve_threshold
);
855 /* track the tnode via the pointer from the parent instead of
856 * doing it ourselves. This way we can let RCU fully do its
857 * thing without us interfering
859 BUG_ON(tn
!= get_child(tp
, cindex
));
861 /* Double as long as the resulting node has a number of
862 * nonempty nodes that are above the threshold.
864 while (should_inflate(tp
, tn
) && max_work
) {
867 #ifdef CONFIG_IP_FIB_TRIE_STATS
868 this_cpu_inc(stats
->resize_node_skipped
);
874 tn
= get_child(tp
, cindex
);
877 /* update parent in case inflate failed */
878 tp
= node_parent(tn
);
880 /* Return if at least one inflate is run */
881 if (max_work
!= MAX_WORK
)
884 /* Halve as long as the number of empty children in this
885 * node is above threshold.
887 while (should_halve(tp
, tn
) && max_work
) {
890 #ifdef CONFIG_IP_FIB_TRIE_STATS
891 this_cpu_inc(stats
->resize_node_skipped
);
897 tn
= get_child(tp
, cindex
);
900 /* Only one child remains */
901 if (should_collapse(tn
))
902 return collapse(t
, tn
);
904 /* update parent in case halve failed */
905 return node_parent(tn
);
908 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
910 unsigned char node_slen
= tn
->slen
;
912 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
913 slen
= update_suffix(tn
);
914 if (node_slen
== slen
)
917 tn
= node_parent(tn
);
918 node_slen
= tn
->slen
;
922 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
924 while (tn
->slen
< slen
) {
926 tn
= node_parent(tn
);
930 /* rcu_read_lock needs to be hold by caller from readside */
931 static struct key_vector
*fib_find_node(struct trie
*t
,
932 struct key_vector
**tp
, u32 key
)
934 struct key_vector
*pn
, *n
= t
->kv
;
935 unsigned long index
= 0;
939 n
= get_child_rcu(n
, index
);
944 index
= get_cindex(key
, n
);
946 /* This bit of code is a bit tricky but it combines multiple
947 * checks into a single check. The prefix consists of the
948 * prefix plus zeros for the bits in the cindex. The index
949 * is the difference between the key and this value. From
950 * this we can actually derive several pieces of data.
951 * if (index >= (1ul << bits))
952 * we have a mismatch in skip bits and failed
954 * we know the value is cindex
956 * This check is safe even if bits == KEYLENGTH due to the
957 * fact that we can only allocate a node with 32 bits if a
958 * long is greater than 32 bits.
960 if (index
>= (1ul << n
->bits
)) {
965 /* keep searching until we find a perfect match leaf or NULL */
966 } while (IS_TNODE(n
));
973 /* Return the first fib alias matching TOS with
974 * priority less than or equal to PRIO.
976 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
977 u8 tos
, u32 prio
, u32 tb_id
)
979 struct fib_alias
*fa
;
984 hlist_for_each_entry(fa
, fah
, fa_list
) {
985 if (fa
->fa_slen
< slen
)
987 if (fa
->fa_slen
!= slen
)
989 if (fa
->tb_id
> tb_id
)
991 if (fa
->tb_id
!= tb_id
)
993 if (fa
->fa_tos
> tos
)
995 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
1002 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1004 while (!IS_TRIE(tn
))
1008 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1009 struct fib_alias
*new, t_key key
)
1011 struct key_vector
*n
, *l
;
1013 l
= leaf_new(key
, new);
1017 /* retrieve child from parent node */
1018 n
= get_child(tp
, get_index(key
, tp
));
1020 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1022 * Add a new tnode here
1023 * first tnode need some special handling
1024 * leaves us in position for handling as case 3
1027 struct key_vector
*tn
;
1029 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1033 /* initialize routes out of node */
1034 NODE_INIT_PARENT(tn
, tp
);
1035 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1037 /* start adding routes into the node */
1038 put_child_root(tp
, key
, tn
);
1039 node_set_parent(n
, tn
);
1041 /* parent now has a NULL spot where the leaf can go */
1045 /* Case 3: n is NULL, and will just insert a new leaf */
1046 node_push_suffix(tp
, new->fa_slen
);
1047 NODE_INIT_PARENT(l
, tp
);
1048 put_child_root(tp
, key
, l
);
1049 trie_rebalance(t
, tp
);
1058 /* fib notifier for ADD is sent before calling fib_insert_alias with
1059 * the expectation that the only possible failure ENOMEM
1061 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1062 struct key_vector
*l
, struct fib_alias
*new,
1063 struct fib_alias
*fa
, t_key key
)
1066 return fib_insert_node(t
, tp
, new, key
);
1069 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1071 struct fib_alias
*last
;
1073 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1074 if (new->fa_slen
< last
->fa_slen
)
1076 if ((new->fa_slen
== last
->fa_slen
) &&
1077 (new->tb_id
> last
->tb_id
))
1083 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1085 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1088 /* if we added to the tail node then we need to update slen */
1089 if (l
->slen
< new->fa_slen
) {
1090 l
->slen
= new->fa_slen
;
1091 node_push_suffix(tp
, new->fa_slen
);
1097 static bool fib_valid_key_len(u32 key
, u8 plen
, struct netlink_ext_ack
*extack
)
1099 if (plen
> KEYLENGTH
) {
1100 NL_SET_ERR_MSG(extack
, "Invalid prefix length");
1104 if ((plen
< KEYLENGTH
) && (key
<< plen
)) {
1105 NL_SET_ERR_MSG(extack
,
1106 "Invalid prefix for given prefix length");
1113 /* Caller must hold RTNL. */
1114 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1115 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1117 enum fib_event_type event
= FIB_EVENT_ENTRY_ADD
;
1118 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1119 struct fib_alias
*fa
, *new_fa
;
1120 struct key_vector
*l
, *tp
;
1121 u16 nlflags
= NLM_F_EXCL
;
1122 struct fib_info
*fi
;
1123 u8 plen
= cfg
->fc_dst_len
;
1124 u8 slen
= KEYLENGTH
- plen
;
1125 u8 tos
= cfg
->fc_tos
;
1129 key
= ntohl(cfg
->fc_dst
);
1131 if (!fib_valid_key_len(key
, plen
, extack
))
1134 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1136 fi
= fib_create_info(cfg
, extack
);
1142 l
= fib_find_node(t
, &tp
, key
);
1143 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1146 /* Now fa, if non-NULL, points to the first fib alias
1147 * with the same keys [prefix,tos,priority], if such key already
1148 * exists or to the node before which we will insert new one.
1150 * If fa is NULL, we will need to allocate a new one and
1151 * insert to the tail of the section matching the suffix length
1155 if (fa
&& fa
->fa_tos
== tos
&&
1156 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1157 struct fib_alias
*fa_first
, *fa_match
;
1160 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1163 nlflags
&= ~NLM_F_EXCL
;
1166 * 1. Find exact match for type, scope, fib_info to avoid
1168 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1172 hlist_for_each_entry_from(fa
, fa_list
) {
1173 if ((fa
->fa_slen
!= slen
) ||
1174 (fa
->tb_id
!= tb
->tb_id
) ||
1175 (fa
->fa_tos
!= tos
))
1177 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1179 if (fa
->fa_type
== cfg
->fc_type
&&
1180 fa
->fa_info
== fi
) {
1186 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1187 struct fib_info
*fi_drop
;
1190 nlflags
|= NLM_F_REPLACE
;
1198 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1202 fi_drop
= fa
->fa_info
;
1203 new_fa
->fa_tos
= fa
->fa_tos
;
1204 new_fa
->fa_info
= fi
;
1205 new_fa
->fa_type
= cfg
->fc_type
;
1206 state
= fa
->fa_state
;
1207 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1208 new_fa
->fa_slen
= fa
->fa_slen
;
1209 new_fa
->tb_id
= tb
->tb_id
;
1210 new_fa
->fa_default
= -1;
1212 err
= call_fib_entry_notifiers(net
,
1213 FIB_EVENT_ENTRY_REPLACE
,
1217 goto out_free_new_fa
;
1219 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1220 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1222 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1224 alias_free_mem_rcu(fa
);
1226 fib_release_info(fi_drop
);
1227 if (state
& FA_S_ACCESSED
)
1228 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1232 /* Error if we find a perfect match which
1233 * uses the same scope, type, and nexthop
1239 if (cfg
->fc_nlflags
& NLM_F_APPEND
) {
1240 event
= FIB_EVENT_ENTRY_APPEND
;
1241 nlflags
|= NLM_F_APPEND
;
1247 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1250 nlflags
|= NLM_F_CREATE
;
1252 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1256 new_fa
->fa_info
= fi
;
1257 new_fa
->fa_tos
= tos
;
1258 new_fa
->fa_type
= cfg
->fc_type
;
1259 new_fa
->fa_state
= 0;
1260 new_fa
->fa_slen
= slen
;
1261 new_fa
->tb_id
= tb
->tb_id
;
1262 new_fa
->fa_default
= -1;
1264 err
= call_fib_entry_notifiers(net
, event
, key
, plen
, new_fa
, extack
);
1266 goto out_free_new_fa
;
1268 /* Insert new entry to the list. */
1269 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1274 tb
->tb_num_default
++;
1276 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1277 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1278 &cfg
->fc_nlinfo
, nlflags
);
1283 /* notifier was sent that entry would be added to trie, but
1284 * the add failed and need to recover. Only failure for
1285 * fib_insert_alias is ENOMEM.
1287 NL_SET_ERR_MSG(extack
, "Failed to insert route into trie");
1288 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
,
1289 plen
, new_fa
, NULL
);
1291 kmem_cache_free(fn_alias_kmem
, new_fa
);
1293 fib_release_info(fi
);
1298 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1300 t_key prefix
= n
->key
;
1302 return (key
^ prefix
) & (prefix
| -prefix
);
1305 /* should be called with rcu_read_lock */
1306 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1307 struct fib_result
*res
, int fib_flags
)
1309 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1310 #ifdef CONFIG_IP_FIB_TRIE_STATS
1311 struct trie_use_stats __percpu
*stats
= t
->stats
;
1313 const t_key key
= ntohl(flp
->daddr
);
1314 struct key_vector
*n
, *pn
;
1315 struct fib_alias
*fa
;
1316 unsigned long index
;
1322 n
= get_child_rcu(pn
, cindex
);
1324 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, -EAGAIN
);
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 this_cpu_inc(stats
->gets
);
1332 /* Step 1: Travel to the longest prefix match in the trie */
1334 index
= get_cindex(key
, n
);
1336 /* This bit of code is a bit tricky but it combines multiple
1337 * checks into a single check. The prefix consists of the
1338 * prefix plus zeros for the "bits" in the prefix. The index
1339 * is the difference between the key and this value. From
1340 * this we can actually derive several pieces of data.
1341 * if (index >= (1ul << bits))
1342 * we have a mismatch in skip bits and failed
1344 * we know the value is cindex
1346 * This check is safe even if bits == KEYLENGTH due to the
1347 * fact that we can only allocate a node with 32 bits if a
1348 * long is greater than 32 bits.
1350 if (index
>= (1ul << n
->bits
))
1353 /* we have found a leaf. Prefixes have already been compared */
1357 /* only record pn and cindex if we are going to be chopping
1358 * bits later. Otherwise we are just wasting cycles.
1360 if (n
->slen
> n
->pos
) {
1365 n
= get_child_rcu(n
, index
);
1370 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1372 /* record the pointer where our next node pointer is stored */
1373 struct key_vector __rcu
**cptr
= n
->tnode
;
1375 /* This test verifies that none of the bits that differ
1376 * between the key and the prefix exist in the region of
1377 * the lsb and higher in the prefix.
1379 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1382 /* exit out and process leaf */
1383 if (unlikely(IS_LEAF(n
)))
1386 /* Don't bother recording parent info. Since we are in
1387 * prefix match mode we will have to come back to wherever
1388 * we started this traversal anyway
1391 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1393 #ifdef CONFIG_IP_FIB_TRIE_STATS
1395 this_cpu_inc(stats
->null_node_hit
);
1397 /* If we are at cindex 0 there are no more bits for
1398 * us to strip at this level so we must ascend back
1399 * up one level to see if there are any more bits to
1400 * be stripped there.
1403 t_key pkey
= pn
->key
;
1405 /* If we don't have a parent then there is
1406 * nothing for us to do as we do not have any
1407 * further nodes to parse.
1410 trace_fib_table_lookup(tb
->tb_id
, flp
,
1414 #ifdef CONFIG_IP_FIB_TRIE_STATS
1415 this_cpu_inc(stats
->backtrack
);
1417 /* Get Child's index */
1418 pn
= node_parent_rcu(pn
);
1419 cindex
= get_index(pkey
, pn
);
1422 /* strip the least significant bit from the cindex */
1423 cindex
&= cindex
- 1;
1425 /* grab pointer for next child node */
1426 cptr
= &pn
->tnode
[cindex
];
1431 /* this line carries forward the xor from earlier in the function */
1432 index
= key
^ n
->key
;
1434 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1435 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1436 struct fib_info
*fi
= fa
->fa_info
;
1439 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1440 if (index
>= (1ul << fa
->fa_slen
))
1443 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1447 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1449 fib_alias_accessed(fa
);
1450 err
= fib_props
[fa
->fa_type
].error
;
1451 if (unlikely(err
< 0)) {
1452 #ifdef CONFIG_IP_FIB_TRIE_STATS
1453 this_cpu_inc(stats
->semantic_match_passed
);
1455 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, err
);
1458 if (fi
->fib_flags
& RTNH_F_DEAD
)
1460 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1461 struct fib_nh_common
*nhc
= fib_info_nhc(fi
, nhsel
);
1463 if (nhc
->nhc_flags
& RTNH_F_DEAD
)
1465 if (ip_ignore_linkdown(nhc
->nhc_dev
) &&
1466 nhc
->nhc_flags
& RTNH_F_LINKDOWN
&&
1467 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1469 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1470 if (flp
->flowi4_oif
&&
1471 flp
->flowi4_oif
!= nhc
->nhc_oif
)
1475 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1476 refcount_inc(&fi
->fib_clntref
);
1478 res
->prefix
= htonl(n
->key
);
1479 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1480 res
->nh_sel
= nhsel
;
1482 res
->type
= fa
->fa_type
;
1483 res
->scope
= fi
->fib_scope
;
1486 res
->fa_head
= &n
->leaf
;
1487 #ifdef CONFIG_IP_FIB_TRIE_STATS
1488 this_cpu_inc(stats
->semantic_match_passed
);
1490 trace_fib_table_lookup(tb
->tb_id
, flp
, nhc
, err
);
1495 #ifdef CONFIG_IP_FIB_TRIE_STATS
1496 this_cpu_inc(stats
->semantic_match_miss
);
1500 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1502 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1503 struct key_vector
*l
, struct fib_alias
*old
)
1505 /* record the location of the previous list_info entry */
1506 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1507 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1509 /* remove the fib_alias from the list */
1510 hlist_del_rcu(&old
->fa_list
);
1512 /* if we emptied the list this leaf will be freed and we can sort
1513 * out parent suffix lengths as a part of trie_rebalance
1515 if (hlist_empty(&l
->leaf
)) {
1516 if (tp
->slen
== l
->slen
)
1517 node_pull_suffix(tp
, tp
->pos
);
1518 put_child_root(tp
, l
->key
, NULL
);
1520 trie_rebalance(t
, tp
);
1524 /* only access fa if it is pointing at the last valid hlist_node */
1528 /* update the trie with the latest suffix length */
1529 l
->slen
= fa
->fa_slen
;
1530 node_pull_suffix(tp
, fa
->fa_slen
);
1533 /* Caller must hold RTNL. */
1534 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1535 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1537 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1538 struct fib_alias
*fa
, *fa_to_delete
;
1539 struct key_vector
*l
, *tp
;
1540 u8 plen
= cfg
->fc_dst_len
;
1541 u8 slen
= KEYLENGTH
- plen
;
1542 u8 tos
= cfg
->fc_tos
;
1545 key
= ntohl(cfg
->fc_dst
);
1547 if (!fib_valid_key_len(key
, plen
, extack
))
1550 l
= fib_find_node(t
, &tp
, key
);
1554 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1558 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1560 fa_to_delete
= NULL
;
1561 hlist_for_each_entry_from(fa
, fa_list
) {
1562 struct fib_info
*fi
= fa
->fa_info
;
1564 if ((fa
->fa_slen
!= slen
) ||
1565 (fa
->tb_id
!= tb
->tb_id
) ||
1566 (fa
->fa_tos
!= tos
))
1569 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1570 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1571 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1572 (!cfg
->fc_prefsrc
||
1573 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1574 (!cfg
->fc_protocol
||
1575 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1576 fib_nh_match(cfg
, fi
, extack
) == 0 &&
1577 fib_metrics_match(cfg
, fi
)) {
1586 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
, plen
,
1587 fa_to_delete
, extack
);
1588 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1589 &cfg
->fc_nlinfo
, 0);
1592 tb
->tb_num_default
--;
1594 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1596 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1597 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1599 fib_release_info(fa_to_delete
->fa_info
);
1600 alias_free_mem_rcu(fa_to_delete
);
1604 /* Scan for the next leaf starting at the provided key value */
1605 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1607 struct key_vector
*pn
, *n
= *tn
;
1608 unsigned long cindex
;
1610 /* this loop is meant to try and find the key in the trie */
1612 /* record parent and next child index */
1614 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1616 if (cindex
>> pn
->bits
)
1619 /* descend into the next child */
1620 n
= get_child_rcu(pn
, cindex
++);
1624 /* guarantee forward progress on the keys */
1625 if (IS_LEAF(n
) && (n
->key
>= key
))
1627 } while (IS_TNODE(n
));
1629 /* this loop will search for the next leaf with a greater key */
1630 while (!IS_TRIE(pn
)) {
1631 /* if we exhausted the parent node we will need to climb */
1632 if (cindex
>= (1ul << pn
->bits
)) {
1633 t_key pkey
= pn
->key
;
1635 pn
= node_parent_rcu(pn
);
1636 cindex
= get_index(pkey
, pn
) + 1;
1640 /* grab the next available node */
1641 n
= get_child_rcu(pn
, cindex
++);
1645 /* no need to compare keys since we bumped the index */
1649 /* Rescan start scanning in new node */
1655 return NULL
; /* Root of trie */
1657 /* if we are at the limit for keys just return NULL for the tnode */
1662 static void fib_trie_free(struct fib_table
*tb
)
1664 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1665 struct key_vector
*pn
= t
->kv
;
1666 unsigned long cindex
= 1;
1667 struct hlist_node
*tmp
;
1668 struct fib_alias
*fa
;
1670 /* walk trie in reverse order and free everything */
1672 struct key_vector
*n
;
1675 t_key pkey
= pn
->key
;
1681 pn
= node_parent(pn
);
1683 /* drop emptied tnode */
1684 put_child_root(pn
, n
->key
, NULL
);
1687 cindex
= get_index(pkey
, pn
);
1692 /* grab the next available node */
1693 n
= get_child(pn
, cindex
);
1698 /* record pn and cindex for leaf walking */
1700 cindex
= 1ul << n
->bits
;
1705 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1706 hlist_del_rcu(&fa
->fa_list
);
1707 alias_free_mem_rcu(fa
);
1710 put_child_root(pn
, n
->key
, NULL
);
1714 #ifdef CONFIG_IP_FIB_TRIE_STATS
1715 free_percpu(t
->stats
);
1720 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1722 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1723 struct key_vector
*l
, *tp
= ot
->kv
;
1724 struct fib_table
*local_tb
;
1725 struct fib_alias
*fa
;
1729 if (oldtb
->tb_data
== oldtb
->__data
)
1732 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1736 lt
= (struct trie
*)local_tb
->tb_data
;
1738 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1739 struct key_vector
*local_l
= NULL
, *local_tp
;
1741 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1742 struct fib_alias
*new_fa
;
1744 if (local_tb
->tb_id
!= fa
->tb_id
)
1747 /* clone fa for new local table */
1748 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1752 memcpy(new_fa
, fa
, sizeof(*fa
));
1754 /* insert clone into table */
1756 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1758 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1760 kmem_cache_free(fn_alias_kmem
, new_fa
);
1765 /* stop loop if key wrapped back to 0 */
1773 fib_trie_free(local_tb
);
1778 /* Caller must hold RTNL */
1779 void fib_table_flush_external(struct fib_table
*tb
)
1781 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1782 struct key_vector
*pn
= t
->kv
;
1783 unsigned long cindex
= 1;
1784 struct hlist_node
*tmp
;
1785 struct fib_alias
*fa
;
1787 /* walk trie in reverse order */
1789 unsigned char slen
= 0;
1790 struct key_vector
*n
;
1793 t_key pkey
= pn
->key
;
1795 /* cannot resize the trie vector */
1799 /* update the suffix to address pulled leaves */
1800 if (pn
->slen
> pn
->pos
)
1803 /* resize completed node */
1805 cindex
= get_index(pkey
, pn
);
1810 /* grab the next available node */
1811 n
= get_child(pn
, cindex
);
1816 /* record pn and cindex for leaf walking */
1818 cindex
= 1ul << n
->bits
;
1823 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1824 /* if alias was cloned to local then we just
1825 * need to remove the local copy from main
1827 if (tb
->tb_id
!= fa
->tb_id
) {
1828 hlist_del_rcu(&fa
->fa_list
);
1829 alias_free_mem_rcu(fa
);
1833 /* record local slen */
1837 /* update leaf slen */
1840 if (hlist_empty(&n
->leaf
)) {
1841 put_child_root(pn
, n
->key
, NULL
);
1847 /* Caller must hold RTNL. */
1848 int fib_table_flush(struct net
*net
, struct fib_table
*tb
, bool flush_all
)
1850 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1851 struct key_vector
*pn
= t
->kv
;
1852 unsigned long cindex
= 1;
1853 struct hlist_node
*tmp
;
1854 struct fib_alias
*fa
;
1857 /* walk trie in reverse order */
1859 unsigned char slen
= 0;
1860 struct key_vector
*n
;
1863 t_key pkey
= pn
->key
;
1865 /* cannot resize the trie vector */
1869 /* update the suffix to address pulled leaves */
1870 if (pn
->slen
> pn
->pos
)
1873 /* resize completed node */
1875 cindex
= get_index(pkey
, pn
);
1880 /* grab the next available node */
1881 n
= get_child(pn
, cindex
);
1886 /* record pn and cindex for leaf walking */
1888 cindex
= 1ul << n
->bits
;
1893 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1894 struct fib_info
*fi
= fa
->fa_info
;
1896 if (!fi
|| tb
->tb_id
!= fa
->tb_id
||
1897 (!(fi
->fib_flags
& RTNH_F_DEAD
) &&
1898 !fib_props
[fa
->fa_type
].error
)) {
1903 /* Do not flush error routes if network namespace is
1904 * not being dismantled
1906 if (!flush_all
&& fib_props
[fa
->fa_type
].error
) {
1911 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
,
1913 KEYLENGTH
- fa
->fa_slen
, fa
,
1915 hlist_del_rcu(&fa
->fa_list
);
1916 fib_release_info(fa
->fa_info
);
1917 alias_free_mem_rcu(fa
);
1921 /* update leaf slen */
1924 if (hlist_empty(&n
->leaf
)) {
1925 put_child_root(pn
, n
->key
, NULL
);
1930 pr_debug("trie_flush found=%d\n", found
);
1934 static void fib_leaf_notify(struct net
*net
, struct key_vector
*l
,
1935 struct fib_table
*tb
, struct notifier_block
*nb
)
1937 struct fib_alias
*fa
;
1939 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1940 struct fib_info
*fi
= fa
->fa_info
;
1945 /* local and main table can share the same trie,
1946 * so don't notify twice for the same entry.
1948 if (tb
->tb_id
!= fa
->tb_id
)
1951 call_fib_entry_notifier(nb
, net
, FIB_EVENT_ENTRY_ADD
, l
->key
,
1952 KEYLENGTH
- fa
->fa_slen
, fa
);
1956 static void fib_table_notify(struct net
*net
, struct fib_table
*tb
,
1957 struct notifier_block
*nb
)
1959 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1960 struct key_vector
*l
, *tp
= t
->kv
;
1963 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1964 fib_leaf_notify(net
, l
, tb
, nb
);
1967 /* stop in case of wrap around */
1973 void fib_notify(struct net
*net
, struct notifier_block
*nb
)
1977 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1978 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
1979 struct fib_table
*tb
;
1981 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
)
1982 fib_table_notify(net
, tb
, nb
);
1986 static void __trie_free_rcu(struct rcu_head
*head
)
1988 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1989 #ifdef CONFIG_IP_FIB_TRIE_STATS
1990 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1992 if (tb
->tb_data
== tb
->__data
)
1993 free_percpu(t
->stats
);
1994 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1998 void fib_free_table(struct fib_table
*tb
)
2000 call_rcu(&tb
->rcu
, __trie_free_rcu
);
2003 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
2004 struct sk_buff
*skb
, struct netlink_callback
*cb
,
2005 struct fib_dump_filter
*filter
)
2007 unsigned int flags
= NLM_F_MULTI
;
2008 __be32 xkey
= htonl(l
->key
);
2009 struct fib_alias
*fa
;
2012 if (filter
->filter_set
)
2013 flags
|= NLM_F_DUMP_FILTERED
;
2018 /* rcu_read_lock is hold by caller */
2019 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2025 if (tb
->tb_id
!= fa
->tb_id
)
2028 if (filter
->filter_set
) {
2029 if (filter
->rt_type
&& fa
->fa_type
!= filter
->rt_type
)
2032 if ((filter
->protocol
&&
2033 fa
->fa_info
->fib_protocol
!= filter
->protocol
))
2037 !fib_info_nh_uses_dev(fa
->fa_info
, filter
->dev
))
2041 err
= fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
2042 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2043 tb
->tb_id
, fa
->fa_type
,
2044 xkey
, KEYLENGTH
- fa
->fa_slen
,
2045 fa
->fa_tos
, fa
->fa_info
, flags
);
2058 /* rcu_read_lock needs to be hold by caller from readside */
2059 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
2060 struct netlink_callback
*cb
, struct fib_dump_filter
*filter
)
2062 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2063 struct key_vector
*l
, *tp
= t
->kv
;
2064 /* Dump starting at last key.
2065 * Note: 0.0.0.0/0 (ie default) is first key.
2067 int count
= cb
->args
[2];
2068 t_key key
= cb
->args
[3];
2070 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2073 err
= fn_trie_dump_leaf(l
, tb
, skb
, cb
, filter
);
2076 cb
->args
[2] = count
;
2083 memset(&cb
->args
[4], 0,
2084 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
2086 /* stop loop if key wrapped back to 0 */
2092 cb
->args
[2] = count
;
2097 void __init
fib_trie_init(void)
2099 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2100 sizeof(struct fib_alias
),
2101 0, SLAB_PANIC
, NULL
);
2103 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2105 0, SLAB_PANIC
, NULL
);
2108 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2110 struct fib_table
*tb
;
2112 size_t sz
= sizeof(*tb
);
2115 sz
+= sizeof(struct trie
);
2117 tb
= kzalloc(sz
, GFP_KERNEL
);
2122 tb
->tb_num_default
= 0;
2123 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2128 t
= (struct trie
*) tb
->tb_data
;
2129 t
->kv
[0].pos
= KEYLENGTH
;
2130 t
->kv
[0].slen
= KEYLENGTH
;
2131 #ifdef CONFIG_IP_FIB_TRIE_STATS
2132 t
->stats
= alloc_percpu(struct trie_use_stats
);
2142 #ifdef CONFIG_PROC_FS
2143 /* Depth first Trie walk iterator */
2144 struct fib_trie_iter
{
2145 struct seq_net_private p
;
2146 struct fib_table
*tb
;
2147 struct key_vector
*tnode
;
2152 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2154 unsigned long cindex
= iter
->index
;
2155 struct key_vector
*pn
= iter
->tnode
;
2158 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2159 iter
->tnode
, iter
->index
, iter
->depth
);
2161 while (!IS_TRIE(pn
)) {
2162 while (cindex
< child_length(pn
)) {
2163 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2170 iter
->index
= cindex
;
2172 /* push down one level */
2181 /* Current node exhausted, pop back up */
2183 pn
= node_parent_rcu(pn
);
2184 cindex
= get_index(pkey
, pn
) + 1;
2188 /* record root node so further searches know we are done */
2195 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2198 struct key_vector
*n
, *pn
;
2204 n
= rcu_dereference(pn
->tnode
[0]);
2221 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2223 struct key_vector
*n
;
2224 struct fib_trie_iter iter
;
2226 memset(s
, 0, sizeof(*s
));
2229 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2231 struct fib_alias
*fa
;
2234 s
->totdepth
+= iter
.depth
;
2235 if (iter
.depth
> s
->maxdepth
)
2236 s
->maxdepth
= iter
.depth
;
2238 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2242 if (n
->bits
< MAX_STAT_DEPTH
)
2243 s
->nodesizes
[n
->bits
]++;
2244 s
->nullpointers
+= tn_info(n
)->empty_children
;
2251 * This outputs /proc/net/fib_triestats
2253 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2255 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2258 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2262 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2263 avdepth
/ 100, avdepth
% 100);
2264 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2266 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2267 bytes
= LEAF_SIZE
* stat
->leaves
;
2269 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2270 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2272 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2273 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2275 max
= MAX_STAT_DEPTH
;
2276 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2280 for (i
= 1; i
< max
; i
++)
2281 if (stat
->nodesizes
[i
] != 0) {
2282 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2283 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2285 seq_putc(seq
, '\n');
2286 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2288 bytes
+= sizeof(struct key_vector
*) * pointers
;
2289 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2290 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2293 #ifdef CONFIG_IP_FIB_TRIE_STATS
2294 static void trie_show_usage(struct seq_file
*seq
,
2295 const struct trie_use_stats __percpu
*stats
)
2297 struct trie_use_stats s
= { 0 };
2300 /* loop through all of the CPUs and gather up the stats */
2301 for_each_possible_cpu(cpu
) {
2302 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2304 s
.gets
+= pcpu
->gets
;
2305 s
.backtrack
+= pcpu
->backtrack
;
2306 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2307 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2308 s
.null_node_hit
+= pcpu
->null_node_hit
;
2309 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2312 seq_printf(seq
, "\nCounters:\n---------\n");
2313 seq_printf(seq
, "gets = %u\n", s
.gets
);
2314 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2315 seq_printf(seq
, "semantic match passed = %u\n",
2316 s
.semantic_match_passed
);
2317 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2318 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2319 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2321 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2323 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2325 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2326 seq_puts(seq
, "Local:\n");
2327 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2328 seq_puts(seq
, "Main:\n");
2330 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2334 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2336 struct net
*net
= (struct net
*)seq
->private;
2340 "Basic info: size of leaf:"
2341 " %zd bytes, size of tnode: %zd bytes.\n",
2342 LEAF_SIZE
, TNODE_SIZE(0));
2344 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2345 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2346 struct fib_table
*tb
;
2348 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2349 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2350 struct trie_stat stat
;
2355 fib_table_print(seq
, tb
);
2357 trie_collect_stats(t
, &stat
);
2358 trie_show_stats(seq
, &stat
);
2359 #ifdef CONFIG_IP_FIB_TRIE_STATS
2360 trie_show_usage(seq
, t
->stats
);
2368 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2370 struct fib_trie_iter
*iter
= seq
->private;
2371 struct net
*net
= seq_file_net(seq
);
2375 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2376 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2377 struct fib_table
*tb
;
2379 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2380 struct key_vector
*n
;
2382 for (n
= fib_trie_get_first(iter
,
2383 (struct trie
*) tb
->tb_data
);
2384 n
; n
= fib_trie_get_next(iter
))
2395 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2399 return fib_trie_get_idx(seq
, *pos
);
2402 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2404 struct fib_trie_iter
*iter
= seq
->private;
2405 struct net
*net
= seq_file_net(seq
);
2406 struct fib_table
*tb
= iter
->tb
;
2407 struct hlist_node
*tb_node
;
2409 struct key_vector
*n
;
2412 /* next node in same table */
2413 n
= fib_trie_get_next(iter
);
2417 /* walk rest of this hash chain */
2418 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2419 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2420 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2421 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2426 /* new hash chain */
2427 while (++h
< FIB_TABLE_HASHSZ
) {
2428 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2429 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2430 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2442 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2448 static void seq_indent(struct seq_file
*seq
, int n
)
2454 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2457 case RT_SCOPE_UNIVERSE
: return "universe";
2458 case RT_SCOPE_SITE
: return "site";
2459 case RT_SCOPE_LINK
: return "link";
2460 case RT_SCOPE_HOST
: return "host";
2461 case RT_SCOPE_NOWHERE
: return "nowhere";
2463 snprintf(buf
, len
, "scope=%d", s
);
2468 static const char *const rtn_type_names
[__RTN_MAX
] = {
2469 [RTN_UNSPEC
] = "UNSPEC",
2470 [RTN_UNICAST
] = "UNICAST",
2471 [RTN_LOCAL
] = "LOCAL",
2472 [RTN_BROADCAST
] = "BROADCAST",
2473 [RTN_ANYCAST
] = "ANYCAST",
2474 [RTN_MULTICAST
] = "MULTICAST",
2475 [RTN_BLACKHOLE
] = "BLACKHOLE",
2476 [RTN_UNREACHABLE
] = "UNREACHABLE",
2477 [RTN_PROHIBIT
] = "PROHIBIT",
2478 [RTN_THROW
] = "THROW",
2480 [RTN_XRESOLVE
] = "XRESOLVE",
2483 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2485 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2486 return rtn_type_names
[t
];
2487 snprintf(buf
, len
, "type %u", t
);
2491 /* Pretty print the trie */
2492 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2494 const struct fib_trie_iter
*iter
= seq
->private;
2495 struct key_vector
*n
= v
;
2497 if (IS_TRIE(node_parent_rcu(n
)))
2498 fib_table_print(seq
, iter
->tb
);
2501 __be32 prf
= htonl(n
->key
);
2503 seq_indent(seq
, iter
->depth
-1);
2504 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2505 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2506 tn_info(n
)->full_children
,
2507 tn_info(n
)->empty_children
);
2509 __be32 val
= htonl(n
->key
);
2510 struct fib_alias
*fa
;
2512 seq_indent(seq
, iter
->depth
);
2513 seq_printf(seq
, " |-- %pI4\n", &val
);
2515 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2516 char buf1
[32], buf2
[32];
2518 seq_indent(seq
, iter
->depth
+ 1);
2519 seq_printf(seq
, " /%zu %s %s",
2520 KEYLENGTH
- fa
->fa_slen
,
2521 rtn_scope(buf1
, sizeof(buf1
),
2522 fa
->fa_info
->fib_scope
),
2523 rtn_type(buf2
, sizeof(buf2
),
2526 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2527 seq_putc(seq
, '\n');
2534 static const struct seq_operations fib_trie_seq_ops
= {
2535 .start
= fib_trie_seq_start
,
2536 .next
= fib_trie_seq_next
,
2537 .stop
= fib_trie_seq_stop
,
2538 .show
= fib_trie_seq_show
,
2541 struct fib_route_iter
{
2542 struct seq_net_private p
;
2543 struct fib_table
*main_tb
;
2544 struct key_vector
*tnode
;
2549 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2552 struct key_vector
*l
, **tp
= &iter
->tnode
;
2555 /* use cached location of previously found key */
2556 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2565 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2570 /* handle unlikely case of a key wrap */
2576 iter
->key
= l
->key
; /* remember it */
2578 iter
->pos
= 0; /* forget it */
2583 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2586 struct fib_route_iter
*iter
= seq
->private;
2587 struct fib_table
*tb
;
2592 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2597 t
= (struct trie
*)tb
->tb_data
;
2598 iter
->tnode
= t
->kv
;
2601 return fib_route_get_idx(iter
, *pos
);
2604 iter
->key
= KEY_MAX
;
2606 return SEQ_START_TOKEN
;
2609 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2611 struct fib_route_iter
*iter
= seq
->private;
2612 struct key_vector
*l
= NULL
;
2613 t_key key
= iter
->key
+ 1;
2617 /* only allow key of 0 for start of sequence */
2618 if ((v
== SEQ_START_TOKEN
) || key
)
2619 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2631 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2637 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2639 unsigned int flags
= 0;
2641 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2643 if (fi
&& fi
->fib_nh
->fib_nh_gw4
)
2644 flags
|= RTF_GATEWAY
;
2645 if (mask
== htonl(0xFFFFFFFF))
2652 * This outputs /proc/net/route.
2653 * The format of the file is not supposed to be changed
2654 * and needs to be same as fib_hash output to avoid breaking
2657 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2659 struct fib_route_iter
*iter
= seq
->private;
2660 struct fib_table
*tb
= iter
->main_tb
;
2661 struct fib_alias
*fa
;
2662 struct key_vector
*l
= v
;
2665 if (v
== SEQ_START_TOKEN
) {
2666 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2667 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2672 prefix
= htonl(l
->key
);
2674 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2675 const struct fib_info
*fi
= fa
->fa_info
;
2676 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2677 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2679 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2680 (fa
->fa_type
== RTN_MULTICAST
))
2683 if (fa
->tb_id
!= tb
->tb_id
)
2686 seq_setwidth(seq
, 127);
2690 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2691 "%d\t%08X\t%d\t%u\t%u",
2692 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2694 fi
->fib_nh
->fib_nh_gw4
, flags
, 0, 0,
2698 fi
->fib_advmss
+ 40 : 0),
2703 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2704 "%d\t%08X\t%d\t%u\t%u",
2705 prefix
, 0, flags
, 0, 0, 0,
2714 static const struct seq_operations fib_route_seq_ops
= {
2715 .start
= fib_route_seq_start
,
2716 .next
= fib_route_seq_next
,
2717 .stop
= fib_route_seq_stop
,
2718 .show
= fib_route_seq_show
,
2721 int __net_init
fib_proc_init(struct net
*net
)
2723 if (!proc_create_net("fib_trie", 0444, net
->proc_net
, &fib_trie_seq_ops
,
2724 sizeof(struct fib_trie_iter
)))
2727 if (!proc_create_net_single("fib_triestat", 0444, net
->proc_net
,
2728 fib_triestat_seq_show
, NULL
))
2731 if (!proc_create_net("route", 0444, net
->proc_net
, &fib_route_seq_ops
,
2732 sizeof(struct fib_route_iter
)))
2738 remove_proc_entry("fib_triestat", net
->proc_net
);
2740 remove_proc_entry("fib_trie", net
->proc_net
);
2745 void __net_exit
fib_proc_exit(struct net
*net
)
2747 remove_proc_entry("fib_trie", net
->proc_net
);
2748 remove_proc_entry("fib_triestat", net
->proc_net
);
2749 remove_proc_entry("route", net
->proc_net
);
2752 #endif /* CONFIG_PROC_FS */