1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
86 ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
88 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*));
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr
*iph
)
94 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
96 EXPORT_SYMBOL(ip_send_check
);
98 int __ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
100 struct iphdr
*iph
= ip_hdr(skb
);
102 iph
->tot_len
= htons(skb
->len
);
105 /* if egress device is enslaved to an L3 master device pass the
106 * skb to its handler for processing
108 skb
= l3mdev_ip_out(sk
, skb
);
112 skb
->protocol
= htons(ETH_P_IP
);
114 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
,
115 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
119 int ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
123 err
= __ip_local_out(net
, sk
, skb
);
124 if (likely(err
== 1))
125 err
= dst_output(net
, sk
, skb
);
129 EXPORT_SYMBOL_GPL(ip_local_out
);
131 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
133 int ttl
= inet
->uc_ttl
;
136 ttl
= ip4_dst_hoplimit(dst
);
141 * Add an ip header to a skbuff and send it out.
144 int ip_build_and_send_pkt(struct sk_buff
*skb
, const struct sock
*sk
,
145 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
147 struct inet_sock
*inet
= inet_sk(sk
);
148 struct rtable
*rt
= skb_rtable(skb
);
149 struct net
*net
= sock_net(sk
);
152 /* Build the IP header. */
153 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
154 skb_reset_network_header(skb
);
158 iph
->tos
= inet
->tos
;
159 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
160 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
162 iph
->protocol
= sk
->sk_protocol
;
163 if (ip_dont_fragment(sk
, &rt
->dst
)) {
164 iph
->frag_off
= htons(IP_DF
);
168 __ip_select_ident(net
, iph
, 1);
171 if (opt
&& opt
->opt
.optlen
) {
172 iph
->ihl
+= opt
->opt
.optlen
>>2;
173 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
176 skb
->priority
= sk
->sk_priority
;
178 skb
->mark
= sk
->sk_mark
;
181 return ip_local_out(net
, skb
->sk
, skb
);
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
185 static int ip_finish_output2(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
187 struct dst_entry
*dst
= skb_dst(skb
);
188 struct rtable
*rt
= (struct rtable
*)dst
;
189 struct net_device
*dev
= dst
->dev
;
190 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
191 struct neighbour
*neigh
;
192 bool is_v6gw
= false;
194 if (rt
->rt_type
== RTN_MULTICAST
) {
195 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTMCAST
, skb
->len
);
196 } else if (rt
->rt_type
== RTN_BROADCAST
)
197 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTBCAST
, skb
->len
);
199 /* Be paranoid, rather than too clever. */
200 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
201 struct sk_buff
*skb2
;
203 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
209 skb_set_owner_w(skb2
, skb
->sk
);
214 if (lwtunnel_xmit_redirect(dst
->lwtstate
)) {
215 int res
= lwtunnel_xmit(skb
);
217 if (res
< 0 || res
== LWTUNNEL_XMIT_DONE
)
222 neigh
= ip_neigh_for_gw(rt
, skb
, &is_v6gw
);
223 if (!IS_ERR(neigh
)) {
226 sock_confirm_neigh(skb
, neigh
);
227 /* if crossing protocols, can not use the cached header */
228 res
= neigh_output(neigh
, skb
, is_v6gw
);
229 rcu_read_unlock_bh();
232 rcu_read_unlock_bh();
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
240 static int ip_finish_output_gso(struct net
*net
, struct sock
*sk
,
241 struct sk_buff
*skb
, unsigned int mtu
)
243 netdev_features_t features
;
244 struct sk_buff
*segs
;
247 /* common case: seglen is <= mtu
249 if (skb_gso_validate_network_len(skb
, mtu
))
250 return ip_finish_output2(net
, sk
, skb
);
252 /* Slowpath - GSO segment length exceeds the egress MTU.
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 features
= netif_skb_features(skb
);
266 BUILD_BUG_ON(sizeof(*IPCB(skb
)) > SKB_SGO_CB_OFFSET
);
267 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
268 if (IS_ERR_OR_NULL(segs
)) {
276 struct sk_buff
*nskb
= segs
->next
;
279 skb_mark_not_on_list(segs
);
280 err
= ip_fragment(net
, sk
, segs
, mtu
, ip_finish_output2
);
290 static int ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
295 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
301 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
302 /* Policy lookup after SNAT yielded a new policy */
303 if (skb_dst(skb
)->xfrm
) {
304 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
305 return dst_output(net
, sk
, skb
);
308 mtu
= ip_skb_dst_mtu(sk
, skb
);
310 return ip_finish_output_gso(net
, sk
, skb
, mtu
);
312 if (skb
->len
> mtu
|| (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
))
313 return ip_fragment(net
, sk
, skb
, mtu
, ip_finish_output2
);
315 return ip_finish_output2(net
, sk
, skb
);
318 static int ip_mc_finish_output(struct net
*net
, struct sock
*sk
,
321 struct rtable
*new_rt
;
324 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
330 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
331 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
332 * see ipv4_pktinfo_prepare().
334 new_rt
= rt_dst_clone(net
->loopback_dev
, skb_rtable(skb
));
338 skb_dst_set(skb
, &new_rt
->dst
);
341 return dev_loopback_xmit(net
, sk
, skb
);
344 int ip_mc_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
346 struct rtable
*rt
= skb_rtable(skb
);
347 struct net_device
*dev
= rt
->dst
.dev
;
350 * If the indicated interface is up and running, send the packet.
352 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
355 skb
->protocol
= htons(ETH_P_IP
);
358 * Multicasts are looped back for other local users
361 if (rt
->rt_flags
&RTCF_MULTICAST
) {
363 #ifdef CONFIG_IP_MROUTE
364 /* Small optimization: do not loopback not local frames,
365 which returned after forwarding; they will be dropped
366 by ip_mr_input in any case.
367 Note, that local frames are looped back to be delivered
370 This check is duplicated in ip_mr_input at the moment.
373 ((rt
->rt_flags
& RTCF_LOCAL
) ||
374 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
377 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
379 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
380 net
, sk
, newskb
, NULL
, newskb
->dev
,
381 ip_mc_finish_output
);
384 /* Multicasts with ttl 0 must not go beyond the host */
386 if (ip_hdr(skb
)->ttl
== 0) {
392 if (rt
->rt_flags
&RTCF_BROADCAST
) {
393 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
395 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
396 net
, sk
, newskb
, NULL
, newskb
->dev
,
397 ip_mc_finish_output
);
400 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
401 net
, sk
, skb
, NULL
, skb
->dev
,
403 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
406 int ip_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
408 struct net_device
*dev
= skb_dst(skb
)->dev
;
410 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
413 skb
->protocol
= htons(ETH_P_IP
);
415 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
416 net
, sk
, skb
, NULL
, dev
,
418 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
422 * copy saddr and daddr, possibly using 64bit load/stores
424 * iph->saddr = fl4->saddr;
425 * iph->daddr = fl4->daddr;
427 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
429 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
430 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
431 memcpy(&iph
->saddr
, &fl4
->saddr
,
432 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
435 /* Note: skb->sk can be different from sk, in case of tunnels */
436 int __ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
,
439 struct inet_sock
*inet
= inet_sk(sk
);
440 struct net
*net
= sock_net(sk
);
441 struct ip_options_rcu
*inet_opt
;
447 /* Skip all of this if the packet is already routed,
448 * f.e. by something like SCTP.
451 inet_opt
= rcu_dereference(inet
->inet_opt
);
453 rt
= skb_rtable(skb
);
457 /* Make sure we can route this packet. */
458 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
462 /* Use correct destination address if we have options. */
463 daddr
= inet
->inet_daddr
;
464 if (inet_opt
&& inet_opt
->opt
.srr
)
465 daddr
= inet_opt
->opt
.faddr
;
467 /* If this fails, retransmit mechanism of transport layer will
468 * keep trying until route appears or the connection times
471 rt
= ip_route_output_ports(net
, fl4
, sk
,
472 daddr
, inet
->inet_saddr
,
476 RT_CONN_FLAGS_TOS(sk
, tos
),
477 sk
->sk_bound_dev_if
);
480 sk_setup_caps(sk
, &rt
->dst
);
482 skb_dst_set_noref(skb
, &rt
->dst
);
485 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_gw_family
)
488 /* OK, we know where to send it, allocate and build IP header. */
489 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
490 skb_reset_network_header(skb
);
492 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (tos
& 0xff));
493 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
494 iph
->frag_off
= htons(IP_DF
);
497 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
498 iph
->protocol
= sk
->sk_protocol
;
499 ip_copy_addrs(iph
, fl4
);
501 /* Transport layer set skb->h.foo itself. */
503 if (inet_opt
&& inet_opt
->opt
.optlen
) {
504 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
505 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
508 ip_select_ident_segs(net
, skb
, sk
,
509 skb_shinfo(skb
)->gso_segs
?: 1);
511 /* TODO : should we use skb->sk here instead of sk ? */
512 skb
->priority
= sk
->sk_priority
;
513 skb
->mark
= sk
->sk_mark
;
515 res
= ip_local_out(net
, sk
, skb
);
521 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
523 return -EHOSTUNREACH
;
525 EXPORT_SYMBOL(__ip_queue_xmit
);
527 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
529 to
->pkt_type
= from
->pkt_type
;
530 to
->priority
= from
->priority
;
531 to
->protocol
= from
->protocol
;
532 to
->skb_iif
= from
->skb_iif
;
534 skb_dst_copy(to
, from
);
536 to
->mark
= from
->mark
;
538 skb_copy_hash(to
, from
);
540 /* Copy the flags to each fragment. */
541 IPCB(to
)->flags
= IPCB(from
)->flags
;
543 #ifdef CONFIG_NET_SCHED
544 to
->tc_index
= from
->tc_index
;
547 skb_ext_copy(to
, from
);
548 #if IS_ENABLED(CONFIG_IP_VS)
549 to
->ipvs_property
= from
->ipvs_property
;
551 skb_copy_secmark(to
, from
);
554 static int ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
556 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
558 struct iphdr
*iph
= ip_hdr(skb
);
560 if ((iph
->frag_off
& htons(IP_DF
)) == 0)
561 return ip_do_fragment(net
, sk
, skb
, output
);
563 if (unlikely(!skb
->ignore_df
||
564 (IPCB(skb
)->frag_max_size
&&
565 IPCB(skb
)->frag_max_size
> mtu
))) {
566 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
567 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
573 return ip_do_fragment(net
, sk
, skb
, output
);
577 * This IP datagram is too large to be sent in one piece. Break it up into
578 * smaller pieces (each of size equal to IP header plus
579 * a block of the data of the original IP data part) that will yet fit in a
580 * single device frame, and queue such a frame for sending.
583 int ip_do_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
584 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
588 struct sk_buff
*skb2
;
589 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
591 __be16 not_last_frag
;
592 struct rtable
*rt
= skb_rtable(skb
);
595 /* for offloaded checksums cleanup checksum before fragmentation */
596 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
597 (err
= skb_checksum_help(skb
)))
601 * Point into the IP datagram header.
606 mtu
= ip_skb_dst_mtu(sk
, skb
);
607 if (IPCB(skb
)->frag_max_size
&& IPCB(skb
)->frag_max_size
< mtu
)
608 mtu
= IPCB(skb
)->frag_max_size
;
611 * Setup starting values.
615 mtu
= mtu
- hlen
; /* Size of data space */
616 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
617 ll_rs
= LL_RESERVED_SPACE(rt
->dst
.dev
);
619 /* When frag_list is given, use it. First, check its validity:
620 * some transformers could create wrong frag_list or break existing
621 * one, it is not prohibited. In this case fall back to copying.
623 * LATER: this step can be merged to real generation of fragments,
624 * we can switch to copy when see the first bad fragment.
626 if (skb_has_frag_list(skb
)) {
627 struct sk_buff
*frag
, *frag2
;
628 unsigned int first_len
= skb_pagelen(skb
);
630 if (first_len
- hlen
> mtu
||
631 ((first_len
- hlen
) & 7) ||
632 ip_is_fragment(iph
) ||
634 skb_headroom(skb
) < ll_rs
)
637 skb_walk_frags(skb
, frag
) {
638 /* Correct geometry. */
639 if (frag
->len
> mtu
||
640 ((frag
->len
& 7) && frag
->next
) ||
641 skb_headroom(frag
) < hlen
+ ll_rs
)
642 goto slow_path_clean
;
644 /* Partially cloned skb? */
645 if (skb_shared(frag
))
646 goto slow_path_clean
;
651 frag
->destructor
= sock_wfree
;
653 skb
->truesize
-= frag
->truesize
;
656 /* Everything is OK. Generate! */
660 frag
= skb_shinfo(skb
)->frag_list
;
661 skb_frag_list_init(skb
);
662 skb
->data_len
= first_len
- skb_headlen(skb
);
663 skb
->len
= first_len
;
664 iph
->tot_len
= htons(first_len
);
665 iph
->frag_off
= htons(IP_MF
);
669 /* Prepare header of the next frame,
670 * before previous one went down. */
672 frag
->ip_summed
= CHECKSUM_NONE
;
673 skb_reset_transport_header(frag
);
674 __skb_push(frag
, hlen
);
675 skb_reset_network_header(frag
);
676 memcpy(skb_network_header(frag
), iph
, hlen
);
678 iph
->tot_len
= htons(frag
->len
);
679 ip_copy_metadata(frag
, skb
);
681 ip_options_fragment(frag
);
682 offset
+= skb
->len
- hlen
;
683 iph
->frag_off
= htons(offset
>>3);
685 iph
->frag_off
|= htons(IP_MF
);
686 /* Ready, complete checksum */
690 err
= output(net
, sk
, skb
);
693 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
699 skb_mark_not_on_list(skb
);
703 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
707 kfree_skb_list(frag
);
709 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
713 skb_walk_frags(skb
, frag2
) {
717 frag2
->destructor
= NULL
;
718 skb
->truesize
+= frag2
->truesize
;
725 left
= skb
->len
- hlen
; /* Space per frame */
726 ptr
= hlen
; /* Where to start from */
729 * Fragment the datagram.
732 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
733 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
736 * Keep copying data until we run out.
741 /* IF: it doesn't fit, use 'mtu' - the data space left */
744 /* IF: we are not sending up to and including the packet end
745 then align the next start on an eight byte boundary */
750 /* Allocate buffer */
751 skb2
= alloc_skb(len
+ hlen
+ ll_rs
, GFP_ATOMIC
);
758 * Set up data on packet
761 ip_copy_metadata(skb2
, skb
);
762 skb_reserve(skb2
, ll_rs
);
763 skb_put(skb2
, len
+ hlen
);
764 skb_reset_network_header(skb2
);
765 skb2
->transport_header
= skb2
->network_header
+ hlen
;
768 * Charge the memory for the fragment to any owner
773 skb_set_owner_w(skb2
, skb
->sk
);
776 * Copy the packet header into the new buffer.
779 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
782 * Copy a block of the IP datagram.
784 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
789 * Fill in the new header fields.
792 iph
->frag_off
= htons((offset
>> 3));
794 if (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
)
795 iph
->frag_off
|= htons(IP_DF
);
797 /* ANK: dirty, but effective trick. Upgrade options only if
798 * the segment to be fragmented was THE FIRST (otherwise,
799 * options are already fixed) and make it ONCE
800 * on the initial skb, so that all the following fragments
801 * will inherit fixed options.
804 ip_options_fragment(skb
);
807 * Added AC : If we are fragmenting a fragment that's not the
808 * last fragment then keep MF on each bit
810 if (left
> 0 || not_last_frag
)
811 iph
->frag_off
|= htons(IP_MF
);
816 * Put this fragment into the sending queue.
818 iph
->tot_len
= htons(len
+ hlen
);
822 err
= output(net
, sk
, skb2
);
826 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
829 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
834 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
837 EXPORT_SYMBOL(ip_do_fragment
);
840 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
842 struct msghdr
*msg
= from
;
844 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
845 if (!copy_from_iter_full(to
, len
, &msg
->msg_iter
))
849 if (!csum_and_copy_from_iter_full(to
, len
, &csum
, &msg
->msg_iter
))
851 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
855 EXPORT_SYMBOL(ip_generic_getfrag
);
858 csum_page(struct page
*page
, int offset
, int copy
)
863 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
868 static int __ip_append_data(struct sock
*sk
,
870 struct sk_buff_head
*queue
,
871 struct inet_cork
*cork
,
872 struct page_frag
*pfrag
,
873 int getfrag(void *from
, char *to
, int offset
,
874 int len
, int odd
, struct sk_buff
*skb
),
875 void *from
, int length
, int transhdrlen
,
878 struct inet_sock
*inet
= inet_sk(sk
);
879 struct ubuf_info
*uarg
= NULL
;
882 struct ip_options
*opt
= cork
->opt
;
889 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
890 int csummode
= CHECKSUM_NONE
;
891 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
892 unsigned int wmem_alloc_delta
= 0;
893 bool paged
, extra_uref
= false;
896 skb
= skb_peek_tail(queue
);
898 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
899 mtu
= cork
->gso_size
? IP_MAX_MTU
: cork
->fragsize
;
900 paged
= !!cork
->gso_size
;
902 if (cork
->tx_flags
& SKBTX_ANY_SW_TSTAMP
&&
903 sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)
904 tskey
= sk
->sk_tskey
++;
906 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
908 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
909 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
910 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
912 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
913 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
914 mtu
- (opt
? opt
->optlen
: 0));
919 * transhdrlen > 0 means that this is the first fragment and we wish
920 * it won't be fragmented in the future.
923 length
+ fragheaderlen
<= mtu
&&
924 rt
->dst
.dev
->features
& (NETIF_F_HW_CSUM
| NETIF_F_IP_CSUM
) &&
925 (!(flags
& MSG_MORE
) || cork
->gso_size
) &&
926 (!exthdrlen
|| (rt
->dst
.dev
->features
& NETIF_F_HW_ESP_TX_CSUM
)))
927 csummode
= CHECKSUM_PARTIAL
;
929 if (flags
& MSG_ZEROCOPY
&& length
&& sock_flag(sk
, SOCK_ZEROCOPY
)) {
930 uarg
= sock_zerocopy_realloc(sk
, length
, skb_zcopy(skb
));
933 extra_uref
= !skb_zcopy(skb
); /* only ref on new uarg */
934 if (rt
->dst
.dev
->features
& NETIF_F_SG
&&
935 csummode
== CHECKSUM_PARTIAL
) {
939 skb_zcopy_set(skb
, uarg
, &extra_uref
);
943 cork
->length
+= length
;
945 /* So, what's going on in the loop below?
947 * We use calculated fragment length to generate chained skb,
948 * each of segments is IP fragment ready for sending to network after
949 * adding appropriate IP header.
956 /* Check if the remaining data fits into current packet. */
957 copy
= mtu
- skb
->len
;
959 copy
= maxfraglen
- skb
->len
;
962 unsigned int datalen
;
963 unsigned int fraglen
;
964 unsigned int fraggap
;
965 unsigned int alloclen
;
966 unsigned int pagedlen
;
967 struct sk_buff
*skb_prev
;
971 fraggap
= skb_prev
->len
- maxfraglen
;
976 * If remaining data exceeds the mtu,
977 * we know we need more fragment(s).
979 datalen
= length
+ fraggap
;
980 if (datalen
> mtu
- fragheaderlen
)
981 datalen
= maxfraglen
- fragheaderlen
;
982 fraglen
= datalen
+ fragheaderlen
;
985 if ((flags
& MSG_MORE
) &&
986 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
991 alloclen
= min_t(int, fraglen
, MAX_HEADER
);
992 pagedlen
= fraglen
- alloclen
;
995 alloclen
+= exthdrlen
;
997 /* The last fragment gets additional space at tail.
998 * Note, with MSG_MORE we overallocate on fragments,
999 * because we have no idea what fragment will be
1002 if (datalen
== length
+ fraggap
)
1003 alloclen
+= rt
->dst
.trailer_len
;
1006 skb
= sock_alloc_send_skb(sk
,
1007 alloclen
+ hh_len
+ 15,
1008 (flags
& MSG_DONTWAIT
), &err
);
1011 if (refcount_read(&sk
->sk_wmem_alloc
) + wmem_alloc_delta
<=
1013 skb
= alloc_skb(alloclen
+ hh_len
+ 15,
1022 * Fill in the control structures
1024 skb
->ip_summed
= csummode
;
1026 skb_reserve(skb
, hh_len
);
1029 * Find where to start putting bytes.
1031 data
= skb_put(skb
, fraglen
+ exthdrlen
- pagedlen
);
1032 skb_set_network_header(skb
, exthdrlen
);
1033 skb
->transport_header
= (skb
->network_header
+
1035 data
+= fragheaderlen
+ exthdrlen
;
1038 skb
->csum
= skb_copy_and_csum_bits(
1039 skb_prev
, maxfraglen
,
1040 data
+ transhdrlen
, fraggap
, 0);
1041 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1044 pskb_trim_unique(skb_prev
, maxfraglen
);
1047 copy
= datalen
- transhdrlen
- fraggap
- pagedlen
;
1048 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1055 length
-= copy
+ transhdrlen
;
1058 csummode
= CHECKSUM_NONE
;
1060 /* only the initial fragment is time stamped */
1061 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
1063 skb_shinfo(skb
)->tskey
= tskey
;
1065 skb_zcopy_set(skb
, uarg
, &extra_uref
);
1067 if ((flags
& MSG_CONFIRM
) && !skb_prev
)
1068 skb_set_dst_pending_confirm(skb
, 1);
1071 * Put the packet on the pending queue.
1073 if (!skb
->destructor
) {
1074 skb
->destructor
= sock_wfree
;
1076 wmem_alloc_delta
+= skb
->truesize
;
1078 __skb_queue_tail(queue
, skb
);
1085 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
) &&
1086 skb_tailroom(skb
) >= copy
) {
1090 if (getfrag(from
, skb_put(skb
, copy
),
1091 offset
, copy
, off
, skb
) < 0) {
1092 __skb_trim(skb
, off
);
1096 } else if (!uarg
|| !uarg
->zerocopy
) {
1097 int i
= skb_shinfo(skb
)->nr_frags
;
1100 if (!sk_page_frag_refill(sk
, pfrag
))
1103 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1106 if (i
== MAX_SKB_FRAGS
)
1109 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1111 skb_shinfo(skb
)->nr_frags
= ++i
;
1112 get_page(pfrag
->page
);
1114 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1116 page_address(pfrag
->page
) + pfrag
->offset
,
1117 offset
, copy
, skb
->len
, skb
) < 0)
1120 pfrag
->offset
+= copy
;
1121 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1123 skb
->data_len
+= copy
;
1124 skb
->truesize
+= copy
;
1125 wmem_alloc_delta
+= copy
;
1127 err
= skb_zerocopy_iter_dgram(skb
, from
, copy
);
1135 if (wmem_alloc_delta
)
1136 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1143 sock_zerocopy_put_abort(uarg
, extra_uref
);
1144 cork
->length
-= length
;
1145 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1146 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1150 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1151 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1153 struct ip_options_rcu
*opt
;
1161 * setup for corking.
1166 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1168 if (unlikely(!cork
->opt
))
1171 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1172 cork
->flags
|= IPCORK_OPT
;
1173 cork
->addr
= ipc
->addr
;
1177 * We steal reference to this route, caller should not release it
1180 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1181 dst_mtu(&rt
->dst
) : rt
->dst
.dev
->mtu
;
1183 cork
->gso_size
= ipc
->gso_size
;
1184 cork
->dst
= &rt
->dst
;
1186 cork
->ttl
= ipc
->ttl
;
1187 cork
->tos
= ipc
->tos
;
1188 cork
->priority
= ipc
->priority
;
1189 cork
->transmit_time
= ipc
->sockc
.transmit_time
;
1191 sock_tx_timestamp(sk
, ipc
->sockc
.tsflags
, &cork
->tx_flags
);
1197 * ip_append_data() and ip_append_page() can make one large IP datagram
1198 * from many pieces of data. Each pieces will be holded on the socket
1199 * until ip_push_pending_frames() is called. Each piece can be a page
1202 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1203 * this interface potentially.
1205 * LATER: length must be adjusted by pad at tail, when it is required.
1207 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1208 int getfrag(void *from
, char *to
, int offset
, int len
,
1209 int odd
, struct sk_buff
*skb
),
1210 void *from
, int length
, int transhdrlen
,
1211 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1214 struct inet_sock
*inet
= inet_sk(sk
);
1217 if (flags
&MSG_PROBE
)
1220 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1221 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1228 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1229 sk_page_frag(sk
), getfrag
,
1230 from
, length
, transhdrlen
, flags
);
1233 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1234 int offset
, size_t size
, int flags
)
1236 struct inet_sock
*inet
= inet_sk(sk
);
1237 struct sk_buff
*skb
;
1239 struct ip_options
*opt
= NULL
;
1240 struct inet_cork
*cork
;
1245 unsigned int maxfraglen
, fragheaderlen
, fraggap
, maxnonfragsize
;
1250 if (flags
&MSG_PROBE
)
1253 if (skb_queue_empty(&sk
->sk_write_queue
))
1256 cork
= &inet
->cork
.base
;
1257 rt
= (struct rtable
*)cork
->dst
;
1258 if (cork
->flags
& IPCORK_OPT
)
1261 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1264 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1265 mtu
= cork
->gso_size
? IP_MAX_MTU
: cork
->fragsize
;
1267 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1268 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1269 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
1271 if (cork
->length
+ size
> maxnonfragsize
- fragheaderlen
) {
1272 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
1273 mtu
- (opt
? opt
->optlen
: 0));
1277 skb
= skb_peek_tail(&sk
->sk_write_queue
);
1281 cork
->length
+= size
;
1284 /* Check if the remaining data fits into current packet. */
1285 len
= mtu
- skb
->len
;
1287 len
= maxfraglen
- skb
->len
;
1290 struct sk_buff
*skb_prev
;
1294 fraggap
= skb_prev
->len
- maxfraglen
;
1296 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1297 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1298 if (unlikely(!skb
)) {
1304 * Fill in the control structures
1306 skb
->ip_summed
= CHECKSUM_NONE
;
1308 skb_reserve(skb
, hh_len
);
1311 * Find where to start putting bytes.
1313 skb_put(skb
, fragheaderlen
+ fraggap
);
1314 skb_reset_network_header(skb
);
1315 skb
->transport_header
= (skb
->network_header
+
1318 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1320 skb_transport_header(skb
),
1322 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1324 pskb_trim_unique(skb_prev
, maxfraglen
);
1328 * Put the packet on the pending queue.
1330 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1337 if (skb_append_pagefrags(skb
, page
, offset
, len
)) {
1342 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1344 csum
= csum_page(page
, offset
, len
);
1345 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1349 skb
->data_len
+= len
;
1350 skb
->truesize
+= len
;
1351 refcount_add(len
, &sk
->sk_wmem_alloc
);
1358 cork
->length
-= size
;
1359 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1363 static void ip_cork_release(struct inet_cork
*cork
)
1365 cork
->flags
&= ~IPCORK_OPT
;
1368 dst_release(cork
->dst
);
1373 * Combined all pending IP fragments on the socket as one IP datagram
1374 * and push them out.
1376 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1378 struct sk_buff_head
*queue
,
1379 struct inet_cork
*cork
)
1381 struct sk_buff
*skb
, *tmp_skb
;
1382 struct sk_buff
**tail_skb
;
1383 struct inet_sock
*inet
= inet_sk(sk
);
1384 struct net
*net
= sock_net(sk
);
1385 struct ip_options
*opt
= NULL
;
1386 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1391 skb
= __skb_dequeue(queue
);
1394 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1396 /* move skb->data to ip header from ext header */
1397 if (skb
->data
< skb_network_header(skb
))
1398 __skb_pull(skb
, skb_network_offset(skb
));
1399 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1400 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1401 *tail_skb
= tmp_skb
;
1402 tail_skb
= &(tmp_skb
->next
);
1403 skb
->len
+= tmp_skb
->len
;
1404 skb
->data_len
+= tmp_skb
->len
;
1405 skb
->truesize
+= tmp_skb
->truesize
;
1406 tmp_skb
->destructor
= NULL
;
1410 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1411 * to fragment the frame generated here. No matter, what transforms
1412 * how transforms change size of the packet, it will come out.
1414 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1416 /* DF bit is set when we want to see DF on outgoing frames.
1417 * If ignore_df is set too, we still allow to fragment this frame
1419 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1420 inet
->pmtudisc
== IP_PMTUDISC_PROBE
||
1421 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1422 ip_dont_fragment(sk
, &rt
->dst
)))
1425 if (cork
->flags
& IPCORK_OPT
)
1430 else if (rt
->rt_type
== RTN_MULTICAST
)
1433 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1438 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: inet
->tos
;
1441 iph
->protocol
= sk
->sk_protocol
;
1442 ip_copy_addrs(iph
, fl4
);
1443 ip_select_ident(net
, skb
, sk
);
1446 iph
->ihl
+= opt
->optlen
>>2;
1447 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1450 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: sk
->sk_priority
;
1451 skb
->mark
= sk
->sk_mark
;
1452 skb
->tstamp
= cork
->transmit_time
;
1454 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1458 skb_dst_set(skb
, &rt
->dst
);
1460 if (iph
->protocol
== IPPROTO_ICMP
)
1461 icmp_out_count(net
, ((struct icmphdr
*)
1462 skb_transport_header(skb
))->type
);
1464 ip_cork_release(cork
);
1469 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1473 err
= ip_local_out(net
, skb
->sk
, skb
);
1476 err
= net_xmit_errno(err
);
1478 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1484 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1486 struct sk_buff
*skb
;
1488 skb
= ip_finish_skb(sk
, fl4
);
1492 /* Netfilter gets whole the not fragmented skb. */
1493 return ip_send_skb(sock_net(sk
), skb
);
1497 * Throw away all pending data on the socket.
1499 static void __ip_flush_pending_frames(struct sock
*sk
,
1500 struct sk_buff_head
*queue
,
1501 struct inet_cork
*cork
)
1503 struct sk_buff
*skb
;
1505 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1508 ip_cork_release(cork
);
1511 void ip_flush_pending_frames(struct sock
*sk
)
1513 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1516 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1518 int getfrag(void *from
, char *to
, int offset
,
1519 int len
, int odd
, struct sk_buff
*skb
),
1520 void *from
, int length
, int transhdrlen
,
1521 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1522 struct inet_cork
*cork
, unsigned int flags
)
1524 struct sk_buff_head queue
;
1527 if (flags
& MSG_PROBE
)
1530 __skb_queue_head_init(&queue
);
1535 err
= ip_setup_cork(sk
, cork
, ipc
, rtp
);
1537 return ERR_PTR(err
);
1539 err
= __ip_append_data(sk
, fl4
, &queue
, cork
,
1540 ¤t
->task_frag
, getfrag
,
1541 from
, length
, transhdrlen
, flags
);
1543 __ip_flush_pending_frames(sk
, &queue
, cork
);
1544 return ERR_PTR(err
);
1547 return __ip_make_skb(sk
, fl4
, &queue
, cork
);
1551 * Fetch data from kernel space and fill in checksum if needed.
1553 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1554 int len
, int odd
, struct sk_buff
*skb
)
1558 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1559 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1564 * Generic function to send a packet as reply to another packet.
1565 * Used to send some TCP resets/acks so far.
1567 void ip_send_unicast_reply(struct sock
*sk
, struct sk_buff
*skb
,
1568 const struct ip_options
*sopt
,
1569 __be32 daddr
, __be32 saddr
,
1570 const struct ip_reply_arg
*arg
,
1573 struct ip_options_data replyopts
;
1574 struct ipcm_cookie ipc
;
1576 struct rtable
*rt
= skb_rtable(skb
);
1577 struct net
*net
= sock_net(sk
);
1578 struct sk_buff
*nskb
;
1582 if (__ip_options_echo(net
, &replyopts
.opt
.opt
, skb
, sopt
))
1588 if (replyopts
.opt
.opt
.optlen
) {
1589 ipc
.opt
= &replyopts
.opt
;
1591 if (replyopts
.opt
.opt
.srr
)
1592 daddr
= replyopts
.opt
.opt
.faddr
;
1595 oif
= arg
->bound_dev_if
;
1596 if (!oif
&& netif_index_is_l3_master(net
, skb
->skb_iif
))
1599 flowi4_init_output(&fl4
, oif
,
1600 IP4_REPLY_MARK(net
, skb
->mark
) ?: sk
->sk_mark
,
1602 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1603 ip_reply_arg_flowi_flags(arg
),
1605 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
,
1607 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1608 rt
= ip_route_output_key(net
, &fl4
);
1612 inet_sk(sk
)->tos
= arg
->tos
;
1614 sk
->sk_priority
= skb
->priority
;
1615 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1616 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1617 sk
->sk_sndbuf
= sysctl_wmem_default
;
1618 sk
->sk_mark
= fl4
.flowi4_mark
;
1619 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1620 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1621 if (unlikely(err
)) {
1622 ip_flush_pending_frames(sk
);
1626 nskb
= skb_peek(&sk
->sk_write_queue
);
1628 if (arg
->csumoffset
>= 0)
1629 *((__sum16
*)skb_transport_header(nskb
) +
1630 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1632 nskb
->ip_summed
= CHECKSUM_NONE
;
1633 ip_push_pending_frames(sk
, &fl4
);
1639 void __init
ip_init(void)
1644 #if defined(CONFIG_IP_MULTICAST)