Merge tag 'nfsd-5.2-2' of git://linux-nfs.org/~bfields/linux
[linux-2.6/linux-2.6-arm.git] / net / ipv4 / tcp_input.c
blobd95ee40df6c2b020d590018bc41833b8a6aefa4a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
121 icsk->icsk_clean_acked = cad;
122 static_branch_inc(&clean_acked_data_enabled.key);
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 void clean_acked_data_flush(void)
135 static_key_deferred_flush(&clean_acked_data_enabled);
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 unsigned int len)
143 static bool __once __read_mostly;
145 if (!__once) {
146 struct net_device *dev;
148 __once = true;
150 rcu_read_lock();
151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 if (!dev || len >= dev->mtu)
153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 dev ? dev->name : "Unknown driver");
155 rcu_read_unlock();
159 /* Adapt the MSS value used to make delayed ack decision to the
160 * real world.
162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 unsigned int len;
168 icsk->icsk_ack.last_seg_size = 0;
170 /* skb->len may jitter because of SACKs, even if peer
171 * sends good full-sized frames.
173 len = skb_shinfo(skb)->gso_size ? : skb->len;
174 if (len >= icsk->icsk_ack.rcv_mss) {
175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 tcp_sk(sk)->advmss);
177 /* Account for possibly-removed options */
178 if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 MAX_TCP_OPTION_SPACE))
180 tcp_gro_dev_warn(sk, skb, len);
181 } else {
182 /* Otherwise, we make more careful check taking into account,
183 * that SACKs block is variable.
185 * "len" is invariant segment length, including TCP header.
187 len += skb->data - skb_transport_header(skb);
188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 /* If PSH is not set, packet should be
190 * full sized, provided peer TCP is not badly broken.
191 * This observation (if it is correct 8)) allows
192 * to handle super-low mtu links fairly.
194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 /* Subtract also invariant (if peer is RFC compliant),
197 * tcp header plus fixed timestamp option length.
198 * Resulting "len" is MSS free of SACK jitter.
200 len -= tcp_sk(sk)->tcp_header_len;
201 icsk->icsk_ack.last_seg_size = len;
202 if (len == lss) {
203 icsk->icsk_ack.rcv_mss = len;
204 return;
207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218 if (quickacks == 0)
219 quickacks = 2;
220 quickacks = min(quickacks, max_quickacks);
221 if (quickacks > icsk->icsk_ack.quick)
222 icsk->icsk_ack.quick = quickacks;
225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 struct inet_connection_sock *icsk = inet_csk(sk);
229 tcp_incr_quickack(sk, max_quickacks);
230 inet_csk_exit_pingpong_mode(sk);
231 icsk->icsk_ack.ato = TCP_ATO_MIN;
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235 /* Send ACKs quickly, if "quick" count is not exhausted
236 * and the session is not interactive.
239 static bool tcp_in_quickack_mode(struct sock *sk)
241 const struct inet_connection_sock *icsk = inet_csk(sk);
242 const struct dst_entry *dst = __sk_dst_get(sk);
244 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 if (tp->ecn_flags & TCP_ECN_OK)
251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 if (tcp_hdr(skb)->cwr) {
257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259 /* If the sender is telling us it has entered CWR, then its
260 * cwnd may be very low (even just 1 packet), so we should ACK
261 * immediately.
263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
269 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
274 struct tcp_sock *tp = tcp_sk(sk);
276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 case INET_ECN_NOT_ECT:
278 /* Funny extension: if ECT is not set on a segment,
279 * and we already seen ECT on a previous segment,
280 * it is probably a retransmit.
282 if (tp->ecn_flags & TCP_ECN_SEEN)
283 tcp_enter_quickack_mode(sk, 2);
284 break;
285 case INET_ECN_CE:
286 if (tcp_ca_needs_ecn(sk))
287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 /* Better not delay acks, sender can have a very low cwnd */
291 tcp_enter_quickack_mode(sk, 2);
292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
294 tp->ecn_flags |= TCP_ECN_SEEN;
295 break;
296 default:
297 if (tcp_ca_needs_ecn(sk))
298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 tp->ecn_flags |= TCP_ECN_SEEN;
300 break;
304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 __tcp_ecn_check_ce(sk, skb);
310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 tp->ecn_flags &= ~TCP_ECN_OK;
316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 tp->ecn_flags &= ~TCP_ECN_OK;
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 return true;
326 return false;
329 /* Buffer size and advertised window tuning.
331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
334 static void tcp_sndbuf_expand(struct sock *sk)
336 const struct tcp_sock *tp = tcp_sk(sk);
337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 int sndmem, per_mss;
339 u32 nr_segs;
341 /* Worst case is non GSO/TSO : each frame consumes one skb
342 * and skb->head is kmalloced using power of two area of memory
344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 MAX_TCP_HEADER +
346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
348 per_mss = roundup_pow_of_two(per_mss) +
349 SKB_DATA_ALIGN(sizeof(struct sk_buff));
351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
354 /* Fast Recovery (RFC 5681 3.2) :
355 * Cubic needs 1.7 factor, rounded to 2 to include
356 * extra cushion (application might react slowly to EPOLLOUT)
358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 sndmem *= nr_segs * per_mss;
361 if (sk->sk_sndbuf < sndmem)
362 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
365 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367 * All tcp_full_space() is split to two parts: "network" buffer, allocated
368 * forward and advertised in receiver window (tp->rcv_wnd) and
369 * "application buffer", required to isolate scheduling/application
370 * latencies from network.
371 * window_clamp is maximal advertised window. It can be less than
372 * tcp_full_space(), in this case tcp_full_space() - window_clamp
373 * is reserved for "application" buffer. The less window_clamp is
374 * the smoother our behaviour from viewpoint of network, but the lower
375 * throughput and the higher sensitivity of the connection to losses. 8)
377 * rcv_ssthresh is more strict window_clamp used at "slow start"
378 * phase to predict further behaviour of this connection.
379 * It is used for two goals:
380 * - to enforce header prediction at sender, even when application
381 * requires some significant "application buffer". It is check #1.
382 * - to prevent pruning of receive queue because of misprediction
383 * of receiver window. Check #2.
385 * The scheme does not work when sender sends good segments opening
386 * window and then starts to feed us spaghetti. But it should work
387 * in common situations. Otherwise, we have to rely on queue collapsing.
390 /* Slow part of check#2. */
391 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
393 struct tcp_sock *tp = tcp_sk(sk);
394 /* Optimize this! */
395 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
396 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
398 while (tp->rcv_ssthresh <= window) {
399 if (truesize <= skb->len)
400 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
402 truesize >>= 1;
403 window >>= 1;
405 return 0;
408 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
410 struct tcp_sock *tp = tcp_sk(sk);
411 int room;
413 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
415 /* Check #1 */
416 if (room > 0 && !tcp_under_memory_pressure(sk)) {
417 int incr;
419 /* Check #2. Increase window, if skb with such overhead
420 * will fit to rcvbuf in future.
422 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
423 incr = 2 * tp->advmss;
424 else
425 incr = __tcp_grow_window(sk, skb);
427 if (incr) {
428 incr = max_t(int, incr, 2 * skb->len);
429 tp->rcv_ssthresh += min(room, incr);
430 inet_csk(sk)->icsk_ack.quick |= 1;
435 /* 3. Try to fixup all. It is made immediately after connection enters
436 * established state.
438 void tcp_init_buffer_space(struct sock *sk)
440 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
441 struct tcp_sock *tp = tcp_sk(sk);
442 int maxwin;
444 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
445 tcp_sndbuf_expand(sk);
447 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
448 tcp_mstamp_refresh(tp);
449 tp->rcvq_space.time = tp->tcp_mstamp;
450 tp->rcvq_space.seq = tp->copied_seq;
452 maxwin = tcp_full_space(sk);
454 if (tp->window_clamp >= maxwin) {
455 tp->window_clamp = maxwin;
457 if (tcp_app_win && maxwin > 4 * tp->advmss)
458 tp->window_clamp = max(maxwin -
459 (maxwin >> tcp_app_win),
460 4 * tp->advmss);
463 /* Force reservation of one segment. */
464 if (tcp_app_win &&
465 tp->window_clamp > 2 * tp->advmss &&
466 tp->window_clamp + tp->advmss > maxwin)
467 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
470 tp->snd_cwnd_stamp = tcp_jiffies32;
473 /* 4. Recalculate window clamp after socket hit its memory bounds. */
474 static void tcp_clamp_window(struct sock *sk)
476 struct tcp_sock *tp = tcp_sk(sk);
477 struct inet_connection_sock *icsk = inet_csk(sk);
478 struct net *net = sock_net(sk);
480 icsk->icsk_ack.quick = 0;
482 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
483 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
484 !tcp_under_memory_pressure(sk) &&
485 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
486 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
487 net->ipv4.sysctl_tcp_rmem[2]);
489 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
490 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493 /* Initialize RCV_MSS value.
494 * RCV_MSS is an our guess about MSS used by the peer.
495 * We haven't any direct information about the MSS.
496 * It's better to underestimate the RCV_MSS rather than overestimate.
497 * Overestimations make us ACKing less frequently than needed.
498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
500 void tcp_initialize_rcv_mss(struct sock *sk)
502 const struct tcp_sock *tp = tcp_sk(sk);
503 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
505 hint = min(hint, tp->rcv_wnd / 2);
506 hint = min(hint, TCP_MSS_DEFAULT);
507 hint = max(hint, TCP_MIN_MSS);
509 inet_csk(sk)->icsk_ack.rcv_mss = hint;
511 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
513 /* Receiver "autotuning" code.
515 * The algorithm for RTT estimation w/o timestamps is based on
516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
517 * <http://public.lanl.gov/radiant/pubs.html#DRS>
519 * More detail on this code can be found at
520 * <http://staff.psc.edu/jheffner/>,
521 * though this reference is out of date. A new paper
522 * is pending.
524 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
526 u32 new_sample = tp->rcv_rtt_est.rtt_us;
527 long m = sample;
529 if (new_sample != 0) {
530 /* If we sample in larger samples in the non-timestamp
531 * case, we could grossly overestimate the RTT especially
532 * with chatty applications or bulk transfer apps which
533 * are stalled on filesystem I/O.
535 * Also, since we are only going for a minimum in the
536 * non-timestamp case, we do not smooth things out
537 * else with timestamps disabled convergence takes too
538 * long.
540 if (!win_dep) {
541 m -= (new_sample >> 3);
542 new_sample += m;
543 } else {
544 m <<= 3;
545 if (m < new_sample)
546 new_sample = m;
548 } else {
549 /* No previous measure. */
550 new_sample = m << 3;
553 tp->rcv_rtt_est.rtt_us = new_sample;
556 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
558 u32 delta_us;
560 if (tp->rcv_rtt_est.time == 0)
561 goto new_measure;
562 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
563 return;
564 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
565 if (!delta_us)
566 delta_us = 1;
567 tcp_rcv_rtt_update(tp, delta_us, 1);
569 new_measure:
570 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
571 tp->rcv_rtt_est.time = tp->tcp_mstamp;
574 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
575 const struct sk_buff *skb)
577 struct tcp_sock *tp = tcp_sk(sk);
579 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
580 return;
581 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
583 if (TCP_SKB_CB(skb)->end_seq -
584 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
585 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
586 u32 delta_us;
588 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
589 if (!delta)
590 delta = 1;
591 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
592 tcp_rcv_rtt_update(tp, delta_us, 0);
598 * This function should be called every time data is copied to user space.
599 * It calculates the appropriate TCP receive buffer space.
601 void tcp_rcv_space_adjust(struct sock *sk)
603 struct tcp_sock *tp = tcp_sk(sk);
604 u32 copied;
605 int time;
607 trace_tcp_rcv_space_adjust(sk);
609 tcp_mstamp_refresh(tp);
610 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
611 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
612 return;
614 /* Number of bytes copied to user in last RTT */
615 copied = tp->copied_seq - tp->rcvq_space.seq;
616 if (copied <= tp->rcvq_space.space)
617 goto new_measure;
619 /* A bit of theory :
620 * copied = bytes received in previous RTT, our base window
621 * To cope with packet losses, we need a 2x factor
622 * To cope with slow start, and sender growing its cwin by 100 %
623 * every RTT, we need a 4x factor, because the ACK we are sending
624 * now is for the next RTT, not the current one :
625 * <prev RTT . ><current RTT .. ><next RTT .... >
628 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
629 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
630 int rcvmem, rcvbuf;
631 u64 rcvwin, grow;
633 /* minimal window to cope with packet losses, assuming
634 * steady state. Add some cushion because of small variations.
636 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
638 /* Accommodate for sender rate increase (eg. slow start) */
639 grow = rcvwin * (copied - tp->rcvq_space.space);
640 do_div(grow, tp->rcvq_space.space);
641 rcvwin += (grow << 1);
643 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
644 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
645 rcvmem += 128;
647 do_div(rcvwin, tp->advmss);
648 rcvbuf = min_t(u64, rcvwin * rcvmem,
649 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
650 if (rcvbuf > sk->sk_rcvbuf) {
651 sk->sk_rcvbuf = rcvbuf;
653 /* Make the window clamp follow along. */
654 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 tp->rcvq_space.space = copied;
659 new_measure:
660 tp->rcvq_space.seq = tp->copied_seq;
661 tp->rcvq_space.time = tp->tcp_mstamp;
664 /* There is something which you must keep in mind when you analyze the
665 * behavior of the tp->ato delayed ack timeout interval. When a
666 * connection starts up, we want to ack as quickly as possible. The
667 * problem is that "good" TCP's do slow start at the beginning of data
668 * transmission. The means that until we send the first few ACK's the
669 * sender will sit on his end and only queue most of his data, because
670 * he can only send snd_cwnd unacked packets at any given time. For
671 * each ACK we send, he increments snd_cwnd and transmits more of his
672 * queue. -DaveM
674 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
676 struct tcp_sock *tp = tcp_sk(sk);
677 struct inet_connection_sock *icsk = inet_csk(sk);
678 u32 now;
680 inet_csk_schedule_ack(sk);
682 tcp_measure_rcv_mss(sk, skb);
684 tcp_rcv_rtt_measure(tp);
686 now = tcp_jiffies32;
688 if (!icsk->icsk_ack.ato) {
689 /* The _first_ data packet received, initialize
690 * delayed ACK engine.
692 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
693 icsk->icsk_ack.ato = TCP_ATO_MIN;
694 } else {
695 int m = now - icsk->icsk_ack.lrcvtime;
697 if (m <= TCP_ATO_MIN / 2) {
698 /* The fastest case is the first. */
699 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
700 } else if (m < icsk->icsk_ack.ato) {
701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
702 if (icsk->icsk_ack.ato > icsk->icsk_rto)
703 icsk->icsk_ack.ato = icsk->icsk_rto;
704 } else if (m > icsk->icsk_rto) {
705 /* Too long gap. Apparently sender failed to
706 * restart window, so that we send ACKs quickly.
708 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
709 sk_mem_reclaim(sk);
712 icsk->icsk_ack.lrcvtime = now;
714 tcp_ecn_check_ce(sk, skb);
716 if (skb->len >= 128)
717 tcp_grow_window(sk, skb);
720 /* Called to compute a smoothed rtt estimate. The data fed to this
721 * routine either comes from timestamps, or from segments that were
722 * known _not_ to have been retransmitted [see Karn/Partridge
723 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
724 * piece by Van Jacobson.
725 * NOTE: the next three routines used to be one big routine.
726 * To save cycles in the RFC 1323 implementation it was better to break
727 * it up into three procedures. -- erics
729 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
731 struct tcp_sock *tp = tcp_sk(sk);
732 long m = mrtt_us; /* RTT */
733 u32 srtt = tp->srtt_us;
735 /* The following amusing code comes from Jacobson's
736 * article in SIGCOMM '88. Note that rtt and mdev
737 * are scaled versions of rtt and mean deviation.
738 * This is designed to be as fast as possible
739 * m stands for "measurement".
741 * On a 1990 paper the rto value is changed to:
742 * RTO = rtt + 4 * mdev
744 * Funny. This algorithm seems to be very broken.
745 * These formulae increase RTO, when it should be decreased, increase
746 * too slowly, when it should be increased quickly, decrease too quickly
747 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
748 * does not matter how to _calculate_ it. Seems, it was trap
749 * that VJ failed to avoid. 8)
751 if (srtt != 0) {
752 m -= (srtt >> 3); /* m is now error in rtt est */
753 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
754 if (m < 0) {
755 m = -m; /* m is now abs(error) */
756 m -= (tp->mdev_us >> 2); /* similar update on mdev */
757 /* This is similar to one of Eifel findings.
758 * Eifel blocks mdev updates when rtt decreases.
759 * This solution is a bit different: we use finer gain
760 * for mdev in this case (alpha*beta).
761 * Like Eifel it also prevents growth of rto,
762 * but also it limits too fast rto decreases,
763 * happening in pure Eifel.
765 if (m > 0)
766 m >>= 3;
767 } else {
768 m -= (tp->mdev_us >> 2); /* similar update on mdev */
770 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
771 if (tp->mdev_us > tp->mdev_max_us) {
772 tp->mdev_max_us = tp->mdev_us;
773 if (tp->mdev_max_us > tp->rttvar_us)
774 tp->rttvar_us = tp->mdev_max_us;
776 if (after(tp->snd_una, tp->rtt_seq)) {
777 if (tp->mdev_max_us < tp->rttvar_us)
778 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
779 tp->rtt_seq = tp->snd_nxt;
780 tp->mdev_max_us = tcp_rto_min_us(sk);
782 } else {
783 /* no previous measure. */
784 srtt = m << 3; /* take the measured time to be rtt */
785 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
786 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
787 tp->mdev_max_us = tp->rttvar_us;
788 tp->rtt_seq = tp->snd_nxt;
790 tp->srtt_us = max(1U, srtt);
793 static void tcp_update_pacing_rate(struct sock *sk)
795 const struct tcp_sock *tp = tcp_sk(sk);
796 u64 rate;
798 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
799 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
801 /* current rate is (cwnd * mss) / srtt
802 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 * In Congestion Avoidance phase, set it to 120 % the current rate.
805 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 * end of slow start and should slow down.
809 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
810 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
811 else
812 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
814 rate *= max(tp->snd_cwnd, tp->packets_out);
816 if (likely(tp->srtt_us))
817 do_div(rate, tp->srtt_us);
819 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 * without any lock. We want to make sure compiler wont store
821 * intermediate values in this location.
823 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
824 sk->sk_max_pacing_rate));
827 /* Calculate rto without backoff. This is the second half of Van Jacobson's
828 * routine referred to above.
830 static void tcp_set_rto(struct sock *sk)
832 const struct tcp_sock *tp = tcp_sk(sk);
833 /* Old crap is replaced with new one. 8)
835 * More seriously:
836 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 * It cannot be less due to utterly erratic ACK generation made
838 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 * to do with delayed acks, because at cwnd>2 true delack timeout
840 * is invisible. Actually, Linux-2.4 also generates erratic
841 * ACKs in some circumstances.
843 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
845 /* 2. Fixups made earlier cannot be right.
846 * If we do not estimate RTO correctly without them,
847 * all the algo is pure shit and should be replaced
848 * with correct one. It is exactly, which we pretend to do.
851 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 * guarantees that rto is higher.
854 tcp_bound_rto(sk);
857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
859 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
861 if (!cwnd)
862 cwnd = TCP_INIT_CWND;
863 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
869 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
870 tp->rack.dsack_seen = 1;
871 tp->dsack_dups++;
874 /* It's reordering when higher sequence was delivered (i.e. sacked) before
875 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
876 * distance is approximated in full-mss packet distance ("reordering").
878 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
879 const int ts)
881 struct tcp_sock *tp = tcp_sk(sk);
882 const u32 mss = tp->mss_cache;
883 u32 fack, metric;
885 fack = tcp_highest_sack_seq(tp);
886 if (!before(low_seq, fack))
887 return;
889 metric = fack - low_seq;
890 if ((metric > tp->reordering * mss) && mss) {
891 #if FASTRETRANS_DEBUG > 1
892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
894 tp->reordering,
896 tp->sacked_out,
897 tp->undo_marker ? tp->undo_retrans : 0);
898 #endif
899 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
900 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
903 /* This exciting event is worth to be remembered. 8) */
904 tp->reord_seen++;
905 NET_INC_STATS(sock_net(sk),
906 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
909 /* This must be called before lost_out is incremented */
910 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
912 if (!tp->retransmit_skb_hint ||
913 before(TCP_SKB_CB(skb)->seq,
914 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
915 tp->retransmit_skb_hint = skb;
918 /* Sum the number of packets on the wire we have marked as lost.
919 * There are two cases we care about here:
920 * a) Packet hasn't been marked lost (nor retransmitted),
921 * and this is the first loss.
922 * b) Packet has been marked both lost and retransmitted,
923 * and this means we think it was lost again.
925 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
927 __u8 sacked = TCP_SKB_CB(skb)->sacked;
929 if (!(sacked & TCPCB_LOST) ||
930 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
931 tp->lost += tcp_skb_pcount(skb);
934 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 tcp_verify_retransmit_hint(tp, skb);
939 tp->lost_out += tcp_skb_pcount(skb);
940 tcp_sum_lost(tp, skb);
941 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
947 tcp_verify_retransmit_hint(tp, skb);
949 tcp_sum_lost(tp, skb);
950 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
951 tp->lost_out += tcp_skb_pcount(skb);
952 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
956 /* This procedure tags the retransmission queue when SACKs arrive.
958 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
959 * Packets in queue with these bits set are counted in variables
960 * sacked_out, retrans_out and lost_out, correspondingly.
962 * Valid combinations are:
963 * Tag InFlight Description
964 * 0 1 - orig segment is in flight.
965 * S 0 - nothing flies, orig reached receiver.
966 * L 0 - nothing flies, orig lost by net.
967 * R 2 - both orig and retransmit are in flight.
968 * L|R 1 - orig is lost, retransmit is in flight.
969 * S|R 1 - orig reached receiver, retrans is still in flight.
970 * (L|S|R is logically valid, it could occur when L|R is sacked,
971 * but it is equivalent to plain S and code short-curcuits it to S.
972 * L|S is logically invalid, it would mean -1 packet in flight 8))
974 * These 6 states form finite state machine, controlled by the following events:
975 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
976 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
977 * 3. Loss detection event of two flavors:
978 * A. Scoreboard estimator decided the packet is lost.
979 * A'. Reno "three dupacks" marks head of queue lost.
980 * B. SACK arrives sacking SND.NXT at the moment, when the
981 * segment was retransmitted.
982 * 4. D-SACK added new rule: D-SACK changes any tag to S.
984 * It is pleasant to note, that state diagram turns out to be commutative,
985 * so that we are allowed not to be bothered by order of our actions,
986 * when multiple events arrive simultaneously. (see the function below).
988 * Reordering detection.
989 * --------------------
990 * Reordering metric is maximal distance, which a packet can be displaced
991 * in packet stream. With SACKs we can estimate it:
993 * 1. SACK fills old hole and the corresponding segment was not
994 * ever retransmitted -> reordering. Alas, we cannot use it
995 * when segment was retransmitted.
996 * 2. The last flaw is solved with D-SACK. D-SACK arrives
997 * for retransmitted and already SACKed segment -> reordering..
998 * Both of these heuristics are not used in Loss state, when we cannot
999 * account for retransmits accurately.
1001 * SACK block validation.
1002 * ----------------------
1004 * SACK block range validation checks that the received SACK block fits to
1005 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1006 * Note that SND.UNA is not included to the range though being valid because
1007 * it means that the receiver is rather inconsistent with itself reporting
1008 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1009 * perfectly valid, however, in light of RFC2018 which explicitly states
1010 * that "SACK block MUST reflect the newest segment. Even if the newest
1011 * segment is going to be discarded ...", not that it looks very clever
1012 * in case of head skb. Due to potentional receiver driven attacks, we
1013 * choose to avoid immediate execution of a walk in write queue due to
1014 * reneging and defer head skb's loss recovery to standard loss recovery
1015 * procedure that will eventually trigger (nothing forbids us doing this).
1017 * Implements also blockage to start_seq wrap-around. Problem lies in the
1018 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1019 * there's no guarantee that it will be before snd_nxt (n). The problem
1020 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1021 * wrap (s_w):
1023 * <- outs wnd -> <- wrapzone ->
1024 * u e n u_w e_w s n_w
1025 * | | | | | | |
1026 * |<------------+------+----- TCP seqno space --------------+---------->|
1027 * ...-- <2^31 ->| |<--------...
1028 * ...---- >2^31 ------>| |<--------...
1030 * Current code wouldn't be vulnerable but it's better still to discard such
1031 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1032 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1033 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1034 * equal to the ideal case (infinite seqno space without wrap caused issues).
1036 * With D-SACK the lower bound is extended to cover sequence space below
1037 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1038 * again, D-SACK block must not to go across snd_una (for the same reason as
1039 * for the normal SACK blocks, explained above). But there all simplicity
1040 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1041 * fully below undo_marker they do not affect behavior in anyway and can
1042 * therefore be safely ignored. In rare cases (which are more or less
1043 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1044 * fragmentation and packet reordering past skb's retransmission. To consider
1045 * them correctly, the acceptable range must be extended even more though
1046 * the exact amount is rather hard to quantify. However, tp->max_window can
1047 * be used as an exaggerated estimate.
1049 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1050 u32 start_seq, u32 end_seq)
1052 /* Too far in future, or reversed (interpretation is ambiguous) */
1053 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1054 return false;
1056 /* Nasty start_seq wrap-around check (see comments above) */
1057 if (!before(start_seq, tp->snd_nxt))
1058 return false;
1060 /* In outstanding window? ...This is valid exit for D-SACKs too.
1061 * start_seq == snd_una is non-sensical (see comments above)
1063 if (after(start_seq, tp->snd_una))
1064 return true;
1066 if (!is_dsack || !tp->undo_marker)
1067 return false;
1069 /* ...Then it's D-SACK, and must reside below snd_una completely */
1070 if (after(end_seq, tp->snd_una))
1071 return false;
1073 if (!before(start_seq, tp->undo_marker))
1074 return true;
1076 /* Too old */
1077 if (!after(end_seq, tp->undo_marker))
1078 return false;
1080 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1081 * start_seq < undo_marker and end_seq >= undo_marker.
1083 return !before(start_seq, end_seq - tp->max_window);
1086 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1087 struct tcp_sack_block_wire *sp, int num_sacks,
1088 u32 prior_snd_una)
1090 struct tcp_sock *tp = tcp_sk(sk);
1091 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1092 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1093 bool dup_sack = false;
1095 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1096 dup_sack = true;
1097 tcp_dsack_seen(tp);
1098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1099 } else if (num_sacks > 1) {
1100 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1101 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1103 if (!after(end_seq_0, end_seq_1) &&
1104 !before(start_seq_0, start_seq_1)) {
1105 dup_sack = true;
1106 tcp_dsack_seen(tp);
1107 NET_INC_STATS(sock_net(sk),
1108 LINUX_MIB_TCPDSACKOFORECV);
1112 /* D-SACK for already forgotten data... Do dumb counting. */
1113 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1114 !after(end_seq_0, prior_snd_una) &&
1115 after(end_seq_0, tp->undo_marker))
1116 tp->undo_retrans--;
1118 return dup_sack;
1121 struct tcp_sacktag_state {
1122 u32 reord;
1123 /* Timestamps for earliest and latest never-retransmitted segment
1124 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 * but congestion control should still get an accurate delay signal.
1127 u64 first_sackt;
1128 u64 last_sackt;
1129 struct rate_sample *rate;
1130 int flag;
1131 unsigned int mss_now;
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135 * the incoming SACK may not exactly match but we can find smaller MSS
1136 * aligned portion of it that matches. Therefore we might need to fragment
1137 * which may fail and creates some hassle (caller must handle error case
1138 * returns).
1140 * FIXME: this could be merged to shift decision code
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 u32 start_seq, u32 end_seq)
1145 int err;
1146 bool in_sack;
1147 unsigned int pkt_len;
1148 unsigned int mss;
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1153 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 mss = tcp_skb_mss(skb);
1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1158 if (!in_sack) {
1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 if (pkt_len < mss)
1161 pkt_len = mss;
1162 } else {
1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1164 if (pkt_len < mss)
1165 return -EINVAL;
1168 /* Round if necessary so that SACKs cover only full MSSes
1169 * and/or the remaining small portion (if present)
1171 if (pkt_len > mss) {
1172 unsigned int new_len = (pkt_len / mss) * mss;
1173 if (!in_sack && new_len < pkt_len)
1174 new_len += mss;
1175 pkt_len = new_len;
1178 if (pkt_len >= skb->len && !in_sack)
1179 return 0;
1181 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1182 pkt_len, mss, GFP_ATOMIC);
1183 if (err < 0)
1184 return err;
1187 return in_sack;
1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191 static u8 tcp_sacktag_one(struct sock *sk,
1192 struct tcp_sacktag_state *state, u8 sacked,
1193 u32 start_seq, u32 end_seq,
1194 int dup_sack, int pcount,
1195 u64 xmit_time)
1197 struct tcp_sock *tp = tcp_sk(sk);
1199 /* Account D-SACK for retransmitted packet. */
1200 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1201 if (tp->undo_marker && tp->undo_retrans > 0 &&
1202 after(end_seq, tp->undo_marker))
1203 tp->undo_retrans--;
1204 if ((sacked & TCPCB_SACKED_ACKED) &&
1205 before(start_seq, state->reord))
1206 state->reord = start_seq;
1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1210 if (!after(end_seq, tp->snd_una))
1211 return sacked;
1213 if (!(sacked & TCPCB_SACKED_ACKED)) {
1214 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1216 if (sacked & TCPCB_SACKED_RETRANS) {
1217 /* If the segment is not tagged as lost,
1218 * we do not clear RETRANS, believing
1219 * that retransmission is still in flight.
1221 if (sacked & TCPCB_LOST) {
1222 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1223 tp->lost_out -= pcount;
1224 tp->retrans_out -= pcount;
1226 } else {
1227 if (!(sacked & TCPCB_RETRANS)) {
1228 /* New sack for not retransmitted frame,
1229 * which was in hole. It is reordering.
1231 if (before(start_seq,
1232 tcp_highest_sack_seq(tp)) &&
1233 before(start_seq, state->reord))
1234 state->reord = start_seq;
1236 if (!after(end_seq, tp->high_seq))
1237 state->flag |= FLAG_ORIG_SACK_ACKED;
1238 if (state->first_sackt == 0)
1239 state->first_sackt = xmit_time;
1240 state->last_sackt = xmit_time;
1243 if (sacked & TCPCB_LOST) {
1244 sacked &= ~TCPCB_LOST;
1245 tp->lost_out -= pcount;
1249 sacked |= TCPCB_SACKED_ACKED;
1250 state->flag |= FLAG_DATA_SACKED;
1251 tp->sacked_out += pcount;
1252 tp->delivered += pcount; /* Out-of-order packets delivered */
1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 if (tp->lost_skb_hint &&
1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1257 tp->lost_cnt_hint += pcount;
1260 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1261 * frames and clear it. undo_retrans is decreased above, L|R frames
1262 * are accounted above as well.
1264 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1265 sacked &= ~TCPCB_SACKED_RETRANS;
1266 tp->retrans_out -= pcount;
1269 return sacked;
1272 /* Shift newly-SACKed bytes from this skb to the immediately previous
1273 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1275 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1276 struct sk_buff *skb,
1277 struct tcp_sacktag_state *state,
1278 unsigned int pcount, int shifted, int mss,
1279 bool dup_sack)
1281 struct tcp_sock *tp = tcp_sk(sk);
1282 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1283 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1285 BUG_ON(!pcount);
1287 /* Adjust counters and hints for the newly sacked sequence
1288 * range but discard the return value since prev is already
1289 * marked. We must tag the range first because the seq
1290 * advancement below implicitly advances
1291 * tcp_highest_sack_seq() when skb is highest_sack.
1293 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1294 start_seq, end_seq, dup_sack, pcount,
1295 tcp_skb_timestamp_us(skb));
1296 tcp_rate_skb_delivered(sk, skb, state->rate);
1298 if (skb == tp->lost_skb_hint)
1299 tp->lost_cnt_hint += pcount;
1301 TCP_SKB_CB(prev)->end_seq += shifted;
1302 TCP_SKB_CB(skb)->seq += shifted;
1304 tcp_skb_pcount_add(prev, pcount);
1305 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1306 tcp_skb_pcount_add(skb, -pcount);
1308 /* When we're adding to gso_segs == 1, gso_size will be zero,
1309 * in theory this shouldn't be necessary but as long as DSACK
1310 * code can come after this skb later on it's better to keep
1311 * setting gso_size to something.
1313 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1314 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1316 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1317 if (tcp_skb_pcount(skb) <= 1)
1318 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1320 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1321 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1323 if (skb->len > 0) {
1324 BUG_ON(!tcp_skb_pcount(skb));
1325 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1326 return false;
1329 /* Whole SKB was eaten :-) */
1331 if (skb == tp->retransmit_skb_hint)
1332 tp->retransmit_skb_hint = prev;
1333 if (skb == tp->lost_skb_hint) {
1334 tp->lost_skb_hint = prev;
1335 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1338 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1339 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1340 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1341 TCP_SKB_CB(prev)->end_seq++;
1343 if (skb == tcp_highest_sack(sk))
1344 tcp_advance_highest_sack(sk, skb);
1346 tcp_skb_collapse_tstamp(prev, skb);
1347 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1348 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1350 tcp_rtx_queue_unlink_and_free(skb, sk);
1352 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1354 return true;
1357 /* I wish gso_size would have a bit more sane initialization than
1358 * something-or-zero which complicates things
1360 static int tcp_skb_seglen(const struct sk_buff *skb)
1362 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1365 /* Shifting pages past head area doesn't work */
1366 static int skb_can_shift(const struct sk_buff *skb)
1368 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1371 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1372 int pcount, int shiftlen)
1374 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1375 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1376 * to make sure not storing more than 65535 * 8 bytes per skb,
1377 * even if current MSS is bigger.
1379 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1380 return 0;
1381 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1382 return 0;
1383 return skb_shift(to, from, shiftlen);
1386 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1387 * skb.
1389 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1390 struct tcp_sacktag_state *state,
1391 u32 start_seq, u32 end_seq,
1392 bool dup_sack)
1394 struct tcp_sock *tp = tcp_sk(sk);
1395 struct sk_buff *prev;
1396 int mss;
1397 int pcount = 0;
1398 int len;
1399 int in_sack;
1401 /* Normally R but no L won't result in plain S */
1402 if (!dup_sack &&
1403 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1404 goto fallback;
1405 if (!skb_can_shift(skb))
1406 goto fallback;
1407 /* This frame is about to be dropped (was ACKed). */
1408 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1409 goto fallback;
1411 /* Can only happen with delayed DSACK + discard craziness */
1412 prev = skb_rb_prev(skb);
1413 if (!prev)
1414 goto fallback;
1416 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1417 goto fallback;
1419 if (!tcp_skb_can_collapse_to(prev))
1420 goto fallback;
1422 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1423 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1425 if (in_sack) {
1426 len = skb->len;
1427 pcount = tcp_skb_pcount(skb);
1428 mss = tcp_skb_seglen(skb);
1430 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1431 * drop this restriction as unnecessary
1433 if (mss != tcp_skb_seglen(prev))
1434 goto fallback;
1435 } else {
1436 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1437 goto noop;
1438 /* CHECKME: This is non-MSS split case only?, this will
1439 * cause skipped skbs due to advancing loop btw, original
1440 * has that feature too
1442 if (tcp_skb_pcount(skb) <= 1)
1443 goto noop;
1445 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1446 if (!in_sack) {
1447 /* TODO: head merge to next could be attempted here
1448 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1449 * though it might not be worth of the additional hassle
1451 * ...we can probably just fallback to what was done
1452 * previously. We could try merging non-SACKed ones
1453 * as well but it probably isn't going to buy off
1454 * because later SACKs might again split them, and
1455 * it would make skb timestamp tracking considerably
1456 * harder problem.
1458 goto fallback;
1461 len = end_seq - TCP_SKB_CB(skb)->seq;
1462 BUG_ON(len < 0);
1463 BUG_ON(len > skb->len);
1465 /* MSS boundaries should be honoured or else pcount will
1466 * severely break even though it makes things bit trickier.
1467 * Optimize common case to avoid most of the divides
1469 mss = tcp_skb_mss(skb);
1471 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1472 * drop this restriction as unnecessary
1474 if (mss != tcp_skb_seglen(prev))
1475 goto fallback;
1477 if (len == mss) {
1478 pcount = 1;
1479 } else if (len < mss) {
1480 goto noop;
1481 } else {
1482 pcount = len / mss;
1483 len = pcount * mss;
1487 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1488 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1489 goto fallback;
1491 if (!tcp_skb_shift(prev, skb, pcount, len))
1492 goto fallback;
1493 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1494 goto out;
1496 /* Hole filled allows collapsing with the next as well, this is very
1497 * useful when hole on every nth skb pattern happens
1499 skb = skb_rb_next(prev);
1500 if (!skb)
1501 goto out;
1503 if (!skb_can_shift(skb) ||
1504 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1505 (mss != tcp_skb_seglen(skb)))
1506 goto out;
1508 len = skb->len;
1509 pcount = tcp_skb_pcount(skb);
1510 if (tcp_skb_shift(prev, skb, pcount, len))
1511 tcp_shifted_skb(sk, prev, skb, state, pcount,
1512 len, mss, 0);
1514 out:
1515 return prev;
1517 noop:
1518 return skb;
1520 fallback:
1521 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1522 return NULL;
1525 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1526 struct tcp_sack_block *next_dup,
1527 struct tcp_sacktag_state *state,
1528 u32 start_seq, u32 end_seq,
1529 bool dup_sack_in)
1531 struct tcp_sock *tp = tcp_sk(sk);
1532 struct sk_buff *tmp;
1534 skb_rbtree_walk_from(skb) {
1535 int in_sack = 0;
1536 bool dup_sack = dup_sack_in;
1538 /* queue is in-order => we can short-circuit the walk early */
1539 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1540 break;
1542 if (next_dup &&
1543 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1544 in_sack = tcp_match_skb_to_sack(sk, skb,
1545 next_dup->start_seq,
1546 next_dup->end_seq);
1547 if (in_sack > 0)
1548 dup_sack = true;
1551 /* skb reference here is a bit tricky to get right, since
1552 * shifting can eat and free both this skb and the next,
1553 * so not even _safe variant of the loop is enough.
1555 if (in_sack <= 0) {
1556 tmp = tcp_shift_skb_data(sk, skb, state,
1557 start_seq, end_seq, dup_sack);
1558 if (tmp) {
1559 if (tmp != skb) {
1560 skb = tmp;
1561 continue;
1564 in_sack = 0;
1565 } else {
1566 in_sack = tcp_match_skb_to_sack(sk, skb,
1567 start_seq,
1568 end_seq);
1572 if (unlikely(in_sack < 0))
1573 break;
1575 if (in_sack) {
1576 TCP_SKB_CB(skb)->sacked =
1577 tcp_sacktag_one(sk,
1578 state,
1579 TCP_SKB_CB(skb)->sacked,
1580 TCP_SKB_CB(skb)->seq,
1581 TCP_SKB_CB(skb)->end_seq,
1582 dup_sack,
1583 tcp_skb_pcount(skb),
1584 tcp_skb_timestamp_us(skb));
1585 tcp_rate_skb_delivered(sk, skb, state->rate);
1586 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1587 list_del_init(&skb->tcp_tsorted_anchor);
1589 if (!before(TCP_SKB_CB(skb)->seq,
1590 tcp_highest_sack_seq(tp)))
1591 tcp_advance_highest_sack(sk, skb);
1594 return skb;
1597 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1599 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1600 struct sk_buff *skb;
1602 while (*p) {
1603 parent = *p;
1604 skb = rb_to_skb(parent);
1605 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1606 p = &parent->rb_left;
1607 continue;
1609 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1610 p = &parent->rb_right;
1611 continue;
1613 return skb;
1615 return NULL;
1618 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1619 u32 skip_to_seq)
1621 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1622 return skb;
1624 return tcp_sacktag_bsearch(sk, skip_to_seq);
1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1628 struct sock *sk,
1629 struct tcp_sack_block *next_dup,
1630 struct tcp_sacktag_state *state,
1631 u32 skip_to_seq)
1633 if (!next_dup)
1634 return skb;
1636 if (before(next_dup->start_seq, skip_to_seq)) {
1637 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1638 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1639 next_dup->start_seq, next_dup->end_seq,
1643 return skb;
1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1648 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1651 static int
1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1653 u32 prior_snd_una, struct tcp_sacktag_state *state)
1655 struct tcp_sock *tp = tcp_sk(sk);
1656 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1657 TCP_SKB_CB(ack_skb)->sacked);
1658 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1659 struct tcp_sack_block sp[TCP_NUM_SACKS];
1660 struct tcp_sack_block *cache;
1661 struct sk_buff *skb;
1662 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1663 int used_sacks;
1664 bool found_dup_sack = false;
1665 int i, j;
1666 int first_sack_index;
1668 state->flag = 0;
1669 state->reord = tp->snd_nxt;
1671 if (!tp->sacked_out)
1672 tcp_highest_sack_reset(sk);
1674 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1675 num_sacks, prior_snd_una);
1676 if (found_dup_sack) {
1677 state->flag |= FLAG_DSACKING_ACK;
1678 tp->delivered++; /* A spurious retransmission is delivered */
1681 /* Eliminate too old ACKs, but take into
1682 * account more or less fresh ones, they can
1683 * contain valid SACK info.
1685 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1686 return 0;
1688 if (!tp->packets_out)
1689 goto out;
1691 used_sacks = 0;
1692 first_sack_index = 0;
1693 for (i = 0; i < num_sacks; i++) {
1694 bool dup_sack = !i && found_dup_sack;
1696 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1697 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1699 if (!tcp_is_sackblock_valid(tp, dup_sack,
1700 sp[used_sacks].start_seq,
1701 sp[used_sacks].end_seq)) {
1702 int mib_idx;
1704 if (dup_sack) {
1705 if (!tp->undo_marker)
1706 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1707 else
1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1709 } else {
1710 /* Don't count olds caused by ACK reordering */
1711 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1712 !after(sp[used_sacks].end_seq, tp->snd_una))
1713 continue;
1714 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1717 NET_INC_STATS(sock_net(sk), mib_idx);
1718 if (i == 0)
1719 first_sack_index = -1;
1720 continue;
1723 /* Ignore very old stuff early */
1724 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1725 continue;
1727 used_sacks++;
1730 /* order SACK blocks to allow in order walk of the retrans queue */
1731 for (i = used_sacks - 1; i > 0; i--) {
1732 for (j = 0; j < i; j++) {
1733 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1734 swap(sp[j], sp[j + 1]);
1736 /* Track where the first SACK block goes to */
1737 if (j == first_sack_index)
1738 first_sack_index = j + 1;
1743 state->mss_now = tcp_current_mss(sk);
1744 skb = NULL;
1745 i = 0;
1747 if (!tp->sacked_out) {
1748 /* It's already past, so skip checking against it */
1749 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1750 } else {
1751 cache = tp->recv_sack_cache;
1752 /* Skip empty blocks in at head of the cache */
1753 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1754 !cache->end_seq)
1755 cache++;
1758 while (i < used_sacks) {
1759 u32 start_seq = sp[i].start_seq;
1760 u32 end_seq = sp[i].end_seq;
1761 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1762 struct tcp_sack_block *next_dup = NULL;
1764 if (found_dup_sack && ((i + 1) == first_sack_index))
1765 next_dup = &sp[i + 1];
1767 /* Skip too early cached blocks */
1768 while (tcp_sack_cache_ok(tp, cache) &&
1769 !before(start_seq, cache->end_seq))
1770 cache++;
1772 /* Can skip some work by looking recv_sack_cache? */
1773 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1774 after(end_seq, cache->start_seq)) {
1776 /* Head todo? */
1777 if (before(start_seq, cache->start_seq)) {
1778 skb = tcp_sacktag_skip(skb, sk, start_seq);
1779 skb = tcp_sacktag_walk(skb, sk, next_dup,
1780 state,
1781 start_seq,
1782 cache->start_seq,
1783 dup_sack);
1786 /* Rest of the block already fully processed? */
1787 if (!after(end_seq, cache->end_seq))
1788 goto advance_sp;
1790 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1791 state,
1792 cache->end_seq);
1794 /* ...tail remains todo... */
1795 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1796 /* ...but better entrypoint exists! */
1797 skb = tcp_highest_sack(sk);
1798 if (!skb)
1799 break;
1800 cache++;
1801 goto walk;
1804 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1805 /* Check overlap against next cached too (past this one already) */
1806 cache++;
1807 continue;
1810 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1811 skb = tcp_highest_sack(sk);
1812 if (!skb)
1813 break;
1815 skb = tcp_sacktag_skip(skb, sk, start_seq);
1817 walk:
1818 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1819 start_seq, end_seq, dup_sack);
1821 advance_sp:
1822 i++;
1825 /* Clear the head of the cache sack blocks so we can skip it next time */
1826 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1827 tp->recv_sack_cache[i].start_seq = 0;
1828 tp->recv_sack_cache[i].end_seq = 0;
1830 for (j = 0; j < used_sacks; j++)
1831 tp->recv_sack_cache[i++] = sp[j];
1833 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1834 tcp_check_sack_reordering(sk, state->reord, 0);
1836 tcp_verify_left_out(tp);
1837 out:
1839 #if FASTRETRANS_DEBUG > 0
1840 WARN_ON((int)tp->sacked_out < 0);
1841 WARN_ON((int)tp->lost_out < 0);
1842 WARN_ON((int)tp->retrans_out < 0);
1843 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1844 #endif
1845 return state->flag;
1848 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1849 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1851 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1853 u32 holes;
1855 holes = max(tp->lost_out, 1U);
1856 holes = min(holes, tp->packets_out);
1858 if ((tp->sacked_out + holes) > tp->packets_out) {
1859 tp->sacked_out = tp->packets_out - holes;
1860 return true;
1862 return false;
1865 /* If we receive more dupacks than we expected counting segments
1866 * in assumption of absent reordering, interpret this as reordering.
1867 * The only another reason could be bug in receiver TCP.
1869 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1871 struct tcp_sock *tp = tcp_sk(sk);
1873 if (!tcp_limit_reno_sacked(tp))
1874 return;
1876 tp->reordering = min_t(u32, tp->packets_out + addend,
1877 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1878 tp->reord_seen++;
1879 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1884 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1886 if (num_dupack) {
1887 struct tcp_sock *tp = tcp_sk(sk);
1888 u32 prior_sacked = tp->sacked_out;
1889 s32 delivered;
1891 tp->sacked_out += num_dupack;
1892 tcp_check_reno_reordering(sk, 0);
1893 delivered = tp->sacked_out - prior_sacked;
1894 if (delivered > 0)
1895 tp->delivered += delivered;
1896 tcp_verify_left_out(tp);
1900 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1902 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1904 struct tcp_sock *tp = tcp_sk(sk);
1906 if (acked > 0) {
1907 /* One ACK acked hole. The rest eat duplicate ACKs. */
1908 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1909 if (acked - 1 >= tp->sacked_out)
1910 tp->sacked_out = 0;
1911 else
1912 tp->sacked_out -= acked - 1;
1914 tcp_check_reno_reordering(sk, acked);
1915 tcp_verify_left_out(tp);
1918 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1920 tp->sacked_out = 0;
1923 void tcp_clear_retrans(struct tcp_sock *tp)
1925 tp->retrans_out = 0;
1926 tp->lost_out = 0;
1927 tp->undo_marker = 0;
1928 tp->undo_retrans = -1;
1929 tp->sacked_out = 0;
1932 static inline void tcp_init_undo(struct tcp_sock *tp)
1934 tp->undo_marker = tp->snd_una;
1935 /* Retransmission still in flight may cause DSACKs later. */
1936 tp->undo_retrans = tp->retrans_out ? : -1;
1939 static bool tcp_is_rack(const struct sock *sk)
1941 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1944 /* If we detect SACK reneging, forget all SACK information
1945 * and reset tags completely, otherwise preserve SACKs. If receiver
1946 * dropped its ofo queue, we will know this due to reneging detection.
1948 static void tcp_timeout_mark_lost(struct sock *sk)
1950 struct tcp_sock *tp = tcp_sk(sk);
1951 struct sk_buff *skb, *head;
1952 bool is_reneg; /* is receiver reneging on SACKs? */
1954 head = tcp_rtx_queue_head(sk);
1955 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1956 if (is_reneg) {
1957 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1958 tp->sacked_out = 0;
1959 /* Mark SACK reneging until we recover from this loss event. */
1960 tp->is_sack_reneg = 1;
1961 } else if (tcp_is_reno(tp)) {
1962 tcp_reset_reno_sack(tp);
1965 skb = head;
1966 skb_rbtree_walk_from(skb) {
1967 if (is_reneg)
1968 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1969 else if (tcp_is_rack(sk) && skb != head &&
1970 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1971 continue; /* Don't mark recently sent ones lost yet */
1972 tcp_mark_skb_lost(sk, skb);
1974 tcp_verify_left_out(tp);
1975 tcp_clear_all_retrans_hints(tp);
1978 /* Enter Loss state. */
1979 void tcp_enter_loss(struct sock *sk)
1981 const struct inet_connection_sock *icsk = inet_csk(sk);
1982 struct tcp_sock *tp = tcp_sk(sk);
1983 struct net *net = sock_net(sk);
1984 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1986 tcp_timeout_mark_lost(sk);
1988 /* Reduce ssthresh if it has not yet been made inside this window. */
1989 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1990 !after(tp->high_seq, tp->snd_una) ||
1991 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1992 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1993 tp->prior_cwnd = tp->snd_cwnd;
1994 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1995 tcp_ca_event(sk, CA_EVENT_LOSS);
1996 tcp_init_undo(tp);
1998 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
1999 tp->snd_cwnd_cnt = 0;
2000 tp->snd_cwnd_stamp = tcp_jiffies32;
2002 /* Timeout in disordered state after receiving substantial DUPACKs
2003 * suggests that the degree of reordering is over-estimated.
2005 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2006 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2007 tp->reordering = min_t(unsigned int, tp->reordering,
2008 net->ipv4.sysctl_tcp_reordering);
2009 tcp_set_ca_state(sk, TCP_CA_Loss);
2010 tp->high_seq = tp->snd_nxt;
2011 tcp_ecn_queue_cwr(tp);
2013 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2014 * loss recovery is underway except recurring timeout(s) on
2015 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2017 tp->frto = net->ipv4.sysctl_tcp_frto &&
2018 (new_recovery || icsk->icsk_retransmits) &&
2019 !inet_csk(sk)->icsk_mtup.probe_size;
2022 /* If ACK arrived pointing to a remembered SACK, it means that our
2023 * remembered SACKs do not reflect real state of receiver i.e.
2024 * receiver _host_ is heavily congested (or buggy).
2026 * To avoid big spurious retransmission bursts due to transient SACK
2027 * scoreboard oddities that look like reneging, we give the receiver a
2028 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2029 * restore sanity to the SACK scoreboard. If the apparent reneging
2030 * persists until this RTO then we'll clear the SACK scoreboard.
2032 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2034 if (flag & FLAG_SACK_RENEGING) {
2035 struct tcp_sock *tp = tcp_sk(sk);
2036 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2037 msecs_to_jiffies(10));
2039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2040 delay, TCP_RTO_MAX);
2041 return true;
2043 return false;
2046 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2047 * counter when SACK is enabled (without SACK, sacked_out is used for
2048 * that purpose).
2050 * With reordering, holes may still be in flight, so RFC3517 recovery
2051 * uses pure sacked_out (total number of SACKed segments) even though
2052 * it violates the RFC that uses duplicate ACKs, often these are equal
2053 * but when e.g. out-of-window ACKs or packet duplication occurs,
2054 * they differ. Since neither occurs due to loss, TCP should really
2055 * ignore them.
2057 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2059 return tp->sacked_out + 1;
2062 /* Linux NewReno/SACK/ECN state machine.
2063 * --------------------------------------
2065 * "Open" Normal state, no dubious events, fast path.
2066 * "Disorder" In all the respects it is "Open",
2067 * but requires a bit more attention. It is entered when
2068 * we see some SACKs or dupacks. It is split of "Open"
2069 * mainly to move some processing from fast path to slow one.
2070 * "CWR" CWND was reduced due to some Congestion Notification event.
2071 * It can be ECN, ICMP source quench, local device congestion.
2072 * "Recovery" CWND was reduced, we are fast-retransmitting.
2073 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2075 * tcp_fastretrans_alert() is entered:
2076 * - each incoming ACK, if state is not "Open"
2077 * - when arrived ACK is unusual, namely:
2078 * * SACK
2079 * * Duplicate ACK.
2080 * * ECN ECE.
2082 * Counting packets in flight is pretty simple.
2084 * in_flight = packets_out - left_out + retrans_out
2086 * packets_out is SND.NXT-SND.UNA counted in packets.
2088 * retrans_out is number of retransmitted segments.
2090 * left_out is number of segments left network, but not ACKed yet.
2092 * left_out = sacked_out + lost_out
2094 * sacked_out: Packets, which arrived to receiver out of order
2095 * and hence not ACKed. With SACKs this number is simply
2096 * amount of SACKed data. Even without SACKs
2097 * it is easy to give pretty reliable estimate of this number,
2098 * counting duplicate ACKs.
2100 * lost_out: Packets lost by network. TCP has no explicit
2101 * "loss notification" feedback from network (for now).
2102 * It means that this number can be only _guessed_.
2103 * Actually, it is the heuristics to predict lossage that
2104 * distinguishes different algorithms.
2106 * F.e. after RTO, when all the queue is considered as lost,
2107 * lost_out = packets_out and in_flight = retrans_out.
2109 * Essentially, we have now a few algorithms detecting
2110 * lost packets.
2112 * If the receiver supports SACK:
2114 * RFC6675/3517: It is the conventional algorithm. A packet is
2115 * considered lost if the number of higher sequence packets
2116 * SACKed is greater than or equal the DUPACK thoreshold
2117 * (reordering). This is implemented in tcp_mark_head_lost and
2118 * tcp_update_scoreboard.
2120 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2121 * (2017-) that checks timing instead of counting DUPACKs.
2122 * Essentially a packet is considered lost if it's not S/ACKed
2123 * after RTT + reordering_window, where both metrics are
2124 * dynamically measured and adjusted. This is implemented in
2125 * tcp_rack_mark_lost.
2127 * If the receiver does not support SACK:
2129 * NewReno (RFC6582): in Recovery we assume that one segment
2130 * is lost (classic Reno). While we are in Recovery and
2131 * a partial ACK arrives, we assume that one more packet
2132 * is lost (NewReno). This heuristics are the same in NewReno
2133 * and SACK.
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2161 struct tcp_sock *tp = tcp_sk(sk);
2163 /* Trick#1: The loss is proven. */
2164 if (tp->lost_out)
2165 return true;
2167 /* Not-A-Trick#2 : Classic rule... */
2168 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2169 return true;
2171 return false;
2174 /* Detect loss in event "A" above by marking head of queue up as lost.
2175 * For non-SACK(Reno) senders, the first "packets" number of segments
2176 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178 * the maximum SACKed segments to pass before reaching this limit.
2180 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *skb;
2184 int cnt, oldcnt, lost;
2185 unsigned int mss;
2186 /* Use SACK to deduce losses of new sequences sent during recovery */
2187 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2189 WARN_ON(packets > tp->packets_out);
2190 skb = tp->lost_skb_hint;
2191 if (skb) {
2192 /* Head already handled? */
2193 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2194 return;
2195 cnt = tp->lost_cnt_hint;
2196 } else {
2197 skb = tcp_rtx_queue_head(sk);
2198 cnt = 0;
2201 skb_rbtree_walk_from(skb) {
2202 /* TODO: do this better */
2203 /* this is not the most efficient way to do this... */
2204 tp->lost_skb_hint = skb;
2205 tp->lost_cnt_hint = cnt;
2207 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2208 break;
2210 oldcnt = cnt;
2211 if (tcp_is_reno(tp) ||
2212 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213 cnt += tcp_skb_pcount(skb);
2215 if (cnt > packets) {
2216 if (tcp_is_sack(tp) ||
2217 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218 (oldcnt >= packets))
2219 break;
2221 mss = tcp_skb_mss(skb);
2222 /* If needed, chop off the prefix to mark as lost. */
2223 lost = (packets - oldcnt) * mss;
2224 if (lost < skb->len &&
2225 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2226 lost, mss, GFP_ATOMIC) < 0)
2227 break;
2228 cnt = packets;
2231 tcp_skb_mark_lost(tp, skb);
2233 if (mark_head)
2234 break;
2236 tcp_verify_left_out(tp);
2239 /* Account newly detected lost packet(s) */
2241 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2243 struct tcp_sock *tp = tcp_sk(sk);
2245 if (tcp_is_sack(tp)) {
2246 int sacked_upto = tp->sacked_out - tp->reordering;
2247 if (sacked_upto >= 0)
2248 tcp_mark_head_lost(sk, sacked_upto, 0);
2249 else if (fast_rexmit)
2250 tcp_mark_head_lost(sk, 1, 1);
2254 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2256 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2257 before(tp->rx_opt.rcv_tsecr, when);
2260 /* skb is spurious retransmitted if the returned timestamp echo
2261 * reply is prior to the skb transmission time
2263 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2264 const struct sk_buff *skb)
2266 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2267 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2270 /* Nothing was retransmitted or returned timestamp is less
2271 * than timestamp of the first retransmission.
2273 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2275 return tp->retrans_stamp &&
2276 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2279 /* Undo procedures. */
2281 /* We can clear retrans_stamp when there are no retransmissions in the
2282 * window. It would seem that it is trivially available for us in
2283 * tp->retrans_out, however, that kind of assumptions doesn't consider
2284 * what will happen if errors occur when sending retransmission for the
2285 * second time. ...It could the that such segment has only
2286 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2287 * the head skb is enough except for some reneging corner cases that
2288 * are not worth the effort.
2290 * Main reason for all this complexity is the fact that connection dying
2291 * time now depends on the validity of the retrans_stamp, in particular,
2292 * that successive retransmissions of a segment must not advance
2293 * retrans_stamp under any conditions.
2295 static bool tcp_any_retrans_done(const struct sock *sk)
2297 const struct tcp_sock *tp = tcp_sk(sk);
2298 struct sk_buff *skb;
2300 if (tp->retrans_out)
2301 return true;
2303 skb = tcp_rtx_queue_head(sk);
2304 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2305 return true;
2307 return false;
2310 static void DBGUNDO(struct sock *sk, const char *msg)
2312 #if FASTRETRANS_DEBUG > 1
2313 struct tcp_sock *tp = tcp_sk(sk);
2314 struct inet_sock *inet = inet_sk(sk);
2316 if (sk->sk_family == AF_INET) {
2317 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2318 msg,
2319 &inet->inet_daddr, ntohs(inet->inet_dport),
2320 tp->snd_cwnd, tcp_left_out(tp),
2321 tp->snd_ssthresh, tp->prior_ssthresh,
2322 tp->packets_out);
2324 #if IS_ENABLED(CONFIG_IPV6)
2325 else if (sk->sk_family == AF_INET6) {
2326 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2327 msg,
2328 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2329 tp->snd_cwnd, tcp_left_out(tp),
2330 tp->snd_ssthresh, tp->prior_ssthresh,
2331 tp->packets_out);
2333 #endif
2334 #endif
2337 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2339 struct tcp_sock *tp = tcp_sk(sk);
2341 if (unmark_loss) {
2342 struct sk_buff *skb;
2344 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2345 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2347 tp->lost_out = 0;
2348 tcp_clear_all_retrans_hints(tp);
2351 if (tp->prior_ssthresh) {
2352 const struct inet_connection_sock *icsk = inet_csk(sk);
2354 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2356 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357 tp->snd_ssthresh = tp->prior_ssthresh;
2358 tcp_ecn_withdraw_cwr(tp);
2361 tp->snd_cwnd_stamp = tcp_jiffies32;
2362 tp->undo_marker = 0;
2363 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2366 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2368 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2371 /* People celebrate: "We love our President!" */
2372 static bool tcp_try_undo_recovery(struct sock *sk)
2374 struct tcp_sock *tp = tcp_sk(sk);
2376 if (tcp_may_undo(tp)) {
2377 int mib_idx;
2379 /* Happy end! We did not retransmit anything
2380 * or our original transmission succeeded.
2382 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2383 tcp_undo_cwnd_reduction(sk, false);
2384 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2385 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2386 else
2387 mib_idx = LINUX_MIB_TCPFULLUNDO;
2389 NET_INC_STATS(sock_net(sk), mib_idx);
2390 } else if (tp->rack.reo_wnd_persist) {
2391 tp->rack.reo_wnd_persist--;
2393 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2394 /* Hold old state until something *above* high_seq
2395 * is ACKed. For Reno it is MUST to prevent false
2396 * fast retransmits (RFC2582). SACK TCP is safe. */
2397 if (!tcp_any_retrans_done(sk))
2398 tp->retrans_stamp = 0;
2399 return true;
2401 tcp_set_ca_state(sk, TCP_CA_Open);
2402 tp->is_sack_reneg = 0;
2403 return false;
2406 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2407 static bool tcp_try_undo_dsack(struct sock *sk)
2409 struct tcp_sock *tp = tcp_sk(sk);
2411 if (tp->undo_marker && !tp->undo_retrans) {
2412 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2413 tp->rack.reo_wnd_persist + 1);
2414 DBGUNDO(sk, "D-SACK");
2415 tcp_undo_cwnd_reduction(sk, false);
2416 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2417 return true;
2419 return false;
2422 /* Undo during loss recovery after partial ACK or using F-RTO. */
2423 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2425 struct tcp_sock *tp = tcp_sk(sk);
2427 if (frto_undo || tcp_may_undo(tp)) {
2428 tcp_undo_cwnd_reduction(sk, true);
2430 DBGUNDO(sk, "partial loss");
2431 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2432 if (frto_undo)
2433 NET_INC_STATS(sock_net(sk),
2434 LINUX_MIB_TCPSPURIOUSRTOS);
2435 inet_csk(sk)->icsk_retransmits = 0;
2436 if (frto_undo || tcp_is_sack(tp)) {
2437 tcp_set_ca_state(sk, TCP_CA_Open);
2438 tp->is_sack_reneg = 0;
2440 return true;
2442 return false;
2445 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2446 * It computes the number of packets to send (sndcnt) based on packets newly
2447 * delivered:
2448 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2449 * cwnd reductions across a full RTT.
2450 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2451 * But when the retransmits are acked without further losses, PRR
2452 * slow starts cwnd up to ssthresh to speed up the recovery.
2454 static void tcp_init_cwnd_reduction(struct sock *sk)
2456 struct tcp_sock *tp = tcp_sk(sk);
2458 tp->high_seq = tp->snd_nxt;
2459 tp->tlp_high_seq = 0;
2460 tp->snd_cwnd_cnt = 0;
2461 tp->prior_cwnd = tp->snd_cwnd;
2462 tp->prr_delivered = 0;
2463 tp->prr_out = 0;
2464 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2465 tcp_ecn_queue_cwr(tp);
2468 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2470 struct tcp_sock *tp = tcp_sk(sk);
2471 int sndcnt = 0;
2472 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2474 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2475 return;
2477 tp->prr_delivered += newly_acked_sacked;
2478 if (delta < 0) {
2479 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2480 tp->prior_cwnd - 1;
2481 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2482 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2483 FLAG_RETRANS_DATA_ACKED) {
2484 sndcnt = min_t(int, delta,
2485 max_t(int, tp->prr_delivered - tp->prr_out,
2486 newly_acked_sacked) + 1);
2487 } else {
2488 sndcnt = min(delta, newly_acked_sacked);
2490 /* Force a fast retransmit upon entering fast recovery */
2491 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2492 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2495 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2497 struct tcp_sock *tp = tcp_sk(sk);
2499 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2500 return;
2502 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2503 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2504 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2505 tp->snd_cwnd = tp->snd_ssthresh;
2506 tp->snd_cwnd_stamp = tcp_jiffies32;
2508 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2511 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2512 void tcp_enter_cwr(struct sock *sk)
2514 struct tcp_sock *tp = tcp_sk(sk);
2516 tp->prior_ssthresh = 0;
2517 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2518 tp->undo_marker = 0;
2519 tcp_init_cwnd_reduction(sk);
2520 tcp_set_ca_state(sk, TCP_CA_CWR);
2523 EXPORT_SYMBOL(tcp_enter_cwr);
2525 static void tcp_try_keep_open(struct sock *sk)
2527 struct tcp_sock *tp = tcp_sk(sk);
2528 int state = TCP_CA_Open;
2530 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2531 state = TCP_CA_Disorder;
2533 if (inet_csk(sk)->icsk_ca_state != state) {
2534 tcp_set_ca_state(sk, state);
2535 tp->high_seq = tp->snd_nxt;
2539 static void tcp_try_to_open(struct sock *sk, int flag)
2541 struct tcp_sock *tp = tcp_sk(sk);
2543 tcp_verify_left_out(tp);
2545 if (!tcp_any_retrans_done(sk))
2546 tp->retrans_stamp = 0;
2548 if (flag & FLAG_ECE)
2549 tcp_enter_cwr(sk);
2551 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2552 tcp_try_keep_open(sk);
2556 static void tcp_mtup_probe_failed(struct sock *sk)
2558 struct inet_connection_sock *icsk = inet_csk(sk);
2560 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2561 icsk->icsk_mtup.probe_size = 0;
2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2565 static void tcp_mtup_probe_success(struct sock *sk)
2567 struct tcp_sock *tp = tcp_sk(sk);
2568 struct inet_connection_sock *icsk = inet_csk(sk);
2570 /* FIXME: breaks with very large cwnd */
2571 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2572 tp->snd_cwnd = tp->snd_cwnd *
2573 tcp_mss_to_mtu(sk, tp->mss_cache) /
2574 icsk->icsk_mtup.probe_size;
2575 tp->snd_cwnd_cnt = 0;
2576 tp->snd_cwnd_stamp = tcp_jiffies32;
2577 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2579 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2580 icsk->icsk_mtup.probe_size = 0;
2581 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2582 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2585 /* Do a simple retransmit without using the backoff mechanisms in
2586 * tcp_timer. This is used for path mtu discovery.
2587 * The socket is already locked here.
2589 void tcp_simple_retransmit(struct sock *sk)
2591 const struct inet_connection_sock *icsk = inet_csk(sk);
2592 struct tcp_sock *tp = tcp_sk(sk);
2593 struct sk_buff *skb;
2594 unsigned int mss = tcp_current_mss(sk);
2596 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2597 if (tcp_skb_seglen(skb) > mss &&
2598 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2599 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2600 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2601 tp->retrans_out -= tcp_skb_pcount(skb);
2603 tcp_skb_mark_lost_uncond_verify(tp, skb);
2607 tcp_clear_retrans_hints_partial(tp);
2609 if (!tp->lost_out)
2610 return;
2612 if (tcp_is_reno(tp))
2613 tcp_limit_reno_sacked(tp);
2615 tcp_verify_left_out(tp);
2617 /* Don't muck with the congestion window here.
2618 * Reason is that we do not increase amount of _data_
2619 * in network, but units changed and effective
2620 * cwnd/ssthresh really reduced now.
2622 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2623 tp->high_seq = tp->snd_nxt;
2624 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2625 tp->prior_ssthresh = 0;
2626 tp->undo_marker = 0;
2627 tcp_set_ca_state(sk, TCP_CA_Loss);
2629 tcp_xmit_retransmit_queue(sk);
2631 EXPORT_SYMBOL(tcp_simple_retransmit);
2633 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2635 struct tcp_sock *tp = tcp_sk(sk);
2636 int mib_idx;
2638 if (tcp_is_reno(tp))
2639 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2640 else
2641 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2643 NET_INC_STATS(sock_net(sk), mib_idx);
2645 tp->prior_ssthresh = 0;
2646 tcp_init_undo(tp);
2648 if (!tcp_in_cwnd_reduction(sk)) {
2649 if (!ece_ack)
2650 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2651 tcp_init_cwnd_reduction(sk);
2653 tcp_set_ca_state(sk, TCP_CA_Recovery);
2656 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2657 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2659 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2660 int *rexmit)
2662 struct tcp_sock *tp = tcp_sk(sk);
2663 bool recovered = !before(tp->snd_una, tp->high_seq);
2665 if ((flag & FLAG_SND_UNA_ADVANCED || tp->fastopen_rsk) &&
2666 tcp_try_undo_loss(sk, false))
2667 return;
2669 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2670 /* Step 3.b. A timeout is spurious if not all data are
2671 * lost, i.e., never-retransmitted data are (s)acked.
2673 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2674 tcp_try_undo_loss(sk, true))
2675 return;
2677 if (after(tp->snd_nxt, tp->high_seq)) {
2678 if (flag & FLAG_DATA_SACKED || num_dupack)
2679 tp->frto = 0; /* Step 3.a. loss was real */
2680 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2681 tp->high_seq = tp->snd_nxt;
2682 /* Step 2.b. Try send new data (but deferred until cwnd
2683 * is updated in tcp_ack()). Otherwise fall back to
2684 * the conventional recovery.
2686 if (!tcp_write_queue_empty(sk) &&
2687 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2688 *rexmit = REXMIT_NEW;
2689 return;
2691 tp->frto = 0;
2695 if (recovered) {
2696 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2697 tcp_try_undo_recovery(sk);
2698 return;
2700 if (tcp_is_reno(tp)) {
2701 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2702 * delivered. Lower inflight to clock out (re)tranmissions.
2704 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2705 tcp_add_reno_sack(sk, num_dupack);
2706 else if (flag & FLAG_SND_UNA_ADVANCED)
2707 tcp_reset_reno_sack(tp);
2709 *rexmit = REXMIT_LOST;
2712 /* Undo during fast recovery after partial ACK. */
2713 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2715 struct tcp_sock *tp = tcp_sk(sk);
2717 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2718 /* Plain luck! Hole if filled with delayed
2719 * packet, rather than with a retransmit. Check reordering.
2721 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2723 /* We are getting evidence that the reordering degree is higher
2724 * than we realized. If there are no retransmits out then we
2725 * can undo. Otherwise we clock out new packets but do not
2726 * mark more packets lost or retransmit more.
2728 if (tp->retrans_out)
2729 return true;
2731 if (!tcp_any_retrans_done(sk))
2732 tp->retrans_stamp = 0;
2734 DBGUNDO(sk, "partial recovery");
2735 tcp_undo_cwnd_reduction(sk, true);
2736 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2737 tcp_try_keep_open(sk);
2738 return true;
2740 return false;
2743 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2745 struct tcp_sock *tp = tcp_sk(sk);
2747 if (tcp_rtx_queue_empty(sk))
2748 return;
2750 if (unlikely(tcp_is_reno(tp))) {
2751 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2752 } else if (tcp_is_rack(sk)) {
2753 u32 prior_retrans = tp->retrans_out;
2755 tcp_rack_mark_lost(sk);
2756 if (prior_retrans > tp->retrans_out)
2757 *ack_flag |= FLAG_LOST_RETRANS;
2761 static bool tcp_force_fast_retransmit(struct sock *sk)
2763 struct tcp_sock *tp = tcp_sk(sk);
2765 return after(tcp_highest_sack_seq(tp),
2766 tp->snd_una + tp->reordering * tp->mss_cache);
2769 /* Process an event, which can update packets-in-flight not trivially.
2770 * Main goal of this function is to calculate new estimate for left_out,
2771 * taking into account both packets sitting in receiver's buffer and
2772 * packets lost by network.
2774 * Besides that it updates the congestion state when packet loss or ECN
2775 * is detected. But it does not reduce the cwnd, it is done by the
2776 * congestion control later.
2778 * It does _not_ decide what to send, it is made in function
2779 * tcp_xmit_retransmit_queue().
2781 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2782 int num_dupack, int *ack_flag, int *rexmit)
2784 struct inet_connection_sock *icsk = inet_csk(sk);
2785 struct tcp_sock *tp = tcp_sk(sk);
2786 int fast_rexmit = 0, flag = *ack_flag;
2787 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2788 tcp_force_fast_retransmit(sk));
2790 if (!tp->packets_out && tp->sacked_out)
2791 tp->sacked_out = 0;
2793 /* Now state machine starts.
2794 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2795 if (flag & FLAG_ECE)
2796 tp->prior_ssthresh = 0;
2798 /* B. In all the states check for reneging SACKs. */
2799 if (tcp_check_sack_reneging(sk, flag))
2800 return;
2802 /* C. Check consistency of the current state. */
2803 tcp_verify_left_out(tp);
2805 /* D. Check state exit conditions. State can be terminated
2806 * when high_seq is ACKed. */
2807 if (icsk->icsk_ca_state == TCP_CA_Open) {
2808 WARN_ON(tp->retrans_out != 0);
2809 tp->retrans_stamp = 0;
2810 } else if (!before(tp->snd_una, tp->high_seq)) {
2811 switch (icsk->icsk_ca_state) {
2812 case TCP_CA_CWR:
2813 /* CWR is to be held something *above* high_seq
2814 * is ACKed for CWR bit to reach receiver. */
2815 if (tp->snd_una != tp->high_seq) {
2816 tcp_end_cwnd_reduction(sk);
2817 tcp_set_ca_state(sk, TCP_CA_Open);
2819 break;
2821 case TCP_CA_Recovery:
2822 if (tcp_is_reno(tp))
2823 tcp_reset_reno_sack(tp);
2824 if (tcp_try_undo_recovery(sk))
2825 return;
2826 tcp_end_cwnd_reduction(sk);
2827 break;
2831 /* E. Process state. */
2832 switch (icsk->icsk_ca_state) {
2833 case TCP_CA_Recovery:
2834 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2835 if (tcp_is_reno(tp))
2836 tcp_add_reno_sack(sk, num_dupack);
2837 } else {
2838 if (tcp_try_undo_partial(sk, prior_snd_una))
2839 return;
2840 /* Partial ACK arrived. Force fast retransmit. */
2841 do_lost = tcp_is_reno(tp) ||
2842 tcp_force_fast_retransmit(sk);
2844 if (tcp_try_undo_dsack(sk)) {
2845 tcp_try_keep_open(sk);
2846 return;
2848 tcp_identify_packet_loss(sk, ack_flag);
2849 break;
2850 case TCP_CA_Loss:
2851 tcp_process_loss(sk, flag, num_dupack, rexmit);
2852 tcp_identify_packet_loss(sk, ack_flag);
2853 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2854 (*ack_flag & FLAG_LOST_RETRANS)))
2855 return;
2856 /* Change state if cwnd is undone or retransmits are lost */
2857 /* fall through */
2858 default:
2859 if (tcp_is_reno(tp)) {
2860 if (flag & FLAG_SND_UNA_ADVANCED)
2861 tcp_reset_reno_sack(tp);
2862 tcp_add_reno_sack(sk, num_dupack);
2865 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866 tcp_try_undo_dsack(sk);
2868 tcp_identify_packet_loss(sk, ack_flag);
2869 if (!tcp_time_to_recover(sk, flag)) {
2870 tcp_try_to_open(sk, flag);
2871 return;
2874 /* MTU probe failure: don't reduce cwnd */
2875 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2876 icsk->icsk_mtup.probe_size &&
2877 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2878 tcp_mtup_probe_failed(sk);
2879 /* Restores the reduction we did in tcp_mtup_probe() */
2880 tp->snd_cwnd++;
2881 tcp_simple_retransmit(sk);
2882 return;
2885 /* Otherwise enter Recovery state */
2886 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2887 fast_rexmit = 1;
2890 if (!tcp_is_rack(sk) && do_lost)
2891 tcp_update_scoreboard(sk, fast_rexmit);
2892 *rexmit = REXMIT_LOST;
2895 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2897 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2898 struct tcp_sock *tp = tcp_sk(sk);
2900 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2901 /* If the remote keeps returning delayed ACKs, eventually
2902 * the min filter would pick it up and overestimate the
2903 * prop. delay when it expires. Skip suspected delayed ACKs.
2905 return;
2907 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2908 rtt_us ? : jiffies_to_usecs(1));
2911 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2912 long seq_rtt_us, long sack_rtt_us,
2913 long ca_rtt_us, struct rate_sample *rs)
2915 const struct tcp_sock *tp = tcp_sk(sk);
2917 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2918 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2919 * Karn's algorithm forbids taking RTT if some retransmitted data
2920 * is acked (RFC6298).
2922 if (seq_rtt_us < 0)
2923 seq_rtt_us = sack_rtt_us;
2925 /* RTTM Rule: A TSecr value received in a segment is used to
2926 * update the averaged RTT measurement only if the segment
2927 * acknowledges some new data, i.e., only if it advances the
2928 * left edge of the send window.
2929 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2931 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2932 flag & FLAG_ACKED) {
2933 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2935 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2936 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2937 ca_rtt_us = seq_rtt_us;
2940 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2941 if (seq_rtt_us < 0)
2942 return false;
2944 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2945 * always taken together with ACK, SACK, or TS-opts. Any negative
2946 * values will be skipped with the seq_rtt_us < 0 check above.
2948 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2949 tcp_rtt_estimator(sk, seq_rtt_us);
2950 tcp_set_rto(sk);
2952 /* RFC6298: only reset backoff on valid RTT measurement. */
2953 inet_csk(sk)->icsk_backoff = 0;
2954 return true;
2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2958 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2960 struct rate_sample rs;
2961 long rtt_us = -1L;
2963 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2964 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2966 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2970 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2972 const struct inet_connection_sock *icsk = inet_csk(sk);
2974 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2975 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2978 /* Restart timer after forward progress on connection.
2979 * RFC2988 recommends to restart timer to now+rto.
2981 void tcp_rearm_rto(struct sock *sk)
2983 const struct inet_connection_sock *icsk = inet_csk(sk);
2984 struct tcp_sock *tp = tcp_sk(sk);
2986 /* If the retrans timer is currently being used by Fast Open
2987 * for SYN-ACK retrans purpose, stay put.
2989 if (tp->fastopen_rsk)
2990 return;
2992 if (!tp->packets_out) {
2993 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2994 } else {
2995 u32 rto = inet_csk(sk)->icsk_rto;
2996 /* Offset the time elapsed after installing regular RTO */
2997 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2998 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2999 s64 delta_us = tcp_rto_delta_us(sk);
3000 /* delta_us may not be positive if the socket is locked
3001 * when the retrans timer fires and is rescheduled.
3003 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3005 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3006 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3010 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3011 static void tcp_set_xmit_timer(struct sock *sk)
3013 if (!tcp_schedule_loss_probe(sk, true))
3014 tcp_rearm_rto(sk);
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3020 struct tcp_sock *tp = tcp_sk(sk);
3021 u32 packets_acked;
3023 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3025 packets_acked = tcp_skb_pcount(skb);
3026 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027 return 0;
3028 packets_acked -= tcp_skb_pcount(skb);
3030 if (packets_acked) {
3031 BUG_ON(tcp_skb_pcount(skb) == 0);
3032 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3035 return packets_acked;
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039 u32 prior_snd_una)
3041 const struct skb_shared_info *shinfo;
3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3045 return;
3047 shinfo = skb_shinfo(skb);
3048 if (!before(shinfo->tskey, prior_snd_una) &&
3049 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3050 tcp_skb_tsorted_save(skb) {
3051 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3052 } tcp_skb_tsorted_restore(skb);
3056 /* Remove acknowledged frames from the retransmission queue. If our packet
3057 * is before the ack sequence we can discard it as it's confirmed to have
3058 * arrived at the other end.
3060 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3061 u32 prior_snd_una,
3062 struct tcp_sacktag_state *sack)
3064 const struct inet_connection_sock *icsk = inet_csk(sk);
3065 u64 first_ackt, last_ackt;
3066 struct tcp_sock *tp = tcp_sk(sk);
3067 u32 prior_sacked = tp->sacked_out;
3068 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3069 struct sk_buff *skb, *next;
3070 bool fully_acked = true;
3071 long sack_rtt_us = -1L;
3072 long seq_rtt_us = -1L;
3073 long ca_rtt_us = -1L;
3074 u32 pkts_acked = 0;
3075 u32 last_in_flight = 0;
3076 bool rtt_update;
3077 int flag = 0;
3079 first_ackt = 0;
3081 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3082 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3083 const u32 start_seq = scb->seq;
3084 u8 sacked = scb->sacked;
3085 u32 acked_pcount;
3087 tcp_ack_tstamp(sk, skb, prior_snd_una);
3089 /* Determine how many packets and what bytes were acked, tso and else */
3090 if (after(scb->end_seq, tp->snd_una)) {
3091 if (tcp_skb_pcount(skb) == 1 ||
3092 !after(tp->snd_una, scb->seq))
3093 break;
3095 acked_pcount = tcp_tso_acked(sk, skb);
3096 if (!acked_pcount)
3097 break;
3098 fully_acked = false;
3099 } else {
3100 acked_pcount = tcp_skb_pcount(skb);
3103 if (unlikely(sacked & TCPCB_RETRANS)) {
3104 if (sacked & TCPCB_SACKED_RETRANS)
3105 tp->retrans_out -= acked_pcount;
3106 flag |= FLAG_RETRANS_DATA_ACKED;
3107 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3108 last_ackt = tcp_skb_timestamp_us(skb);
3109 WARN_ON_ONCE(last_ackt == 0);
3110 if (!first_ackt)
3111 first_ackt = last_ackt;
3113 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3114 if (before(start_seq, reord))
3115 reord = start_seq;
3116 if (!after(scb->end_seq, tp->high_seq))
3117 flag |= FLAG_ORIG_SACK_ACKED;
3120 if (sacked & TCPCB_SACKED_ACKED) {
3121 tp->sacked_out -= acked_pcount;
3122 } else if (tcp_is_sack(tp)) {
3123 tp->delivered += acked_pcount;
3124 if (!tcp_skb_spurious_retrans(tp, skb))
3125 tcp_rack_advance(tp, sacked, scb->end_seq,
3126 tcp_skb_timestamp_us(skb));
3128 if (sacked & TCPCB_LOST)
3129 tp->lost_out -= acked_pcount;
3131 tp->packets_out -= acked_pcount;
3132 pkts_acked += acked_pcount;
3133 tcp_rate_skb_delivered(sk, skb, sack->rate);
3135 /* Initial outgoing SYN's get put onto the write_queue
3136 * just like anything else we transmit. It is not
3137 * true data, and if we misinform our callers that
3138 * this ACK acks real data, we will erroneously exit
3139 * connection startup slow start one packet too
3140 * quickly. This is severely frowned upon behavior.
3142 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3143 flag |= FLAG_DATA_ACKED;
3144 } else {
3145 flag |= FLAG_SYN_ACKED;
3146 tp->retrans_stamp = 0;
3149 if (!fully_acked)
3150 break;
3152 next = skb_rb_next(skb);
3153 if (unlikely(skb == tp->retransmit_skb_hint))
3154 tp->retransmit_skb_hint = NULL;
3155 if (unlikely(skb == tp->lost_skb_hint))
3156 tp->lost_skb_hint = NULL;
3157 tcp_rtx_queue_unlink_and_free(skb, sk);
3160 if (!skb)
3161 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3163 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3164 tp->snd_up = tp->snd_una;
3166 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3167 flag |= FLAG_SACK_RENEGING;
3169 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3170 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3171 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3173 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3174 last_in_flight && !prior_sacked && fully_acked &&
3175 sack->rate->prior_delivered + 1 == tp->delivered &&
3176 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3177 /* Conservatively mark a delayed ACK. It's typically
3178 * from a lone runt packet over the round trip to
3179 * a receiver w/o out-of-order or CE events.
3181 flag |= FLAG_ACK_MAYBE_DELAYED;
3184 if (sack->first_sackt) {
3185 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3186 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3188 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3189 ca_rtt_us, sack->rate);
3191 if (flag & FLAG_ACKED) {
3192 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3193 if (unlikely(icsk->icsk_mtup.probe_size &&
3194 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3195 tcp_mtup_probe_success(sk);
3198 if (tcp_is_reno(tp)) {
3199 tcp_remove_reno_sacks(sk, pkts_acked);
3201 /* If any of the cumulatively ACKed segments was
3202 * retransmitted, non-SACK case cannot confirm that
3203 * progress was due to original transmission due to
3204 * lack of TCPCB_SACKED_ACKED bits even if some of
3205 * the packets may have been never retransmitted.
3207 if (flag & FLAG_RETRANS_DATA_ACKED)
3208 flag &= ~FLAG_ORIG_SACK_ACKED;
3209 } else {
3210 int delta;
3212 /* Non-retransmitted hole got filled? That's reordering */
3213 if (before(reord, prior_fack))
3214 tcp_check_sack_reordering(sk, reord, 0);
3216 delta = prior_sacked - tp->sacked_out;
3217 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3219 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3220 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3221 tcp_skb_timestamp_us(skb))) {
3222 /* Do not re-arm RTO if the sack RTT is measured from data sent
3223 * after when the head was last (re)transmitted. Otherwise the
3224 * timeout may continue to extend in loss recovery.
3226 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3229 if (icsk->icsk_ca_ops->pkts_acked) {
3230 struct ack_sample sample = { .pkts_acked = pkts_acked,
3231 .rtt_us = sack->rate->rtt_us,
3232 .in_flight = last_in_flight };
3234 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3237 #if FASTRETRANS_DEBUG > 0
3238 WARN_ON((int)tp->sacked_out < 0);
3239 WARN_ON((int)tp->lost_out < 0);
3240 WARN_ON((int)tp->retrans_out < 0);
3241 if (!tp->packets_out && tcp_is_sack(tp)) {
3242 icsk = inet_csk(sk);
3243 if (tp->lost_out) {
3244 pr_debug("Leak l=%u %d\n",
3245 tp->lost_out, icsk->icsk_ca_state);
3246 tp->lost_out = 0;
3248 if (tp->sacked_out) {
3249 pr_debug("Leak s=%u %d\n",
3250 tp->sacked_out, icsk->icsk_ca_state);
3251 tp->sacked_out = 0;
3253 if (tp->retrans_out) {
3254 pr_debug("Leak r=%u %d\n",
3255 tp->retrans_out, icsk->icsk_ca_state);
3256 tp->retrans_out = 0;
3259 #endif
3260 return flag;
3263 static void tcp_ack_probe(struct sock *sk)
3265 struct inet_connection_sock *icsk = inet_csk(sk);
3266 struct sk_buff *head = tcp_send_head(sk);
3267 const struct tcp_sock *tp = tcp_sk(sk);
3269 /* Was it a usable window open? */
3270 if (!head)
3271 return;
3272 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3273 icsk->icsk_backoff = 0;
3274 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3275 /* Socket must be waked up by subsequent tcp_data_snd_check().
3276 * This function is not for random using!
3278 } else {
3279 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3281 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3282 when, TCP_RTO_MAX, NULL);
3286 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3288 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3289 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3292 /* Decide wheather to run the increase function of congestion control. */
3293 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3295 /* If reordering is high then always grow cwnd whenever data is
3296 * delivered regardless of its ordering. Otherwise stay conservative
3297 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3298 * new SACK or ECE mark may first advance cwnd here and later reduce
3299 * cwnd in tcp_fastretrans_alert() based on more states.
3301 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3302 return flag & FLAG_FORWARD_PROGRESS;
3304 return flag & FLAG_DATA_ACKED;
3307 /* The "ultimate" congestion control function that aims to replace the rigid
3308 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3309 * It's called toward the end of processing an ACK with precise rate
3310 * information. All transmission or retransmission are delayed afterwards.
3312 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3313 int flag, const struct rate_sample *rs)
3315 const struct inet_connection_sock *icsk = inet_csk(sk);
3317 if (icsk->icsk_ca_ops->cong_control) {
3318 icsk->icsk_ca_ops->cong_control(sk, rs);
3319 return;
3322 if (tcp_in_cwnd_reduction(sk)) {
3323 /* Reduce cwnd if state mandates */
3324 tcp_cwnd_reduction(sk, acked_sacked, flag);
3325 } else if (tcp_may_raise_cwnd(sk, flag)) {
3326 /* Advance cwnd if state allows */
3327 tcp_cong_avoid(sk, ack, acked_sacked);
3329 tcp_update_pacing_rate(sk);
3332 /* Check that window update is acceptable.
3333 * The function assumes that snd_una<=ack<=snd_next.
3335 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3336 const u32 ack, const u32 ack_seq,
3337 const u32 nwin)
3339 return after(ack, tp->snd_una) ||
3340 after(ack_seq, tp->snd_wl1) ||
3341 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3344 /* If we update tp->snd_una, also update tp->bytes_acked */
3345 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3347 u32 delta = ack - tp->snd_una;
3349 sock_owned_by_me((struct sock *)tp);
3350 tp->bytes_acked += delta;
3351 tp->snd_una = ack;
3354 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3355 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3357 u32 delta = seq - tp->rcv_nxt;
3359 sock_owned_by_me((struct sock *)tp);
3360 tp->bytes_received += delta;
3361 tp->rcv_nxt = seq;
3364 /* Update our send window.
3366 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3367 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3369 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3370 u32 ack_seq)
3372 struct tcp_sock *tp = tcp_sk(sk);
3373 int flag = 0;
3374 u32 nwin = ntohs(tcp_hdr(skb)->window);
3376 if (likely(!tcp_hdr(skb)->syn))
3377 nwin <<= tp->rx_opt.snd_wscale;
3379 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3380 flag |= FLAG_WIN_UPDATE;
3381 tcp_update_wl(tp, ack_seq);
3383 if (tp->snd_wnd != nwin) {
3384 tp->snd_wnd = nwin;
3386 /* Note, it is the only place, where
3387 * fast path is recovered for sending TCP.
3389 tp->pred_flags = 0;
3390 tcp_fast_path_check(sk);
3392 if (!tcp_write_queue_empty(sk))
3393 tcp_slow_start_after_idle_check(sk);
3395 if (nwin > tp->max_window) {
3396 tp->max_window = nwin;
3397 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3402 tcp_snd_una_update(tp, ack);
3404 return flag;
3407 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3408 u32 *last_oow_ack_time)
3410 if (*last_oow_ack_time) {
3411 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3413 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3414 NET_INC_STATS(net, mib_idx);
3415 return true; /* rate-limited: don't send yet! */
3419 *last_oow_ack_time = tcp_jiffies32;
3421 return false; /* not rate-limited: go ahead, send dupack now! */
3424 /* Return true if we're currently rate-limiting out-of-window ACKs and
3425 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3426 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3427 * attacks that send repeated SYNs or ACKs for the same connection. To
3428 * do this, we do not send a duplicate SYNACK or ACK if the remote
3429 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3431 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3432 int mib_idx, u32 *last_oow_ack_time)
3434 /* Data packets without SYNs are not likely part of an ACK loop. */
3435 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3436 !tcp_hdr(skb)->syn)
3437 return false;
3439 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3442 /* RFC 5961 7 [ACK Throttling] */
3443 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3445 /* unprotected vars, we dont care of overwrites */
3446 static u32 challenge_timestamp;
3447 static unsigned int challenge_count;
3448 struct tcp_sock *tp = tcp_sk(sk);
3449 struct net *net = sock_net(sk);
3450 u32 count, now;
3452 /* First check our per-socket dupack rate limit. */
3453 if (__tcp_oow_rate_limited(net,
3454 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3455 &tp->last_oow_ack_time))
3456 return;
3458 /* Then check host-wide RFC 5961 rate limit. */
3459 now = jiffies / HZ;
3460 if (now != challenge_timestamp) {
3461 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3462 u32 half = (ack_limit + 1) >> 1;
3464 challenge_timestamp = now;
3465 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3467 count = READ_ONCE(challenge_count);
3468 if (count > 0) {
3469 WRITE_ONCE(challenge_count, count - 1);
3470 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3471 tcp_send_ack(sk);
3475 static void tcp_store_ts_recent(struct tcp_sock *tp)
3477 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3478 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3481 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3483 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3484 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3485 * extra check below makes sure this can only happen
3486 * for pure ACK frames. -DaveM
3488 * Not only, also it occurs for expired timestamps.
3491 if (tcp_paws_check(&tp->rx_opt, 0))
3492 tcp_store_ts_recent(tp);
3496 /* This routine deals with acks during a TLP episode.
3497 * We mark the end of a TLP episode on receiving TLP dupack or when
3498 * ack is after tlp_high_seq.
3499 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3501 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3503 struct tcp_sock *tp = tcp_sk(sk);
3505 if (before(ack, tp->tlp_high_seq))
3506 return;
3508 if (flag & FLAG_DSACKING_ACK) {
3509 /* This DSACK means original and TLP probe arrived; no loss */
3510 tp->tlp_high_seq = 0;
3511 } else if (after(ack, tp->tlp_high_seq)) {
3512 /* ACK advances: there was a loss, so reduce cwnd. Reset
3513 * tlp_high_seq in tcp_init_cwnd_reduction()
3515 tcp_init_cwnd_reduction(sk);
3516 tcp_set_ca_state(sk, TCP_CA_CWR);
3517 tcp_end_cwnd_reduction(sk);
3518 tcp_try_keep_open(sk);
3519 NET_INC_STATS(sock_net(sk),
3520 LINUX_MIB_TCPLOSSPROBERECOVERY);
3521 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3522 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3523 /* Pure dupack: original and TLP probe arrived; no loss */
3524 tp->tlp_high_seq = 0;
3528 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3530 const struct inet_connection_sock *icsk = inet_csk(sk);
3532 if (icsk->icsk_ca_ops->in_ack_event)
3533 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3536 /* Congestion control has updated the cwnd already. So if we're in
3537 * loss recovery then now we do any new sends (for FRTO) or
3538 * retransmits (for CA_Loss or CA_recovery) that make sense.
3540 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3542 struct tcp_sock *tp = tcp_sk(sk);
3544 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3545 return;
3547 if (unlikely(rexmit == 2)) {
3548 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3549 TCP_NAGLE_OFF);
3550 if (after(tp->snd_nxt, tp->high_seq))
3551 return;
3552 tp->frto = 0;
3554 tcp_xmit_retransmit_queue(sk);
3557 /* Returns the number of packets newly acked or sacked by the current ACK */
3558 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3560 const struct net *net = sock_net(sk);
3561 struct tcp_sock *tp = tcp_sk(sk);
3562 u32 delivered;
3564 delivered = tp->delivered - prior_delivered;
3565 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3566 if (flag & FLAG_ECE) {
3567 tp->delivered_ce += delivered;
3568 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3570 return delivered;
3573 /* This routine deals with incoming acks, but not outgoing ones. */
3574 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3576 struct inet_connection_sock *icsk = inet_csk(sk);
3577 struct tcp_sock *tp = tcp_sk(sk);
3578 struct tcp_sacktag_state sack_state;
3579 struct rate_sample rs = { .prior_delivered = 0 };
3580 u32 prior_snd_una = tp->snd_una;
3581 bool is_sack_reneg = tp->is_sack_reneg;
3582 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3583 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3584 int num_dupack = 0;
3585 int prior_packets = tp->packets_out;
3586 u32 delivered = tp->delivered;
3587 u32 lost = tp->lost;
3588 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3589 u32 prior_fack;
3591 sack_state.first_sackt = 0;
3592 sack_state.rate = &rs;
3594 /* We very likely will need to access rtx queue. */
3595 prefetch(sk->tcp_rtx_queue.rb_node);
3597 /* If the ack is older than previous acks
3598 * then we can probably ignore it.
3600 if (before(ack, prior_snd_una)) {
3601 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3602 if (before(ack, prior_snd_una - tp->max_window)) {
3603 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3604 tcp_send_challenge_ack(sk, skb);
3605 return -1;
3607 goto old_ack;
3610 /* If the ack includes data we haven't sent yet, discard
3611 * this segment (RFC793 Section 3.9).
3613 if (after(ack, tp->snd_nxt))
3614 return -1;
3616 if (after(ack, prior_snd_una)) {
3617 flag |= FLAG_SND_UNA_ADVANCED;
3618 icsk->icsk_retransmits = 0;
3620 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3621 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3622 if (icsk->icsk_clean_acked)
3623 icsk->icsk_clean_acked(sk, ack);
3624 #endif
3627 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3628 rs.prior_in_flight = tcp_packets_in_flight(tp);
3630 /* ts_recent update must be made after we are sure that the packet
3631 * is in window.
3633 if (flag & FLAG_UPDATE_TS_RECENT)
3634 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3636 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3637 FLAG_SND_UNA_ADVANCED) {
3638 /* Window is constant, pure forward advance.
3639 * No more checks are required.
3640 * Note, we use the fact that SND.UNA>=SND.WL2.
3642 tcp_update_wl(tp, ack_seq);
3643 tcp_snd_una_update(tp, ack);
3644 flag |= FLAG_WIN_UPDATE;
3646 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3648 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3649 } else {
3650 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3652 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3653 flag |= FLAG_DATA;
3654 else
3655 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3657 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3659 if (TCP_SKB_CB(skb)->sacked)
3660 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3661 &sack_state);
3663 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3664 flag |= FLAG_ECE;
3665 ack_ev_flags |= CA_ACK_ECE;
3668 if (flag & FLAG_WIN_UPDATE)
3669 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3671 tcp_in_ack_event(sk, ack_ev_flags);
3674 /* We passed data and got it acked, remove any soft error
3675 * log. Something worked...
3677 sk->sk_err_soft = 0;
3678 icsk->icsk_probes_out = 0;
3679 tp->rcv_tstamp = tcp_jiffies32;
3680 if (!prior_packets)
3681 goto no_queue;
3683 /* See if we can take anything off of the retransmit queue. */
3684 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3686 tcp_rack_update_reo_wnd(sk, &rs);
3688 if (tp->tlp_high_seq)
3689 tcp_process_tlp_ack(sk, ack, flag);
3690 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3691 if (flag & FLAG_SET_XMIT_TIMER)
3692 tcp_set_xmit_timer(sk);
3694 if (tcp_ack_is_dubious(sk, flag)) {
3695 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3696 num_dupack = 1;
3697 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3698 if (!(flag & FLAG_DATA))
3699 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3701 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3702 &rexmit);
3705 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3706 sk_dst_confirm(sk);
3708 delivered = tcp_newly_delivered(sk, delivered, flag);
3709 lost = tp->lost - lost; /* freshly marked lost */
3710 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3711 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3712 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3713 tcp_xmit_recovery(sk, rexmit);
3714 return 1;
3716 no_queue:
3717 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3718 if (flag & FLAG_DSACKING_ACK) {
3719 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3720 &rexmit);
3721 tcp_newly_delivered(sk, delivered, flag);
3723 /* If this ack opens up a zero window, clear backoff. It was
3724 * being used to time the probes, and is probably far higher than
3725 * it needs to be for normal retransmission.
3727 tcp_ack_probe(sk);
3729 if (tp->tlp_high_seq)
3730 tcp_process_tlp_ack(sk, ack, flag);
3731 return 1;
3733 old_ack:
3734 /* If data was SACKed, tag it and see if we should send more data.
3735 * If data was DSACKed, see if we can undo a cwnd reduction.
3737 if (TCP_SKB_CB(skb)->sacked) {
3738 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3739 &sack_state);
3740 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3741 &rexmit);
3742 tcp_newly_delivered(sk, delivered, flag);
3743 tcp_xmit_recovery(sk, rexmit);
3746 return 0;
3749 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3750 bool syn, struct tcp_fastopen_cookie *foc,
3751 bool exp_opt)
3753 /* Valid only in SYN or SYN-ACK with an even length. */
3754 if (!foc || !syn || len < 0 || (len & 1))
3755 return;
3757 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3758 len <= TCP_FASTOPEN_COOKIE_MAX)
3759 memcpy(foc->val, cookie, len);
3760 else if (len != 0)
3761 len = -1;
3762 foc->len = len;
3763 foc->exp = exp_opt;
3766 static void smc_parse_options(const struct tcphdr *th,
3767 struct tcp_options_received *opt_rx,
3768 const unsigned char *ptr,
3769 int opsize)
3771 #if IS_ENABLED(CONFIG_SMC)
3772 if (static_branch_unlikely(&tcp_have_smc)) {
3773 if (th->syn && !(opsize & 1) &&
3774 opsize >= TCPOLEN_EXP_SMC_BASE &&
3775 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3776 opt_rx->smc_ok = 1;
3778 #endif
3781 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3782 * But, this can also be called on packets in the established flow when
3783 * the fast version below fails.
3785 void tcp_parse_options(const struct net *net,
3786 const struct sk_buff *skb,
3787 struct tcp_options_received *opt_rx, int estab,
3788 struct tcp_fastopen_cookie *foc)
3790 const unsigned char *ptr;
3791 const struct tcphdr *th = tcp_hdr(skb);
3792 int length = (th->doff * 4) - sizeof(struct tcphdr);
3794 ptr = (const unsigned char *)(th + 1);
3795 opt_rx->saw_tstamp = 0;
3797 while (length > 0) {
3798 int opcode = *ptr++;
3799 int opsize;
3801 switch (opcode) {
3802 case TCPOPT_EOL:
3803 return;
3804 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3805 length--;
3806 continue;
3807 default:
3808 if (length < 2)
3809 return;
3810 opsize = *ptr++;
3811 if (opsize < 2) /* "silly options" */
3812 return;
3813 if (opsize > length)
3814 return; /* don't parse partial options */
3815 switch (opcode) {
3816 case TCPOPT_MSS:
3817 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3818 u16 in_mss = get_unaligned_be16(ptr);
3819 if (in_mss) {
3820 if (opt_rx->user_mss &&
3821 opt_rx->user_mss < in_mss)
3822 in_mss = opt_rx->user_mss;
3823 opt_rx->mss_clamp = in_mss;
3826 break;
3827 case TCPOPT_WINDOW:
3828 if (opsize == TCPOLEN_WINDOW && th->syn &&
3829 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3830 __u8 snd_wscale = *(__u8 *)ptr;
3831 opt_rx->wscale_ok = 1;
3832 if (snd_wscale > TCP_MAX_WSCALE) {
3833 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3834 __func__,
3835 snd_wscale,
3836 TCP_MAX_WSCALE);
3837 snd_wscale = TCP_MAX_WSCALE;
3839 opt_rx->snd_wscale = snd_wscale;
3841 break;
3842 case TCPOPT_TIMESTAMP:
3843 if ((opsize == TCPOLEN_TIMESTAMP) &&
3844 ((estab && opt_rx->tstamp_ok) ||
3845 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3846 opt_rx->saw_tstamp = 1;
3847 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3848 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3850 break;
3851 case TCPOPT_SACK_PERM:
3852 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3853 !estab && net->ipv4.sysctl_tcp_sack) {
3854 opt_rx->sack_ok = TCP_SACK_SEEN;
3855 tcp_sack_reset(opt_rx);
3857 break;
3859 case TCPOPT_SACK:
3860 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3861 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3862 opt_rx->sack_ok) {
3863 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3865 break;
3866 #ifdef CONFIG_TCP_MD5SIG
3867 case TCPOPT_MD5SIG:
3869 * The MD5 Hash has already been
3870 * checked (see tcp_v{4,6}_do_rcv()).
3872 break;
3873 #endif
3874 case TCPOPT_FASTOPEN:
3875 tcp_parse_fastopen_option(
3876 opsize - TCPOLEN_FASTOPEN_BASE,
3877 ptr, th->syn, foc, false);
3878 break;
3880 case TCPOPT_EXP:
3881 /* Fast Open option shares code 254 using a
3882 * 16 bits magic number.
3884 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3885 get_unaligned_be16(ptr) ==
3886 TCPOPT_FASTOPEN_MAGIC)
3887 tcp_parse_fastopen_option(opsize -
3888 TCPOLEN_EXP_FASTOPEN_BASE,
3889 ptr + 2, th->syn, foc, true);
3890 else
3891 smc_parse_options(th, opt_rx, ptr,
3892 opsize);
3893 break;
3896 ptr += opsize-2;
3897 length -= opsize;
3901 EXPORT_SYMBOL(tcp_parse_options);
3903 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3905 const __be32 *ptr = (const __be32 *)(th + 1);
3907 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3908 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3909 tp->rx_opt.saw_tstamp = 1;
3910 ++ptr;
3911 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3912 ++ptr;
3913 if (*ptr)
3914 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3915 else
3916 tp->rx_opt.rcv_tsecr = 0;
3917 return true;
3919 return false;
3922 /* Fast parse options. This hopes to only see timestamps.
3923 * If it is wrong it falls back on tcp_parse_options().
3925 static bool tcp_fast_parse_options(const struct net *net,
3926 const struct sk_buff *skb,
3927 const struct tcphdr *th, struct tcp_sock *tp)
3929 /* In the spirit of fast parsing, compare doff directly to constant
3930 * values. Because equality is used, short doff can be ignored here.
3932 if (th->doff == (sizeof(*th) / 4)) {
3933 tp->rx_opt.saw_tstamp = 0;
3934 return false;
3935 } else if (tp->rx_opt.tstamp_ok &&
3936 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3937 if (tcp_parse_aligned_timestamp(tp, th))
3938 return true;
3941 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3942 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3943 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3945 return true;
3948 #ifdef CONFIG_TCP_MD5SIG
3950 * Parse MD5 Signature option
3952 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3954 int length = (th->doff << 2) - sizeof(*th);
3955 const u8 *ptr = (const u8 *)(th + 1);
3957 /* If not enough data remaining, we can short cut */
3958 while (length >= TCPOLEN_MD5SIG) {
3959 int opcode = *ptr++;
3960 int opsize;
3962 switch (opcode) {
3963 case TCPOPT_EOL:
3964 return NULL;
3965 case TCPOPT_NOP:
3966 length--;
3967 continue;
3968 default:
3969 opsize = *ptr++;
3970 if (opsize < 2 || opsize > length)
3971 return NULL;
3972 if (opcode == TCPOPT_MD5SIG)
3973 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3975 ptr += opsize - 2;
3976 length -= opsize;
3978 return NULL;
3980 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3981 #endif
3983 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3985 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3986 * it can pass through stack. So, the following predicate verifies that
3987 * this segment is not used for anything but congestion avoidance or
3988 * fast retransmit. Moreover, we even are able to eliminate most of such
3989 * second order effects, if we apply some small "replay" window (~RTO)
3990 * to timestamp space.
3992 * All these measures still do not guarantee that we reject wrapped ACKs
3993 * on networks with high bandwidth, when sequence space is recycled fastly,
3994 * but it guarantees that such events will be very rare and do not affect
3995 * connection seriously. This doesn't look nice, but alas, PAWS is really
3996 * buggy extension.
3998 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3999 * states that events when retransmit arrives after original data are rare.
4000 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4001 * the biggest problem on large power networks even with minor reordering.
4002 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4003 * up to bandwidth of 18Gigabit/sec. 8) ]
4006 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4008 const struct tcp_sock *tp = tcp_sk(sk);
4009 const struct tcphdr *th = tcp_hdr(skb);
4010 u32 seq = TCP_SKB_CB(skb)->seq;
4011 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4013 return (/* 1. Pure ACK with correct sequence number. */
4014 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4016 /* 2. ... and duplicate ACK. */
4017 ack == tp->snd_una &&
4019 /* 3. ... and does not update window. */
4020 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4022 /* 4. ... and sits in replay window. */
4023 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4026 static inline bool tcp_paws_discard(const struct sock *sk,
4027 const struct sk_buff *skb)
4029 const struct tcp_sock *tp = tcp_sk(sk);
4031 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4032 !tcp_disordered_ack(sk, skb);
4035 /* Check segment sequence number for validity.
4037 * Segment controls are considered valid, if the segment
4038 * fits to the window after truncation to the window. Acceptability
4039 * of data (and SYN, FIN, of course) is checked separately.
4040 * See tcp_data_queue(), for example.
4042 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4043 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4044 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4045 * (borrowed from freebsd)
4048 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4050 return !before(end_seq, tp->rcv_wup) &&
4051 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4054 /* When we get a reset we do this. */
4055 void tcp_reset(struct sock *sk)
4057 trace_tcp_receive_reset(sk);
4059 /* We want the right error as BSD sees it (and indeed as we do). */
4060 switch (sk->sk_state) {
4061 case TCP_SYN_SENT:
4062 sk->sk_err = ECONNREFUSED;
4063 break;
4064 case TCP_CLOSE_WAIT:
4065 sk->sk_err = EPIPE;
4066 break;
4067 case TCP_CLOSE:
4068 return;
4069 default:
4070 sk->sk_err = ECONNRESET;
4072 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4073 smp_wmb();
4075 tcp_write_queue_purge(sk);
4076 tcp_done(sk);
4078 if (!sock_flag(sk, SOCK_DEAD))
4079 sk->sk_error_report(sk);
4083 * Process the FIN bit. This now behaves as it is supposed to work
4084 * and the FIN takes effect when it is validly part of sequence
4085 * space. Not before when we get holes.
4087 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4088 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4089 * TIME-WAIT)
4091 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4092 * close and we go into CLOSING (and later onto TIME-WAIT)
4094 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4096 void tcp_fin(struct sock *sk)
4098 struct tcp_sock *tp = tcp_sk(sk);
4100 inet_csk_schedule_ack(sk);
4102 sk->sk_shutdown |= RCV_SHUTDOWN;
4103 sock_set_flag(sk, SOCK_DONE);
4105 switch (sk->sk_state) {
4106 case TCP_SYN_RECV:
4107 case TCP_ESTABLISHED:
4108 /* Move to CLOSE_WAIT */
4109 tcp_set_state(sk, TCP_CLOSE_WAIT);
4110 inet_csk_enter_pingpong_mode(sk);
4111 break;
4113 case TCP_CLOSE_WAIT:
4114 case TCP_CLOSING:
4115 /* Received a retransmission of the FIN, do
4116 * nothing.
4118 break;
4119 case TCP_LAST_ACK:
4120 /* RFC793: Remain in the LAST-ACK state. */
4121 break;
4123 case TCP_FIN_WAIT1:
4124 /* This case occurs when a simultaneous close
4125 * happens, we must ack the received FIN and
4126 * enter the CLOSING state.
4128 tcp_send_ack(sk);
4129 tcp_set_state(sk, TCP_CLOSING);
4130 break;
4131 case TCP_FIN_WAIT2:
4132 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4133 tcp_send_ack(sk);
4134 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4135 break;
4136 default:
4137 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4138 * cases we should never reach this piece of code.
4140 pr_err("%s: Impossible, sk->sk_state=%d\n",
4141 __func__, sk->sk_state);
4142 break;
4145 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4146 * Probably, we should reset in this case. For now drop them.
4148 skb_rbtree_purge(&tp->out_of_order_queue);
4149 if (tcp_is_sack(tp))
4150 tcp_sack_reset(&tp->rx_opt);
4151 sk_mem_reclaim(sk);
4153 if (!sock_flag(sk, SOCK_DEAD)) {
4154 sk->sk_state_change(sk);
4156 /* Do not send POLL_HUP for half duplex close. */
4157 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4158 sk->sk_state == TCP_CLOSE)
4159 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4160 else
4161 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4165 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4166 u32 end_seq)
4168 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4169 if (before(seq, sp->start_seq))
4170 sp->start_seq = seq;
4171 if (after(end_seq, sp->end_seq))
4172 sp->end_seq = end_seq;
4173 return true;
4175 return false;
4178 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4180 struct tcp_sock *tp = tcp_sk(sk);
4182 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4183 int mib_idx;
4185 if (before(seq, tp->rcv_nxt))
4186 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4187 else
4188 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4190 NET_INC_STATS(sock_net(sk), mib_idx);
4192 tp->rx_opt.dsack = 1;
4193 tp->duplicate_sack[0].start_seq = seq;
4194 tp->duplicate_sack[0].end_seq = end_seq;
4198 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4200 struct tcp_sock *tp = tcp_sk(sk);
4202 if (!tp->rx_opt.dsack)
4203 tcp_dsack_set(sk, seq, end_seq);
4204 else
4205 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4208 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4210 /* When the ACK path fails or drops most ACKs, the sender would
4211 * timeout and spuriously retransmit the same segment repeatedly.
4212 * The receiver remembers and reflects via DSACKs. Leverage the
4213 * DSACK state and change the txhash to re-route speculatively.
4215 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4216 sk_rethink_txhash(sk);
4219 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4221 struct tcp_sock *tp = tcp_sk(sk);
4223 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4224 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4225 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4226 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4228 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4229 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4231 tcp_rcv_spurious_retrans(sk, skb);
4232 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4233 end_seq = tp->rcv_nxt;
4234 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4238 tcp_send_ack(sk);
4241 /* These routines update the SACK block as out-of-order packets arrive or
4242 * in-order packets close up the sequence space.
4244 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4246 int this_sack;
4247 struct tcp_sack_block *sp = &tp->selective_acks[0];
4248 struct tcp_sack_block *swalk = sp + 1;
4250 /* See if the recent change to the first SACK eats into
4251 * or hits the sequence space of other SACK blocks, if so coalesce.
4253 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4254 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4255 int i;
4257 /* Zap SWALK, by moving every further SACK up by one slot.
4258 * Decrease num_sacks.
4260 tp->rx_opt.num_sacks--;
4261 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4262 sp[i] = sp[i + 1];
4263 continue;
4265 this_sack++, swalk++;
4269 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4271 struct tcp_sock *tp = tcp_sk(sk);
4272 struct tcp_sack_block *sp = &tp->selective_acks[0];
4273 int cur_sacks = tp->rx_opt.num_sacks;
4274 int this_sack;
4276 if (!cur_sacks)
4277 goto new_sack;
4279 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4280 if (tcp_sack_extend(sp, seq, end_seq)) {
4281 /* Rotate this_sack to the first one. */
4282 for (; this_sack > 0; this_sack--, sp--)
4283 swap(*sp, *(sp - 1));
4284 if (cur_sacks > 1)
4285 tcp_sack_maybe_coalesce(tp);
4286 return;
4290 /* Could not find an adjacent existing SACK, build a new one,
4291 * put it at the front, and shift everyone else down. We
4292 * always know there is at least one SACK present already here.
4294 * If the sack array is full, forget about the last one.
4296 if (this_sack >= TCP_NUM_SACKS) {
4297 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4298 tcp_send_ack(sk);
4299 this_sack--;
4300 tp->rx_opt.num_sacks--;
4301 sp--;
4303 for (; this_sack > 0; this_sack--, sp--)
4304 *sp = *(sp - 1);
4306 new_sack:
4307 /* Build the new head SACK, and we're done. */
4308 sp->start_seq = seq;
4309 sp->end_seq = end_seq;
4310 tp->rx_opt.num_sacks++;
4313 /* RCV.NXT advances, some SACKs should be eaten. */
4315 static void tcp_sack_remove(struct tcp_sock *tp)
4317 struct tcp_sack_block *sp = &tp->selective_acks[0];
4318 int num_sacks = tp->rx_opt.num_sacks;
4319 int this_sack;
4321 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4322 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4323 tp->rx_opt.num_sacks = 0;
4324 return;
4327 for (this_sack = 0; this_sack < num_sacks;) {
4328 /* Check if the start of the sack is covered by RCV.NXT. */
4329 if (!before(tp->rcv_nxt, sp->start_seq)) {
4330 int i;
4332 /* RCV.NXT must cover all the block! */
4333 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4335 /* Zap this SACK, by moving forward any other SACKS. */
4336 for (i = this_sack+1; i < num_sacks; i++)
4337 tp->selective_acks[i-1] = tp->selective_acks[i];
4338 num_sacks--;
4339 continue;
4341 this_sack++;
4342 sp++;
4344 tp->rx_opt.num_sacks = num_sacks;
4348 * tcp_try_coalesce - try to merge skb to prior one
4349 * @sk: socket
4350 * @dest: destination queue
4351 * @to: prior buffer
4352 * @from: buffer to add in queue
4353 * @fragstolen: pointer to boolean
4355 * Before queueing skb @from after @to, try to merge them
4356 * to reduce overall memory use and queue lengths, if cost is small.
4357 * Packets in ofo or receive queues can stay a long time.
4358 * Better try to coalesce them right now to avoid future collapses.
4359 * Returns true if caller should free @from instead of queueing it
4361 static bool tcp_try_coalesce(struct sock *sk,
4362 struct sk_buff *to,
4363 struct sk_buff *from,
4364 bool *fragstolen)
4366 int delta;
4368 *fragstolen = false;
4370 /* Its possible this segment overlaps with prior segment in queue */
4371 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4372 return false;
4374 #ifdef CONFIG_TLS_DEVICE
4375 if (from->decrypted != to->decrypted)
4376 return false;
4377 #endif
4379 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4380 return false;
4382 atomic_add(delta, &sk->sk_rmem_alloc);
4383 sk_mem_charge(sk, delta);
4384 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4385 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4386 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4387 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4389 if (TCP_SKB_CB(from)->has_rxtstamp) {
4390 TCP_SKB_CB(to)->has_rxtstamp = true;
4391 to->tstamp = from->tstamp;
4392 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4395 return true;
4398 static bool tcp_ooo_try_coalesce(struct sock *sk,
4399 struct sk_buff *to,
4400 struct sk_buff *from,
4401 bool *fragstolen)
4403 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4405 /* In case tcp_drop() is called later, update to->gso_segs */
4406 if (res) {
4407 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4408 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4410 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4412 return res;
4415 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4417 sk_drops_add(sk, skb);
4418 __kfree_skb(skb);
4421 /* This one checks to see if we can put data from the
4422 * out_of_order queue into the receive_queue.
4424 static void tcp_ofo_queue(struct sock *sk)
4426 struct tcp_sock *tp = tcp_sk(sk);
4427 __u32 dsack_high = tp->rcv_nxt;
4428 bool fin, fragstolen, eaten;
4429 struct sk_buff *skb, *tail;
4430 struct rb_node *p;
4432 p = rb_first(&tp->out_of_order_queue);
4433 while (p) {
4434 skb = rb_to_skb(p);
4435 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4436 break;
4438 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4439 __u32 dsack = dsack_high;
4440 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4441 dsack_high = TCP_SKB_CB(skb)->end_seq;
4442 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4444 p = rb_next(p);
4445 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4447 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4448 tcp_drop(sk, skb);
4449 continue;
4452 tail = skb_peek_tail(&sk->sk_receive_queue);
4453 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4454 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4455 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4456 if (!eaten)
4457 __skb_queue_tail(&sk->sk_receive_queue, skb);
4458 else
4459 kfree_skb_partial(skb, fragstolen);
4461 if (unlikely(fin)) {
4462 tcp_fin(sk);
4463 /* tcp_fin() purges tp->out_of_order_queue,
4464 * so we must end this loop right now.
4466 break;
4471 static bool tcp_prune_ofo_queue(struct sock *sk);
4472 static int tcp_prune_queue(struct sock *sk);
4474 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4475 unsigned int size)
4477 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4478 !sk_rmem_schedule(sk, skb, size)) {
4480 if (tcp_prune_queue(sk) < 0)
4481 return -1;
4483 while (!sk_rmem_schedule(sk, skb, size)) {
4484 if (!tcp_prune_ofo_queue(sk))
4485 return -1;
4488 return 0;
4491 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4493 struct tcp_sock *tp = tcp_sk(sk);
4494 struct rb_node **p, *parent;
4495 struct sk_buff *skb1;
4496 u32 seq, end_seq;
4497 bool fragstolen;
4499 tcp_ecn_check_ce(sk, skb);
4501 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4502 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4503 tcp_drop(sk, skb);
4504 return;
4507 /* Disable header prediction. */
4508 tp->pred_flags = 0;
4509 inet_csk_schedule_ack(sk);
4511 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4512 seq = TCP_SKB_CB(skb)->seq;
4513 end_seq = TCP_SKB_CB(skb)->end_seq;
4515 p = &tp->out_of_order_queue.rb_node;
4516 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4517 /* Initial out of order segment, build 1 SACK. */
4518 if (tcp_is_sack(tp)) {
4519 tp->rx_opt.num_sacks = 1;
4520 tp->selective_acks[0].start_seq = seq;
4521 tp->selective_acks[0].end_seq = end_seq;
4523 rb_link_node(&skb->rbnode, NULL, p);
4524 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4525 tp->ooo_last_skb = skb;
4526 goto end;
4529 /* In the typical case, we are adding an skb to the end of the list.
4530 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4532 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4533 skb, &fragstolen)) {
4534 coalesce_done:
4535 tcp_grow_window(sk, skb);
4536 kfree_skb_partial(skb, fragstolen);
4537 skb = NULL;
4538 goto add_sack;
4540 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4541 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4542 parent = &tp->ooo_last_skb->rbnode;
4543 p = &parent->rb_right;
4544 goto insert;
4547 /* Find place to insert this segment. Handle overlaps on the way. */
4548 parent = NULL;
4549 while (*p) {
4550 parent = *p;
4551 skb1 = rb_to_skb(parent);
4552 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4553 p = &parent->rb_left;
4554 continue;
4556 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4557 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4558 /* All the bits are present. Drop. */
4559 NET_INC_STATS(sock_net(sk),
4560 LINUX_MIB_TCPOFOMERGE);
4561 tcp_drop(sk, skb);
4562 skb = NULL;
4563 tcp_dsack_set(sk, seq, end_seq);
4564 goto add_sack;
4566 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4567 /* Partial overlap. */
4568 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4569 } else {
4570 /* skb's seq == skb1's seq and skb covers skb1.
4571 * Replace skb1 with skb.
4573 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4574 &tp->out_of_order_queue);
4575 tcp_dsack_extend(sk,
4576 TCP_SKB_CB(skb1)->seq,
4577 TCP_SKB_CB(skb1)->end_seq);
4578 NET_INC_STATS(sock_net(sk),
4579 LINUX_MIB_TCPOFOMERGE);
4580 tcp_drop(sk, skb1);
4581 goto merge_right;
4583 } else if (tcp_ooo_try_coalesce(sk, skb1,
4584 skb, &fragstolen)) {
4585 goto coalesce_done;
4587 p = &parent->rb_right;
4589 insert:
4590 /* Insert segment into RB tree. */
4591 rb_link_node(&skb->rbnode, parent, p);
4592 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4594 merge_right:
4595 /* Remove other segments covered by skb. */
4596 while ((skb1 = skb_rb_next(skb)) != NULL) {
4597 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4598 break;
4599 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4600 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4601 end_seq);
4602 break;
4604 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4605 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4606 TCP_SKB_CB(skb1)->end_seq);
4607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4608 tcp_drop(sk, skb1);
4610 /* If there is no skb after us, we are the last_skb ! */
4611 if (!skb1)
4612 tp->ooo_last_skb = skb;
4614 add_sack:
4615 if (tcp_is_sack(tp))
4616 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4617 end:
4618 if (skb) {
4619 tcp_grow_window(sk, skb);
4620 skb_condense(skb);
4621 skb_set_owner_r(skb, sk);
4625 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4626 bool *fragstolen)
4628 int eaten;
4629 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4631 eaten = (tail &&
4632 tcp_try_coalesce(sk, tail,
4633 skb, fragstolen)) ? 1 : 0;
4634 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4635 if (!eaten) {
4636 __skb_queue_tail(&sk->sk_receive_queue, skb);
4637 skb_set_owner_r(skb, sk);
4639 return eaten;
4642 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4644 struct sk_buff *skb;
4645 int err = -ENOMEM;
4646 int data_len = 0;
4647 bool fragstolen;
4649 if (size == 0)
4650 return 0;
4652 if (size > PAGE_SIZE) {
4653 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4655 data_len = npages << PAGE_SHIFT;
4656 size = data_len + (size & ~PAGE_MASK);
4658 skb = alloc_skb_with_frags(size - data_len, data_len,
4659 PAGE_ALLOC_COSTLY_ORDER,
4660 &err, sk->sk_allocation);
4661 if (!skb)
4662 goto err;
4664 skb_put(skb, size - data_len);
4665 skb->data_len = data_len;
4666 skb->len = size;
4668 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4669 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4670 goto err_free;
4673 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4674 if (err)
4675 goto err_free;
4677 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4678 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4679 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4681 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4682 WARN_ON_ONCE(fragstolen); /* should not happen */
4683 __kfree_skb(skb);
4685 return size;
4687 err_free:
4688 kfree_skb(skb);
4689 err:
4690 return err;
4694 void tcp_data_ready(struct sock *sk)
4696 const struct tcp_sock *tp = tcp_sk(sk);
4697 int avail = tp->rcv_nxt - tp->copied_seq;
4699 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4700 return;
4702 sk->sk_data_ready(sk);
4705 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4707 struct tcp_sock *tp = tcp_sk(sk);
4708 bool fragstolen;
4709 int eaten;
4711 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4712 __kfree_skb(skb);
4713 return;
4715 skb_dst_drop(skb);
4716 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4718 tcp_ecn_accept_cwr(sk, skb);
4720 tp->rx_opt.dsack = 0;
4722 /* Queue data for delivery to the user.
4723 * Packets in sequence go to the receive queue.
4724 * Out of sequence packets to the out_of_order_queue.
4726 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4727 if (tcp_receive_window(tp) == 0) {
4728 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4729 goto out_of_window;
4732 /* Ok. In sequence. In window. */
4733 queue_and_out:
4734 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4735 sk_forced_mem_schedule(sk, skb->truesize);
4736 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4737 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4738 goto drop;
4741 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4742 if (skb->len)
4743 tcp_event_data_recv(sk, skb);
4744 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4745 tcp_fin(sk);
4747 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4748 tcp_ofo_queue(sk);
4750 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4751 * gap in queue is filled.
4753 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4754 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4757 if (tp->rx_opt.num_sacks)
4758 tcp_sack_remove(tp);
4760 tcp_fast_path_check(sk);
4762 if (eaten > 0)
4763 kfree_skb_partial(skb, fragstolen);
4764 if (!sock_flag(sk, SOCK_DEAD))
4765 tcp_data_ready(sk);
4766 return;
4769 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4770 tcp_rcv_spurious_retrans(sk, skb);
4771 /* A retransmit, 2nd most common case. Force an immediate ack. */
4772 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4773 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4775 out_of_window:
4776 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4777 inet_csk_schedule_ack(sk);
4778 drop:
4779 tcp_drop(sk, skb);
4780 return;
4783 /* Out of window. F.e. zero window probe. */
4784 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4785 goto out_of_window;
4787 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4788 /* Partial packet, seq < rcv_next < end_seq */
4789 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4791 /* If window is closed, drop tail of packet. But after
4792 * remembering D-SACK for its head made in previous line.
4794 if (!tcp_receive_window(tp)) {
4795 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4796 goto out_of_window;
4798 goto queue_and_out;
4801 tcp_data_queue_ofo(sk, skb);
4804 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4806 if (list)
4807 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4809 return skb_rb_next(skb);
4812 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4813 struct sk_buff_head *list,
4814 struct rb_root *root)
4816 struct sk_buff *next = tcp_skb_next(skb, list);
4818 if (list)
4819 __skb_unlink(skb, list);
4820 else
4821 rb_erase(&skb->rbnode, root);
4823 __kfree_skb(skb);
4824 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4826 return next;
4829 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4830 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4832 struct rb_node **p = &root->rb_node;
4833 struct rb_node *parent = NULL;
4834 struct sk_buff *skb1;
4836 while (*p) {
4837 parent = *p;
4838 skb1 = rb_to_skb(parent);
4839 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4840 p = &parent->rb_left;
4841 else
4842 p = &parent->rb_right;
4844 rb_link_node(&skb->rbnode, parent, p);
4845 rb_insert_color(&skb->rbnode, root);
4848 /* Collapse contiguous sequence of skbs head..tail with
4849 * sequence numbers start..end.
4851 * If tail is NULL, this means until the end of the queue.
4853 * Segments with FIN/SYN are not collapsed (only because this
4854 * simplifies code)
4856 static void
4857 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4858 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4860 struct sk_buff *skb = head, *n;
4861 struct sk_buff_head tmp;
4862 bool end_of_skbs;
4864 /* First, check that queue is collapsible and find
4865 * the point where collapsing can be useful.
4867 restart:
4868 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4869 n = tcp_skb_next(skb, list);
4871 /* No new bits? It is possible on ofo queue. */
4872 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4873 skb = tcp_collapse_one(sk, skb, list, root);
4874 if (!skb)
4875 break;
4876 goto restart;
4879 /* The first skb to collapse is:
4880 * - not SYN/FIN and
4881 * - bloated or contains data before "start" or
4882 * overlaps to the next one.
4884 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4885 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4886 before(TCP_SKB_CB(skb)->seq, start))) {
4887 end_of_skbs = false;
4888 break;
4891 if (n && n != tail &&
4892 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4893 end_of_skbs = false;
4894 break;
4897 /* Decided to skip this, advance start seq. */
4898 start = TCP_SKB_CB(skb)->end_seq;
4900 if (end_of_skbs ||
4901 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4902 return;
4904 __skb_queue_head_init(&tmp);
4906 while (before(start, end)) {
4907 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4908 struct sk_buff *nskb;
4910 nskb = alloc_skb(copy, GFP_ATOMIC);
4911 if (!nskb)
4912 break;
4914 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4915 #ifdef CONFIG_TLS_DEVICE
4916 nskb->decrypted = skb->decrypted;
4917 #endif
4918 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4919 if (list)
4920 __skb_queue_before(list, skb, nskb);
4921 else
4922 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4923 skb_set_owner_r(nskb, sk);
4925 /* Copy data, releasing collapsed skbs. */
4926 while (copy > 0) {
4927 int offset = start - TCP_SKB_CB(skb)->seq;
4928 int size = TCP_SKB_CB(skb)->end_seq - start;
4930 BUG_ON(offset < 0);
4931 if (size > 0) {
4932 size = min(copy, size);
4933 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4934 BUG();
4935 TCP_SKB_CB(nskb)->end_seq += size;
4936 copy -= size;
4937 start += size;
4939 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4940 skb = tcp_collapse_one(sk, skb, list, root);
4941 if (!skb ||
4942 skb == tail ||
4943 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4944 goto end;
4945 #ifdef CONFIG_TLS_DEVICE
4946 if (skb->decrypted != nskb->decrypted)
4947 goto end;
4948 #endif
4952 end:
4953 skb_queue_walk_safe(&tmp, skb, n)
4954 tcp_rbtree_insert(root, skb);
4957 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4958 * and tcp_collapse() them until all the queue is collapsed.
4960 static void tcp_collapse_ofo_queue(struct sock *sk)
4962 struct tcp_sock *tp = tcp_sk(sk);
4963 u32 range_truesize, sum_tiny = 0;
4964 struct sk_buff *skb, *head;
4965 u32 start, end;
4967 skb = skb_rb_first(&tp->out_of_order_queue);
4968 new_range:
4969 if (!skb) {
4970 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4971 return;
4973 start = TCP_SKB_CB(skb)->seq;
4974 end = TCP_SKB_CB(skb)->end_seq;
4975 range_truesize = skb->truesize;
4977 for (head = skb;;) {
4978 skb = skb_rb_next(skb);
4980 /* Range is terminated when we see a gap or when
4981 * we are at the queue end.
4983 if (!skb ||
4984 after(TCP_SKB_CB(skb)->seq, end) ||
4985 before(TCP_SKB_CB(skb)->end_seq, start)) {
4986 /* Do not attempt collapsing tiny skbs */
4987 if (range_truesize != head->truesize ||
4988 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4989 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4990 head, skb, start, end);
4991 } else {
4992 sum_tiny += range_truesize;
4993 if (sum_tiny > sk->sk_rcvbuf >> 3)
4994 return;
4996 goto new_range;
4999 range_truesize += skb->truesize;
5000 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5001 start = TCP_SKB_CB(skb)->seq;
5002 if (after(TCP_SKB_CB(skb)->end_seq, end))
5003 end = TCP_SKB_CB(skb)->end_seq;
5008 * Clean the out-of-order queue to make room.
5009 * We drop high sequences packets to :
5010 * 1) Let a chance for holes to be filled.
5011 * 2) not add too big latencies if thousands of packets sit there.
5012 * (But if application shrinks SO_RCVBUF, we could still end up
5013 * freeing whole queue here)
5014 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5016 * Return true if queue has shrunk.
5018 static bool tcp_prune_ofo_queue(struct sock *sk)
5020 struct tcp_sock *tp = tcp_sk(sk);
5021 struct rb_node *node, *prev;
5022 int goal;
5024 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5025 return false;
5027 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5028 goal = sk->sk_rcvbuf >> 3;
5029 node = &tp->ooo_last_skb->rbnode;
5030 do {
5031 prev = rb_prev(node);
5032 rb_erase(node, &tp->out_of_order_queue);
5033 goal -= rb_to_skb(node)->truesize;
5034 tcp_drop(sk, rb_to_skb(node));
5035 if (!prev || goal <= 0) {
5036 sk_mem_reclaim(sk);
5037 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5038 !tcp_under_memory_pressure(sk))
5039 break;
5040 goal = sk->sk_rcvbuf >> 3;
5042 node = prev;
5043 } while (node);
5044 tp->ooo_last_skb = rb_to_skb(prev);
5046 /* Reset SACK state. A conforming SACK implementation will
5047 * do the same at a timeout based retransmit. When a connection
5048 * is in a sad state like this, we care only about integrity
5049 * of the connection not performance.
5051 if (tp->rx_opt.sack_ok)
5052 tcp_sack_reset(&tp->rx_opt);
5053 return true;
5056 /* Reduce allocated memory if we can, trying to get
5057 * the socket within its memory limits again.
5059 * Return less than zero if we should start dropping frames
5060 * until the socket owning process reads some of the data
5061 * to stabilize the situation.
5063 static int tcp_prune_queue(struct sock *sk)
5065 struct tcp_sock *tp = tcp_sk(sk);
5067 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5069 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5070 tcp_clamp_window(sk);
5071 else if (tcp_under_memory_pressure(sk))
5072 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5074 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5075 return 0;
5077 tcp_collapse_ofo_queue(sk);
5078 if (!skb_queue_empty(&sk->sk_receive_queue))
5079 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5080 skb_peek(&sk->sk_receive_queue),
5081 NULL,
5082 tp->copied_seq, tp->rcv_nxt);
5083 sk_mem_reclaim(sk);
5085 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5086 return 0;
5088 /* Collapsing did not help, destructive actions follow.
5089 * This must not ever occur. */
5091 tcp_prune_ofo_queue(sk);
5093 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5094 return 0;
5096 /* If we are really being abused, tell the caller to silently
5097 * drop receive data on the floor. It will get retransmitted
5098 * and hopefully then we'll have sufficient space.
5100 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5102 /* Massive buffer overcommit. */
5103 tp->pred_flags = 0;
5104 return -1;
5107 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5109 const struct tcp_sock *tp = tcp_sk(sk);
5111 /* If the user specified a specific send buffer setting, do
5112 * not modify it.
5114 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5115 return false;
5117 /* If we are under global TCP memory pressure, do not expand. */
5118 if (tcp_under_memory_pressure(sk))
5119 return false;
5121 /* If we are under soft global TCP memory pressure, do not expand. */
5122 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5123 return false;
5125 /* If we filled the congestion window, do not expand. */
5126 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5127 return false;
5129 return true;
5132 /* When incoming ACK allowed to free some skb from write_queue,
5133 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5134 * on the exit from tcp input handler.
5136 * PROBLEM: sndbuf expansion does not work well with largesend.
5138 static void tcp_new_space(struct sock *sk)
5140 struct tcp_sock *tp = tcp_sk(sk);
5142 if (tcp_should_expand_sndbuf(sk)) {
5143 tcp_sndbuf_expand(sk);
5144 tp->snd_cwnd_stamp = tcp_jiffies32;
5147 sk->sk_write_space(sk);
5150 static void tcp_check_space(struct sock *sk)
5152 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5153 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5154 /* pairs with tcp_poll() */
5155 smp_mb();
5156 if (sk->sk_socket &&
5157 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5158 tcp_new_space(sk);
5159 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5160 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5165 static inline void tcp_data_snd_check(struct sock *sk)
5167 tcp_push_pending_frames(sk);
5168 tcp_check_space(sk);
5172 * Check if sending an ack is needed.
5174 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5176 struct tcp_sock *tp = tcp_sk(sk);
5177 unsigned long rtt, delay;
5179 /* More than one full frame received... */
5180 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5181 /* ... and right edge of window advances far enough.
5182 * (tcp_recvmsg() will send ACK otherwise).
5183 * If application uses SO_RCVLOWAT, we want send ack now if
5184 * we have not received enough bytes to satisfy the condition.
5186 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5187 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5188 /* We ACK each frame or... */
5189 tcp_in_quickack_mode(sk) ||
5190 /* Protocol state mandates a one-time immediate ACK */
5191 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5192 send_now:
5193 tcp_send_ack(sk);
5194 return;
5197 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5198 tcp_send_delayed_ack(sk);
5199 return;
5202 if (!tcp_is_sack(tp) ||
5203 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5204 goto send_now;
5206 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5207 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5208 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5209 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5210 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5211 tp->compressed_ack = 0;
5214 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5215 goto send_now;
5217 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5218 return;
5220 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5222 rtt = tp->rcv_rtt_est.rtt_us;
5223 if (tp->srtt_us && tp->srtt_us < rtt)
5224 rtt = tp->srtt_us;
5226 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5227 rtt * (NSEC_PER_USEC >> 3)/20);
5228 sock_hold(sk);
5229 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5230 HRTIMER_MODE_REL_PINNED_SOFT);
5233 static inline void tcp_ack_snd_check(struct sock *sk)
5235 if (!inet_csk_ack_scheduled(sk)) {
5236 /* We sent a data segment already. */
5237 return;
5239 __tcp_ack_snd_check(sk, 1);
5243 * This routine is only called when we have urgent data
5244 * signaled. Its the 'slow' part of tcp_urg. It could be
5245 * moved inline now as tcp_urg is only called from one
5246 * place. We handle URGent data wrong. We have to - as
5247 * BSD still doesn't use the correction from RFC961.
5248 * For 1003.1g we should support a new option TCP_STDURG to permit
5249 * either form (or just set the sysctl tcp_stdurg).
5252 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5254 struct tcp_sock *tp = tcp_sk(sk);
5255 u32 ptr = ntohs(th->urg_ptr);
5257 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5258 ptr--;
5259 ptr += ntohl(th->seq);
5261 /* Ignore urgent data that we've already seen and read. */
5262 if (after(tp->copied_seq, ptr))
5263 return;
5265 /* Do not replay urg ptr.
5267 * NOTE: interesting situation not covered by specs.
5268 * Misbehaving sender may send urg ptr, pointing to segment,
5269 * which we already have in ofo queue. We are not able to fetch
5270 * such data and will stay in TCP_URG_NOTYET until will be eaten
5271 * by recvmsg(). Seems, we are not obliged to handle such wicked
5272 * situations. But it is worth to think about possibility of some
5273 * DoSes using some hypothetical application level deadlock.
5275 if (before(ptr, tp->rcv_nxt))
5276 return;
5278 /* Do we already have a newer (or duplicate) urgent pointer? */
5279 if (tp->urg_data && !after(ptr, tp->urg_seq))
5280 return;
5282 /* Tell the world about our new urgent pointer. */
5283 sk_send_sigurg(sk);
5285 /* We may be adding urgent data when the last byte read was
5286 * urgent. To do this requires some care. We cannot just ignore
5287 * tp->copied_seq since we would read the last urgent byte again
5288 * as data, nor can we alter copied_seq until this data arrives
5289 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5291 * NOTE. Double Dutch. Rendering to plain English: author of comment
5292 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5293 * and expect that both A and B disappear from stream. This is _wrong_.
5294 * Though this happens in BSD with high probability, this is occasional.
5295 * Any application relying on this is buggy. Note also, that fix "works"
5296 * only in this artificial test. Insert some normal data between A and B and we will
5297 * decline of BSD again. Verdict: it is better to remove to trap
5298 * buggy users.
5300 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5301 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5302 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5303 tp->copied_seq++;
5304 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5305 __skb_unlink(skb, &sk->sk_receive_queue);
5306 __kfree_skb(skb);
5310 tp->urg_data = TCP_URG_NOTYET;
5311 tp->urg_seq = ptr;
5313 /* Disable header prediction. */
5314 tp->pred_flags = 0;
5317 /* This is the 'fast' part of urgent handling. */
5318 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5320 struct tcp_sock *tp = tcp_sk(sk);
5322 /* Check if we get a new urgent pointer - normally not. */
5323 if (th->urg)
5324 tcp_check_urg(sk, th);
5326 /* Do we wait for any urgent data? - normally not... */
5327 if (tp->urg_data == TCP_URG_NOTYET) {
5328 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5329 th->syn;
5331 /* Is the urgent pointer pointing into this packet? */
5332 if (ptr < skb->len) {
5333 u8 tmp;
5334 if (skb_copy_bits(skb, ptr, &tmp, 1))
5335 BUG();
5336 tp->urg_data = TCP_URG_VALID | tmp;
5337 if (!sock_flag(sk, SOCK_DEAD))
5338 sk->sk_data_ready(sk);
5343 /* Accept RST for rcv_nxt - 1 after a FIN.
5344 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5345 * FIN is sent followed by a RST packet. The RST is sent with the same
5346 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5347 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5348 * ACKs on the closed socket. In addition middleboxes can drop either the
5349 * challenge ACK or a subsequent RST.
5351 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5353 struct tcp_sock *tp = tcp_sk(sk);
5355 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5356 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5357 TCPF_CLOSING));
5360 /* Does PAWS and seqno based validation of an incoming segment, flags will
5361 * play significant role here.
5363 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5364 const struct tcphdr *th, int syn_inerr)
5366 struct tcp_sock *tp = tcp_sk(sk);
5367 bool rst_seq_match = false;
5369 /* RFC1323: H1. Apply PAWS check first. */
5370 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5371 tp->rx_opt.saw_tstamp &&
5372 tcp_paws_discard(sk, skb)) {
5373 if (!th->rst) {
5374 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5375 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5376 LINUX_MIB_TCPACKSKIPPEDPAWS,
5377 &tp->last_oow_ack_time))
5378 tcp_send_dupack(sk, skb);
5379 goto discard;
5381 /* Reset is accepted even if it did not pass PAWS. */
5384 /* Step 1: check sequence number */
5385 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5386 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5387 * (RST) segments are validated by checking their SEQ-fields."
5388 * And page 69: "If an incoming segment is not acceptable,
5389 * an acknowledgment should be sent in reply (unless the RST
5390 * bit is set, if so drop the segment and return)".
5392 if (!th->rst) {
5393 if (th->syn)
5394 goto syn_challenge;
5395 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5396 LINUX_MIB_TCPACKSKIPPEDSEQ,
5397 &tp->last_oow_ack_time))
5398 tcp_send_dupack(sk, skb);
5399 } else if (tcp_reset_check(sk, skb)) {
5400 tcp_reset(sk);
5402 goto discard;
5405 /* Step 2: check RST bit */
5406 if (th->rst) {
5407 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5408 * FIN and SACK too if available):
5409 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5410 * the right-most SACK block,
5411 * then
5412 * RESET the connection
5413 * else
5414 * Send a challenge ACK
5416 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5417 tcp_reset_check(sk, skb)) {
5418 rst_seq_match = true;
5419 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5420 struct tcp_sack_block *sp = &tp->selective_acks[0];
5421 int max_sack = sp[0].end_seq;
5422 int this_sack;
5424 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5425 ++this_sack) {
5426 max_sack = after(sp[this_sack].end_seq,
5427 max_sack) ?
5428 sp[this_sack].end_seq : max_sack;
5431 if (TCP_SKB_CB(skb)->seq == max_sack)
5432 rst_seq_match = true;
5435 if (rst_seq_match)
5436 tcp_reset(sk);
5437 else {
5438 /* Disable TFO if RST is out-of-order
5439 * and no data has been received
5440 * for current active TFO socket
5442 if (tp->syn_fastopen && !tp->data_segs_in &&
5443 sk->sk_state == TCP_ESTABLISHED)
5444 tcp_fastopen_active_disable(sk);
5445 tcp_send_challenge_ack(sk, skb);
5447 goto discard;
5450 /* step 3: check security and precedence [ignored] */
5452 /* step 4: Check for a SYN
5453 * RFC 5961 4.2 : Send a challenge ack
5455 if (th->syn) {
5456 syn_challenge:
5457 if (syn_inerr)
5458 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5459 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5460 tcp_send_challenge_ack(sk, skb);
5461 goto discard;
5464 return true;
5466 discard:
5467 tcp_drop(sk, skb);
5468 return false;
5472 * TCP receive function for the ESTABLISHED state.
5474 * It is split into a fast path and a slow path. The fast path is
5475 * disabled when:
5476 * - A zero window was announced from us - zero window probing
5477 * is only handled properly in the slow path.
5478 * - Out of order segments arrived.
5479 * - Urgent data is expected.
5480 * - There is no buffer space left
5481 * - Unexpected TCP flags/window values/header lengths are received
5482 * (detected by checking the TCP header against pred_flags)
5483 * - Data is sent in both directions. Fast path only supports pure senders
5484 * or pure receivers (this means either the sequence number or the ack
5485 * value must stay constant)
5486 * - Unexpected TCP option.
5488 * When these conditions are not satisfied it drops into a standard
5489 * receive procedure patterned after RFC793 to handle all cases.
5490 * The first three cases are guaranteed by proper pred_flags setting,
5491 * the rest is checked inline. Fast processing is turned on in
5492 * tcp_data_queue when everything is OK.
5494 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5496 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5497 struct tcp_sock *tp = tcp_sk(sk);
5498 unsigned int len = skb->len;
5500 /* TCP congestion window tracking */
5501 trace_tcp_probe(sk, skb);
5503 tcp_mstamp_refresh(tp);
5504 if (unlikely(!sk->sk_rx_dst))
5505 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5507 * Header prediction.
5508 * The code loosely follows the one in the famous
5509 * "30 instruction TCP receive" Van Jacobson mail.
5511 * Van's trick is to deposit buffers into socket queue
5512 * on a device interrupt, to call tcp_recv function
5513 * on the receive process context and checksum and copy
5514 * the buffer to user space. smart...
5516 * Our current scheme is not silly either but we take the
5517 * extra cost of the net_bh soft interrupt processing...
5518 * We do checksum and copy also but from device to kernel.
5521 tp->rx_opt.saw_tstamp = 0;
5523 /* pred_flags is 0xS?10 << 16 + snd_wnd
5524 * if header_prediction is to be made
5525 * 'S' will always be tp->tcp_header_len >> 2
5526 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5527 * turn it off (when there are holes in the receive
5528 * space for instance)
5529 * PSH flag is ignored.
5532 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5533 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5534 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5535 int tcp_header_len = tp->tcp_header_len;
5537 /* Timestamp header prediction: tcp_header_len
5538 * is automatically equal to th->doff*4 due to pred_flags
5539 * match.
5542 /* Check timestamp */
5543 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5544 /* No? Slow path! */
5545 if (!tcp_parse_aligned_timestamp(tp, th))
5546 goto slow_path;
5548 /* If PAWS failed, check it more carefully in slow path */
5549 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5550 goto slow_path;
5552 /* DO NOT update ts_recent here, if checksum fails
5553 * and timestamp was corrupted part, it will result
5554 * in a hung connection since we will drop all
5555 * future packets due to the PAWS test.
5559 if (len <= tcp_header_len) {
5560 /* Bulk data transfer: sender */
5561 if (len == tcp_header_len) {
5562 /* Predicted packet is in window by definition.
5563 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5564 * Hence, check seq<=rcv_wup reduces to:
5566 if (tcp_header_len ==
5567 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5568 tp->rcv_nxt == tp->rcv_wup)
5569 tcp_store_ts_recent(tp);
5571 /* We know that such packets are checksummed
5572 * on entry.
5574 tcp_ack(sk, skb, 0);
5575 __kfree_skb(skb);
5576 tcp_data_snd_check(sk);
5577 /* When receiving pure ack in fast path, update
5578 * last ts ecr directly instead of calling
5579 * tcp_rcv_rtt_measure_ts()
5581 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5582 return;
5583 } else { /* Header too small */
5584 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5585 goto discard;
5587 } else {
5588 int eaten = 0;
5589 bool fragstolen = false;
5591 if (tcp_checksum_complete(skb))
5592 goto csum_error;
5594 if ((int)skb->truesize > sk->sk_forward_alloc)
5595 goto step5;
5597 /* Predicted packet is in window by definition.
5598 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5599 * Hence, check seq<=rcv_wup reduces to:
5601 if (tcp_header_len ==
5602 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5603 tp->rcv_nxt == tp->rcv_wup)
5604 tcp_store_ts_recent(tp);
5606 tcp_rcv_rtt_measure_ts(sk, skb);
5608 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5610 /* Bulk data transfer: receiver */
5611 __skb_pull(skb, tcp_header_len);
5612 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5614 tcp_event_data_recv(sk, skb);
5616 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5617 /* Well, only one small jumplet in fast path... */
5618 tcp_ack(sk, skb, FLAG_DATA);
5619 tcp_data_snd_check(sk);
5620 if (!inet_csk_ack_scheduled(sk))
5621 goto no_ack;
5624 __tcp_ack_snd_check(sk, 0);
5625 no_ack:
5626 if (eaten)
5627 kfree_skb_partial(skb, fragstolen);
5628 tcp_data_ready(sk);
5629 return;
5633 slow_path:
5634 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5635 goto csum_error;
5637 if (!th->ack && !th->rst && !th->syn)
5638 goto discard;
5641 * Standard slow path.
5644 if (!tcp_validate_incoming(sk, skb, th, 1))
5645 return;
5647 step5:
5648 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5649 goto discard;
5651 tcp_rcv_rtt_measure_ts(sk, skb);
5653 /* Process urgent data. */
5654 tcp_urg(sk, skb, th);
5656 /* step 7: process the segment text */
5657 tcp_data_queue(sk, skb);
5659 tcp_data_snd_check(sk);
5660 tcp_ack_snd_check(sk);
5661 return;
5663 csum_error:
5664 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5665 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5667 discard:
5668 tcp_drop(sk, skb);
5670 EXPORT_SYMBOL(tcp_rcv_established);
5672 void tcp_init_transfer(struct sock *sk, int bpf_op)
5674 struct inet_connection_sock *icsk = inet_csk(sk);
5675 struct tcp_sock *tp = tcp_sk(sk);
5677 tcp_mtup_init(sk);
5678 icsk->icsk_af_ops->rebuild_header(sk);
5679 tcp_init_metrics(sk);
5681 /* Initialize the congestion window to start the transfer.
5682 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5683 * retransmitted. In light of RFC6298 more aggressive 1sec
5684 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5685 * retransmission has occurred.
5687 if (tp->total_retrans > 1 && tp->undo_marker)
5688 tp->snd_cwnd = 1;
5689 else
5690 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5691 tp->snd_cwnd_stamp = tcp_jiffies32;
5693 tcp_call_bpf(sk, bpf_op, 0, NULL);
5694 tcp_init_congestion_control(sk);
5695 tcp_init_buffer_space(sk);
5698 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5700 struct tcp_sock *tp = tcp_sk(sk);
5701 struct inet_connection_sock *icsk = inet_csk(sk);
5703 tcp_set_state(sk, TCP_ESTABLISHED);
5704 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5706 if (skb) {
5707 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5708 security_inet_conn_established(sk, skb);
5709 sk_mark_napi_id(sk, skb);
5712 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5714 /* Prevent spurious tcp_cwnd_restart() on first data
5715 * packet.
5717 tp->lsndtime = tcp_jiffies32;
5719 if (sock_flag(sk, SOCK_KEEPOPEN))
5720 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5722 if (!tp->rx_opt.snd_wscale)
5723 __tcp_fast_path_on(tp, tp->snd_wnd);
5724 else
5725 tp->pred_flags = 0;
5728 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5729 struct tcp_fastopen_cookie *cookie)
5731 struct tcp_sock *tp = tcp_sk(sk);
5732 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5733 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5734 bool syn_drop = false;
5736 if (mss == tp->rx_opt.user_mss) {
5737 struct tcp_options_received opt;
5739 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5740 tcp_clear_options(&opt);
5741 opt.user_mss = opt.mss_clamp = 0;
5742 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5743 mss = opt.mss_clamp;
5746 if (!tp->syn_fastopen) {
5747 /* Ignore an unsolicited cookie */
5748 cookie->len = -1;
5749 } else if (tp->total_retrans) {
5750 /* SYN timed out and the SYN-ACK neither has a cookie nor
5751 * acknowledges data. Presumably the remote received only
5752 * the retransmitted (regular) SYNs: either the original
5753 * SYN-data or the corresponding SYN-ACK was dropped.
5755 syn_drop = (cookie->len < 0 && data);
5756 } else if (cookie->len < 0 && !tp->syn_data) {
5757 /* We requested a cookie but didn't get it. If we did not use
5758 * the (old) exp opt format then try so next time (try_exp=1).
5759 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5761 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5764 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5766 if (data) { /* Retransmit unacked data in SYN */
5767 skb_rbtree_walk_from(data) {
5768 if (__tcp_retransmit_skb(sk, data, 1))
5769 break;
5771 tcp_rearm_rto(sk);
5772 NET_INC_STATS(sock_net(sk),
5773 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5774 return true;
5776 tp->syn_data_acked = tp->syn_data;
5777 if (tp->syn_data_acked) {
5778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5779 /* SYN-data is counted as two separate packets in tcp_ack() */
5780 if (tp->delivered > 1)
5781 --tp->delivered;
5784 tcp_fastopen_add_skb(sk, synack);
5786 return false;
5789 static void smc_check_reset_syn(struct tcp_sock *tp)
5791 #if IS_ENABLED(CONFIG_SMC)
5792 if (static_branch_unlikely(&tcp_have_smc)) {
5793 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5794 tp->syn_smc = 0;
5796 #endif
5799 static void tcp_try_undo_spurious_syn(struct sock *sk)
5801 struct tcp_sock *tp = tcp_sk(sk);
5802 u32 syn_stamp;
5804 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5805 * spurious if the ACK's timestamp option echo value matches the
5806 * original SYN timestamp.
5808 syn_stamp = tp->retrans_stamp;
5809 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5810 syn_stamp == tp->rx_opt.rcv_tsecr)
5811 tp->undo_marker = 0;
5814 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5815 const struct tcphdr *th)
5817 struct inet_connection_sock *icsk = inet_csk(sk);
5818 struct tcp_sock *tp = tcp_sk(sk);
5819 struct tcp_fastopen_cookie foc = { .len = -1 };
5820 int saved_clamp = tp->rx_opt.mss_clamp;
5821 bool fastopen_fail;
5823 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5824 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5825 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5827 if (th->ack) {
5828 /* rfc793:
5829 * "If the state is SYN-SENT then
5830 * first check the ACK bit
5831 * If the ACK bit is set
5832 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5833 * a reset (unless the RST bit is set, if so drop
5834 * the segment and return)"
5836 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5837 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5838 goto reset_and_undo;
5840 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5841 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5842 tcp_time_stamp(tp))) {
5843 NET_INC_STATS(sock_net(sk),
5844 LINUX_MIB_PAWSACTIVEREJECTED);
5845 goto reset_and_undo;
5848 /* Now ACK is acceptable.
5850 * "If the RST bit is set
5851 * If the ACK was acceptable then signal the user "error:
5852 * connection reset", drop the segment, enter CLOSED state,
5853 * delete TCB, and return."
5856 if (th->rst) {
5857 tcp_reset(sk);
5858 goto discard;
5861 /* rfc793:
5862 * "fifth, if neither of the SYN or RST bits is set then
5863 * drop the segment and return."
5865 * See note below!
5866 * --ANK(990513)
5868 if (!th->syn)
5869 goto discard_and_undo;
5871 /* rfc793:
5872 * "If the SYN bit is on ...
5873 * are acceptable then ...
5874 * (our SYN has been ACKed), change the connection
5875 * state to ESTABLISHED..."
5878 tcp_ecn_rcv_synack(tp, th);
5880 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5881 tcp_try_undo_spurious_syn(sk);
5882 tcp_ack(sk, skb, FLAG_SLOWPATH);
5884 /* Ok.. it's good. Set up sequence numbers and
5885 * move to established.
5887 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5888 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5890 /* RFC1323: The window in SYN & SYN/ACK segments is
5891 * never scaled.
5893 tp->snd_wnd = ntohs(th->window);
5895 if (!tp->rx_opt.wscale_ok) {
5896 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5897 tp->window_clamp = min(tp->window_clamp, 65535U);
5900 if (tp->rx_opt.saw_tstamp) {
5901 tp->rx_opt.tstamp_ok = 1;
5902 tp->tcp_header_len =
5903 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5904 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5905 tcp_store_ts_recent(tp);
5906 } else {
5907 tp->tcp_header_len = sizeof(struct tcphdr);
5910 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5911 tcp_initialize_rcv_mss(sk);
5913 /* Remember, tcp_poll() does not lock socket!
5914 * Change state from SYN-SENT only after copied_seq
5915 * is initialized. */
5916 tp->copied_seq = tp->rcv_nxt;
5918 smc_check_reset_syn(tp);
5920 smp_mb();
5922 tcp_finish_connect(sk, skb);
5924 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5925 tcp_rcv_fastopen_synack(sk, skb, &foc);
5927 if (!sock_flag(sk, SOCK_DEAD)) {
5928 sk->sk_state_change(sk);
5929 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5931 if (fastopen_fail)
5932 return -1;
5933 if (sk->sk_write_pending ||
5934 icsk->icsk_accept_queue.rskq_defer_accept ||
5935 inet_csk_in_pingpong_mode(sk)) {
5936 /* Save one ACK. Data will be ready after
5937 * several ticks, if write_pending is set.
5939 * It may be deleted, but with this feature tcpdumps
5940 * look so _wonderfully_ clever, that I was not able
5941 * to stand against the temptation 8) --ANK
5943 inet_csk_schedule_ack(sk);
5944 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5945 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5946 TCP_DELACK_MAX, TCP_RTO_MAX);
5948 discard:
5949 tcp_drop(sk, skb);
5950 return 0;
5951 } else {
5952 tcp_send_ack(sk);
5954 return -1;
5957 /* No ACK in the segment */
5959 if (th->rst) {
5960 /* rfc793:
5961 * "If the RST bit is set
5963 * Otherwise (no ACK) drop the segment and return."
5966 goto discard_and_undo;
5969 /* PAWS check. */
5970 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5971 tcp_paws_reject(&tp->rx_opt, 0))
5972 goto discard_and_undo;
5974 if (th->syn) {
5975 /* We see SYN without ACK. It is attempt of
5976 * simultaneous connect with crossed SYNs.
5977 * Particularly, it can be connect to self.
5979 tcp_set_state(sk, TCP_SYN_RECV);
5981 if (tp->rx_opt.saw_tstamp) {
5982 tp->rx_opt.tstamp_ok = 1;
5983 tcp_store_ts_recent(tp);
5984 tp->tcp_header_len =
5985 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5986 } else {
5987 tp->tcp_header_len = sizeof(struct tcphdr);
5990 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5991 tp->copied_seq = tp->rcv_nxt;
5992 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5994 /* RFC1323: The window in SYN & SYN/ACK segments is
5995 * never scaled.
5997 tp->snd_wnd = ntohs(th->window);
5998 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5999 tp->max_window = tp->snd_wnd;
6001 tcp_ecn_rcv_syn(tp, th);
6003 tcp_mtup_init(sk);
6004 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6005 tcp_initialize_rcv_mss(sk);
6007 tcp_send_synack(sk);
6008 #if 0
6009 /* Note, we could accept data and URG from this segment.
6010 * There are no obstacles to make this (except that we must
6011 * either change tcp_recvmsg() to prevent it from returning data
6012 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6014 * However, if we ignore data in ACKless segments sometimes,
6015 * we have no reasons to accept it sometimes.
6016 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6017 * is not flawless. So, discard packet for sanity.
6018 * Uncomment this return to process the data.
6020 return -1;
6021 #else
6022 goto discard;
6023 #endif
6025 /* "fifth, if neither of the SYN or RST bits is set then
6026 * drop the segment and return."
6029 discard_and_undo:
6030 tcp_clear_options(&tp->rx_opt);
6031 tp->rx_opt.mss_clamp = saved_clamp;
6032 goto discard;
6034 reset_and_undo:
6035 tcp_clear_options(&tp->rx_opt);
6036 tp->rx_opt.mss_clamp = saved_clamp;
6037 return 1;
6040 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6042 tcp_try_undo_loss(sk, false);
6044 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6045 tcp_sk(sk)->retrans_stamp = 0;
6046 inet_csk(sk)->icsk_retransmits = 0;
6048 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6049 * we no longer need req so release it.
6051 reqsk_fastopen_remove(sk, tcp_sk(sk)->fastopen_rsk, false);
6053 /* Re-arm the timer because data may have been sent out.
6054 * This is similar to the regular data transmission case
6055 * when new data has just been ack'ed.
6057 * (TFO) - we could try to be more aggressive and
6058 * retransmitting any data sooner based on when they
6059 * are sent out.
6061 tcp_rearm_rto(sk);
6065 * This function implements the receiving procedure of RFC 793 for
6066 * all states except ESTABLISHED and TIME_WAIT.
6067 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6068 * address independent.
6071 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6073 struct tcp_sock *tp = tcp_sk(sk);
6074 struct inet_connection_sock *icsk = inet_csk(sk);
6075 const struct tcphdr *th = tcp_hdr(skb);
6076 struct request_sock *req;
6077 int queued = 0;
6078 bool acceptable;
6080 switch (sk->sk_state) {
6081 case TCP_CLOSE:
6082 goto discard;
6084 case TCP_LISTEN:
6085 if (th->ack)
6086 return 1;
6088 if (th->rst)
6089 goto discard;
6091 if (th->syn) {
6092 if (th->fin)
6093 goto discard;
6094 /* It is possible that we process SYN packets from backlog,
6095 * so we need to make sure to disable BH and RCU right there.
6097 rcu_read_lock();
6098 local_bh_disable();
6099 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6100 local_bh_enable();
6101 rcu_read_unlock();
6103 if (!acceptable)
6104 return 1;
6105 consume_skb(skb);
6106 return 0;
6108 goto discard;
6110 case TCP_SYN_SENT:
6111 tp->rx_opt.saw_tstamp = 0;
6112 tcp_mstamp_refresh(tp);
6113 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6114 if (queued >= 0)
6115 return queued;
6117 /* Do step6 onward by hand. */
6118 tcp_urg(sk, skb, th);
6119 __kfree_skb(skb);
6120 tcp_data_snd_check(sk);
6121 return 0;
6124 tcp_mstamp_refresh(tp);
6125 tp->rx_opt.saw_tstamp = 0;
6126 req = tp->fastopen_rsk;
6127 if (req) {
6128 bool req_stolen;
6130 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6131 sk->sk_state != TCP_FIN_WAIT1);
6133 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6134 goto discard;
6137 if (!th->ack && !th->rst && !th->syn)
6138 goto discard;
6140 if (!tcp_validate_incoming(sk, skb, th, 0))
6141 return 0;
6143 /* step 5: check the ACK field */
6144 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6145 FLAG_UPDATE_TS_RECENT |
6146 FLAG_NO_CHALLENGE_ACK) > 0;
6148 if (!acceptable) {
6149 if (sk->sk_state == TCP_SYN_RECV)
6150 return 1; /* send one RST */
6151 tcp_send_challenge_ack(sk, skb);
6152 goto discard;
6154 switch (sk->sk_state) {
6155 case TCP_SYN_RECV:
6156 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6157 if (!tp->srtt_us)
6158 tcp_synack_rtt_meas(sk, req);
6160 if (req) {
6161 tcp_rcv_synrecv_state_fastopen(sk);
6162 } else {
6163 tcp_try_undo_spurious_syn(sk);
6164 tp->retrans_stamp = 0;
6165 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6166 tp->copied_seq = tp->rcv_nxt;
6168 smp_mb();
6169 tcp_set_state(sk, TCP_ESTABLISHED);
6170 sk->sk_state_change(sk);
6172 /* Note, that this wakeup is only for marginal crossed SYN case.
6173 * Passively open sockets are not waked up, because
6174 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6176 if (sk->sk_socket)
6177 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6179 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6180 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6181 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6183 if (tp->rx_opt.tstamp_ok)
6184 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6186 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6187 tcp_update_pacing_rate(sk);
6189 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6190 tp->lsndtime = tcp_jiffies32;
6192 tcp_initialize_rcv_mss(sk);
6193 tcp_fast_path_on(tp);
6194 break;
6196 case TCP_FIN_WAIT1: {
6197 int tmo;
6199 if (req)
6200 tcp_rcv_synrecv_state_fastopen(sk);
6202 if (tp->snd_una != tp->write_seq)
6203 break;
6205 tcp_set_state(sk, TCP_FIN_WAIT2);
6206 sk->sk_shutdown |= SEND_SHUTDOWN;
6208 sk_dst_confirm(sk);
6210 if (!sock_flag(sk, SOCK_DEAD)) {
6211 /* Wake up lingering close() */
6212 sk->sk_state_change(sk);
6213 break;
6216 if (tp->linger2 < 0) {
6217 tcp_done(sk);
6218 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6219 return 1;
6221 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6222 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6223 /* Receive out of order FIN after close() */
6224 if (tp->syn_fastopen && th->fin)
6225 tcp_fastopen_active_disable(sk);
6226 tcp_done(sk);
6227 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6228 return 1;
6231 tmo = tcp_fin_time(sk);
6232 if (tmo > TCP_TIMEWAIT_LEN) {
6233 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6234 } else if (th->fin || sock_owned_by_user(sk)) {
6235 /* Bad case. We could lose such FIN otherwise.
6236 * It is not a big problem, but it looks confusing
6237 * and not so rare event. We still can lose it now,
6238 * if it spins in bh_lock_sock(), but it is really
6239 * marginal case.
6241 inet_csk_reset_keepalive_timer(sk, tmo);
6242 } else {
6243 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6244 goto discard;
6246 break;
6249 case TCP_CLOSING:
6250 if (tp->snd_una == tp->write_seq) {
6251 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6252 goto discard;
6254 break;
6256 case TCP_LAST_ACK:
6257 if (tp->snd_una == tp->write_seq) {
6258 tcp_update_metrics(sk);
6259 tcp_done(sk);
6260 goto discard;
6262 break;
6265 /* step 6: check the URG bit */
6266 tcp_urg(sk, skb, th);
6268 /* step 7: process the segment text */
6269 switch (sk->sk_state) {
6270 case TCP_CLOSE_WAIT:
6271 case TCP_CLOSING:
6272 case TCP_LAST_ACK:
6273 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6274 break;
6275 /* fall through */
6276 case TCP_FIN_WAIT1:
6277 case TCP_FIN_WAIT2:
6278 /* RFC 793 says to queue data in these states,
6279 * RFC 1122 says we MUST send a reset.
6280 * BSD 4.4 also does reset.
6282 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6283 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6284 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6285 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6286 tcp_reset(sk);
6287 return 1;
6290 /* Fall through */
6291 case TCP_ESTABLISHED:
6292 tcp_data_queue(sk, skb);
6293 queued = 1;
6294 break;
6297 /* tcp_data could move socket to TIME-WAIT */
6298 if (sk->sk_state != TCP_CLOSE) {
6299 tcp_data_snd_check(sk);
6300 tcp_ack_snd_check(sk);
6303 if (!queued) {
6304 discard:
6305 tcp_drop(sk, skb);
6307 return 0;
6309 EXPORT_SYMBOL(tcp_rcv_state_process);
6311 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6313 struct inet_request_sock *ireq = inet_rsk(req);
6315 if (family == AF_INET)
6316 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6317 &ireq->ir_rmt_addr, port);
6318 #if IS_ENABLED(CONFIG_IPV6)
6319 else if (family == AF_INET6)
6320 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6321 &ireq->ir_v6_rmt_addr, port);
6322 #endif
6325 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6327 * If we receive a SYN packet with these bits set, it means a
6328 * network is playing bad games with TOS bits. In order to
6329 * avoid possible false congestion notifications, we disable
6330 * TCP ECN negotiation.
6332 * Exception: tcp_ca wants ECN. This is required for DCTCP
6333 * congestion control: Linux DCTCP asserts ECT on all packets,
6334 * including SYN, which is most optimal solution; however,
6335 * others, such as FreeBSD do not.
6337 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6338 * set, indicating the use of a future TCP extension (such as AccECN). See
6339 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6340 * extensions.
6342 static void tcp_ecn_create_request(struct request_sock *req,
6343 const struct sk_buff *skb,
6344 const struct sock *listen_sk,
6345 const struct dst_entry *dst)
6347 const struct tcphdr *th = tcp_hdr(skb);
6348 const struct net *net = sock_net(listen_sk);
6349 bool th_ecn = th->ece && th->cwr;
6350 bool ect, ecn_ok;
6351 u32 ecn_ok_dst;
6353 if (!th_ecn)
6354 return;
6356 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6357 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6358 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6360 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6361 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6362 tcp_bpf_ca_needs_ecn((struct sock *)req))
6363 inet_rsk(req)->ecn_ok = 1;
6366 static void tcp_openreq_init(struct request_sock *req,
6367 const struct tcp_options_received *rx_opt,
6368 struct sk_buff *skb, const struct sock *sk)
6370 struct inet_request_sock *ireq = inet_rsk(req);
6372 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6373 req->cookie_ts = 0;
6374 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6375 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6376 tcp_rsk(req)->snt_synack = 0;
6377 tcp_rsk(req)->last_oow_ack_time = 0;
6378 req->mss = rx_opt->mss_clamp;
6379 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6380 ireq->tstamp_ok = rx_opt->tstamp_ok;
6381 ireq->sack_ok = rx_opt->sack_ok;
6382 ireq->snd_wscale = rx_opt->snd_wscale;
6383 ireq->wscale_ok = rx_opt->wscale_ok;
6384 ireq->acked = 0;
6385 ireq->ecn_ok = 0;
6386 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6387 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6388 ireq->ir_mark = inet_request_mark(sk, skb);
6389 #if IS_ENABLED(CONFIG_SMC)
6390 ireq->smc_ok = rx_opt->smc_ok;
6391 #endif
6394 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6395 struct sock *sk_listener,
6396 bool attach_listener)
6398 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6399 attach_listener);
6401 if (req) {
6402 struct inet_request_sock *ireq = inet_rsk(req);
6404 ireq->ireq_opt = NULL;
6405 #if IS_ENABLED(CONFIG_IPV6)
6406 ireq->pktopts = NULL;
6407 #endif
6408 atomic64_set(&ireq->ir_cookie, 0);
6409 ireq->ireq_state = TCP_NEW_SYN_RECV;
6410 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6411 ireq->ireq_family = sk_listener->sk_family;
6414 return req;
6416 EXPORT_SYMBOL(inet_reqsk_alloc);
6419 * Return true if a syncookie should be sent
6421 static bool tcp_syn_flood_action(const struct sock *sk,
6422 const struct sk_buff *skb,
6423 const char *proto)
6425 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6426 const char *msg = "Dropping request";
6427 bool want_cookie = false;
6428 struct net *net = sock_net(sk);
6430 #ifdef CONFIG_SYN_COOKIES
6431 if (net->ipv4.sysctl_tcp_syncookies) {
6432 msg = "Sending cookies";
6433 want_cookie = true;
6434 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6435 } else
6436 #endif
6437 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6439 if (!queue->synflood_warned &&
6440 net->ipv4.sysctl_tcp_syncookies != 2 &&
6441 xchg(&queue->synflood_warned, 1) == 0)
6442 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6443 proto, ntohs(tcp_hdr(skb)->dest), msg);
6445 return want_cookie;
6448 static void tcp_reqsk_record_syn(const struct sock *sk,
6449 struct request_sock *req,
6450 const struct sk_buff *skb)
6452 if (tcp_sk(sk)->save_syn) {
6453 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6454 u32 *copy;
6456 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6457 if (copy) {
6458 copy[0] = len;
6459 memcpy(&copy[1], skb_network_header(skb), len);
6460 req->saved_syn = copy;
6465 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6466 const struct tcp_request_sock_ops *af_ops,
6467 struct sock *sk, struct sk_buff *skb)
6469 struct tcp_fastopen_cookie foc = { .len = -1 };
6470 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6471 struct tcp_options_received tmp_opt;
6472 struct tcp_sock *tp = tcp_sk(sk);
6473 struct net *net = sock_net(sk);
6474 struct sock *fastopen_sk = NULL;
6475 struct request_sock *req;
6476 bool want_cookie = false;
6477 struct dst_entry *dst;
6478 struct flowi fl;
6480 /* TW buckets are converted to open requests without
6481 * limitations, they conserve resources and peer is
6482 * evidently real one.
6484 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6485 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6486 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6487 if (!want_cookie)
6488 goto drop;
6491 if (sk_acceptq_is_full(sk)) {
6492 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6493 goto drop;
6496 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6497 if (!req)
6498 goto drop;
6500 tcp_rsk(req)->af_specific = af_ops;
6501 tcp_rsk(req)->ts_off = 0;
6503 tcp_clear_options(&tmp_opt);
6504 tmp_opt.mss_clamp = af_ops->mss_clamp;
6505 tmp_opt.user_mss = tp->rx_opt.user_mss;
6506 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6507 want_cookie ? NULL : &foc);
6509 if (want_cookie && !tmp_opt.saw_tstamp)
6510 tcp_clear_options(&tmp_opt);
6512 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6513 tmp_opt.smc_ok = 0;
6515 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6516 tcp_openreq_init(req, &tmp_opt, skb, sk);
6517 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6519 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6520 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6522 af_ops->init_req(req, sk, skb);
6524 if (security_inet_conn_request(sk, skb, req))
6525 goto drop_and_free;
6527 if (tmp_opt.tstamp_ok)
6528 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6530 dst = af_ops->route_req(sk, &fl, req);
6531 if (!dst)
6532 goto drop_and_free;
6534 if (!want_cookie && !isn) {
6535 /* Kill the following clause, if you dislike this way. */
6536 if (!net->ipv4.sysctl_tcp_syncookies &&
6537 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6538 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6539 !tcp_peer_is_proven(req, dst)) {
6540 /* Without syncookies last quarter of
6541 * backlog is filled with destinations,
6542 * proven to be alive.
6543 * It means that we continue to communicate
6544 * to destinations, already remembered
6545 * to the moment of synflood.
6547 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6548 rsk_ops->family);
6549 goto drop_and_release;
6552 isn = af_ops->init_seq(skb);
6555 tcp_ecn_create_request(req, skb, sk, dst);
6557 if (want_cookie) {
6558 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6559 req->cookie_ts = tmp_opt.tstamp_ok;
6560 if (!tmp_opt.tstamp_ok)
6561 inet_rsk(req)->ecn_ok = 0;
6564 tcp_rsk(req)->snt_isn = isn;
6565 tcp_rsk(req)->txhash = net_tx_rndhash();
6566 tcp_openreq_init_rwin(req, sk, dst);
6567 sk_rx_queue_set(req_to_sk(req), skb);
6568 if (!want_cookie) {
6569 tcp_reqsk_record_syn(sk, req, skb);
6570 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6572 if (fastopen_sk) {
6573 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6574 &foc, TCP_SYNACK_FASTOPEN);
6575 /* Add the child socket directly into the accept queue */
6576 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6577 reqsk_fastopen_remove(fastopen_sk, req, false);
6578 bh_unlock_sock(fastopen_sk);
6579 sock_put(fastopen_sk);
6580 goto drop_and_free;
6582 sk->sk_data_ready(sk);
6583 bh_unlock_sock(fastopen_sk);
6584 sock_put(fastopen_sk);
6585 } else {
6586 tcp_rsk(req)->tfo_listener = false;
6587 if (!want_cookie)
6588 inet_csk_reqsk_queue_hash_add(sk, req,
6589 tcp_timeout_init((struct sock *)req));
6590 af_ops->send_synack(sk, dst, &fl, req, &foc,
6591 !want_cookie ? TCP_SYNACK_NORMAL :
6592 TCP_SYNACK_COOKIE);
6593 if (want_cookie) {
6594 reqsk_free(req);
6595 return 0;
6598 reqsk_put(req);
6599 return 0;
6601 drop_and_release:
6602 dst_release(dst);
6603 drop_and_free:
6604 __reqsk_free(req);
6605 drop:
6606 tcp_listendrop(sk);
6607 return 0;
6609 EXPORT_SYMBOL(tcp_conn_request);