1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
83 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled
, HZ
);
118 void clean_acked_data_enable(struct inet_connection_sock
*icsk
,
119 void (*cad
)(struct sock
*sk
, u32 ack_seq
))
121 icsk
->icsk_clean_acked
= cad
;
122 static_branch_inc(&clean_acked_data_enabled
.key
);
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable
);
126 void clean_acked_data_disable(struct inet_connection_sock
*icsk
)
128 static_branch_slow_dec_deferred(&clean_acked_data_enabled
);
129 icsk
->icsk_clean_acked
= NULL
;
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable
);
133 void clean_acked_data_flush(void)
135 static_key_deferred_flush(&clean_acked_data_enabled
);
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush
);
140 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
143 static bool __once __read_mostly
;
146 struct net_device
*dev
;
151 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
152 if (!dev
|| len
>= dev
->mtu
)
153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 dev
? dev
->name
: "Unknown driver");
159 /* Adapt the MSS value used to make delayed ack decision to the
162 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
164 struct inet_connection_sock
*icsk
= inet_csk(sk
);
165 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
168 icsk
->icsk_ack
.last_seg_size
= 0;
170 /* skb->len may jitter because of SACKs, even if peer
171 * sends good full-sized frames.
173 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
174 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
175 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
177 /* Account for possibly-removed options */
178 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
179 MAX_TCP_OPTION_SPACE
))
180 tcp_gro_dev_warn(sk
, skb
, len
);
182 /* Otherwise, we make more careful check taking into account,
183 * that SACKs block is variable.
185 * "len" is invariant segment length, including TCP header.
187 len
+= skb
->data
- skb_transport_header(skb
);
188 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
189 /* If PSH is not set, packet should be
190 * full sized, provided peer TCP is not badly broken.
191 * This observation (if it is correct 8)) allows
192 * to handle super-low mtu links fairly.
194 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
195 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
196 /* Subtract also invariant (if peer is RFC compliant),
197 * tcp header plus fixed timestamp option length.
198 * Resulting "len" is MSS free of SACK jitter.
200 len
-= tcp_sk(sk
)->tcp_header_len
;
201 icsk
->icsk_ack
.last_seg_size
= len
;
203 icsk
->icsk_ack
.rcv_mss
= len
;
207 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
208 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
209 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
213 static void tcp_incr_quickack(struct sock
*sk
, unsigned int max_quickacks
)
215 struct inet_connection_sock
*icsk
= inet_csk(sk
);
216 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
220 quickacks
= min(quickacks
, max_quickacks
);
221 if (quickacks
> icsk
->icsk_ack
.quick
)
222 icsk
->icsk_ack
.quick
= quickacks
;
225 void tcp_enter_quickack_mode(struct sock
*sk
, unsigned int max_quickacks
)
227 struct inet_connection_sock
*icsk
= inet_csk(sk
);
229 tcp_incr_quickack(sk
, max_quickacks
);
230 inet_csk_exit_pingpong_mode(sk
);
231 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
233 EXPORT_SYMBOL(tcp_enter_quickack_mode
);
235 /* Send ACKs quickly, if "quick" count is not exhausted
236 * and the session is not interactive.
239 static bool tcp_in_quickack_mode(struct sock
*sk
)
241 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
242 const struct dst_entry
*dst
= __sk_dst_get(sk
);
244 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
245 (icsk
->icsk_ack
.quick
&& !inet_csk_in_pingpong_mode(sk
));
248 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
250 if (tp
->ecn_flags
& TCP_ECN_OK
)
251 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
254 static void tcp_ecn_accept_cwr(struct sock
*sk
, const struct sk_buff
*skb
)
256 if (tcp_hdr(skb
)->cwr
) {
257 tcp_sk(sk
)->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
259 /* If the sender is telling us it has entered CWR, then its
260 * cwnd may be very low (even just 1 packet), so we should ACK
263 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
269 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
272 static void __tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
274 struct tcp_sock
*tp
= tcp_sk(sk
);
276 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
277 case INET_ECN_NOT_ECT
:
278 /* Funny extension: if ECT is not set on a segment,
279 * and we already seen ECT on a previous segment,
280 * it is probably a retransmit.
282 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
283 tcp_enter_quickack_mode(sk
, 2);
286 if (tcp_ca_needs_ecn(sk
))
287 tcp_ca_event(sk
, CA_EVENT_ECN_IS_CE
);
289 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
290 /* Better not delay acks, sender can have a very low cwnd */
291 tcp_enter_quickack_mode(sk
, 2);
292 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
294 tp
->ecn_flags
|= TCP_ECN_SEEN
;
297 if (tcp_ca_needs_ecn(sk
))
298 tcp_ca_event(sk
, CA_EVENT_ECN_NO_CE
);
299 tp
->ecn_flags
|= TCP_ECN_SEEN
;
304 static void tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
306 if (tcp_sk(sk
)->ecn_flags
& TCP_ECN_OK
)
307 __tcp_ecn_check_ce(sk
, skb
);
310 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
312 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
313 tp
->ecn_flags
&= ~TCP_ECN_OK
;
316 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
318 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
319 tp
->ecn_flags
&= ~TCP_ECN_OK
;
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
324 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
329 /* Buffer size and advertised window tuning.
331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
334 static void tcp_sndbuf_expand(struct sock
*sk
)
336 const struct tcp_sock
*tp
= tcp_sk(sk
);
337 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
341 /* Worst case is non GSO/TSO : each frame consumes one skb
342 * and skb->head is kmalloced using power of two area of memory
344 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
348 per_mss
= roundup_pow_of_two(per_mss
) +
349 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
351 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
352 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
354 /* Fast Recovery (RFC 5681 3.2) :
355 * Cubic needs 1.7 factor, rounded to 2 to include
356 * extra cushion (application might react slowly to EPOLLOUT)
358 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
359 sndmem
*= nr_segs
* per_mss
;
361 if (sk
->sk_sndbuf
< sndmem
)
362 sk
->sk_sndbuf
= min(sndmem
, sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[2]);
365 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367 * All tcp_full_space() is split to two parts: "network" buffer, allocated
368 * forward and advertised in receiver window (tp->rcv_wnd) and
369 * "application buffer", required to isolate scheduling/application
370 * latencies from network.
371 * window_clamp is maximal advertised window. It can be less than
372 * tcp_full_space(), in this case tcp_full_space() - window_clamp
373 * is reserved for "application" buffer. The less window_clamp is
374 * the smoother our behaviour from viewpoint of network, but the lower
375 * throughput and the higher sensitivity of the connection to losses. 8)
377 * rcv_ssthresh is more strict window_clamp used at "slow start"
378 * phase to predict further behaviour of this connection.
379 * It is used for two goals:
380 * - to enforce header prediction at sender, even when application
381 * requires some significant "application buffer". It is check #1.
382 * - to prevent pruning of receive queue because of misprediction
383 * of receiver window. Check #2.
385 * The scheme does not work when sender sends good segments opening
386 * window and then starts to feed us spaghetti. But it should work
387 * in common situations. Otherwise, we have to rely on queue collapsing.
390 /* Slow part of check#2. */
391 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
393 struct tcp_sock
*tp
= tcp_sk(sk
);
395 int truesize
= tcp_win_from_space(sk
, skb
->truesize
) >> 1;
396 int window
= tcp_win_from_space(sk
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]) >> 1;
398 while (tp
->rcv_ssthresh
<= window
) {
399 if (truesize
<= skb
->len
)
400 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
408 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
410 struct tcp_sock
*tp
= tcp_sk(sk
);
413 room
= min_t(int, tp
->window_clamp
, tcp_space(sk
)) - tp
->rcv_ssthresh
;
416 if (room
> 0 && !tcp_under_memory_pressure(sk
)) {
419 /* Check #2. Increase window, if skb with such overhead
420 * will fit to rcvbuf in future.
422 if (tcp_win_from_space(sk
, skb
->truesize
) <= skb
->len
)
423 incr
= 2 * tp
->advmss
;
425 incr
= __tcp_grow_window(sk
, skb
);
428 incr
= max_t(int, incr
, 2 * skb
->len
);
429 tp
->rcv_ssthresh
+= min(room
, incr
);
430 inet_csk(sk
)->icsk_ack
.quick
|= 1;
435 /* 3. Try to fixup all. It is made immediately after connection enters
438 void tcp_init_buffer_space(struct sock
*sk
)
440 int tcp_app_win
= sock_net(sk
)->ipv4
.sysctl_tcp_app_win
;
441 struct tcp_sock
*tp
= tcp_sk(sk
);
444 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
445 tcp_sndbuf_expand(sk
);
447 tp
->rcvq_space
.space
= min_t(u32
, tp
->rcv_wnd
, TCP_INIT_CWND
* tp
->advmss
);
448 tcp_mstamp_refresh(tp
);
449 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
450 tp
->rcvq_space
.seq
= tp
->copied_seq
;
452 maxwin
= tcp_full_space(sk
);
454 if (tp
->window_clamp
>= maxwin
) {
455 tp
->window_clamp
= maxwin
;
457 if (tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
458 tp
->window_clamp
= max(maxwin
-
459 (maxwin
>> tcp_app_win
),
463 /* Force reservation of one segment. */
465 tp
->window_clamp
> 2 * tp
->advmss
&&
466 tp
->window_clamp
+ tp
->advmss
> maxwin
)
467 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
469 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
470 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
473 /* 4. Recalculate window clamp after socket hit its memory bounds. */
474 static void tcp_clamp_window(struct sock
*sk
)
476 struct tcp_sock
*tp
= tcp_sk(sk
);
477 struct inet_connection_sock
*icsk
= inet_csk(sk
);
478 struct net
*net
= sock_net(sk
);
480 icsk
->icsk_ack
.quick
= 0;
482 if (sk
->sk_rcvbuf
< net
->ipv4
.sysctl_tcp_rmem
[2] &&
483 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
484 !tcp_under_memory_pressure(sk
) &&
485 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
486 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
487 net
->ipv4
.sysctl_tcp_rmem
[2]);
489 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
490 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
493 /* Initialize RCV_MSS value.
494 * RCV_MSS is an our guess about MSS used by the peer.
495 * We haven't any direct information about the MSS.
496 * It's better to underestimate the RCV_MSS rather than overestimate.
497 * Overestimations make us ACKing less frequently than needed.
498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
500 void tcp_initialize_rcv_mss(struct sock
*sk
)
502 const struct tcp_sock
*tp
= tcp_sk(sk
);
503 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
505 hint
= min(hint
, tp
->rcv_wnd
/ 2);
506 hint
= min(hint
, TCP_MSS_DEFAULT
);
507 hint
= max(hint
, TCP_MIN_MSS
);
509 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
511 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
513 /* Receiver "autotuning" code.
515 * The algorithm for RTT estimation w/o timestamps is based on
516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
517 * <http://public.lanl.gov/radiant/pubs.html#DRS>
519 * More detail on this code can be found at
520 * <http://staff.psc.edu/jheffner/>,
521 * though this reference is out of date. A new paper
524 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
526 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
529 if (new_sample
!= 0) {
530 /* If we sample in larger samples in the non-timestamp
531 * case, we could grossly overestimate the RTT especially
532 * with chatty applications or bulk transfer apps which
533 * are stalled on filesystem I/O.
535 * Also, since we are only going for a minimum in the
536 * non-timestamp case, we do not smooth things out
537 * else with timestamps disabled convergence takes too
541 m
-= (new_sample
>> 3);
549 /* No previous measure. */
553 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
556 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
560 if (tp
->rcv_rtt_est
.time
== 0)
562 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
564 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
567 tcp_rcv_rtt_update(tp
, delta_us
, 1);
570 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
571 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
574 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
575 const struct sk_buff
*skb
)
577 struct tcp_sock
*tp
= tcp_sk(sk
);
579 if (tp
->rx_opt
.rcv_tsecr
== tp
->rcv_rtt_last_tsecr
)
581 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
583 if (TCP_SKB_CB(skb
)->end_seq
-
584 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
) {
585 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
588 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
591 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
592 tcp_rcv_rtt_update(tp
, delta_us
, 0);
598 * This function should be called every time data is copied to user space.
599 * It calculates the appropriate TCP receive buffer space.
601 void tcp_rcv_space_adjust(struct sock
*sk
)
603 struct tcp_sock
*tp
= tcp_sk(sk
);
607 trace_tcp_rcv_space_adjust(sk
);
609 tcp_mstamp_refresh(tp
);
610 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
611 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
614 /* Number of bytes copied to user in last RTT */
615 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
616 if (copied
<= tp
->rcvq_space
.space
)
620 * copied = bytes received in previous RTT, our base window
621 * To cope with packet losses, we need a 2x factor
622 * To cope with slow start, and sender growing its cwin by 100 %
623 * every RTT, we need a 4x factor, because the ACK we are sending
624 * now is for the next RTT, not the current one :
625 * <prev RTT . ><current RTT .. ><next RTT .... >
628 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
&&
629 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
633 /* minimal window to cope with packet losses, assuming
634 * steady state. Add some cushion because of small variations.
636 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
638 /* Accommodate for sender rate increase (eg. slow start) */
639 grow
= rcvwin
* (copied
- tp
->rcvq_space
.space
);
640 do_div(grow
, tp
->rcvq_space
.space
);
641 rcvwin
+= (grow
<< 1);
643 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
644 while (tcp_win_from_space(sk
, rcvmem
) < tp
->advmss
)
647 do_div(rcvwin
, tp
->advmss
);
648 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
,
649 sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
650 if (rcvbuf
> sk
->sk_rcvbuf
) {
651 sk
->sk_rcvbuf
= rcvbuf
;
653 /* Make the window clamp follow along. */
654 tp
->window_clamp
= tcp_win_from_space(sk
, rcvbuf
);
657 tp
->rcvq_space
.space
= copied
;
660 tp
->rcvq_space
.seq
= tp
->copied_seq
;
661 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
664 /* There is something which you must keep in mind when you analyze the
665 * behavior of the tp->ato delayed ack timeout interval. When a
666 * connection starts up, we want to ack as quickly as possible. The
667 * problem is that "good" TCP's do slow start at the beginning of data
668 * transmission. The means that until we send the first few ACK's the
669 * sender will sit on his end and only queue most of his data, because
670 * he can only send snd_cwnd unacked packets at any given time. For
671 * each ACK we send, he increments snd_cwnd and transmits more of his
674 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
676 struct tcp_sock
*tp
= tcp_sk(sk
);
677 struct inet_connection_sock
*icsk
= inet_csk(sk
);
680 inet_csk_schedule_ack(sk
);
682 tcp_measure_rcv_mss(sk
, skb
);
684 tcp_rcv_rtt_measure(tp
);
688 if (!icsk
->icsk_ack
.ato
) {
689 /* The _first_ data packet received, initialize
690 * delayed ACK engine.
692 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
693 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
695 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
697 if (m
<= TCP_ATO_MIN
/ 2) {
698 /* The fastest case is the first. */
699 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
700 } else if (m
< icsk
->icsk_ack
.ato
) {
701 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
702 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
703 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
704 } else if (m
> icsk
->icsk_rto
) {
705 /* Too long gap. Apparently sender failed to
706 * restart window, so that we send ACKs quickly.
708 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
712 icsk
->icsk_ack
.lrcvtime
= now
;
714 tcp_ecn_check_ce(sk
, skb
);
717 tcp_grow_window(sk
, skb
);
720 /* Called to compute a smoothed rtt estimate. The data fed to this
721 * routine either comes from timestamps, or from segments that were
722 * known _not_ to have been retransmitted [see Karn/Partridge
723 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
724 * piece by Van Jacobson.
725 * NOTE: the next three routines used to be one big routine.
726 * To save cycles in the RFC 1323 implementation it was better to break
727 * it up into three procedures. -- erics
729 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
731 struct tcp_sock
*tp
= tcp_sk(sk
);
732 long m
= mrtt_us
; /* RTT */
733 u32 srtt
= tp
->srtt_us
;
735 /* The following amusing code comes from Jacobson's
736 * article in SIGCOMM '88. Note that rtt and mdev
737 * are scaled versions of rtt and mean deviation.
738 * This is designed to be as fast as possible
739 * m stands for "measurement".
741 * On a 1990 paper the rto value is changed to:
742 * RTO = rtt + 4 * mdev
744 * Funny. This algorithm seems to be very broken.
745 * These formulae increase RTO, when it should be decreased, increase
746 * too slowly, when it should be increased quickly, decrease too quickly
747 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
748 * does not matter how to _calculate_ it. Seems, it was trap
749 * that VJ failed to avoid. 8)
752 m
-= (srtt
>> 3); /* m is now error in rtt est */
753 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
755 m
= -m
; /* m is now abs(error) */
756 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
757 /* This is similar to one of Eifel findings.
758 * Eifel blocks mdev updates when rtt decreases.
759 * This solution is a bit different: we use finer gain
760 * for mdev in this case (alpha*beta).
761 * Like Eifel it also prevents growth of rto,
762 * but also it limits too fast rto decreases,
763 * happening in pure Eifel.
768 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
770 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
771 if (tp
->mdev_us
> tp
->mdev_max_us
) {
772 tp
->mdev_max_us
= tp
->mdev_us
;
773 if (tp
->mdev_max_us
> tp
->rttvar_us
)
774 tp
->rttvar_us
= tp
->mdev_max_us
;
776 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
777 if (tp
->mdev_max_us
< tp
->rttvar_us
)
778 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
779 tp
->rtt_seq
= tp
->snd_nxt
;
780 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
783 /* no previous measure. */
784 srtt
= m
<< 3; /* take the measured time to be rtt */
785 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
786 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
787 tp
->mdev_max_us
= tp
->rttvar_us
;
788 tp
->rtt_seq
= tp
->snd_nxt
;
790 tp
->srtt_us
= max(1U, srtt
);
793 static void tcp_update_pacing_rate(struct sock
*sk
)
795 const struct tcp_sock
*tp
= tcp_sk(sk
);
798 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
799 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
801 /* current rate is (cwnd * mss) / srtt
802 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 * In Congestion Avoidance phase, set it to 120 % the current rate.
805 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 * end of slow start and should slow down.
809 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
810 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ss_ratio
;
812 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ca_ratio
;
814 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
816 if (likely(tp
->srtt_us
))
817 do_div(rate
, tp
->srtt_us
);
819 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 * without any lock. We want to make sure compiler wont store
821 * intermediate values in this location.
823 WRITE_ONCE(sk
->sk_pacing_rate
, min_t(u64
, rate
,
824 sk
->sk_max_pacing_rate
));
827 /* Calculate rto without backoff. This is the second half of Van Jacobson's
828 * routine referred to above.
830 static void tcp_set_rto(struct sock
*sk
)
832 const struct tcp_sock
*tp
= tcp_sk(sk
);
833 /* Old crap is replaced with new one. 8)
836 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 * It cannot be less due to utterly erratic ACK generation made
838 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 * to do with delayed acks, because at cwnd>2 true delack timeout
840 * is invisible. Actually, Linux-2.4 also generates erratic
841 * ACKs in some circumstances.
843 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
845 /* 2. Fixups made earlier cannot be right.
846 * If we do not estimate RTO correctly without them,
847 * all the algo is pure shit and should be replaced
848 * with correct one. It is exactly, which we pretend to do.
851 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 * guarantees that rto is higher.
857 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
859 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
862 cwnd
= TCP_INIT_CWND
;
863 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock
*tp
)
869 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
870 tp
->rack
.dsack_seen
= 1;
874 /* It's reordering when higher sequence was delivered (i.e. sacked) before
875 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
876 * distance is approximated in full-mss packet distance ("reordering").
878 static void tcp_check_sack_reordering(struct sock
*sk
, const u32 low_seq
,
881 struct tcp_sock
*tp
= tcp_sk(sk
);
882 const u32 mss
= tp
->mss_cache
;
885 fack
= tcp_highest_sack_seq(tp
);
886 if (!before(low_seq
, fack
))
889 metric
= fack
- low_seq
;
890 if ((metric
> tp
->reordering
* mss
) && mss
) {
891 #if FASTRETRANS_DEBUG > 1
892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
897 tp
->undo_marker
? tp
->undo_retrans
: 0);
899 tp
->reordering
= min_t(u32
, (metric
+ mss
- 1) / mss
,
900 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
903 /* This exciting event is worth to be remembered. 8) */
905 NET_INC_STATS(sock_net(sk
),
906 ts
? LINUX_MIB_TCPTSREORDER
: LINUX_MIB_TCPSACKREORDER
);
909 /* This must be called before lost_out is incremented */
910 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
912 if (!tp
->retransmit_skb_hint
||
913 before(TCP_SKB_CB(skb
)->seq
,
914 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
915 tp
->retransmit_skb_hint
= skb
;
918 /* Sum the number of packets on the wire we have marked as lost.
919 * There are two cases we care about here:
920 * a) Packet hasn't been marked lost (nor retransmitted),
921 * and this is the first loss.
922 * b) Packet has been marked both lost and retransmitted,
923 * and this means we think it was lost again.
925 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
927 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
929 if (!(sacked
& TCPCB_LOST
) ||
930 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
931 tp
->lost
+= tcp_skb_pcount(skb
);
934 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
936 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
937 tcp_verify_retransmit_hint(tp
, skb
);
939 tp
->lost_out
+= tcp_skb_pcount(skb
);
940 tcp_sum_lost(tp
, skb
);
941 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
947 tcp_verify_retransmit_hint(tp
, skb
);
949 tcp_sum_lost(tp
, skb
);
950 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
951 tp
->lost_out
+= tcp_skb_pcount(skb
);
952 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
956 /* This procedure tags the retransmission queue when SACKs arrive.
958 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
959 * Packets in queue with these bits set are counted in variables
960 * sacked_out, retrans_out and lost_out, correspondingly.
962 * Valid combinations are:
963 * Tag InFlight Description
964 * 0 1 - orig segment is in flight.
965 * S 0 - nothing flies, orig reached receiver.
966 * L 0 - nothing flies, orig lost by net.
967 * R 2 - both orig and retransmit are in flight.
968 * L|R 1 - orig is lost, retransmit is in flight.
969 * S|R 1 - orig reached receiver, retrans is still in flight.
970 * (L|S|R is logically valid, it could occur when L|R is sacked,
971 * but it is equivalent to plain S and code short-curcuits it to S.
972 * L|S is logically invalid, it would mean -1 packet in flight 8))
974 * These 6 states form finite state machine, controlled by the following events:
975 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
976 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
977 * 3. Loss detection event of two flavors:
978 * A. Scoreboard estimator decided the packet is lost.
979 * A'. Reno "three dupacks" marks head of queue lost.
980 * B. SACK arrives sacking SND.NXT at the moment, when the
981 * segment was retransmitted.
982 * 4. D-SACK added new rule: D-SACK changes any tag to S.
984 * It is pleasant to note, that state diagram turns out to be commutative,
985 * so that we are allowed not to be bothered by order of our actions,
986 * when multiple events arrive simultaneously. (see the function below).
988 * Reordering detection.
989 * --------------------
990 * Reordering metric is maximal distance, which a packet can be displaced
991 * in packet stream. With SACKs we can estimate it:
993 * 1. SACK fills old hole and the corresponding segment was not
994 * ever retransmitted -> reordering. Alas, we cannot use it
995 * when segment was retransmitted.
996 * 2. The last flaw is solved with D-SACK. D-SACK arrives
997 * for retransmitted and already SACKed segment -> reordering..
998 * Both of these heuristics are not used in Loss state, when we cannot
999 * account for retransmits accurately.
1001 * SACK block validation.
1002 * ----------------------
1004 * SACK block range validation checks that the received SACK block fits to
1005 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1006 * Note that SND.UNA is not included to the range though being valid because
1007 * it means that the receiver is rather inconsistent with itself reporting
1008 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1009 * perfectly valid, however, in light of RFC2018 which explicitly states
1010 * that "SACK block MUST reflect the newest segment. Even if the newest
1011 * segment is going to be discarded ...", not that it looks very clever
1012 * in case of head skb. Due to potentional receiver driven attacks, we
1013 * choose to avoid immediate execution of a walk in write queue due to
1014 * reneging and defer head skb's loss recovery to standard loss recovery
1015 * procedure that will eventually trigger (nothing forbids us doing this).
1017 * Implements also blockage to start_seq wrap-around. Problem lies in the
1018 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1019 * there's no guarantee that it will be before snd_nxt (n). The problem
1020 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1023 * <- outs wnd -> <- wrapzone ->
1024 * u e n u_w e_w s n_w
1026 * |<------------+------+----- TCP seqno space --------------+---------->|
1027 * ...-- <2^31 ->| |<--------...
1028 * ...---- >2^31 ------>| |<--------...
1030 * Current code wouldn't be vulnerable but it's better still to discard such
1031 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1032 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1033 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1034 * equal to the ideal case (infinite seqno space without wrap caused issues).
1036 * With D-SACK the lower bound is extended to cover sequence space below
1037 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1038 * again, D-SACK block must not to go across snd_una (for the same reason as
1039 * for the normal SACK blocks, explained above). But there all simplicity
1040 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1041 * fully below undo_marker they do not affect behavior in anyway and can
1042 * therefore be safely ignored. In rare cases (which are more or less
1043 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1044 * fragmentation and packet reordering past skb's retransmission. To consider
1045 * them correctly, the acceptable range must be extended even more though
1046 * the exact amount is rather hard to quantify. However, tp->max_window can
1047 * be used as an exaggerated estimate.
1049 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1050 u32 start_seq
, u32 end_seq
)
1052 /* Too far in future, or reversed (interpretation is ambiguous) */
1053 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1056 /* Nasty start_seq wrap-around check (see comments above) */
1057 if (!before(start_seq
, tp
->snd_nxt
))
1060 /* In outstanding window? ...This is valid exit for D-SACKs too.
1061 * start_seq == snd_una is non-sensical (see comments above)
1063 if (after(start_seq
, tp
->snd_una
))
1066 if (!is_dsack
|| !tp
->undo_marker
)
1069 /* ...Then it's D-SACK, and must reside below snd_una completely */
1070 if (after(end_seq
, tp
->snd_una
))
1073 if (!before(start_seq
, tp
->undo_marker
))
1077 if (!after(end_seq
, tp
->undo_marker
))
1080 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1081 * start_seq < undo_marker and end_seq >= undo_marker.
1083 return !before(start_seq
, end_seq
- tp
->max_window
);
1086 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1087 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1090 struct tcp_sock
*tp
= tcp_sk(sk
);
1091 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1092 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1093 bool dup_sack
= false;
1095 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1098 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1099 } else if (num_sacks
> 1) {
1100 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1101 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1103 if (!after(end_seq_0
, end_seq_1
) &&
1104 !before(start_seq_0
, start_seq_1
)) {
1107 NET_INC_STATS(sock_net(sk
),
1108 LINUX_MIB_TCPDSACKOFORECV
);
1112 /* D-SACK for already forgotten data... Do dumb counting. */
1113 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1114 !after(end_seq_0
, prior_snd_una
) &&
1115 after(end_seq_0
, tp
->undo_marker
))
1121 struct tcp_sacktag_state
{
1123 /* Timestamps for earliest and latest never-retransmitted segment
1124 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 * but congestion control should still get an accurate delay signal.
1129 struct rate_sample
*rate
;
1131 unsigned int mss_now
;
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135 * the incoming SACK may not exactly match but we can find smaller MSS
1136 * aligned portion of it that matches. Therefore we might need to fragment
1137 * which may fail and creates some hassle (caller must handle error case
1140 * FIXME: this could be merged to shift decision code
1142 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1143 u32 start_seq
, u32 end_seq
)
1147 unsigned int pkt_len
;
1150 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1151 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1153 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1154 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1155 mss
= tcp_skb_mss(skb
);
1156 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1159 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1163 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1168 /* Round if necessary so that SACKs cover only full MSSes
1169 * and/or the remaining small portion (if present)
1171 if (pkt_len
> mss
) {
1172 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1173 if (!in_sack
&& new_len
< pkt_len
)
1178 if (pkt_len
>= skb
->len
&& !in_sack
)
1181 err
= tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
1182 pkt_len
, mss
, GFP_ATOMIC
);
1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191 static u8
tcp_sacktag_one(struct sock
*sk
,
1192 struct tcp_sacktag_state
*state
, u8 sacked
,
1193 u32 start_seq
, u32 end_seq
,
1194 int dup_sack
, int pcount
,
1197 struct tcp_sock
*tp
= tcp_sk(sk
);
1199 /* Account D-SACK for retransmitted packet. */
1200 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1201 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1202 after(end_seq
, tp
->undo_marker
))
1204 if ((sacked
& TCPCB_SACKED_ACKED
) &&
1205 before(start_seq
, state
->reord
))
1206 state
->reord
= start_seq
;
1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1210 if (!after(end_seq
, tp
->snd_una
))
1213 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1214 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1216 if (sacked
& TCPCB_SACKED_RETRANS
) {
1217 /* If the segment is not tagged as lost,
1218 * we do not clear RETRANS, believing
1219 * that retransmission is still in flight.
1221 if (sacked
& TCPCB_LOST
) {
1222 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1223 tp
->lost_out
-= pcount
;
1224 tp
->retrans_out
-= pcount
;
1227 if (!(sacked
& TCPCB_RETRANS
)) {
1228 /* New sack for not retransmitted frame,
1229 * which was in hole. It is reordering.
1231 if (before(start_seq
,
1232 tcp_highest_sack_seq(tp
)) &&
1233 before(start_seq
, state
->reord
))
1234 state
->reord
= start_seq
;
1236 if (!after(end_seq
, tp
->high_seq
))
1237 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1238 if (state
->first_sackt
== 0)
1239 state
->first_sackt
= xmit_time
;
1240 state
->last_sackt
= xmit_time
;
1243 if (sacked
& TCPCB_LOST
) {
1244 sacked
&= ~TCPCB_LOST
;
1245 tp
->lost_out
-= pcount
;
1249 sacked
|= TCPCB_SACKED_ACKED
;
1250 state
->flag
|= FLAG_DATA_SACKED
;
1251 tp
->sacked_out
+= pcount
;
1252 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 if (tp
->lost_skb_hint
&&
1256 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1257 tp
->lost_cnt_hint
+= pcount
;
1260 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1261 * frames and clear it. undo_retrans is decreased above, L|R frames
1262 * are accounted above as well.
1264 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1265 sacked
&= ~TCPCB_SACKED_RETRANS
;
1266 tp
->retrans_out
-= pcount
;
1272 /* Shift newly-SACKed bytes from this skb to the immediately previous
1273 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1275 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*prev
,
1276 struct sk_buff
*skb
,
1277 struct tcp_sacktag_state
*state
,
1278 unsigned int pcount
, int shifted
, int mss
,
1281 struct tcp_sock
*tp
= tcp_sk(sk
);
1282 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1283 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1287 /* Adjust counters and hints for the newly sacked sequence
1288 * range but discard the return value since prev is already
1289 * marked. We must tag the range first because the seq
1290 * advancement below implicitly advances
1291 * tcp_highest_sack_seq() when skb is highest_sack.
1293 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1294 start_seq
, end_seq
, dup_sack
, pcount
,
1295 tcp_skb_timestamp_us(skb
));
1296 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1298 if (skb
== tp
->lost_skb_hint
)
1299 tp
->lost_cnt_hint
+= pcount
;
1301 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1302 TCP_SKB_CB(skb
)->seq
+= shifted
;
1304 tcp_skb_pcount_add(prev
, pcount
);
1305 WARN_ON_ONCE(tcp_skb_pcount(skb
) < pcount
);
1306 tcp_skb_pcount_add(skb
, -pcount
);
1308 /* When we're adding to gso_segs == 1, gso_size will be zero,
1309 * in theory this shouldn't be necessary but as long as DSACK
1310 * code can come after this skb later on it's better to keep
1311 * setting gso_size to something.
1313 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1314 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1316 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1317 if (tcp_skb_pcount(skb
) <= 1)
1318 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1320 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1321 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1324 BUG_ON(!tcp_skb_pcount(skb
));
1325 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1329 /* Whole SKB was eaten :-) */
1331 if (skb
== tp
->retransmit_skb_hint
)
1332 tp
->retransmit_skb_hint
= prev
;
1333 if (skb
== tp
->lost_skb_hint
) {
1334 tp
->lost_skb_hint
= prev
;
1335 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1338 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1339 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1340 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1341 TCP_SKB_CB(prev
)->end_seq
++;
1343 if (skb
== tcp_highest_sack(sk
))
1344 tcp_advance_highest_sack(sk
, skb
);
1346 tcp_skb_collapse_tstamp(prev
, skb
);
1347 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1348 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1350 tcp_rtx_queue_unlink_and_free(skb
, sk
);
1352 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1357 /* I wish gso_size would have a bit more sane initialization than
1358 * something-or-zero which complicates things
1360 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1362 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1365 /* Shifting pages past head area doesn't work */
1366 static int skb_can_shift(const struct sk_buff
*skb
)
1368 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1371 int tcp_skb_shift(struct sk_buff
*to
, struct sk_buff
*from
,
1372 int pcount
, int shiftlen
)
1374 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1375 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1376 * to make sure not storing more than 65535 * 8 bytes per skb,
1377 * even if current MSS is bigger.
1379 if (unlikely(to
->len
+ shiftlen
>= 65535 * TCP_MIN_GSO_SIZE
))
1381 if (unlikely(tcp_skb_pcount(to
) + pcount
> 65535))
1383 return skb_shift(to
, from
, shiftlen
);
1386 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1389 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1390 struct tcp_sacktag_state
*state
,
1391 u32 start_seq
, u32 end_seq
,
1394 struct tcp_sock
*tp
= tcp_sk(sk
);
1395 struct sk_buff
*prev
;
1401 /* Normally R but no L won't result in plain S */
1403 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1405 if (!skb_can_shift(skb
))
1407 /* This frame is about to be dropped (was ACKed). */
1408 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1411 /* Can only happen with delayed DSACK + discard craziness */
1412 prev
= skb_rb_prev(skb
);
1416 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1419 if (!tcp_skb_can_collapse_to(prev
))
1422 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1423 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1427 pcount
= tcp_skb_pcount(skb
);
1428 mss
= tcp_skb_seglen(skb
);
1430 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1431 * drop this restriction as unnecessary
1433 if (mss
!= tcp_skb_seglen(prev
))
1436 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1438 /* CHECKME: This is non-MSS split case only?, this will
1439 * cause skipped skbs due to advancing loop btw, original
1440 * has that feature too
1442 if (tcp_skb_pcount(skb
) <= 1)
1445 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1447 /* TODO: head merge to next could be attempted here
1448 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1449 * though it might not be worth of the additional hassle
1451 * ...we can probably just fallback to what was done
1452 * previously. We could try merging non-SACKed ones
1453 * as well but it probably isn't going to buy off
1454 * because later SACKs might again split them, and
1455 * it would make skb timestamp tracking considerably
1461 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1463 BUG_ON(len
> skb
->len
);
1465 /* MSS boundaries should be honoured or else pcount will
1466 * severely break even though it makes things bit trickier.
1467 * Optimize common case to avoid most of the divides
1469 mss
= tcp_skb_mss(skb
);
1471 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1472 * drop this restriction as unnecessary
1474 if (mss
!= tcp_skb_seglen(prev
))
1479 } else if (len
< mss
) {
1487 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1488 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1491 if (!tcp_skb_shift(prev
, skb
, pcount
, len
))
1493 if (!tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1496 /* Hole filled allows collapsing with the next as well, this is very
1497 * useful when hole on every nth skb pattern happens
1499 skb
= skb_rb_next(prev
);
1503 if (!skb_can_shift(skb
) ||
1504 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1505 (mss
!= tcp_skb_seglen(skb
)))
1509 pcount
= tcp_skb_pcount(skb
);
1510 if (tcp_skb_shift(prev
, skb
, pcount
, len
))
1511 tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
,
1521 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1525 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1526 struct tcp_sack_block
*next_dup
,
1527 struct tcp_sacktag_state
*state
,
1528 u32 start_seq
, u32 end_seq
,
1531 struct tcp_sock
*tp
= tcp_sk(sk
);
1532 struct sk_buff
*tmp
;
1534 skb_rbtree_walk_from(skb
) {
1536 bool dup_sack
= dup_sack_in
;
1538 /* queue is in-order => we can short-circuit the walk early */
1539 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1543 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1544 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1545 next_dup
->start_seq
,
1551 /* skb reference here is a bit tricky to get right, since
1552 * shifting can eat and free both this skb and the next,
1553 * so not even _safe variant of the loop is enough.
1556 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1557 start_seq
, end_seq
, dup_sack
);
1566 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1572 if (unlikely(in_sack
< 0))
1576 TCP_SKB_CB(skb
)->sacked
=
1579 TCP_SKB_CB(skb
)->sacked
,
1580 TCP_SKB_CB(skb
)->seq
,
1581 TCP_SKB_CB(skb
)->end_seq
,
1583 tcp_skb_pcount(skb
),
1584 tcp_skb_timestamp_us(skb
));
1585 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1586 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1587 list_del_init(&skb
->tcp_tsorted_anchor
);
1589 if (!before(TCP_SKB_CB(skb
)->seq
,
1590 tcp_highest_sack_seq(tp
)))
1591 tcp_advance_highest_sack(sk
, skb
);
1597 static struct sk_buff
*tcp_sacktag_bsearch(struct sock
*sk
, u32 seq
)
1599 struct rb_node
*parent
, **p
= &sk
->tcp_rtx_queue
.rb_node
;
1600 struct sk_buff
*skb
;
1604 skb
= rb_to_skb(parent
);
1605 if (before(seq
, TCP_SKB_CB(skb
)->seq
)) {
1606 p
= &parent
->rb_left
;
1609 if (!before(seq
, TCP_SKB_CB(skb
)->end_seq
)) {
1610 p
= &parent
->rb_right
;
1618 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1621 if (skb
&& after(TCP_SKB_CB(skb
)->seq
, skip_to_seq
))
1624 return tcp_sacktag_bsearch(sk
, skip_to_seq
);
1627 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1629 struct tcp_sack_block
*next_dup
,
1630 struct tcp_sacktag_state
*state
,
1636 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1637 skb
= tcp_sacktag_skip(skb
, sk
, next_dup
->start_seq
);
1638 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1639 next_dup
->start_seq
, next_dup
->end_seq
,
1646 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1648 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1652 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1653 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1655 struct tcp_sock
*tp
= tcp_sk(sk
);
1656 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1657 TCP_SKB_CB(ack_skb
)->sacked
);
1658 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1659 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1660 struct tcp_sack_block
*cache
;
1661 struct sk_buff
*skb
;
1662 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1664 bool found_dup_sack
= false;
1666 int first_sack_index
;
1669 state
->reord
= tp
->snd_nxt
;
1671 if (!tp
->sacked_out
)
1672 tcp_highest_sack_reset(sk
);
1674 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1675 num_sacks
, prior_snd_una
);
1676 if (found_dup_sack
) {
1677 state
->flag
|= FLAG_DSACKING_ACK
;
1678 tp
->delivered
++; /* A spurious retransmission is delivered */
1681 /* Eliminate too old ACKs, but take into
1682 * account more or less fresh ones, they can
1683 * contain valid SACK info.
1685 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1688 if (!tp
->packets_out
)
1692 first_sack_index
= 0;
1693 for (i
= 0; i
< num_sacks
; i
++) {
1694 bool dup_sack
= !i
&& found_dup_sack
;
1696 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1697 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1699 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1700 sp
[used_sacks
].start_seq
,
1701 sp
[used_sacks
].end_seq
)) {
1705 if (!tp
->undo_marker
)
1706 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1708 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1710 /* Don't count olds caused by ACK reordering */
1711 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1712 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1714 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1717 NET_INC_STATS(sock_net(sk
), mib_idx
);
1719 first_sack_index
= -1;
1723 /* Ignore very old stuff early */
1724 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1730 /* order SACK blocks to allow in order walk of the retrans queue */
1731 for (i
= used_sacks
- 1; i
> 0; i
--) {
1732 for (j
= 0; j
< i
; j
++) {
1733 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1734 swap(sp
[j
], sp
[j
+ 1]);
1736 /* Track where the first SACK block goes to */
1737 if (j
== first_sack_index
)
1738 first_sack_index
= j
+ 1;
1743 state
->mss_now
= tcp_current_mss(sk
);
1747 if (!tp
->sacked_out
) {
1748 /* It's already past, so skip checking against it */
1749 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1751 cache
= tp
->recv_sack_cache
;
1752 /* Skip empty blocks in at head of the cache */
1753 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1758 while (i
< used_sacks
) {
1759 u32 start_seq
= sp
[i
].start_seq
;
1760 u32 end_seq
= sp
[i
].end_seq
;
1761 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1762 struct tcp_sack_block
*next_dup
= NULL
;
1764 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1765 next_dup
= &sp
[i
+ 1];
1767 /* Skip too early cached blocks */
1768 while (tcp_sack_cache_ok(tp
, cache
) &&
1769 !before(start_seq
, cache
->end_seq
))
1772 /* Can skip some work by looking recv_sack_cache? */
1773 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1774 after(end_seq
, cache
->start_seq
)) {
1777 if (before(start_seq
, cache
->start_seq
)) {
1778 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
1779 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1786 /* Rest of the block already fully processed? */
1787 if (!after(end_seq
, cache
->end_seq
))
1790 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1794 /* ...tail remains todo... */
1795 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1796 /* ...but better entrypoint exists! */
1797 skb
= tcp_highest_sack(sk
);
1804 skb
= tcp_sacktag_skip(skb
, sk
, cache
->end_seq
);
1805 /* Check overlap against next cached too (past this one already) */
1810 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1811 skb
= tcp_highest_sack(sk
);
1815 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
1818 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1819 start_seq
, end_seq
, dup_sack
);
1825 /* Clear the head of the cache sack blocks so we can skip it next time */
1826 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1827 tp
->recv_sack_cache
[i
].start_seq
= 0;
1828 tp
->recv_sack_cache
[i
].end_seq
= 0;
1830 for (j
= 0; j
< used_sacks
; j
++)
1831 tp
->recv_sack_cache
[i
++] = sp
[j
];
1833 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
|| tp
->undo_marker
)
1834 tcp_check_sack_reordering(sk
, state
->reord
, 0);
1836 tcp_verify_left_out(tp
);
1839 #if FASTRETRANS_DEBUG > 0
1840 WARN_ON((int)tp
->sacked_out
< 0);
1841 WARN_ON((int)tp
->lost_out
< 0);
1842 WARN_ON((int)tp
->retrans_out
< 0);
1843 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1848 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1849 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1851 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1855 holes
= max(tp
->lost_out
, 1U);
1856 holes
= min(holes
, tp
->packets_out
);
1858 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1859 tp
->sacked_out
= tp
->packets_out
- holes
;
1865 /* If we receive more dupacks than we expected counting segments
1866 * in assumption of absent reordering, interpret this as reordering.
1867 * The only another reason could be bug in receiver TCP.
1869 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1871 struct tcp_sock
*tp
= tcp_sk(sk
);
1873 if (!tcp_limit_reno_sacked(tp
))
1876 tp
->reordering
= min_t(u32
, tp
->packets_out
+ addend
,
1877 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
1879 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRENOREORDER
);
1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1884 static void tcp_add_reno_sack(struct sock
*sk
, int num_dupack
)
1887 struct tcp_sock
*tp
= tcp_sk(sk
);
1888 u32 prior_sacked
= tp
->sacked_out
;
1891 tp
->sacked_out
+= num_dupack
;
1892 tcp_check_reno_reordering(sk
, 0);
1893 delivered
= tp
->sacked_out
- prior_sacked
;
1895 tp
->delivered
+= delivered
;
1896 tcp_verify_left_out(tp
);
1900 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1902 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1904 struct tcp_sock
*tp
= tcp_sk(sk
);
1907 /* One ACK acked hole. The rest eat duplicate ACKs. */
1908 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1909 if (acked
- 1 >= tp
->sacked_out
)
1912 tp
->sacked_out
-= acked
- 1;
1914 tcp_check_reno_reordering(sk
, acked
);
1915 tcp_verify_left_out(tp
);
1918 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1923 void tcp_clear_retrans(struct tcp_sock
*tp
)
1925 tp
->retrans_out
= 0;
1927 tp
->undo_marker
= 0;
1928 tp
->undo_retrans
= -1;
1932 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1934 tp
->undo_marker
= tp
->snd_una
;
1935 /* Retransmission still in flight may cause DSACKs later. */
1936 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1939 static bool tcp_is_rack(const struct sock
*sk
)
1941 return sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
;
1944 /* If we detect SACK reneging, forget all SACK information
1945 * and reset tags completely, otherwise preserve SACKs. If receiver
1946 * dropped its ofo queue, we will know this due to reneging detection.
1948 static void tcp_timeout_mark_lost(struct sock
*sk
)
1950 struct tcp_sock
*tp
= tcp_sk(sk
);
1951 struct sk_buff
*skb
, *head
;
1952 bool is_reneg
; /* is receiver reneging on SACKs? */
1954 head
= tcp_rtx_queue_head(sk
);
1955 is_reneg
= head
&& (TCP_SKB_CB(head
)->sacked
& TCPCB_SACKED_ACKED
);
1957 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1959 /* Mark SACK reneging until we recover from this loss event. */
1960 tp
->is_sack_reneg
= 1;
1961 } else if (tcp_is_reno(tp
)) {
1962 tcp_reset_reno_sack(tp
);
1966 skb_rbtree_walk_from(skb
) {
1968 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1969 else if (tcp_is_rack(sk
) && skb
!= head
&&
1970 tcp_rack_skb_timeout(tp
, skb
, 0) > 0)
1971 continue; /* Don't mark recently sent ones lost yet */
1972 tcp_mark_skb_lost(sk
, skb
);
1974 tcp_verify_left_out(tp
);
1975 tcp_clear_all_retrans_hints(tp
);
1978 /* Enter Loss state. */
1979 void tcp_enter_loss(struct sock
*sk
)
1981 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1982 struct tcp_sock
*tp
= tcp_sk(sk
);
1983 struct net
*net
= sock_net(sk
);
1984 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1986 tcp_timeout_mark_lost(sk
);
1988 /* Reduce ssthresh if it has not yet been made inside this window. */
1989 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1990 !after(tp
->high_seq
, tp
->snd_una
) ||
1991 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1992 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1993 tp
->prior_cwnd
= tp
->snd_cwnd
;
1994 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1995 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1998 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 1;
1999 tp
->snd_cwnd_cnt
= 0;
2000 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2002 /* Timeout in disordered state after receiving substantial DUPACKs
2003 * suggests that the degree of reordering is over-estimated.
2005 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
2006 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
2007 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2008 net
->ipv4
.sysctl_tcp_reordering
);
2009 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2010 tp
->high_seq
= tp
->snd_nxt
;
2011 tcp_ecn_queue_cwr(tp
);
2013 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2014 * loss recovery is underway except recurring timeout(s) on
2015 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2017 tp
->frto
= net
->ipv4
.sysctl_tcp_frto
&&
2018 (new_recovery
|| icsk
->icsk_retransmits
) &&
2019 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2022 /* If ACK arrived pointing to a remembered SACK, it means that our
2023 * remembered SACKs do not reflect real state of receiver i.e.
2024 * receiver _host_ is heavily congested (or buggy).
2026 * To avoid big spurious retransmission bursts due to transient SACK
2027 * scoreboard oddities that look like reneging, we give the receiver a
2028 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2029 * restore sanity to the SACK scoreboard. If the apparent reneging
2030 * persists until this RTO then we'll clear the SACK scoreboard.
2032 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2034 if (flag
& FLAG_SACK_RENEGING
) {
2035 struct tcp_sock
*tp
= tcp_sk(sk
);
2036 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2037 msecs_to_jiffies(10));
2039 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2040 delay
, TCP_RTO_MAX
);
2046 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2047 * counter when SACK is enabled (without SACK, sacked_out is used for
2050 * With reordering, holes may still be in flight, so RFC3517 recovery
2051 * uses pure sacked_out (total number of SACKed segments) even though
2052 * it violates the RFC that uses duplicate ACKs, often these are equal
2053 * but when e.g. out-of-window ACKs or packet duplication occurs,
2054 * they differ. Since neither occurs due to loss, TCP should really
2057 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2059 return tp
->sacked_out
+ 1;
2062 /* Linux NewReno/SACK/ECN state machine.
2063 * --------------------------------------
2065 * "Open" Normal state, no dubious events, fast path.
2066 * "Disorder" In all the respects it is "Open",
2067 * but requires a bit more attention. It is entered when
2068 * we see some SACKs or dupacks. It is split of "Open"
2069 * mainly to move some processing from fast path to slow one.
2070 * "CWR" CWND was reduced due to some Congestion Notification event.
2071 * It can be ECN, ICMP source quench, local device congestion.
2072 * "Recovery" CWND was reduced, we are fast-retransmitting.
2073 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2075 * tcp_fastretrans_alert() is entered:
2076 * - each incoming ACK, if state is not "Open"
2077 * - when arrived ACK is unusual, namely:
2082 * Counting packets in flight is pretty simple.
2084 * in_flight = packets_out - left_out + retrans_out
2086 * packets_out is SND.NXT-SND.UNA counted in packets.
2088 * retrans_out is number of retransmitted segments.
2090 * left_out is number of segments left network, but not ACKed yet.
2092 * left_out = sacked_out + lost_out
2094 * sacked_out: Packets, which arrived to receiver out of order
2095 * and hence not ACKed. With SACKs this number is simply
2096 * amount of SACKed data. Even without SACKs
2097 * it is easy to give pretty reliable estimate of this number,
2098 * counting duplicate ACKs.
2100 * lost_out: Packets lost by network. TCP has no explicit
2101 * "loss notification" feedback from network (for now).
2102 * It means that this number can be only _guessed_.
2103 * Actually, it is the heuristics to predict lossage that
2104 * distinguishes different algorithms.
2106 * F.e. after RTO, when all the queue is considered as lost,
2107 * lost_out = packets_out and in_flight = retrans_out.
2109 * Essentially, we have now a few algorithms detecting
2112 * If the receiver supports SACK:
2114 * RFC6675/3517: It is the conventional algorithm. A packet is
2115 * considered lost if the number of higher sequence packets
2116 * SACKed is greater than or equal the DUPACK thoreshold
2117 * (reordering). This is implemented in tcp_mark_head_lost and
2118 * tcp_update_scoreboard.
2120 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2121 * (2017-) that checks timing instead of counting DUPACKs.
2122 * Essentially a packet is considered lost if it's not S/ACKed
2123 * after RTT + reordering_window, where both metrics are
2124 * dynamically measured and adjusted. This is implemented in
2125 * tcp_rack_mark_lost.
2127 * If the receiver does not support SACK:
2129 * NewReno (RFC6582): in Recovery we assume that one segment
2130 * is lost (classic Reno). While we are in Recovery and
2131 * a partial ACK arrives, we assume that one more packet
2132 * is lost (NewReno). This heuristics are the same in NewReno
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2159 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2161 struct tcp_sock
*tp
= tcp_sk(sk
);
2163 /* Trick#1: The loss is proven. */
2167 /* Not-A-Trick#2 : Classic rule... */
2168 if (!tcp_is_rack(sk
) && tcp_dupack_heuristics(tp
) > tp
->reordering
)
2174 /* Detect loss in event "A" above by marking head of queue up as lost.
2175 * For non-SACK(Reno) senders, the first "packets" number of segments
2176 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178 * the maximum SACKed segments to pass before reaching this limit.
2180 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2182 struct tcp_sock
*tp
= tcp_sk(sk
);
2183 struct sk_buff
*skb
;
2184 int cnt
, oldcnt
, lost
;
2186 /* Use SACK to deduce losses of new sequences sent during recovery */
2187 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2189 WARN_ON(packets
> tp
->packets_out
);
2190 skb
= tp
->lost_skb_hint
;
2192 /* Head already handled? */
2193 if (mark_head
&& after(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
))
2195 cnt
= tp
->lost_cnt_hint
;
2197 skb
= tcp_rtx_queue_head(sk
);
2201 skb_rbtree_walk_from(skb
) {
2202 /* TODO: do this better */
2203 /* this is not the most efficient way to do this... */
2204 tp
->lost_skb_hint
= skb
;
2205 tp
->lost_cnt_hint
= cnt
;
2207 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2211 if (tcp_is_reno(tp
) ||
2212 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2213 cnt
+= tcp_skb_pcount(skb
);
2215 if (cnt
> packets
) {
2216 if (tcp_is_sack(tp
) ||
2217 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2218 (oldcnt
>= packets
))
2221 mss
= tcp_skb_mss(skb
);
2222 /* If needed, chop off the prefix to mark as lost. */
2223 lost
= (packets
- oldcnt
) * mss
;
2224 if (lost
< skb
->len
&&
2225 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2226 lost
, mss
, GFP_ATOMIC
) < 0)
2231 tcp_skb_mark_lost(tp
, skb
);
2236 tcp_verify_left_out(tp
);
2239 /* Account newly detected lost packet(s) */
2241 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2243 struct tcp_sock
*tp
= tcp_sk(sk
);
2245 if (tcp_is_sack(tp
)) {
2246 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2247 if (sacked_upto
>= 0)
2248 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2249 else if (fast_rexmit
)
2250 tcp_mark_head_lost(sk
, 1, 1);
2254 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2256 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2257 before(tp
->rx_opt
.rcv_tsecr
, when
);
2260 /* skb is spurious retransmitted if the returned timestamp echo
2261 * reply is prior to the skb transmission time
2263 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2264 const struct sk_buff
*skb
)
2266 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2267 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2270 /* Nothing was retransmitted or returned timestamp is less
2271 * than timestamp of the first retransmission.
2273 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2275 return tp
->retrans_stamp
&&
2276 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2279 /* Undo procedures. */
2281 /* We can clear retrans_stamp when there are no retransmissions in the
2282 * window. It would seem that it is trivially available for us in
2283 * tp->retrans_out, however, that kind of assumptions doesn't consider
2284 * what will happen if errors occur when sending retransmission for the
2285 * second time. ...It could the that such segment has only
2286 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2287 * the head skb is enough except for some reneging corner cases that
2288 * are not worth the effort.
2290 * Main reason for all this complexity is the fact that connection dying
2291 * time now depends on the validity of the retrans_stamp, in particular,
2292 * that successive retransmissions of a segment must not advance
2293 * retrans_stamp under any conditions.
2295 static bool tcp_any_retrans_done(const struct sock
*sk
)
2297 const struct tcp_sock
*tp
= tcp_sk(sk
);
2298 struct sk_buff
*skb
;
2300 if (tp
->retrans_out
)
2303 skb
= tcp_rtx_queue_head(sk
);
2304 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2310 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2312 #if FASTRETRANS_DEBUG > 1
2313 struct tcp_sock
*tp
= tcp_sk(sk
);
2314 struct inet_sock
*inet
= inet_sk(sk
);
2316 if (sk
->sk_family
== AF_INET
) {
2317 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2320 tp
->snd_cwnd
, tcp_left_out(tp
),
2321 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2324 #if IS_ENABLED(CONFIG_IPV6)
2325 else if (sk
->sk_family
== AF_INET6
) {
2326 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2328 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2329 tp
->snd_cwnd
, tcp_left_out(tp
),
2330 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2337 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2339 struct tcp_sock
*tp
= tcp_sk(sk
);
2342 struct sk_buff
*skb
;
2344 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2345 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2348 tcp_clear_all_retrans_hints(tp
);
2351 if (tp
->prior_ssthresh
) {
2352 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2354 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2356 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2357 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2358 tcp_ecn_withdraw_cwr(tp
);
2361 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2362 tp
->undo_marker
= 0;
2363 tp
->rack
.advanced
= 1; /* Force RACK to re-exam losses */
2366 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2368 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2371 /* People celebrate: "We love our President!" */
2372 static bool tcp_try_undo_recovery(struct sock
*sk
)
2374 struct tcp_sock
*tp
= tcp_sk(sk
);
2376 if (tcp_may_undo(tp
)) {
2379 /* Happy end! We did not retransmit anything
2380 * or our original transmission succeeded.
2382 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2383 tcp_undo_cwnd_reduction(sk
, false);
2384 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2385 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2387 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2389 NET_INC_STATS(sock_net(sk
), mib_idx
);
2390 } else if (tp
->rack
.reo_wnd_persist
) {
2391 tp
->rack
.reo_wnd_persist
--;
2393 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2394 /* Hold old state until something *above* high_seq
2395 * is ACKed. For Reno it is MUST to prevent false
2396 * fast retransmits (RFC2582). SACK TCP is safe. */
2397 if (!tcp_any_retrans_done(sk
))
2398 tp
->retrans_stamp
= 0;
2401 tcp_set_ca_state(sk
, TCP_CA_Open
);
2402 tp
->is_sack_reneg
= 0;
2406 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2407 static bool tcp_try_undo_dsack(struct sock
*sk
)
2409 struct tcp_sock
*tp
= tcp_sk(sk
);
2411 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2412 tp
->rack
.reo_wnd_persist
= min(TCP_RACK_RECOVERY_THRESH
,
2413 tp
->rack
.reo_wnd_persist
+ 1);
2414 DBGUNDO(sk
, "D-SACK");
2415 tcp_undo_cwnd_reduction(sk
, false);
2416 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2422 /* Undo during loss recovery after partial ACK or using F-RTO. */
2423 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2425 struct tcp_sock
*tp
= tcp_sk(sk
);
2427 if (frto_undo
|| tcp_may_undo(tp
)) {
2428 tcp_undo_cwnd_reduction(sk
, true);
2430 DBGUNDO(sk
, "partial loss");
2431 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2433 NET_INC_STATS(sock_net(sk
),
2434 LINUX_MIB_TCPSPURIOUSRTOS
);
2435 inet_csk(sk
)->icsk_retransmits
= 0;
2436 if (frto_undo
|| tcp_is_sack(tp
)) {
2437 tcp_set_ca_state(sk
, TCP_CA_Open
);
2438 tp
->is_sack_reneg
= 0;
2445 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2446 * It computes the number of packets to send (sndcnt) based on packets newly
2448 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2449 * cwnd reductions across a full RTT.
2450 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2451 * But when the retransmits are acked without further losses, PRR
2452 * slow starts cwnd up to ssthresh to speed up the recovery.
2454 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2456 struct tcp_sock
*tp
= tcp_sk(sk
);
2458 tp
->high_seq
= tp
->snd_nxt
;
2459 tp
->tlp_high_seq
= 0;
2460 tp
->snd_cwnd_cnt
= 0;
2461 tp
->prior_cwnd
= tp
->snd_cwnd
;
2462 tp
->prr_delivered
= 0;
2464 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2465 tcp_ecn_queue_cwr(tp
);
2468 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2470 struct tcp_sock
*tp
= tcp_sk(sk
);
2472 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2474 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2477 tp
->prr_delivered
+= newly_acked_sacked
;
2479 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2481 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2482 } else if ((flag
& (FLAG_RETRANS_DATA_ACKED
| FLAG_LOST_RETRANS
)) ==
2483 FLAG_RETRANS_DATA_ACKED
) {
2484 sndcnt
= min_t(int, delta
,
2485 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2486 newly_acked_sacked
) + 1);
2488 sndcnt
= min(delta
, newly_acked_sacked
);
2490 /* Force a fast retransmit upon entering fast recovery */
2491 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2492 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2495 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2497 struct tcp_sock
*tp
= tcp_sk(sk
);
2499 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2502 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2503 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2504 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2505 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2506 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2508 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2511 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2512 void tcp_enter_cwr(struct sock
*sk
)
2514 struct tcp_sock
*tp
= tcp_sk(sk
);
2516 tp
->prior_ssthresh
= 0;
2517 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2518 tp
->undo_marker
= 0;
2519 tcp_init_cwnd_reduction(sk
);
2520 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2523 EXPORT_SYMBOL(tcp_enter_cwr
);
2525 static void tcp_try_keep_open(struct sock
*sk
)
2527 struct tcp_sock
*tp
= tcp_sk(sk
);
2528 int state
= TCP_CA_Open
;
2530 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2531 state
= TCP_CA_Disorder
;
2533 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2534 tcp_set_ca_state(sk
, state
);
2535 tp
->high_seq
= tp
->snd_nxt
;
2539 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2541 struct tcp_sock
*tp
= tcp_sk(sk
);
2543 tcp_verify_left_out(tp
);
2545 if (!tcp_any_retrans_done(sk
))
2546 tp
->retrans_stamp
= 0;
2548 if (flag
& FLAG_ECE
)
2551 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2552 tcp_try_keep_open(sk
);
2556 static void tcp_mtup_probe_failed(struct sock
*sk
)
2558 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2560 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2561 icsk
->icsk_mtup
.probe_size
= 0;
2562 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2565 static void tcp_mtup_probe_success(struct sock
*sk
)
2567 struct tcp_sock
*tp
= tcp_sk(sk
);
2568 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2570 /* FIXME: breaks with very large cwnd */
2571 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2572 tp
->snd_cwnd
= tp
->snd_cwnd
*
2573 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2574 icsk
->icsk_mtup
.probe_size
;
2575 tp
->snd_cwnd_cnt
= 0;
2576 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2577 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2579 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2580 icsk
->icsk_mtup
.probe_size
= 0;
2581 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2582 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2585 /* Do a simple retransmit without using the backoff mechanisms in
2586 * tcp_timer. This is used for path mtu discovery.
2587 * The socket is already locked here.
2589 void tcp_simple_retransmit(struct sock
*sk
)
2591 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2592 struct tcp_sock
*tp
= tcp_sk(sk
);
2593 struct sk_buff
*skb
;
2594 unsigned int mss
= tcp_current_mss(sk
);
2596 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2597 if (tcp_skb_seglen(skb
) > mss
&&
2598 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2599 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2600 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2601 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2603 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2607 tcp_clear_retrans_hints_partial(tp
);
2612 if (tcp_is_reno(tp
))
2613 tcp_limit_reno_sacked(tp
);
2615 tcp_verify_left_out(tp
);
2617 /* Don't muck with the congestion window here.
2618 * Reason is that we do not increase amount of _data_
2619 * in network, but units changed and effective
2620 * cwnd/ssthresh really reduced now.
2622 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2623 tp
->high_seq
= tp
->snd_nxt
;
2624 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2625 tp
->prior_ssthresh
= 0;
2626 tp
->undo_marker
= 0;
2627 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2629 tcp_xmit_retransmit_queue(sk
);
2631 EXPORT_SYMBOL(tcp_simple_retransmit
);
2633 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2635 struct tcp_sock
*tp
= tcp_sk(sk
);
2638 if (tcp_is_reno(tp
))
2639 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2641 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2643 NET_INC_STATS(sock_net(sk
), mib_idx
);
2645 tp
->prior_ssthresh
= 0;
2648 if (!tcp_in_cwnd_reduction(sk
)) {
2650 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2651 tcp_init_cwnd_reduction(sk
);
2653 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2656 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2657 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2659 static void tcp_process_loss(struct sock
*sk
, int flag
, int num_dupack
,
2662 struct tcp_sock
*tp
= tcp_sk(sk
);
2663 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2665 if ((flag
& FLAG_SND_UNA_ADVANCED
|| tp
->fastopen_rsk
) &&
2666 tcp_try_undo_loss(sk
, false))
2669 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2670 /* Step 3.b. A timeout is spurious if not all data are
2671 * lost, i.e., never-retransmitted data are (s)acked.
2673 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2674 tcp_try_undo_loss(sk
, true))
2677 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2678 if (flag
& FLAG_DATA_SACKED
|| num_dupack
)
2679 tp
->frto
= 0; /* Step 3.a. loss was real */
2680 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2681 tp
->high_seq
= tp
->snd_nxt
;
2682 /* Step 2.b. Try send new data (but deferred until cwnd
2683 * is updated in tcp_ack()). Otherwise fall back to
2684 * the conventional recovery.
2686 if (!tcp_write_queue_empty(sk
) &&
2687 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2688 *rexmit
= REXMIT_NEW
;
2696 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2697 tcp_try_undo_recovery(sk
);
2700 if (tcp_is_reno(tp
)) {
2701 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2702 * delivered. Lower inflight to clock out (re)tranmissions.
2704 if (after(tp
->snd_nxt
, tp
->high_seq
) && num_dupack
)
2705 tcp_add_reno_sack(sk
, num_dupack
);
2706 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2707 tcp_reset_reno_sack(tp
);
2709 *rexmit
= REXMIT_LOST
;
2712 /* Undo during fast recovery after partial ACK. */
2713 static bool tcp_try_undo_partial(struct sock
*sk
, u32 prior_snd_una
)
2715 struct tcp_sock
*tp
= tcp_sk(sk
);
2717 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2718 /* Plain luck! Hole if filled with delayed
2719 * packet, rather than with a retransmit. Check reordering.
2721 tcp_check_sack_reordering(sk
, prior_snd_una
, 1);
2723 /* We are getting evidence that the reordering degree is higher
2724 * than we realized. If there are no retransmits out then we
2725 * can undo. Otherwise we clock out new packets but do not
2726 * mark more packets lost or retransmit more.
2728 if (tp
->retrans_out
)
2731 if (!tcp_any_retrans_done(sk
))
2732 tp
->retrans_stamp
= 0;
2734 DBGUNDO(sk
, "partial recovery");
2735 tcp_undo_cwnd_reduction(sk
, true);
2736 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2737 tcp_try_keep_open(sk
);
2743 static void tcp_identify_packet_loss(struct sock
*sk
, int *ack_flag
)
2745 struct tcp_sock
*tp
= tcp_sk(sk
);
2747 if (tcp_rtx_queue_empty(sk
))
2750 if (unlikely(tcp_is_reno(tp
))) {
2751 tcp_newreno_mark_lost(sk
, *ack_flag
& FLAG_SND_UNA_ADVANCED
);
2752 } else if (tcp_is_rack(sk
)) {
2753 u32 prior_retrans
= tp
->retrans_out
;
2755 tcp_rack_mark_lost(sk
);
2756 if (prior_retrans
> tp
->retrans_out
)
2757 *ack_flag
|= FLAG_LOST_RETRANS
;
2761 static bool tcp_force_fast_retransmit(struct sock
*sk
)
2763 struct tcp_sock
*tp
= tcp_sk(sk
);
2765 return after(tcp_highest_sack_seq(tp
),
2766 tp
->snd_una
+ tp
->reordering
* tp
->mss_cache
);
2769 /* Process an event, which can update packets-in-flight not trivially.
2770 * Main goal of this function is to calculate new estimate for left_out,
2771 * taking into account both packets sitting in receiver's buffer and
2772 * packets lost by network.
2774 * Besides that it updates the congestion state when packet loss or ECN
2775 * is detected. But it does not reduce the cwnd, it is done by the
2776 * congestion control later.
2778 * It does _not_ decide what to send, it is made in function
2779 * tcp_xmit_retransmit_queue().
2781 static void tcp_fastretrans_alert(struct sock
*sk
, const u32 prior_snd_una
,
2782 int num_dupack
, int *ack_flag
, int *rexmit
)
2784 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2785 struct tcp_sock
*tp
= tcp_sk(sk
);
2786 int fast_rexmit
= 0, flag
= *ack_flag
;
2787 bool do_lost
= num_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2788 tcp_force_fast_retransmit(sk
));
2790 if (!tp
->packets_out
&& tp
->sacked_out
)
2793 /* Now state machine starts.
2794 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2795 if (flag
& FLAG_ECE
)
2796 tp
->prior_ssthresh
= 0;
2798 /* B. In all the states check for reneging SACKs. */
2799 if (tcp_check_sack_reneging(sk
, flag
))
2802 /* C. Check consistency of the current state. */
2803 tcp_verify_left_out(tp
);
2805 /* D. Check state exit conditions. State can be terminated
2806 * when high_seq is ACKed. */
2807 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2808 WARN_ON(tp
->retrans_out
!= 0);
2809 tp
->retrans_stamp
= 0;
2810 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2811 switch (icsk
->icsk_ca_state
) {
2813 /* CWR is to be held something *above* high_seq
2814 * is ACKed for CWR bit to reach receiver. */
2815 if (tp
->snd_una
!= tp
->high_seq
) {
2816 tcp_end_cwnd_reduction(sk
);
2817 tcp_set_ca_state(sk
, TCP_CA_Open
);
2821 case TCP_CA_Recovery
:
2822 if (tcp_is_reno(tp
))
2823 tcp_reset_reno_sack(tp
);
2824 if (tcp_try_undo_recovery(sk
))
2826 tcp_end_cwnd_reduction(sk
);
2831 /* E. Process state. */
2832 switch (icsk
->icsk_ca_state
) {
2833 case TCP_CA_Recovery
:
2834 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2835 if (tcp_is_reno(tp
))
2836 tcp_add_reno_sack(sk
, num_dupack
);
2838 if (tcp_try_undo_partial(sk
, prior_snd_una
))
2840 /* Partial ACK arrived. Force fast retransmit. */
2841 do_lost
= tcp_is_reno(tp
) ||
2842 tcp_force_fast_retransmit(sk
);
2844 if (tcp_try_undo_dsack(sk
)) {
2845 tcp_try_keep_open(sk
);
2848 tcp_identify_packet_loss(sk
, ack_flag
);
2851 tcp_process_loss(sk
, flag
, num_dupack
, rexmit
);
2852 tcp_identify_packet_loss(sk
, ack_flag
);
2853 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2854 (*ack_flag
& FLAG_LOST_RETRANS
)))
2856 /* Change state if cwnd is undone or retransmits are lost */
2859 if (tcp_is_reno(tp
)) {
2860 if (flag
& FLAG_SND_UNA_ADVANCED
)
2861 tcp_reset_reno_sack(tp
);
2862 tcp_add_reno_sack(sk
, num_dupack
);
2865 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2866 tcp_try_undo_dsack(sk
);
2868 tcp_identify_packet_loss(sk
, ack_flag
);
2869 if (!tcp_time_to_recover(sk
, flag
)) {
2870 tcp_try_to_open(sk
, flag
);
2874 /* MTU probe failure: don't reduce cwnd */
2875 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2876 icsk
->icsk_mtup
.probe_size
&&
2877 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2878 tcp_mtup_probe_failed(sk
);
2879 /* Restores the reduction we did in tcp_mtup_probe() */
2881 tcp_simple_retransmit(sk
);
2885 /* Otherwise enter Recovery state */
2886 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2890 if (!tcp_is_rack(sk
) && do_lost
)
2891 tcp_update_scoreboard(sk
, fast_rexmit
);
2892 *rexmit
= REXMIT_LOST
;
2895 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
, const int flag
)
2897 u32 wlen
= sock_net(sk
)->ipv4
.sysctl_tcp_min_rtt_wlen
* HZ
;
2898 struct tcp_sock
*tp
= tcp_sk(sk
);
2900 if ((flag
& FLAG_ACK_MAYBE_DELAYED
) && rtt_us
> tcp_min_rtt(tp
)) {
2901 /* If the remote keeps returning delayed ACKs, eventually
2902 * the min filter would pick it up and overestimate the
2903 * prop. delay when it expires. Skip suspected delayed ACKs.
2907 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
2908 rtt_us
? : jiffies_to_usecs(1));
2911 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2912 long seq_rtt_us
, long sack_rtt_us
,
2913 long ca_rtt_us
, struct rate_sample
*rs
)
2915 const struct tcp_sock
*tp
= tcp_sk(sk
);
2917 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2918 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2919 * Karn's algorithm forbids taking RTT if some retransmitted data
2920 * is acked (RFC6298).
2923 seq_rtt_us
= sack_rtt_us
;
2925 /* RTTM Rule: A TSecr value received in a segment is used to
2926 * update the averaged RTT measurement only if the segment
2927 * acknowledges some new data, i.e., only if it advances the
2928 * left edge of the send window.
2929 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2931 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2932 flag
& FLAG_ACKED
) {
2933 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
2935 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
2936 seq_rtt_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
2937 ca_rtt_us
= seq_rtt_us
;
2940 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
2944 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2945 * always taken together with ACK, SACK, or TS-opts. Any negative
2946 * values will be skipped with the seq_rtt_us < 0 check above.
2948 tcp_update_rtt_min(sk
, ca_rtt_us
, flag
);
2949 tcp_rtt_estimator(sk
, seq_rtt_us
);
2952 /* RFC6298: only reset backoff on valid RTT measurement. */
2953 inet_csk(sk
)->icsk_backoff
= 0;
2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2958 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2960 struct rate_sample rs
;
2963 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
2964 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
2966 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
2970 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2972 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2974 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2975 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
2978 /* Restart timer after forward progress on connection.
2979 * RFC2988 recommends to restart timer to now+rto.
2981 void tcp_rearm_rto(struct sock
*sk
)
2983 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2984 struct tcp_sock
*tp
= tcp_sk(sk
);
2986 /* If the retrans timer is currently being used by Fast Open
2987 * for SYN-ACK retrans purpose, stay put.
2989 if (tp
->fastopen_rsk
)
2992 if (!tp
->packets_out
) {
2993 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2995 u32 rto
= inet_csk(sk
)->icsk_rto
;
2996 /* Offset the time elapsed after installing regular RTO */
2997 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
2998 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
2999 s64 delta_us
= tcp_rto_delta_us(sk
);
3000 /* delta_us may not be positive if the socket is locked
3001 * when the retrans timer fires and is rescheduled.
3003 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
3005 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3006 TCP_RTO_MAX
, tcp_rtx_queue_head(sk
));
3010 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3011 static void tcp_set_xmit_timer(struct sock
*sk
)
3013 if (!tcp_schedule_loss_probe(sk
, true))
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3020 struct tcp_sock
*tp
= tcp_sk(sk
);
3023 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3025 packets_acked
= tcp_skb_pcount(skb
);
3026 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3028 packets_acked
-= tcp_skb_pcount(skb
);
3030 if (packets_acked
) {
3031 BUG_ON(tcp_skb_pcount(skb
) == 0);
3032 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3035 return packets_acked
;
3038 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3041 const struct skb_shared_info
*shinfo
;
3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3047 shinfo
= skb_shinfo(skb
);
3048 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3049 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
)) {
3050 tcp_skb_tsorted_save(skb
) {
3051 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3052 } tcp_skb_tsorted_restore(skb
);
3056 /* Remove acknowledged frames from the retransmission queue. If our packet
3057 * is before the ack sequence we can discard it as it's confirmed to have
3058 * arrived at the other end.
3060 static int tcp_clean_rtx_queue(struct sock
*sk
, u32 prior_fack
,
3062 struct tcp_sacktag_state
*sack
)
3064 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3065 u64 first_ackt
, last_ackt
;
3066 struct tcp_sock
*tp
= tcp_sk(sk
);
3067 u32 prior_sacked
= tp
->sacked_out
;
3068 u32 reord
= tp
->snd_nxt
; /* lowest acked un-retx un-sacked seq */
3069 struct sk_buff
*skb
, *next
;
3070 bool fully_acked
= true;
3071 long sack_rtt_us
= -1L;
3072 long seq_rtt_us
= -1L;
3073 long ca_rtt_us
= -1L;
3075 u32 last_in_flight
= 0;
3081 for (skb
= skb_rb_first(&sk
->tcp_rtx_queue
); skb
; skb
= next
) {
3082 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3083 const u32 start_seq
= scb
->seq
;
3084 u8 sacked
= scb
->sacked
;
3087 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3089 /* Determine how many packets and what bytes were acked, tso and else */
3090 if (after(scb
->end_seq
, tp
->snd_una
)) {
3091 if (tcp_skb_pcount(skb
) == 1 ||
3092 !after(tp
->snd_una
, scb
->seq
))
3095 acked_pcount
= tcp_tso_acked(sk
, skb
);
3098 fully_acked
= false;
3100 acked_pcount
= tcp_skb_pcount(skb
);
3103 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3104 if (sacked
& TCPCB_SACKED_RETRANS
)
3105 tp
->retrans_out
-= acked_pcount
;
3106 flag
|= FLAG_RETRANS_DATA_ACKED
;
3107 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3108 last_ackt
= tcp_skb_timestamp_us(skb
);
3109 WARN_ON_ONCE(last_ackt
== 0);
3111 first_ackt
= last_ackt
;
3113 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3114 if (before(start_seq
, reord
))
3116 if (!after(scb
->end_seq
, tp
->high_seq
))
3117 flag
|= FLAG_ORIG_SACK_ACKED
;
3120 if (sacked
& TCPCB_SACKED_ACKED
) {
3121 tp
->sacked_out
-= acked_pcount
;
3122 } else if (tcp_is_sack(tp
)) {
3123 tp
->delivered
+= acked_pcount
;
3124 if (!tcp_skb_spurious_retrans(tp
, skb
))
3125 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3126 tcp_skb_timestamp_us(skb
));
3128 if (sacked
& TCPCB_LOST
)
3129 tp
->lost_out
-= acked_pcount
;
3131 tp
->packets_out
-= acked_pcount
;
3132 pkts_acked
+= acked_pcount
;
3133 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3135 /* Initial outgoing SYN's get put onto the write_queue
3136 * just like anything else we transmit. It is not
3137 * true data, and if we misinform our callers that
3138 * this ACK acks real data, we will erroneously exit
3139 * connection startup slow start one packet too
3140 * quickly. This is severely frowned upon behavior.
3142 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3143 flag
|= FLAG_DATA_ACKED
;
3145 flag
|= FLAG_SYN_ACKED
;
3146 tp
->retrans_stamp
= 0;
3152 next
= skb_rb_next(skb
);
3153 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3154 tp
->retransmit_skb_hint
= NULL
;
3155 if (unlikely(skb
== tp
->lost_skb_hint
))
3156 tp
->lost_skb_hint
= NULL
;
3157 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3161 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3163 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3164 tp
->snd_up
= tp
->snd_una
;
3166 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3167 flag
|= FLAG_SACK_RENEGING
;
3169 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3170 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3171 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3173 if (pkts_acked
== 1 && last_in_flight
< tp
->mss_cache
&&
3174 last_in_flight
&& !prior_sacked
&& fully_acked
&&
3175 sack
->rate
->prior_delivered
+ 1 == tp
->delivered
&&
3176 !(flag
& (FLAG_CA_ALERT
| FLAG_SYN_ACKED
))) {
3177 /* Conservatively mark a delayed ACK. It's typically
3178 * from a lone runt packet over the round trip to
3179 * a receiver w/o out-of-order or CE events.
3181 flag
|= FLAG_ACK_MAYBE_DELAYED
;
3184 if (sack
->first_sackt
) {
3185 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3186 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3188 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3189 ca_rtt_us
, sack
->rate
);
3191 if (flag
& FLAG_ACKED
) {
3192 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3193 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3194 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3195 tcp_mtup_probe_success(sk
);
3198 if (tcp_is_reno(tp
)) {
3199 tcp_remove_reno_sacks(sk
, pkts_acked
);
3201 /* If any of the cumulatively ACKed segments was
3202 * retransmitted, non-SACK case cannot confirm that
3203 * progress was due to original transmission due to
3204 * lack of TCPCB_SACKED_ACKED bits even if some of
3205 * the packets may have been never retransmitted.
3207 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3208 flag
&= ~FLAG_ORIG_SACK_ACKED
;
3212 /* Non-retransmitted hole got filled? That's reordering */
3213 if (before(reord
, prior_fack
))
3214 tcp_check_sack_reordering(sk
, reord
, 0);
3216 delta
= prior_sacked
- tp
->sacked_out
;
3217 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3219 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3220 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
,
3221 tcp_skb_timestamp_us(skb
))) {
3222 /* Do not re-arm RTO if the sack RTT is measured from data sent
3223 * after when the head was last (re)transmitted. Otherwise the
3224 * timeout may continue to extend in loss recovery.
3226 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3229 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3230 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3231 .rtt_us
= sack
->rate
->rtt_us
,
3232 .in_flight
= last_in_flight
};
3234 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3237 #if FASTRETRANS_DEBUG > 0
3238 WARN_ON((int)tp
->sacked_out
< 0);
3239 WARN_ON((int)tp
->lost_out
< 0);
3240 WARN_ON((int)tp
->retrans_out
< 0);
3241 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3242 icsk
= inet_csk(sk
);
3244 pr_debug("Leak l=%u %d\n",
3245 tp
->lost_out
, icsk
->icsk_ca_state
);
3248 if (tp
->sacked_out
) {
3249 pr_debug("Leak s=%u %d\n",
3250 tp
->sacked_out
, icsk
->icsk_ca_state
);
3253 if (tp
->retrans_out
) {
3254 pr_debug("Leak r=%u %d\n",
3255 tp
->retrans_out
, icsk
->icsk_ca_state
);
3256 tp
->retrans_out
= 0;
3263 static void tcp_ack_probe(struct sock
*sk
)
3265 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3266 struct sk_buff
*head
= tcp_send_head(sk
);
3267 const struct tcp_sock
*tp
= tcp_sk(sk
);
3269 /* Was it a usable window open? */
3272 if (!after(TCP_SKB_CB(head
)->end_seq
, tcp_wnd_end(tp
))) {
3273 icsk
->icsk_backoff
= 0;
3274 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3275 /* Socket must be waked up by subsequent tcp_data_snd_check().
3276 * This function is not for random using!
3279 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3281 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3282 when
, TCP_RTO_MAX
, NULL
);
3286 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3288 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3289 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3292 /* Decide wheather to run the increase function of congestion control. */
3293 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3295 /* If reordering is high then always grow cwnd whenever data is
3296 * delivered regardless of its ordering. Otherwise stay conservative
3297 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3298 * new SACK or ECE mark may first advance cwnd here and later reduce
3299 * cwnd in tcp_fastretrans_alert() based on more states.
3301 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3302 return flag
& FLAG_FORWARD_PROGRESS
;
3304 return flag
& FLAG_DATA_ACKED
;
3307 /* The "ultimate" congestion control function that aims to replace the rigid
3308 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3309 * It's called toward the end of processing an ACK with precise rate
3310 * information. All transmission or retransmission are delayed afterwards.
3312 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3313 int flag
, const struct rate_sample
*rs
)
3315 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3317 if (icsk
->icsk_ca_ops
->cong_control
) {
3318 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3322 if (tcp_in_cwnd_reduction(sk
)) {
3323 /* Reduce cwnd if state mandates */
3324 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3325 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3326 /* Advance cwnd if state allows */
3327 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3329 tcp_update_pacing_rate(sk
);
3332 /* Check that window update is acceptable.
3333 * The function assumes that snd_una<=ack<=snd_next.
3335 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3336 const u32 ack
, const u32 ack_seq
,
3339 return after(ack
, tp
->snd_una
) ||
3340 after(ack_seq
, tp
->snd_wl1
) ||
3341 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3344 /* If we update tp->snd_una, also update tp->bytes_acked */
3345 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3347 u32 delta
= ack
- tp
->snd_una
;
3349 sock_owned_by_me((struct sock
*)tp
);
3350 tp
->bytes_acked
+= delta
;
3354 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3355 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3357 u32 delta
= seq
- tp
->rcv_nxt
;
3359 sock_owned_by_me((struct sock
*)tp
);
3360 tp
->bytes_received
+= delta
;
3364 /* Update our send window.
3366 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3367 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3369 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3372 struct tcp_sock
*tp
= tcp_sk(sk
);
3374 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3376 if (likely(!tcp_hdr(skb
)->syn
))
3377 nwin
<<= tp
->rx_opt
.snd_wscale
;
3379 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3380 flag
|= FLAG_WIN_UPDATE
;
3381 tcp_update_wl(tp
, ack_seq
);
3383 if (tp
->snd_wnd
!= nwin
) {
3386 /* Note, it is the only place, where
3387 * fast path is recovered for sending TCP.
3390 tcp_fast_path_check(sk
);
3392 if (!tcp_write_queue_empty(sk
))
3393 tcp_slow_start_after_idle_check(sk
);
3395 if (nwin
> tp
->max_window
) {
3396 tp
->max_window
= nwin
;
3397 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3402 tcp_snd_una_update(tp
, ack
);
3407 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3408 u32
*last_oow_ack_time
)
3410 if (*last_oow_ack_time
) {
3411 s32 elapsed
= (s32
)(tcp_jiffies32
- *last_oow_ack_time
);
3413 if (0 <= elapsed
&& elapsed
< net
->ipv4
.sysctl_tcp_invalid_ratelimit
) {
3414 NET_INC_STATS(net
, mib_idx
);
3415 return true; /* rate-limited: don't send yet! */
3419 *last_oow_ack_time
= tcp_jiffies32
;
3421 return false; /* not rate-limited: go ahead, send dupack now! */
3424 /* Return true if we're currently rate-limiting out-of-window ACKs and
3425 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3426 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3427 * attacks that send repeated SYNs or ACKs for the same connection. To
3428 * do this, we do not send a duplicate SYNACK or ACK if the remote
3429 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3431 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3432 int mib_idx
, u32
*last_oow_ack_time
)
3434 /* Data packets without SYNs are not likely part of an ACK loop. */
3435 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3439 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3442 /* RFC 5961 7 [ACK Throttling] */
3443 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3445 /* unprotected vars, we dont care of overwrites */
3446 static u32 challenge_timestamp
;
3447 static unsigned int challenge_count
;
3448 struct tcp_sock
*tp
= tcp_sk(sk
);
3449 struct net
*net
= sock_net(sk
);
3452 /* First check our per-socket dupack rate limit. */
3453 if (__tcp_oow_rate_limited(net
,
3454 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3455 &tp
->last_oow_ack_time
))
3458 /* Then check host-wide RFC 5961 rate limit. */
3460 if (now
!= challenge_timestamp
) {
3461 u32 ack_limit
= net
->ipv4
.sysctl_tcp_challenge_ack_limit
;
3462 u32 half
= (ack_limit
+ 1) >> 1;
3464 challenge_timestamp
= now
;
3465 WRITE_ONCE(challenge_count
, half
+ prandom_u32_max(ack_limit
));
3467 count
= READ_ONCE(challenge_count
);
3469 WRITE_ONCE(challenge_count
, count
- 1);
3470 NET_INC_STATS(net
, LINUX_MIB_TCPCHALLENGEACK
);
3475 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3477 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3478 tp
->rx_opt
.ts_recent_stamp
= ktime_get_seconds();
3481 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3483 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3484 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3485 * extra check below makes sure this can only happen
3486 * for pure ACK frames. -DaveM
3488 * Not only, also it occurs for expired timestamps.
3491 if (tcp_paws_check(&tp
->rx_opt
, 0))
3492 tcp_store_ts_recent(tp
);
3496 /* This routine deals with acks during a TLP episode.
3497 * We mark the end of a TLP episode on receiving TLP dupack or when
3498 * ack is after tlp_high_seq.
3499 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3501 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3503 struct tcp_sock
*tp
= tcp_sk(sk
);
3505 if (before(ack
, tp
->tlp_high_seq
))
3508 if (flag
& FLAG_DSACKING_ACK
) {
3509 /* This DSACK means original and TLP probe arrived; no loss */
3510 tp
->tlp_high_seq
= 0;
3511 } else if (after(ack
, tp
->tlp_high_seq
)) {
3512 /* ACK advances: there was a loss, so reduce cwnd. Reset
3513 * tlp_high_seq in tcp_init_cwnd_reduction()
3515 tcp_init_cwnd_reduction(sk
);
3516 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3517 tcp_end_cwnd_reduction(sk
);
3518 tcp_try_keep_open(sk
);
3519 NET_INC_STATS(sock_net(sk
),
3520 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3521 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3522 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3523 /* Pure dupack: original and TLP probe arrived; no loss */
3524 tp
->tlp_high_seq
= 0;
3528 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3530 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3532 if (icsk
->icsk_ca_ops
->in_ack_event
)
3533 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3536 /* Congestion control has updated the cwnd already. So if we're in
3537 * loss recovery then now we do any new sends (for FRTO) or
3538 * retransmits (for CA_Loss or CA_recovery) that make sense.
3540 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3542 struct tcp_sock
*tp
= tcp_sk(sk
);
3544 if (rexmit
== REXMIT_NONE
|| sk
->sk_state
== TCP_SYN_SENT
)
3547 if (unlikely(rexmit
== 2)) {
3548 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3550 if (after(tp
->snd_nxt
, tp
->high_seq
))
3554 tcp_xmit_retransmit_queue(sk
);
3557 /* Returns the number of packets newly acked or sacked by the current ACK */
3558 static u32
tcp_newly_delivered(struct sock
*sk
, u32 prior_delivered
, int flag
)
3560 const struct net
*net
= sock_net(sk
);
3561 struct tcp_sock
*tp
= tcp_sk(sk
);
3564 delivered
= tp
->delivered
- prior_delivered
;
3565 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVERED
, delivered
);
3566 if (flag
& FLAG_ECE
) {
3567 tp
->delivered_ce
+= delivered
;
3568 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVEREDCE
, delivered
);
3573 /* This routine deals with incoming acks, but not outgoing ones. */
3574 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3576 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3577 struct tcp_sock
*tp
= tcp_sk(sk
);
3578 struct tcp_sacktag_state sack_state
;
3579 struct rate_sample rs
= { .prior_delivered
= 0 };
3580 u32 prior_snd_una
= tp
->snd_una
;
3581 bool is_sack_reneg
= tp
->is_sack_reneg
;
3582 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3583 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3585 int prior_packets
= tp
->packets_out
;
3586 u32 delivered
= tp
->delivered
;
3587 u32 lost
= tp
->lost
;
3588 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3591 sack_state
.first_sackt
= 0;
3592 sack_state
.rate
= &rs
;
3594 /* We very likely will need to access rtx queue. */
3595 prefetch(sk
->tcp_rtx_queue
.rb_node
);
3597 /* If the ack is older than previous acks
3598 * then we can probably ignore it.
3600 if (before(ack
, prior_snd_una
)) {
3601 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3602 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3603 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3604 tcp_send_challenge_ack(sk
, skb
);
3610 /* If the ack includes data we haven't sent yet, discard
3611 * this segment (RFC793 Section 3.9).
3613 if (after(ack
, tp
->snd_nxt
))
3616 if (after(ack
, prior_snd_una
)) {
3617 flag
|= FLAG_SND_UNA_ADVANCED
;
3618 icsk
->icsk_retransmits
= 0;
3620 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3621 if (static_branch_unlikely(&clean_acked_data_enabled
.key
))
3622 if (icsk
->icsk_clean_acked
)
3623 icsk
->icsk_clean_acked(sk
, ack
);
3627 prior_fack
= tcp_is_sack(tp
) ? tcp_highest_sack_seq(tp
) : tp
->snd_una
;
3628 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3630 /* ts_recent update must be made after we are sure that the packet
3633 if (flag
& FLAG_UPDATE_TS_RECENT
)
3634 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3636 if ((flag
& (FLAG_SLOWPATH
| FLAG_SND_UNA_ADVANCED
)) ==
3637 FLAG_SND_UNA_ADVANCED
) {
3638 /* Window is constant, pure forward advance.
3639 * No more checks are required.
3640 * Note, we use the fact that SND.UNA>=SND.WL2.
3642 tcp_update_wl(tp
, ack_seq
);
3643 tcp_snd_una_update(tp
, ack
);
3644 flag
|= FLAG_WIN_UPDATE
;
3646 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3648 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3650 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3652 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3655 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3657 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3659 if (TCP_SKB_CB(skb
)->sacked
)
3660 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3663 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3665 ack_ev_flags
|= CA_ACK_ECE
;
3668 if (flag
& FLAG_WIN_UPDATE
)
3669 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3671 tcp_in_ack_event(sk
, ack_ev_flags
);
3674 /* We passed data and got it acked, remove any soft error
3675 * log. Something worked...
3677 sk
->sk_err_soft
= 0;
3678 icsk
->icsk_probes_out
= 0;
3679 tp
->rcv_tstamp
= tcp_jiffies32
;
3683 /* See if we can take anything off of the retransmit queue. */
3684 flag
|= tcp_clean_rtx_queue(sk
, prior_fack
, prior_snd_una
, &sack_state
);
3686 tcp_rack_update_reo_wnd(sk
, &rs
);
3688 if (tp
->tlp_high_seq
)
3689 tcp_process_tlp_ack(sk
, ack
, flag
);
3690 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3691 if (flag
& FLAG_SET_XMIT_TIMER
)
3692 tcp_set_xmit_timer(sk
);
3694 if (tcp_ack_is_dubious(sk
, flag
)) {
3695 if (!(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
))) {
3697 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3698 if (!(flag
& FLAG_DATA
))
3699 num_dupack
= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
3701 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3705 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3708 delivered
= tcp_newly_delivered(sk
, delivered
, flag
);
3709 lost
= tp
->lost
- lost
; /* freshly marked lost */
3710 rs
.is_ack_delayed
= !!(flag
& FLAG_ACK_MAYBE_DELAYED
);
3711 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
3712 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3713 tcp_xmit_recovery(sk
, rexmit
);
3717 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3718 if (flag
& FLAG_DSACKING_ACK
) {
3719 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3721 tcp_newly_delivered(sk
, delivered
, flag
);
3723 /* If this ack opens up a zero window, clear backoff. It was
3724 * being used to time the probes, and is probably far higher than
3725 * it needs to be for normal retransmission.
3729 if (tp
->tlp_high_seq
)
3730 tcp_process_tlp_ack(sk
, ack
, flag
);
3734 /* If data was SACKed, tag it and see if we should send more data.
3735 * If data was DSACKed, see if we can undo a cwnd reduction.
3737 if (TCP_SKB_CB(skb
)->sacked
) {
3738 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3740 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3742 tcp_newly_delivered(sk
, delivered
, flag
);
3743 tcp_xmit_recovery(sk
, rexmit
);
3749 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3750 bool syn
, struct tcp_fastopen_cookie
*foc
,
3753 /* Valid only in SYN or SYN-ACK with an even length. */
3754 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3757 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3758 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3759 memcpy(foc
->val
, cookie
, len
);
3766 static void smc_parse_options(const struct tcphdr
*th
,
3767 struct tcp_options_received
*opt_rx
,
3768 const unsigned char *ptr
,
3771 #if IS_ENABLED(CONFIG_SMC)
3772 if (static_branch_unlikely(&tcp_have_smc
)) {
3773 if (th
->syn
&& !(opsize
& 1) &&
3774 opsize
>= TCPOLEN_EXP_SMC_BASE
&&
3775 get_unaligned_be32(ptr
) == TCPOPT_SMC_MAGIC
)
3781 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3782 * But, this can also be called on packets in the established flow when
3783 * the fast version below fails.
3785 void tcp_parse_options(const struct net
*net
,
3786 const struct sk_buff
*skb
,
3787 struct tcp_options_received
*opt_rx
, int estab
,
3788 struct tcp_fastopen_cookie
*foc
)
3790 const unsigned char *ptr
;
3791 const struct tcphdr
*th
= tcp_hdr(skb
);
3792 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3794 ptr
= (const unsigned char *)(th
+ 1);
3795 opt_rx
->saw_tstamp
= 0;
3797 while (length
> 0) {
3798 int opcode
= *ptr
++;
3804 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3811 if (opsize
< 2) /* "silly options" */
3813 if (opsize
> length
)
3814 return; /* don't parse partial options */
3817 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3818 u16 in_mss
= get_unaligned_be16(ptr
);
3820 if (opt_rx
->user_mss
&&
3821 opt_rx
->user_mss
< in_mss
)
3822 in_mss
= opt_rx
->user_mss
;
3823 opt_rx
->mss_clamp
= in_mss
;
3828 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3829 !estab
&& net
->ipv4
.sysctl_tcp_window_scaling
) {
3830 __u8 snd_wscale
= *(__u8
*)ptr
;
3831 opt_rx
->wscale_ok
= 1;
3832 if (snd_wscale
> TCP_MAX_WSCALE
) {
3833 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3837 snd_wscale
= TCP_MAX_WSCALE
;
3839 opt_rx
->snd_wscale
= snd_wscale
;
3842 case TCPOPT_TIMESTAMP
:
3843 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3844 ((estab
&& opt_rx
->tstamp_ok
) ||
3845 (!estab
&& net
->ipv4
.sysctl_tcp_timestamps
))) {
3846 opt_rx
->saw_tstamp
= 1;
3847 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3848 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3851 case TCPOPT_SACK_PERM
:
3852 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3853 !estab
&& net
->ipv4
.sysctl_tcp_sack
) {
3854 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3855 tcp_sack_reset(opt_rx
);
3860 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3861 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3863 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3866 #ifdef CONFIG_TCP_MD5SIG
3869 * The MD5 Hash has already been
3870 * checked (see tcp_v{4,6}_do_rcv()).
3874 case TCPOPT_FASTOPEN
:
3875 tcp_parse_fastopen_option(
3876 opsize
- TCPOLEN_FASTOPEN_BASE
,
3877 ptr
, th
->syn
, foc
, false);
3881 /* Fast Open option shares code 254 using a
3882 * 16 bits magic number.
3884 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3885 get_unaligned_be16(ptr
) ==
3886 TCPOPT_FASTOPEN_MAGIC
)
3887 tcp_parse_fastopen_option(opsize
-
3888 TCPOLEN_EXP_FASTOPEN_BASE
,
3889 ptr
+ 2, th
->syn
, foc
, true);
3891 smc_parse_options(th
, opt_rx
, ptr
,
3901 EXPORT_SYMBOL(tcp_parse_options
);
3903 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3905 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3907 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3908 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3909 tp
->rx_opt
.saw_tstamp
= 1;
3911 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3914 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3916 tp
->rx_opt
.rcv_tsecr
= 0;
3922 /* Fast parse options. This hopes to only see timestamps.
3923 * If it is wrong it falls back on tcp_parse_options().
3925 static bool tcp_fast_parse_options(const struct net
*net
,
3926 const struct sk_buff
*skb
,
3927 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3929 /* In the spirit of fast parsing, compare doff directly to constant
3930 * values. Because equality is used, short doff can be ignored here.
3932 if (th
->doff
== (sizeof(*th
) / 4)) {
3933 tp
->rx_opt
.saw_tstamp
= 0;
3935 } else if (tp
->rx_opt
.tstamp_ok
&&
3936 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3937 if (tcp_parse_aligned_timestamp(tp
, th
))
3941 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
3942 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3943 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3948 #ifdef CONFIG_TCP_MD5SIG
3950 * Parse MD5 Signature option
3952 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3954 int length
= (th
->doff
<< 2) - sizeof(*th
);
3955 const u8
*ptr
= (const u8
*)(th
+ 1);
3957 /* If not enough data remaining, we can short cut */
3958 while (length
>= TCPOLEN_MD5SIG
) {
3959 int opcode
= *ptr
++;
3970 if (opsize
< 2 || opsize
> length
)
3972 if (opcode
== TCPOPT_MD5SIG
)
3973 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3980 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3983 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3985 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3986 * it can pass through stack. So, the following predicate verifies that
3987 * this segment is not used for anything but congestion avoidance or
3988 * fast retransmit. Moreover, we even are able to eliminate most of such
3989 * second order effects, if we apply some small "replay" window (~RTO)
3990 * to timestamp space.
3992 * All these measures still do not guarantee that we reject wrapped ACKs
3993 * on networks with high bandwidth, when sequence space is recycled fastly,
3994 * but it guarantees that such events will be very rare and do not affect
3995 * connection seriously. This doesn't look nice, but alas, PAWS is really
3998 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3999 * states that events when retransmit arrives after original data are rare.
4000 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4001 * the biggest problem on large power networks even with minor reordering.
4002 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4003 * up to bandwidth of 18Gigabit/sec. 8) ]
4006 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4008 const struct tcp_sock
*tp
= tcp_sk(sk
);
4009 const struct tcphdr
*th
= tcp_hdr(skb
);
4010 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4011 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4013 return (/* 1. Pure ACK with correct sequence number. */
4014 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4016 /* 2. ... and duplicate ACK. */
4017 ack
== tp
->snd_una
&&
4019 /* 3. ... and does not update window. */
4020 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4022 /* 4. ... and sits in replay window. */
4023 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4026 static inline bool tcp_paws_discard(const struct sock
*sk
,
4027 const struct sk_buff
*skb
)
4029 const struct tcp_sock
*tp
= tcp_sk(sk
);
4031 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4032 !tcp_disordered_ack(sk
, skb
);
4035 /* Check segment sequence number for validity.
4037 * Segment controls are considered valid, if the segment
4038 * fits to the window after truncation to the window. Acceptability
4039 * of data (and SYN, FIN, of course) is checked separately.
4040 * See tcp_data_queue(), for example.
4042 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4043 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4044 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4045 * (borrowed from freebsd)
4048 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4050 return !before(end_seq
, tp
->rcv_wup
) &&
4051 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4054 /* When we get a reset we do this. */
4055 void tcp_reset(struct sock
*sk
)
4057 trace_tcp_receive_reset(sk
);
4059 /* We want the right error as BSD sees it (and indeed as we do). */
4060 switch (sk
->sk_state
) {
4062 sk
->sk_err
= ECONNREFUSED
;
4064 case TCP_CLOSE_WAIT
:
4070 sk
->sk_err
= ECONNRESET
;
4072 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4075 tcp_write_queue_purge(sk
);
4078 if (!sock_flag(sk
, SOCK_DEAD
))
4079 sk
->sk_error_report(sk
);
4083 * Process the FIN bit. This now behaves as it is supposed to work
4084 * and the FIN takes effect when it is validly part of sequence
4085 * space. Not before when we get holes.
4087 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4088 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4091 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4092 * close and we go into CLOSING (and later onto TIME-WAIT)
4094 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4096 void tcp_fin(struct sock
*sk
)
4098 struct tcp_sock
*tp
= tcp_sk(sk
);
4100 inet_csk_schedule_ack(sk
);
4102 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4103 sock_set_flag(sk
, SOCK_DONE
);
4105 switch (sk
->sk_state
) {
4107 case TCP_ESTABLISHED
:
4108 /* Move to CLOSE_WAIT */
4109 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4110 inet_csk_enter_pingpong_mode(sk
);
4113 case TCP_CLOSE_WAIT
:
4115 /* Received a retransmission of the FIN, do
4120 /* RFC793: Remain in the LAST-ACK state. */
4124 /* This case occurs when a simultaneous close
4125 * happens, we must ack the received FIN and
4126 * enter the CLOSING state.
4129 tcp_set_state(sk
, TCP_CLOSING
);
4132 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4134 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4137 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4138 * cases we should never reach this piece of code.
4140 pr_err("%s: Impossible, sk->sk_state=%d\n",
4141 __func__
, sk
->sk_state
);
4145 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4146 * Probably, we should reset in this case. For now drop them.
4148 skb_rbtree_purge(&tp
->out_of_order_queue
);
4149 if (tcp_is_sack(tp
))
4150 tcp_sack_reset(&tp
->rx_opt
);
4153 if (!sock_flag(sk
, SOCK_DEAD
)) {
4154 sk
->sk_state_change(sk
);
4156 /* Do not send POLL_HUP for half duplex close. */
4157 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4158 sk
->sk_state
== TCP_CLOSE
)
4159 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4161 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4165 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4168 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4169 if (before(seq
, sp
->start_seq
))
4170 sp
->start_seq
= seq
;
4171 if (after(end_seq
, sp
->end_seq
))
4172 sp
->end_seq
= end_seq
;
4178 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4180 struct tcp_sock
*tp
= tcp_sk(sk
);
4182 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4185 if (before(seq
, tp
->rcv_nxt
))
4186 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4188 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4190 NET_INC_STATS(sock_net(sk
), mib_idx
);
4192 tp
->rx_opt
.dsack
= 1;
4193 tp
->duplicate_sack
[0].start_seq
= seq
;
4194 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4198 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4200 struct tcp_sock
*tp
= tcp_sk(sk
);
4202 if (!tp
->rx_opt
.dsack
)
4203 tcp_dsack_set(sk
, seq
, end_seq
);
4205 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4208 static void tcp_rcv_spurious_retrans(struct sock
*sk
, const struct sk_buff
*skb
)
4210 /* When the ACK path fails or drops most ACKs, the sender would
4211 * timeout and spuriously retransmit the same segment repeatedly.
4212 * The receiver remembers and reflects via DSACKs. Leverage the
4213 * DSACK state and change the txhash to re-route speculatively.
4215 if (TCP_SKB_CB(skb
)->seq
== tcp_sk(sk
)->duplicate_sack
[0].start_seq
)
4216 sk_rethink_txhash(sk
);
4219 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4221 struct tcp_sock
*tp
= tcp_sk(sk
);
4223 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4224 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4225 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4226 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4228 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4229 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4231 tcp_rcv_spurious_retrans(sk
, skb
);
4232 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4233 end_seq
= tp
->rcv_nxt
;
4234 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4241 /* These routines update the SACK block as out-of-order packets arrive or
4242 * in-order packets close up the sequence space.
4244 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4247 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4248 struct tcp_sack_block
*swalk
= sp
+ 1;
4250 /* See if the recent change to the first SACK eats into
4251 * or hits the sequence space of other SACK blocks, if so coalesce.
4253 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4254 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4257 /* Zap SWALK, by moving every further SACK up by one slot.
4258 * Decrease num_sacks.
4260 tp
->rx_opt
.num_sacks
--;
4261 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4265 this_sack
++, swalk
++;
4269 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4271 struct tcp_sock
*tp
= tcp_sk(sk
);
4272 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4273 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4279 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4280 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4281 /* Rotate this_sack to the first one. */
4282 for (; this_sack
> 0; this_sack
--, sp
--)
4283 swap(*sp
, *(sp
- 1));
4285 tcp_sack_maybe_coalesce(tp
);
4290 /* Could not find an adjacent existing SACK, build a new one,
4291 * put it at the front, and shift everyone else down. We
4292 * always know there is at least one SACK present already here.
4294 * If the sack array is full, forget about the last one.
4296 if (this_sack
>= TCP_NUM_SACKS
) {
4297 if (tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)
4300 tp
->rx_opt
.num_sacks
--;
4303 for (; this_sack
> 0; this_sack
--, sp
--)
4307 /* Build the new head SACK, and we're done. */
4308 sp
->start_seq
= seq
;
4309 sp
->end_seq
= end_seq
;
4310 tp
->rx_opt
.num_sacks
++;
4313 /* RCV.NXT advances, some SACKs should be eaten. */
4315 static void tcp_sack_remove(struct tcp_sock
*tp
)
4317 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4318 int num_sacks
= tp
->rx_opt
.num_sacks
;
4321 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4322 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4323 tp
->rx_opt
.num_sacks
= 0;
4327 for (this_sack
= 0; this_sack
< num_sacks
;) {
4328 /* Check if the start of the sack is covered by RCV.NXT. */
4329 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4332 /* RCV.NXT must cover all the block! */
4333 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4335 /* Zap this SACK, by moving forward any other SACKS. */
4336 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4337 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4344 tp
->rx_opt
.num_sacks
= num_sacks
;
4348 * tcp_try_coalesce - try to merge skb to prior one
4350 * @dest: destination queue
4352 * @from: buffer to add in queue
4353 * @fragstolen: pointer to boolean
4355 * Before queueing skb @from after @to, try to merge them
4356 * to reduce overall memory use and queue lengths, if cost is small.
4357 * Packets in ofo or receive queues can stay a long time.
4358 * Better try to coalesce them right now to avoid future collapses.
4359 * Returns true if caller should free @from instead of queueing it
4361 static bool tcp_try_coalesce(struct sock
*sk
,
4363 struct sk_buff
*from
,
4368 *fragstolen
= false;
4370 /* Its possible this segment overlaps with prior segment in queue */
4371 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4374 #ifdef CONFIG_TLS_DEVICE
4375 if (from
->decrypted
!= to
->decrypted
)
4379 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4382 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4383 sk_mem_charge(sk
, delta
);
4384 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4385 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4386 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4387 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4389 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4390 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4391 to
->tstamp
= from
->tstamp
;
4392 skb_hwtstamps(to
)->hwtstamp
= skb_hwtstamps(from
)->hwtstamp
;
4398 static bool tcp_ooo_try_coalesce(struct sock
*sk
,
4400 struct sk_buff
*from
,
4403 bool res
= tcp_try_coalesce(sk
, to
, from
, fragstolen
);
4405 /* In case tcp_drop() is called later, update to->gso_segs */
4407 u32 gso_segs
= max_t(u16
, 1, skb_shinfo(to
)->gso_segs
) +
4408 max_t(u16
, 1, skb_shinfo(from
)->gso_segs
);
4410 skb_shinfo(to
)->gso_segs
= min_t(u32
, gso_segs
, 0xFFFF);
4415 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4417 sk_drops_add(sk
, skb
);
4421 /* This one checks to see if we can put data from the
4422 * out_of_order queue into the receive_queue.
4424 static void tcp_ofo_queue(struct sock
*sk
)
4426 struct tcp_sock
*tp
= tcp_sk(sk
);
4427 __u32 dsack_high
= tp
->rcv_nxt
;
4428 bool fin
, fragstolen
, eaten
;
4429 struct sk_buff
*skb
, *tail
;
4432 p
= rb_first(&tp
->out_of_order_queue
);
4435 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4438 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4439 __u32 dsack
= dsack_high
;
4440 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4441 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4442 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4445 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4447 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4452 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4453 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4454 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4455 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4457 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4459 kfree_skb_partial(skb
, fragstolen
);
4461 if (unlikely(fin
)) {
4463 /* tcp_fin() purges tp->out_of_order_queue,
4464 * so we must end this loop right now.
4471 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4472 static int tcp_prune_queue(struct sock
*sk
);
4474 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4477 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4478 !sk_rmem_schedule(sk
, skb
, size
)) {
4480 if (tcp_prune_queue(sk
) < 0)
4483 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4484 if (!tcp_prune_ofo_queue(sk
))
4491 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4493 struct tcp_sock
*tp
= tcp_sk(sk
);
4494 struct rb_node
**p
, *parent
;
4495 struct sk_buff
*skb1
;
4499 tcp_ecn_check_ce(sk
, skb
);
4501 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4502 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4507 /* Disable header prediction. */
4509 inet_csk_schedule_ack(sk
);
4511 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4512 seq
= TCP_SKB_CB(skb
)->seq
;
4513 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4515 p
= &tp
->out_of_order_queue
.rb_node
;
4516 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4517 /* Initial out of order segment, build 1 SACK. */
4518 if (tcp_is_sack(tp
)) {
4519 tp
->rx_opt
.num_sacks
= 1;
4520 tp
->selective_acks
[0].start_seq
= seq
;
4521 tp
->selective_acks
[0].end_seq
= end_seq
;
4523 rb_link_node(&skb
->rbnode
, NULL
, p
);
4524 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4525 tp
->ooo_last_skb
= skb
;
4529 /* In the typical case, we are adding an skb to the end of the list.
4530 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4532 if (tcp_ooo_try_coalesce(sk
, tp
->ooo_last_skb
,
4533 skb
, &fragstolen
)) {
4535 tcp_grow_window(sk
, skb
);
4536 kfree_skb_partial(skb
, fragstolen
);
4540 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4541 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4542 parent
= &tp
->ooo_last_skb
->rbnode
;
4543 p
= &parent
->rb_right
;
4547 /* Find place to insert this segment. Handle overlaps on the way. */
4551 skb1
= rb_to_skb(parent
);
4552 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4553 p
= &parent
->rb_left
;
4556 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4557 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4558 /* All the bits are present. Drop. */
4559 NET_INC_STATS(sock_net(sk
),
4560 LINUX_MIB_TCPOFOMERGE
);
4563 tcp_dsack_set(sk
, seq
, end_seq
);
4566 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4567 /* Partial overlap. */
4568 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4570 /* skb's seq == skb1's seq and skb covers skb1.
4571 * Replace skb1 with skb.
4573 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4574 &tp
->out_of_order_queue
);
4575 tcp_dsack_extend(sk
,
4576 TCP_SKB_CB(skb1
)->seq
,
4577 TCP_SKB_CB(skb1
)->end_seq
);
4578 NET_INC_STATS(sock_net(sk
),
4579 LINUX_MIB_TCPOFOMERGE
);
4583 } else if (tcp_ooo_try_coalesce(sk
, skb1
,
4584 skb
, &fragstolen
)) {
4587 p
= &parent
->rb_right
;
4590 /* Insert segment into RB tree. */
4591 rb_link_node(&skb
->rbnode
, parent
, p
);
4592 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4595 /* Remove other segments covered by skb. */
4596 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
4597 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4599 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4600 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4604 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4605 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4606 TCP_SKB_CB(skb1
)->end_seq
);
4607 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4610 /* If there is no skb after us, we are the last_skb ! */
4612 tp
->ooo_last_skb
= skb
;
4615 if (tcp_is_sack(tp
))
4616 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4619 tcp_grow_window(sk
, skb
);
4621 skb_set_owner_r(skb
, sk
);
4625 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
,
4629 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4632 tcp_try_coalesce(sk
, tail
,
4633 skb
, fragstolen
)) ? 1 : 0;
4634 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4636 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4637 skb_set_owner_r(skb
, sk
);
4642 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4644 struct sk_buff
*skb
;
4652 if (size
> PAGE_SIZE
) {
4653 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4655 data_len
= npages
<< PAGE_SHIFT
;
4656 size
= data_len
+ (size
& ~PAGE_MASK
);
4658 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4659 PAGE_ALLOC_COSTLY_ORDER
,
4660 &err
, sk
->sk_allocation
);
4664 skb_put(skb
, size
- data_len
);
4665 skb
->data_len
= data_len
;
4668 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4669 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4673 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4677 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4678 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4679 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4681 if (tcp_queue_rcv(sk
, skb
, &fragstolen
)) {
4682 WARN_ON_ONCE(fragstolen
); /* should not happen */
4694 void tcp_data_ready(struct sock
*sk
)
4696 const struct tcp_sock
*tp
= tcp_sk(sk
);
4697 int avail
= tp
->rcv_nxt
- tp
->copied_seq
;
4699 if (avail
< sk
->sk_rcvlowat
&& !sock_flag(sk
, SOCK_DONE
))
4702 sk
->sk_data_ready(sk
);
4705 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4707 struct tcp_sock
*tp
= tcp_sk(sk
);
4711 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4716 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4718 tcp_ecn_accept_cwr(sk
, skb
);
4720 tp
->rx_opt
.dsack
= 0;
4722 /* Queue data for delivery to the user.
4723 * Packets in sequence go to the receive queue.
4724 * Out of sequence packets to the out_of_order_queue.
4726 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4727 if (tcp_receive_window(tp
) == 0) {
4728 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
4732 /* Ok. In sequence. In window. */
4734 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4735 sk_forced_mem_schedule(sk
, skb
->truesize
);
4736 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4737 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4741 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
4743 tcp_event_data_recv(sk
, skb
);
4744 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4747 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4750 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4751 * gap in queue is filled.
4753 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4754 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
4757 if (tp
->rx_opt
.num_sacks
)
4758 tcp_sack_remove(tp
);
4760 tcp_fast_path_check(sk
);
4763 kfree_skb_partial(skb
, fragstolen
);
4764 if (!sock_flag(sk
, SOCK_DEAD
))
4769 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4770 tcp_rcv_spurious_retrans(sk
, skb
);
4771 /* A retransmit, 2nd most common case. Force an immediate ack. */
4772 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4773 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4776 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4777 inet_csk_schedule_ack(sk
);
4783 /* Out of window. F.e. zero window probe. */
4784 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4787 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4788 /* Partial packet, seq < rcv_next < end_seq */
4789 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4791 /* If window is closed, drop tail of packet. But after
4792 * remembering D-SACK for its head made in previous line.
4794 if (!tcp_receive_window(tp
)) {
4795 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
4801 tcp_data_queue_ofo(sk
, skb
);
4804 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4807 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4809 return skb_rb_next(skb
);
4812 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4813 struct sk_buff_head
*list
,
4814 struct rb_root
*root
)
4816 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4819 __skb_unlink(skb
, list
);
4821 rb_erase(&skb
->rbnode
, root
);
4824 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4829 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4830 void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4832 struct rb_node
**p
= &root
->rb_node
;
4833 struct rb_node
*parent
= NULL
;
4834 struct sk_buff
*skb1
;
4838 skb1
= rb_to_skb(parent
);
4839 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4840 p
= &parent
->rb_left
;
4842 p
= &parent
->rb_right
;
4844 rb_link_node(&skb
->rbnode
, parent
, p
);
4845 rb_insert_color(&skb
->rbnode
, root
);
4848 /* Collapse contiguous sequence of skbs head..tail with
4849 * sequence numbers start..end.
4851 * If tail is NULL, this means until the end of the queue.
4853 * Segments with FIN/SYN are not collapsed (only because this
4857 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4858 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4860 struct sk_buff
*skb
= head
, *n
;
4861 struct sk_buff_head tmp
;
4864 /* First, check that queue is collapsible and find
4865 * the point where collapsing can be useful.
4868 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4869 n
= tcp_skb_next(skb
, list
);
4871 /* No new bits? It is possible on ofo queue. */
4872 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4873 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4879 /* The first skb to collapse is:
4881 * - bloated or contains data before "start" or
4882 * overlaps to the next one.
4884 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4885 (tcp_win_from_space(sk
, skb
->truesize
) > skb
->len
||
4886 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4887 end_of_skbs
= false;
4891 if (n
&& n
!= tail
&&
4892 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4893 end_of_skbs
= false;
4897 /* Decided to skip this, advance start seq. */
4898 start
= TCP_SKB_CB(skb
)->end_seq
;
4901 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4904 __skb_queue_head_init(&tmp
);
4906 while (before(start
, end
)) {
4907 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4908 struct sk_buff
*nskb
;
4910 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4914 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4915 #ifdef CONFIG_TLS_DEVICE
4916 nskb
->decrypted
= skb
->decrypted
;
4918 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4920 __skb_queue_before(list
, skb
, nskb
);
4922 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4923 skb_set_owner_r(nskb
, sk
);
4925 /* Copy data, releasing collapsed skbs. */
4927 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4928 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4932 size
= min(copy
, size
);
4933 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4935 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4939 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4940 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4943 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4945 #ifdef CONFIG_TLS_DEVICE
4946 if (skb
->decrypted
!= nskb
->decrypted
)
4953 skb_queue_walk_safe(&tmp
, skb
, n
)
4954 tcp_rbtree_insert(root
, skb
);
4957 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4958 * and tcp_collapse() them until all the queue is collapsed.
4960 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4962 struct tcp_sock
*tp
= tcp_sk(sk
);
4963 u32 range_truesize
, sum_tiny
= 0;
4964 struct sk_buff
*skb
, *head
;
4967 skb
= skb_rb_first(&tp
->out_of_order_queue
);
4970 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
4973 start
= TCP_SKB_CB(skb
)->seq
;
4974 end
= TCP_SKB_CB(skb
)->end_seq
;
4975 range_truesize
= skb
->truesize
;
4977 for (head
= skb
;;) {
4978 skb
= skb_rb_next(skb
);
4980 /* Range is terminated when we see a gap or when
4981 * we are at the queue end.
4984 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4985 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4986 /* Do not attempt collapsing tiny skbs */
4987 if (range_truesize
!= head
->truesize
||
4988 end
- start
>= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM
)) {
4989 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4990 head
, skb
, start
, end
);
4992 sum_tiny
+= range_truesize
;
4993 if (sum_tiny
> sk
->sk_rcvbuf
>> 3)
4999 range_truesize
+= skb
->truesize
;
5000 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
5001 start
= TCP_SKB_CB(skb
)->seq
;
5002 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
5003 end
= TCP_SKB_CB(skb
)->end_seq
;
5008 * Clean the out-of-order queue to make room.
5009 * We drop high sequences packets to :
5010 * 1) Let a chance for holes to be filled.
5011 * 2) not add too big latencies if thousands of packets sit there.
5012 * (But if application shrinks SO_RCVBUF, we could still end up
5013 * freeing whole queue here)
5014 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5016 * Return true if queue has shrunk.
5018 static bool tcp_prune_ofo_queue(struct sock
*sk
)
5020 struct tcp_sock
*tp
= tcp_sk(sk
);
5021 struct rb_node
*node
, *prev
;
5024 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
5027 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
5028 goal
= sk
->sk_rcvbuf
>> 3;
5029 node
= &tp
->ooo_last_skb
->rbnode
;
5031 prev
= rb_prev(node
);
5032 rb_erase(node
, &tp
->out_of_order_queue
);
5033 goal
-= rb_to_skb(node
)->truesize
;
5034 tcp_drop(sk
, rb_to_skb(node
));
5035 if (!prev
|| goal
<= 0) {
5037 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
5038 !tcp_under_memory_pressure(sk
))
5040 goal
= sk
->sk_rcvbuf
>> 3;
5044 tp
->ooo_last_skb
= rb_to_skb(prev
);
5046 /* Reset SACK state. A conforming SACK implementation will
5047 * do the same at a timeout based retransmit. When a connection
5048 * is in a sad state like this, we care only about integrity
5049 * of the connection not performance.
5051 if (tp
->rx_opt
.sack_ok
)
5052 tcp_sack_reset(&tp
->rx_opt
);
5056 /* Reduce allocated memory if we can, trying to get
5057 * the socket within its memory limits again.
5059 * Return less than zero if we should start dropping frames
5060 * until the socket owning process reads some of the data
5061 * to stabilize the situation.
5063 static int tcp_prune_queue(struct sock
*sk
)
5065 struct tcp_sock
*tp
= tcp_sk(sk
);
5067 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
5069 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
5070 tcp_clamp_window(sk
);
5071 else if (tcp_under_memory_pressure(sk
))
5072 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
5074 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5077 tcp_collapse_ofo_queue(sk
);
5078 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5079 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5080 skb_peek(&sk
->sk_receive_queue
),
5082 tp
->copied_seq
, tp
->rcv_nxt
);
5085 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5088 /* Collapsing did not help, destructive actions follow.
5089 * This must not ever occur. */
5091 tcp_prune_ofo_queue(sk
);
5093 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5096 /* If we are really being abused, tell the caller to silently
5097 * drop receive data on the floor. It will get retransmitted
5098 * and hopefully then we'll have sufficient space.
5100 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5102 /* Massive buffer overcommit. */
5107 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
5109 const struct tcp_sock
*tp
= tcp_sk(sk
);
5111 /* If the user specified a specific send buffer setting, do
5114 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5117 /* If we are under global TCP memory pressure, do not expand. */
5118 if (tcp_under_memory_pressure(sk
))
5121 /* If we are under soft global TCP memory pressure, do not expand. */
5122 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5125 /* If we filled the congestion window, do not expand. */
5126 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5132 /* When incoming ACK allowed to free some skb from write_queue,
5133 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5134 * on the exit from tcp input handler.
5136 * PROBLEM: sndbuf expansion does not work well with largesend.
5138 static void tcp_new_space(struct sock
*sk
)
5140 struct tcp_sock
*tp
= tcp_sk(sk
);
5142 if (tcp_should_expand_sndbuf(sk
)) {
5143 tcp_sndbuf_expand(sk
);
5144 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5147 sk
->sk_write_space(sk
);
5150 static void tcp_check_space(struct sock
*sk
)
5152 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5153 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5154 /* pairs with tcp_poll() */
5156 if (sk
->sk_socket
&&
5157 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5159 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5160 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5165 static inline void tcp_data_snd_check(struct sock
*sk
)
5167 tcp_push_pending_frames(sk
);
5168 tcp_check_space(sk
);
5172 * Check if sending an ack is needed.
5174 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5176 struct tcp_sock
*tp
= tcp_sk(sk
);
5177 unsigned long rtt
, delay
;
5179 /* More than one full frame received... */
5180 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5181 /* ... and right edge of window advances far enough.
5182 * (tcp_recvmsg() will send ACK otherwise).
5183 * If application uses SO_RCVLOWAT, we want send ack now if
5184 * we have not received enough bytes to satisfy the condition.
5186 (tp
->rcv_nxt
- tp
->copied_seq
< sk
->sk_rcvlowat
||
5187 __tcp_select_window(sk
) >= tp
->rcv_wnd
)) ||
5188 /* We ACK each frame or... */
5189 tcp_in_quickack_mode(sk
) ||
5190 /* Protocol state mandates a one-time immediate ACK */
5191 inet_csk(sk
)->icsk_ack
.pending
& ICSK_ACK_NOW
) {
5197 if (!ofo_possible
|| RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
5198 tcp_send_delayed_ack(sk
);
5202 if (!tcp_is_sack(tp
) ||
5203 tp
->compressed_ack
>= sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_nr
)
5206 if (tp
->compressed_ack_rcv_nxt
!= tp
->rcv_nxt
) {
5207 tp
->compressed_ack_rcv_nxt
= tp
->rcv_nxt
;
5208 if (tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)
5209 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
5210 tp
->compressed_ack
- TCP_FASTRETRANS_THRESH
);
5211 tp
->compressed_ack
= 0;
5214 if (++tp
->compressed_ack
<= TCP_FASTRETRANS_THRESH
)
5217 if (hrtimer_is_queued(&tp
->compressed_ack_timer
))
5220 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5222 rtt
= tp
->rcv_rtt_est
.rtt_us
;
5223 if (tp
->srtt_us
&& tp
->srtt_us
< rtt
)
5226 delay
= min_t(unsigned long, sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_delay_ns
,
5227 rtt
* (NSEC_PER_USEC
>> 3)/20);
5229 hrtimer_start(&tp
->compressed_ack_timer
, ns_to_ktime(delay
),
5230 HRTIMER_MODE_REL_PINNED_SOFT
);
5233 static inline void tcp_ack_snd_check(struct sock
*sk
)
5235 if (!inet_csk_ack_scheduled(sk
)) {
5236 /* We sent a data segment already. */
5239 __tcp_ack_snd_check(sk
, 1);
5243 * This routine is only called when we have urgent data
5244 * signaled. Its the 'slow' part of tcp_urg. It could be
5245 * moved inline now as tcp_urg is only called from one
5246 * place. We handle URGent data wrong. We have to - as
5247 * BSD still doesn't use the correction from RFC961.
5248 * For 1003.1g we should support a new option TCP_STDURG to permit
5249 * either form (or just set the sysctl tcp_stdurg).
5252 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5254 struct tcp_sock
*tp
= tcp_sk(sk
);
5255 u32 ptr
= ntohs(th
->urg_ptr
);
5257 if (ptr
&& !sock_net(sk
)->ipv4
.sysctl_tcp_stdurg
)
5259 ptr
+= ntohl(th
->seq
);
5261 /* Ignore urgent data that we've already seen and read. */
5262 if (after(tp
->copied_seq
, ptr
))
5265 /* Do not replay urg ptr.
5267 * NOTE: interesting situation not covered by specs.
5268 * Misbehaving sender may send urg ptr, pointing to segment,
5269 * which we already have in ofo queue. We are not able to fetch
5270 * such data and will stay in TCP_URG_NOTYET until will be eaten
5271 * by recvmsg(). Seems, we are not obliged to handle such wicked
5272 * situations. But it is worth to think about possibility of some
5273 * DoSes using some hypothetical application level deadlock.
5275 if (before(ptr
, tp
->rcv_nxt
))
5278 /* Do we already have a newer (or duplicate) urgent pointer? */
5279 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5282 /* Tell the world about our new urgent pointer. */
5285 /* We may be adding urgent data when the last byte read was
5286 * urgent. To do this requires some care. We cannot just ignore
5287 * tp->copied_seq since we would read the last urgent byte again
5288 * as data, nor can we alter copied_seq until this data arrives
5289 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5291 * NOTE. Double Dutch. Rendering to plain English: author of comment
5292 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5293 * and expect that both A and B disappear from stream. This is _wrong_.
5294 * Though this happens in BSD with high probability, this is occasional.
5295 * Any application relying on this is buggy. Note also, that fix "works"
5296 * only in this artificial test. Insert some normal data between A and B and we will
5297 * decline of BSD again. Verdict: it is better to remove to trap
5300 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5301 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5302 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5304 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5305 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5310 tp
->urg_data
= TCP_URG_NOTYET
;
5313 /* Disable header prediction. */
5317 /* This is the 'fast' part of urgent handling. */
5318 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5320 struct tcp_sock
*tp
= tcp_sk(sk
);
5322 /* Check if we get a new urgent pointer - normally not. */
5324 tcp_check_urg(sk
, th
);
5326 /* Do we wait for any urgent data? - normally not... */
5327 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5328 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5331 /* Is the urgent pointer pointing into this packet? */
5332 if (ptr
< skb
->len
) {
5334 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5336 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5337 if (!sock_flag(sk
, SOCK_DEAD
))
5338 sk
->sk_data_ready(sk
);
5343 /* Accept RST for rcv_nxt - 1 after a FIN.
5344 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5345 * FIN is sent followed by a RST packet. The RST is sent with the same
5346 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5347 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5348 * ACKs on the closed socket. In addition middleboxes can drop either the
5349 * challenge ACK or a subsequent RST.
5351 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5353 struct tcp_sock
*tp
= tcp_sk(sk
);
5355 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5356 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5360 /* Does PAWS and seqno based validation of an incoming segment, flags will
5361 * play significant role here.
5363 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5364 const struct tcphdr
*th
, int syn_inerr
)
5366 struct tcp_sock
*tp
= tcp_sk(sk
);
5367 bool rst_seq_match
= false;
5369 /* RFC1323: H1. Apply PAWS check first. */
5370 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5371 tp
->rx_opt
.saw_tstamp
&&
5372 tcp_paws_discard(sk
, skb
)) {
5374 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5375 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5376 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5377 &tp
->last_oow_ack_time
))
5378 tcp_send_dupack(sk
, skb
);
5381 /* Reset is accepted even if it did not pass PAWS. */
5384 /* Step 1: check sequence number */
5385 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5386 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5387 * (RST) segments are validated by checking their SEQ-fields."
5388 * And page 69: "If an incoming segment is not acceptable,
5389 * an acknowledgment should be sent in reply (unless the RST
5390 * bit is set, if so drop the segment and return)".
5395 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5396 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5397 &tp
->last_oow_ack_time
))
5398 tcp_send_dupack(sk
, skb
);
5399 } else if (tcp_reset_check(sk
, skb
)) {
5405 /* Step 2: check RST bit */
5407 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5408 * FIN and SACK too if available):
5409 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5410 * the right-most SACK block,
5412 * RESET the connection
5414 * Send a challenge ACK
5416 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5417 tcp_reset_check(sk
, skb
)) {
5418 rst_seq_match
= true;
5419 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5420 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5421 int max_sack
= sp
[0].end_seq
;
5424 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5426 max_sack
= after(sp
[this_sack
].end_seq
,
5428 sp
[this_sack
].end_seq
: max_sack
;
5431 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5432 rst_seq_match
= true;
5438 /* Disable TFO if RST is out-of-order
5439 * and no data has been received
5440 * for current active TFO socket
5442 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5443 sk
->sk_state
== TCP_ESTABLISHED
)
5444 tcp_fastopen_active_disable(sk
);
5445 tcp_send_challenge_ack(sk
, skb
);
5450 /* step 3: check security and precedence [ignored] */
5452 /* step 4: Check for a SYN
5453 * RFC 5961 4.2 : Send a challenge ack
5458 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5459 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5460 tcp_send_challenge_ack(sk
, skb
);
5472 * TCP receive function for the ESTABLISHED state.
5474 * It is split into a fast path and a slow path. The fast path is
5476 * - A zero window was announced from us - zero window probing
5477 * is only handled properly in the slow path.
5478 * - Out of order segments arrived.
5479 * - Urgent data is expected.
5480 * - There is no buffer space left
5481 * - Unexpected TCP flags/window values/header lengths are received
5482 * (detected by checking the TCP header against pred_flags)
5483 * - Data is sent in both directions. Fast path only supports pure senders
5484 * or pure receivers (this means either the sequence number or the ack
5485 * value must stay constant)
5486 * - Unexpected TCP option.
5488 * When these conditions are not satisfied it drops into a standard
5489 * receive procedure patterned after RFC793 to handle all cases.
5490 * The first three cases are guaranteed by proper pred_flags setting,
5491 * the rest is checked inline. Fast processing is turned on in
5492 * tcp_data_queue when everything is OK.
5494 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
)
5496 const struct tcphdr
*th
= (const struct tcphdr
*)skb
->data
;
5497 struct tcp_sock
*tp
= tcp_sk(sk
);
5498 unsigned int len
= skb
->len
;
5500 /* TCP congestion window tracking */
5501 trace_tcp_probe(sk
, skb
);
5503 tcp_mstamp_refresh(tp
);
5504 if (unlikely(!sk
->sk_rx_dst
))
5505 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5507 * Header prediction.
5508 * The code loosely follows the one in the famous
5509 * "30 instruction TCP receive" Van Jacobson mail.
5511 * Van's trick is to deposit buffers into socket queue
5512 * on a device interrupt, to call tcp_recv function
5513 * on the receive process context and checksum and copy
5514 * the buffer to user space. smart...
5516 * Our current scheme is not silly either but we take the
5517 * extra cost of the net_bh soft interrupt processing...
5518 * We do checksum and copy also but from device to kernel.
5521 tp
->rx_opt
.saw_tstamp
= 0;
5523 /* pred_flags is 0xS?10 << 16 + snd_wnd
5524 * if header_prediction is to be made
5525 * 'S' will always be tp->tcp_header_len >> 2
5526 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5527 * turn it off (when there are holes in the receive
5528 * space for instance)
5529 * PSH flag is ignored.
5532 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5533 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5534 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5535 int tcp_header_len
= tp
->tcp_header_len
;
5537 /* Timestamp header prediction: tcp_header_len
5538 * is automatically equal to th->doff*4 due to pred_flags
5542 /* Check timestamp */
5543 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5544 /* No? Slow path! */
5545 if (!tcp_parse_aligned_timestamp(tp
, th
))
5548 /* If PAWS failed, check it more carefully in slow path */
5549 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5552 /* DO NOT update ts_recent here, if checksum fails
5553 * and timestamp was corrupted part, it will result
5554 * in a hung connection since we will drop all
5555 * future packets due to the PAWS test.
5559 if (len
<= tcp_header_len
) {
5560 /* Bulk data transfer: sender */
5561 if (len
== tcp_header_len
) {
5562 /* Predicted packet is in window by definition.
5563 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5564 * Hence, check seq<=rcv_wup reduces to:
5566 if (tcp_header_len
==
5567 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5568 tp
->rcv_nxt
== tp
->rcv_wup
)
5569 tcp_store_ts_recent(tp
);
5571 /* We know that such packets are checksummed
5574 tcp_ack(sk
, skb
, 0);
5576 tcp_data_snd_check(sk
);
5577 /* When receiving pure ack in fast path, update
5578 * last ts ecr directly instead of calling
5579 * tcp_rcv_rtt_measure_ts()
5581 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
5583 } else { /* Header too small */
5584 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5589 bool fragstolen
= false;
5591 if (tcp_checksum_complete(skb
))
5594 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5597 /* Predicted packet is in window by definition.
5598 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5599 * Hence, check seq<=rcv_wup reduces to:
5601 if (tcp_header_len
==
5602 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5603 tp
->rcv_nxt
== tp
->rcv_wup
)
5604 tcp_store_ts_recent(tp
);
5606 tcp_rcv_rtt_measure_ts(sk
, skb
);
5608 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5610 /* Bulk data transfer: receiver */
5611 __skb_pull(skb
, tcp_header_len
);
5612 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
5614 tcp_event_data_recv(sk
, skb
);
5616 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5617 /* Well, only one small jumplet in fast path... */
5618 tcp_ack(sk
, skb
, FLAG_DATA
);
5619 tcp_data_snd_check(sk
);
5620 if (!inet_csk_ack_scheduled(sk
))
5624 __tcp_ack_snd_check(sk
, 0);
5627 kfree_skb_partial(skb
, fragstolen
);
5634 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5637 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5641 * Standard slow path.
5644 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5648 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5651 tcp_rcv_rtt_measure_ts(sk
, skb
);
5653 /* Process urgent data. */
5654 tcp_urg(sk
, skb
, th
);
5656 /* step 7: process the segment text */
5657 tcp_data_queue(sk
, skb
);
5659 tcp_data_snd_check(sk
);
5660 tcp_ack_snd_check(sk
);
5664 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5665 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5670 EXPORT_SYMBOL(tcp_rcv_established
);
5672 void tcp_init_transfer(struct sock
*sk
, int bpf_op
)
5674 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5675 struct tcp_sock
*tp
= tcp_sk(sk
);
5678 icsk
->icsk_af_ops
->rebuild_header(sk
);
5679 tcp_init_metrics(sk
);
5681 /* Initialize the congestion window to start the transfer.
5682 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5683 * retransmitted. In light of RFC6298 more aggressive 1sec
5684 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5685 * retransmission has occurred.
5687 if (tp
->total_retrans
> 1 && tp
->undo_marker
)
5690 tp
->snd_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
5691 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5693 tcp_call_bpf(sk
, bpf_op
, 0, NULL
);
5694 tcp_init_congestion_control(sk
);
5695 tcp_init_buffer_space(sk
);
5698 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5700 struct tcp_sock
*tp
= tcp_sk(sk
);
5701 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5703 tcp_set_state(sk
, TCP_ESTABLISHED
);
5704 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
5707 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5708 security_inet_conn_established(sk
, skb
);
5709 sk_mark_napi_id(sk
, skb
);
5712 tcp_init_transfer(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
);
5714 /* Prevent spurious tcp_cwnd_restart() on first data
5717 tp
->lsndtime
= tcp_jiffies32
;
5719 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5720 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5722 if (!tp
->rx_opt
.snd_wscale
)
5723 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5728 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5729 struct tcp_fastopen_cookie
*cookie
)
5731 struct tcp_sock
*tp
= tcp_sk(sk
);
5732 struct sk_buff
*data
= tp
->syn_data
? tcp_rtx_queue_head(sk
) : NULL
;
5733 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5734 bool syn_drop
= false;
5736 if (mss
== tp
->rx_opt
.user_mss
) {
5737 struct tcp_options_received opt
;
5739 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5740 tcp_clear_options(&opt
);
5741 opt
.user_mss
= opt
.mss_clamp
= 0;
5742 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
5743 mss
= opt
.mss_clamp
;
5746 if (!tp
->syn_fastopen
) {
5747 /* Ignore an unsolicited cookie */
5749 } else if (tp
->total_retrans
) {
5750 /* SYN timed out and the SYN-ACK neither has a cookie nor
5751 * acknowledges data. Presumably the remote received only
5752 * the retransmitted (regular) SYNs: either the original
5753 * SYN-data or the corresponding SYN-ACK was dropped.
5755 syn_drop
= (cookie
->len
< 0 && data
);
5756 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5757 /* We requested a cookie but didn't get it. If we did not use
5758 * the (old) exp opt format then try so next time (try_exp=1).
5759 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5761 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5764 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5766 if (data
) { /* Retransmit unacked data in SYN */
5767 skb_rbtree_walk_from(data
) {
5768 if (__tcp_retransmit_skb(sk
, data
, 1))
5772 NET_INC_STATS(sock_net(sk
),
5773 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5776 tp
->syn_data_acked
= tp
->syn_data
;
5777 if (tp
->syn_data_acked
) {
5778 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
5779 /* SYN-data is counted as two separate packets in tcp_ack() */
5780 if (tp
->delivered
> 1)
5784 tcp_fastopen_add_skb(sk
, synack
);
5789 static void smc_check_reset_syn(struct tcp_sock
*tp
)
5791 #if IS_ENABLED(CONFIG_SMC)
5792 if (static_branch_unlikely(&tcp_have_smc
)) {
5793 if (tp
->syn_smc
&& !tp
->rx_opt
.smc_ok
)
5799 static void tcp_try_undo_spurious_syn(struct sock
*sk
)
5801 struct tcp_sock
*tp
= tcp_sk(sk
);
5804 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5805 * spurious if the ACK's timestamp option echo value matches the
5806 * original SYN timestamp.
5808 syn_stamp
= tp
->retrans_stamp
;
5809 if (tp
->undo_marker
&& syn_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5810 syn_stamp
== tp
->rx_opt
.rcv_tsecr
)
5811 tp
->undo_marker
= 0;
5814 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5815 const struct tcphdr
*th
)
5817 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5818 struct tcp_sock
*tp
= tcp_sk(sk
);
5819 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5820 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5823 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
5824 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5825 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5829 * "If the state is SYN-SENT then
5830 * first check the ACK bit
5831 * If the ACK bit is set
5832 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5833 * a reset (unless the RST bit is set, if so drop
5834 * the segment and return)"
5836 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5837 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5838 goto reset_and_undo
;
5840 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5841 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5842 tcp_time_stamp(tp
))) {
5843 NET_INC_STATS(sock_net(sk
),
5844 LINUX_MIB_PAWSACTIVEREJECTED
);
5845 goto reset_and_undo
;
5848 /* Now ACK is acceptable.
5850 * "If the RST bit is set
5851 * If the ACK was acceptable then signal the user "error:
5852 * connection reset", drop the segment, enter CLOSED state,
5853 * delete TCB, and return."
5862 * "fifth, if neither of the SYN or RST bits is set then
5863 * drop the segment and return."
5869 goto discard_and_undo
;
5872 * "If the SYN bit is on ...
5873 * are acceptable then ...
5874 * (our SYN has been ACKed), change the connection
5875 * state to ESTABLISHED..."
5878 tcp_ecn_rcv_synack(tp
, th
);
5880 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5881 tcp_try_undo_spurious_syn(sk
);
5882 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5884 /* Ok.. it's good. Set up sequence numbers and
5885 * move to established.
5887 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5888 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5890 /* RFC1323: The window in SYN & SYN/ACK segments is
5893 tp
->snd_wnd
= ntohs(th
->window
);
5895 if (!tp
->rx_opt
.wscale_ok
) {
5896 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5897 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5900 if (tp
->rx_opt
.saw_tstamp
) {
5901 tp
->rx_opt
.tstamp_ok
= 1;
5902 tp
->tcp_header_len
=
5903 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5904 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5905 tcp_store_ts_recent(tp
);
5907 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5910 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5911 tcp_initialize_rcv_mss(sk
);
5913 /* Remember, tcp_poll() does not lock socket!
5914 * Change state from SYN-SENT only after copied_seq
5915 * is initialized. */
5916 tp
->copied_seq
= tp
->rcv_nxt
;
5918 smc_check_reset_syn(tp
);
5922 tcp_finish_connect(sk
, skb
);
5924 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
5925 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
5927 if (!sock_flag(sk
, SOCK_DEAD
)) {
5928 sk
->sk_state_change(sk
);
5929 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5933 if (sk
->sk_write_pending
||
5934 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5935 inet_csk_in_pingpong_mode(sk
)) {
5936 /* Save one ACK. Data will be ready after
5937 * several ticks, if write_pending is set.
5939 * It may be deleted, but with this feature tcpdumps
5940 * look so _wonderfully_ clever, that I was not able
5941 * to stand against the temptation 8) --ANK
5943 inet_csk_schedule_ack(sk
);
5944 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
5945 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5946 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5957 /* No ACK in the segment */
5961 * "If the RST bit is set
5963 * Otherwise (no ACK) drop the segment and return."
5966 goto discard_and_undo
;
5970 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5971 tcp_paws_reject(&tp
->rx_opt
, 0))
5972 goto discard_and_undo
;
5975 /* We see SYN without ACK. It is attempt of
5976 * simultaneous connect with crossed SYNs.
5977 * Particularly, it can be connect to self.
5979 tcp_set_state(sk
, TCP_SYN_RECV
);
5981 if (tp
->rx_opt
.saw_tstamp
) {
5982 tp
->rx_opt
.tstamp_ok
= 1;
5983 tcp_store_ts_recent(tp
);
5984 tp
->tcp_header_len
=
5985 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5987 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5990 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5991 tp
->copied_seq
= tp
->rcv_nxt
;
5992 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5994 /* RFC1323: The window in SYN & SYN/ACK segments is
5997 tp
->snd_wnd
= ntohs(th
->window
);
5998 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5999 tp
->max_window
= tp
->snd_wnd
;
6001 tcp_ecn_rcv_syn(tp
, th
);
6004 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
6005 tcp_initialize_rcv_mss(sk
);
6007 tcp_send_synack(sk
);
6009 /* Note, we could accept data and URG from this segment.
6010 * There are no obstacles to make this (except that we must
6011 * either change tcp_recvmsg() to prevent it from returning data
6012 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6014 * However, if we ignore data in ACKless segments sometimes,
6015 * we have no reasons to accept it sometimes.
6016 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6017 * is not flawless. So, discard packet for sanity.
6018 * Uncomment this return to process the data.
6025 /* "fifth, if neither of the SYN or RST bits is set then
6026 * drop the segment and return."
6030 tcp_clear_options(&tp
->rx_opt
);
6031 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6035 tcp_clear_options(&tp
->rx_opt
);
6036 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6040 static void tcp_rcv_synrecv_state_fastopen(struct sock
*sk
)
6042 tcp_try_undo_loss(sk
, false);
6044 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6045 tcp_sk(sk
)->retrans_stamp
= 0;
6046 inet_csk(sk
)->icsk_retransmits
= 0;
6048 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6049 * we no longer need req so release it.
6051 reqsk_fastopen_remove(sk
, tcp_sk(sk
)->fastopen_rsk
, false);
6053 /* Re-arm the timer because data may have been sent out.
6054 * This is similar to the regular data transmission case
6055 * when new data has just been ack'ed.
6057 * (TFO) - we could try to be more aggressive and
6058 * retransmitting any data sooner based on when they
6065 * This function implements the receiving procedure of RFC 793 for
6066 * all states except ESTABLISHED and TIME_WAIT.
6067 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6068 * address independent.
6071 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
6073 struct tcp_sock
*tp
= tcp_sk(sk
);
6074 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6075 const struct tcphdr
*th
= tcp_hdr(skb
);
6076 struct request_sock
*req
;
6080 switch (sk
->sk_state
) {
6094 /* It is possible that we process SYN packets from backlog,
6095 * so we need to make sure to disable BH and RCU right there.
6099 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
6111 tp
->rx_opt
.saw_tstamp
= 0;
6112 tcp_mstamp_refresh(tp
);
6113 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
6117 /* Do step6 onward by hand. */
6118 tcp_urg(sk
, skb
, th
);
6120 tcp_data_snd_check(sk
);
6124 tcp_mstamp_refresh(tp
);
6125 tp
->rx_opt
.saw_tstamp
= 0;
6126 req
= tp
->fastopen_rsk
;
6130 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
6131 sk
->sk_state
!= TCP_FIN_WAIT1
);
6133 if (!tcp_check_req(sk
, skb
, req
, true, &req_stolen
))
6137 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
6140 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
6143 /* step 5: check the ACK field */
6144 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
6145 FLAG_UPDATE_TS_RECENT
|
6146 FLAG_NO_CHALLENGE_ACK
) > 0;
6149 if (sk
->sk_state
== TCP_SYN_RECV
)
6150 return 1; /* send one RST */
6151 tcp_send_challenge_ack(sk
, skb
);
6154 switch (sk
->sk_state
) {
6156 tp
->delivered
++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6158 tcp_synack_rtt_meas(sk
, req
);
6161 tcp_rcv_synrecv_state_fastopen(sk
);
6163 tcp_try_undo_spurious_syn(sk
);
6164 tp
->retrans_stamp
= 0;
6165 tcp_init_transfer(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
);
6166 tp
->copied_seq
= tp
->rcv_nxt
;
6169 tcp_set_state(sk
, TCP_ESTABLISHED
);
6170 sk
->sk_state_change(sk
);
6172 /* Note, that this wakeup is only for marginal crossed SYN case.
6173 * Passively open sockets are not waked up, because
6174 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6177 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6179 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6180 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
6181 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6183 if (tp
->rx_opt
.tstamp_ok
)
6184 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6186 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6187 tcp_update_pacing_rate(sk
);
6189 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6190 tp
->lsndtime
= tcp_jiffies32
;
6192 tcp_initialize_rcv_mss(sk
);
6193 tcp_fast_path_on(tp
);
6196 case TCP_FIN_WAIT1
: {
6200 tcp_rcv_synrecv_state_fastopen(sk
);
6202 if (tp
->snd_una
!= tp
->write_seq
)
6205 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6206 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6210 if (!sock_flag(sk
, SOCK_DEAD
)) {
6211 /* Wake up lingering close() */
6212 sk
->sk_state_change(sk
);
6216 if (tp
->linger2
< 0) {
6218 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6221 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6222 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6223 /* Receive out of order FIN after close() */
6224 if (tp
->syn_fastopen
&& th
->fin
)
6225 tcp_fastopen_active_disable(sk
);
6227 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6231 tmo
= tcp_fin_time(sk
);
6232 if (tmo
> TCP_TIMEWAIT_LEN
) {
6233 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6234 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6235 /* Bad case. We could lose such FIN otherwise.
6236 * It is not a big problem, but it looks confusing
6237 * and not so rare event. We still can lose it now,
6238 * if it spins in bh_lock_sock(), but it is really
6241 inet_csk_reset_keepalive_timer(sk
, tmo
);
6243 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6250 if (tp
->snd_una
== tp
->write_seq
) {
6251 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6257 if (tp
->snd_una
== tp
->write_seq
) {
6258 tcp_update_metrics(sk
);
6265 /* step 6: check the URG bit */
6266 tcp_urg(sk
, skb
, th
);
6268 /* step 7: process the segment text */
6269 switch (sk
->sk_state
) {
6270 case TCP_CLOSE_WAIT
:
6273 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6278 /* RFC 793 says to queue data in these states,
6279 * RFC 1122 says we MUST send a reset.
6280 * BSD 4.4 also does reset.
6282 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6283 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6284 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6285 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6291 case TCP_ESTABLISHED
:
6292 tcp_data_queue(sk
, skb
);
6297 /* tcp_data could move socket to TIME-WAIT */
6298 if (sk
->sk_state
!= TCP_CLOSE
) {
6299 tcp_data_snd_check(sk
);
6300 tcp_ack_snd_check(sk
);
6309 EXPORT_SYMBOL(tcp_rcv_state_process
);
6311 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6313 struct inet_request_sock
*ireq
= inet_rsk(req
);
6315 if (family
== AF_INET
)
6316 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6317 &ireq
->ir_rmt_addr
, port
);
6318 #if IS_ENABLED(CONFIG_IPV6)
6319 else if (family
== AF_INET6
)
6320 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6321 &ireq
->ir_v6_rmt_addr
, port
);
6325 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6327 * If we receive a SYN packet with these bits set, it means a
6328 * network is playing bad games with TOS bits. In order to
6329 * avoid possible false congestion notifications, we disable
6330 * TCP ECN negotiation.
6332 * Exception: tcp_ca wants ECN. This is required for DCTCP
6333 * congestion control: Linux DCTCP asserts ECT on all packets,
6334 * including SYN, which is most optimal solution; however,
6335 * others, such as FreeBSD do not.
6337 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6338 * set, indicating the use of a future TCP extension (such as AccECN). See
6339 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6342 static void tcp_ecn_create_request(struct request_sock
*req
,
6343 const struct sk_buff
*skb
,
6344 const struct sock
*listen_sk
,
6345 const struct dst_entry
*dst
)
6347 const struct tcphdr
*th
= tcp_hdr(skb
);
6348 const struct net
*net
= sock_net(listen_sk
);
6349 bool th_ecn
= th
->ece
&& th
->cwr
;
6356 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6357 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6358 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6360 if (((!ect
|| th
->res1
) && ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6361 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
6362 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
6363 inet_rsk(req
)->ecn_ok
= 1;
6366 static void tcp_openreq_init(struct request_sock
*req
,
6367 const struct tcp_options_received
*rx_opt
,
6368 struct sk_buff
*skb
, const struct sock
*sk
)
6370 struct inet_request_sock
*ireq
= inet_rsk(req
);
6372 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6374 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6375 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6376 tcp_rsk(req
)->snt_synack
= 0;
6377 tcp_rsk(req
)->last_oow_ack_time
= 0;
6378 req
->mss
= rx_opt
->mss_clamp
;
6379 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6380 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6381 ireq
->sack_ok
= rx_opt
->sack_ok
;
6382 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6383 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6386 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6387 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6388 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6389 #if IS_ENABLED(CONFIG_SMC)
6390 ireq
->smc_ok
= rx_opt
->smc_ok
;
6394 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6395 struct sock
*sk_listener
,
6396 bool attach_listener
)
6398 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6402 struct inet_request_sock
*ireq
= inet_rsk(req
);
6404 ireq
->ireq_opt
= NULL
;
6405 #if IS_ENABLED(CONFIG_IPV6)
6406 ireq
->pktopts
= NULL
;
6408 atomic64_set(&ireq
->ir_cookie
, 0);
6409 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6410 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6411 ireq
->ireq_family
= sk_listener
->sk_family
;
6416 EXPORT_SYMBOL(inet_reqsk_alloc
);
6419 * Return true if a syncookie should be sent
6421 static bool tcp_syn_flood_action(const struct sock
*sk
,
6422 const struct sk_buff
*skb
,
6425 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6426 const char *msg
= "Dropping request";
6427 bool want_cookie
= false;
6428 struct net
*net
= sock_net(sk
);
6430 #ifdef CONFIG_SYN_COOKIES
6431 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6432 msg
= "Sending cookies";
6434 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6437 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6439 if (!queue
->synflood_warned
&&
6440 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6441 xchg(&queue
->synflood_warned
, 1) == 0)
6442 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6443 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6448 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6449 struct request_sock
*req
,
6450 const struct sk_buff
*skb
)
6452 if (tcp_sk(sk
)->save_syn
) {
6453 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6456 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6459 memcpy(©
[1], skb_network_header(skb
), len
);
6460 req
->saved_syn
= copy
;
6465 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6466 const struct tcp_request_sock_ops
*af_ops
,
6467 struct sock
*sk
, struct sk_buff
*skb
)
6469 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6470 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6471 struct tcp_options_received tmp_opt
;
6472 struct tcp_sock
*tp
= tcp_sk(sk
);
6473 struct net
*net
= sock_net(sk
);
6474 struct sock
*fastopen_sk
= NULL
;
6475 struct request_sock
*req
;
6476 bool want_cookie
= false;
6477 struct dst_entry
*dst
;
6480 /* TW buckets are converted to open requests without
6481 * limitations, they conserve resources and peer is
6482 * evidently real one.
6484 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6485 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6486 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6491 if (sk_acceptq_is_full(sk
)) {
6492 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6496 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6500 tcp_rsk(req
)->af_specific
= af_ops
;
6501 tcp_rsk(req
)->ts_off
= 0;
6503 tcp_clear_options(&tmp_opt
);
6504 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6505 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6506 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
6507 want_cookie
? NULL
: &foc
);
6509 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6510 tcp_clear_options(&tmp_opt
);
6512 if (IS_ENABLED(CONFIG_SMC
) && want_cookie
)
6515 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6516 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6517 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6519 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6520 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6522 af_ops
->init_req(req
, sk
, skb
);
6524 if (security_inet_conn_request(sk
, skb
, req
))
6527 if (tmp_opt
.tstamp_ok
)
6528 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
6530 dst
= af_ops
->route_req(sk
, &fl
, req
);
6534 if (!want_cookie
&& !isn
) {
6535 /* Kill the following clause, if you dislike this way. */
6536 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6537 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6538 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6539 !tcp_peer_is_proven(req
, dst
)) {
6540 /* Without syncookies last quarter of
6541 * backlog is filled with destinations,
6542 * proven to be alive.
6543 * It means that we continue to communicate
6544 * to destinations, already remembered
6545 * to the moment of synflood.
6547 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6549 goto drop_and_release
;
6552 isn
= af_ops
->init_seq(skb
);
6555 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6558 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6559 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6560 if (!tmp_opt
.tstamp_ok
)
6561 inet_rsk(req
)->ecn_ok
= 0;
6564 tcp_rsk(req
)->snt_isn
= isn
;
6565 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6566 tcp_openreq_init_rwin(req
, sk
, dst
);
6567 sk_rx_queue_set(req_to_sk(req
), skb
);
6569 tcp_reqsk_record_syn(sk
, req
, skb
);
6570 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6573 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6574 &foc
, TCP_SYNACK_FASTOPEN
);
6575 /* Add the child socket directly into the accept queue */
6576 if (!inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
)) {
6577 reqsk_fastopen_remove(fastopen_sk
, req
, false);
6578 bh_unlock_sock(fastopen_sk
);
6579 sock_put(fastopen_sk
);
6582 sk
->sk_data_ready(sk
);
6583 bh_unlock_sock(fastopen_sk
);
6584 sock_put(fastopen_sk
);
6586 tcp_rsk(req
)->tfo_listener
= false;
6588 inet_csk_reqsk_queue_hash_add(sk
, req
,
6589 tcp_timeout_init((struct sock
*)req
));
6590 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6591 !want_cookie
? TCP_SYNACK_NORMAL
:
6609 EXPORT_SYMBOL(tcp_conn_request
);