Merge tag 'nfsd-5.2-2' of git://linux-nfs.org/~bfields/linux
[linux-2.6/linux-2.6-arm.git] / net / mac80211 / key.c
blob157ff5f890d2f559a3222f65699658fe27d8e17d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright 2015-2017 Intel Deutschland GmbH
9 */
11 #include <linux/if_ether.h>
12 #include <linux/etherdevice.h>
13 #include <linux/list.h>
14 #include <linux/rcupdate.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/export.h>
18 #include <net/mac80211.h>
19 #include <crypto/algapi.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
24 #include "aes_ccm.h"
25 #include "aes_cmac.h"
26 #include "aes_gmac.h"
27 #include "aes_gcm.h"
30 /**
31 * DOC: Key handling basics
33 * Key handling in mac80211 is done based on per-interface (sub_if_data)
34 * keys and per-station keys. Since each station belongs to an interface,
35 * each station key also belongs to that interface.
37 * Hardware acceleration is done on a best-effort basis for algorithms
38 * that are implemented in software, for each key the hardware is asked
39 * to enable that key for offloading but if it cannot do that the key is
40 * simply kept for software encryption (unless it is for an algorithm
41 * that isn't implemented in software).
42 * There is currently no way of knowing whether a key is handled in SW
43 * or HW except by looking into debugfs.
45 * All key management is internally protected by a mutex. Within all
46 * other parts of mac80211, key references are, just as STA structure
47 * references, protected by RCU. Note, however, that some things are
48 * unprotected, namely the key->sta dereferences within the hardware
49 * acceleration functions. This means that sta_info_destroy() must
50 * remove the key which waits for an RCU grace period.
53 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55 static void assert_key_lock(struct ieee80211_local *local)
57 lockdep_assert_held(&local->key_mtx);
60 static void
61 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 struct ieee80211_sub_if_data *vlan;
65 if (sdata->vif.type != NL80211_IFTYPE_AP)
66 return;
68 /* crypto_tx_tailroom_needed_cnt is protected by this */
69 assert_key_lock(sdata->local);
71 rcu_read_lock();
73 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
74 vlan->crypto_tx_tailroom_needed_cnt += delta;
76 rcu_read_unlock();
79 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
82 * When this count is zero, SKB resizing for allocating tailroom
83 * for IV or MMIC is skipped. But, this check has created two race
84 * cases in xmit path while transiting from zero count to one:
86 * 1. SKB resize was skipped because no key was added but just before
87 * the xmit key is added and SW encryption kicks off.
89 * 2. SKB resize was skipped because all the keys were hw planted but
90 * just before xmit one of the key is deleted and SW encryption kicks
91 * off.
93 * In both the above case SW encryption will find not enough space for
94 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 * Solution has been explained at
97 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
100 assert_key_lock(sdata->local);
102 update_vlan_tailroom_need_count(sdata, 1);
104 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 * Flush all XMIT packets currently using HW encryption or no
107 * encryption at all if the count transition is from 0 -> 1.
109 synchronize_net();
113 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
114 int delta)
116 assert_key_lock(sdata->local);
118 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120 update_vlan_tailroom_need_count(sdata, -delta);
121 sdata->crypto_tx_tailroom_needed_cnt -= delta;
124 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 struct ieee80211_sub_if_data *sdata = key->sdata;
127 struct sta_info *sta;
128 int ret = -EOPNOTSUPP;
130 might_sleep();
132 if (key->flags & KEY_FLAG_TAINTED) {
133 /* If we get here, it's during resume and the key is
134 * tainted so shouldn't be used/programmed any more.
135 * However, its flags may still indicate that it was
136 * programmed into the device (since we're in resume)
137 * so clear that flag now to avoid trying to remove
138 * it again later.
140 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
141 !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
142 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
143 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
144 increment_tailroom_need_count(sdata);
146 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
147 return -EINVAL;
150 if (!key->local->ops->set_key)
151 goto out_unsupported;
153 assert_key_lock(key->local);
155 sta = key->sta;
158 * If this is a per-STA GTK, check if it
159 * is supported; if not, return.
161 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
162 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
163 goto out_unsupported;
165 if (sta && !sta->uploaded)
166 goto out_unsupported;
168 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
170 * The driver doesn't know anything about VLAN interfaces.
171 * Hence, don't send GTKs for VLAN interfaces to the driver.
173 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
174 ret = 1;
175 goto out_unsupported;
179 ret = drv_set_key(key->local, SET_KEY, sdata,
180 sta ? &sta->sta : NULL, &key->conf);
182 if (!ret) {
183 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
185 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
186 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
187 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
188 decrease_tailroom_need_count(sdata, 1);
190 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
191 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
193 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
194 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
196 return 0;
199 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
200 sdata_err(sdata,
201 "failed to set key (%d, %pM) to hardware (%d)\n",
202 key->conf.keyidx,
203 sta ? sta->sta.addr : bcast_addr, ret);
205 out_unsupported:
206 switch (key->conf.cipher) {
207 case WLAN_CIPHER_SUITE_WEP40:
208 case WLAN_CIPHER_SUITE_WEP104:
209 case WLAN_CIPHER_SUITE_TKIP:
210 case WLAN_CIPHER_SUITE_CCMP:
211 case WLAN_CIPHER_SUITE_CCMP_256:
212 case WLAN_CIPHER_SUITE_AES_CMAC:
213 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
214 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
215 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
216 case WLAN_CIPHER_SUITE_GCMP:
217 case WLAN_CIPHER_SUITE_GCMP_256:
218 /* all of these we can do in software - if driver can */
219 if (ret == 1)
220 return 0;
221 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
222 return -EINVAL;
223 return 0;
224 default:
225 return -EINVAL;
229 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
231 struct ieee80211_sub_if_data *sdata;
232 struct sta_info *sta;
233 int ret;
235 might_sleep();
237 if (!key || !key->local->ops->set_key)
238 return;
240 assert_key_lock(key->local);
242 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
243 return;
245 sta = key->sta;
246 sdata = key->sdata;
248 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
249 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
250 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
251 increment_tailroom_need_count(sdata);
253 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
254 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
255 sta ? &sta->sta : NULL, &key->conf);
257 if (ret)
258 sdata_err(sdata,
259 "failed to remove key (%d, %pM) from hardware (%d)\n",
260 key->conf.keyidx,
261 sta ? sta->sta.addr : bcast_addr, ret);
264 int ieee80211_set_tx_key(struct ieee80211_key *key)
266 struct sta_info *sta = key->sta;
267 struct ieee80211_local *local = key->local;
269 assert_key_lock(local);
271 sta->ptk_idx = key->conf.keyidx;
272 ieee80211_check_fast_xmit(sta);
274 return 0;
277 static int ieee80211_hw_key_replace(struct ieee80211_key *old_key,
278 struct ieee80211_key *new_key,
279 bool pairwise)
281 struct ieee80211_sub_if_data *sdata;
282 struct ieee80211_local *local;
283 struct sta_info *sta;
284 int ret;
286 /* Aggregation sessions are OK when running on SW crypto.
287 * A broken remote STA may cause issues not observed with HW
288 * crypto, though.
290 if (!(old_key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
291 return 0;
293 assert_key_lock(old_key->local);
294 sta = old_key->sta;
296 /* Unicast rekey without Extended Key ID needs special handling */
297 if (new_key && sta && pairwise &&
298 rcu_access_pointer(sta->ptk[sta->ptk_idx]) == old_key) {
299 local = old_key->local;
300 sdata = old_key->sdata;
302 /* Stop TX till we are on the new key */
303 old_key->flags |= KEY_FLAG_TAINTED;
304 ieee80211_clear_fast_xmit(sta);
306 /* Aggregation sessions during rekey are complicated due to the
307 * reorder buffer and retransmits. Side step that by blocking
308 * aggregation during rekey and tear down running sessions.
310 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
311 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
312 ieee80211_sta_tear_down_BA_sessions(sta,
313 AGG_STOP_LOCAL_REQUEST);
316 if (!wiphy_ext_feature_isset(local->hw.wiphy,
317 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
318 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
319 sta->sta.addr);
320 /* Flushing the driver queues *may* help prevent
321 * the clear text leaks and freezes.
323 ieee80211_flush_queues(local, sdata, false);
327 ieee80211_key_disable_hw_accel(old_key);
329 if (new_key)
330 ret = ieee80211_key_enable_hw_accel(new_key);
331 else
332 ret = 0;
334 return ret;
337 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
338 int idx, bool uni, bool multi)
340 struct ieee80211_key *key = NULL;
342 assert_key_lock(sdata->local);
344 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
345 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
347 if (uni) {
348 rcu_assign_pointer(sdata->default_unicast_key, key);
349 ieee80211_check_fast_xmit_iface(sdata);
350 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
351 drv_set_default_unicast_key(sdata->local, sdata, idx);
354 if (multi)
355 rcu_assign_pointer(sdata->default_multicast_key, key);
357 ieee80211_debugfs_key_update_default(sdata);
360 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
361 bool uni, bool multi)
363 mutex_lock(&sdata->local->key_mtx);
364 __ieee80211_set_default_key(sdata, idx, uni, multi);
365 mutex_unlock(&sdata->local->key_mtx);
368 static void
369 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
371 struct ieee80211_key *key = NULL;
373 assert_key_lock(sdata->local);
375 if (idx >= NUM_DEFAULT_KEYS &&
376 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
377 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
379 rcu_assign_pointer(sdata->default_mgmt_key, key);
381 ieee80211_debugfs_key_update_default(sdata);
384 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
385 int idx)
387 mutex_lock(&sdata->local->key_mtx);
388 __ieee80211_set_default_mgmt_key(sdata, idx);
389 mutex_unlock(&sdata->local->key_mtx);
393 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
394 struct sta_info *sta,
395 bool pairwise,
396 struct ieee80211_key *old,
397 struct ieee80211_key *new)
399 int idx;
400 int ret;
401 bool defunikey, defmultikey, defmgmtkey;
403 /* caller must provide at least one old/new */
404 if (WARN_ON(!new && !old))
405 return 0;
407 if (new)
408 list_add_tail_rcu(&new->list, &sdata->key_list);
410 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
412 if (old) {
413 idx = old->conf.keyidx;
414 ret = ieee80211_hw_key_replace(old, new, pairwise);
415 } else {
416 /* new must be provided in case old is not */
417 idx = new->conf.keyidx;
418 if (!new->local->wowlan)
419 ret = ieee80211_key_enable_hw_accel(new);
420 else
421 ret = 0;
424 if (ret)
425 return ret;
427 if (sta) {
428 if (pairwise) {
429 rcu_assign_pointer(sta->ptk[idx], new);
430 if (new &&
431 !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) {
432 sta->ptk_idx = idx;
433 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
434 ieee80211_check_fast_xmit(sta);
436 } else {
437 rcu_assign_pointer(sta->gtk[idx], new);
439 /* Only needed for transition from no key -> key.
440 * Still triggers unnecessary when using Extended Key ID
441 * and installing the second key ID the first time.
443 if (new && !old)
444 ieee80211_check_fast_rx(sta);
445 } else {
446 defunikey = old &&
447 old == key_mtx_dereference(sdata->local,
448 sdata->default_unicast_key);
449 defmultikey = old &&
450 old == key_mtx_dereference(sdata->local,
451 sdata->default_multicast_key);
452 defmgmtkey = old &&
453 old == key_mtx_dereference(sdata->local,
454 sdata->default_mgmt_key);
456 if (defunikey && !new)
457 __ieee80211_set_default_key(sdata, -1, true, false);
458 if (defmultikey && !new)
459 __ieee80211_set_default_key(sdata, -1, false, true);
460 if (defmgmtkey && !new)
461 __ieee80211_set_default_mgmt_key(sdata, -1);
463 rcu_assign_pointer(sdata->keys[idx], new);
464 if (defunikey && new)
465 __ieee80211_set_default_key(sdata, new->conf.keyidx,
466 true, false);
467 if (defmultikey && new)
468 __ieee80211_set_default_key(sdata, new->conf.keyidx,
469 false, true);
470 if (defmgmtkey && new)
471 __ieee80211_set_default_mgmt_key(sdata,
472 new->conf.keyidx);
475 if (old)
476 list_del_rcu(&old->list);
478 return 0;
481 struct ieee80211_key *
482 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
483 const u8 *key_data,
484 size_t seq_len, const u8 *seq,
485 const struct ieee80211_cipher_scheme *cs)
487 struct ieee80211_key *key;
488 int i, j, err;
490 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
491 return ERR_PTR(-EINVAL);
493 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
494 if (!key)
495 return ERR_PTR(-ENOMEM);
498 * Default to software encryption; we'll later upload the
499 * key to the hardware if possible.
501 key->conf.flags = 0;
502 key->flags = 0;
504 key->conf.cipher = cipher;
505 key->conf.keyidx = idx;
506 key->conf.keylen = key_len;
507 switch (cipher) {
508 case WLAN_CIPHER_SUITE_WEP40:
509 case WLAN_CIPHER_SUITE_WEP104:
510 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
511 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
512 break;
513 case WLAN_CIPHER_SUITE_TKIP:
514 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
515 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
516 if (seq) {
517 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
518 key->u.tkip.rx[i].iv32 =
519 get_unaligned_le32(&seq[2]);
520 key->u.tkip.rx[i].iv16 =
521 get_unaligned_le16(seq);
524 spin_lock_init(&key->u.tkip.txlock);
525 break;
526 case WLAN_CIPHER_SUITE_CCMP:
527 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
528 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
529 if (seq) {
530 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
531 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
532 key->u.ccmp.rx_pn[i][j] =
533 seq[IEEE80211_CCMP_PN_LEN - j - 1];
536 * Initialize AES key state here as an optimization so that
537 * it does not need to be initialized for every packet.
539 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
540 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
541 if (IS_ERR(key->u.ccmp.tfm)) {
542 err = PTR_ERR(key->u.ccmp.tfm);
543 kfree(key);
544 return ERR_PTR(err);
546 break;
547 case WLAN_CIPHER_SUITE_CCMP_256:
548 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
549 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
550 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
551 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
552 key->u.ccmp.rx_pn[i][j] =
553 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
554 /* Initialize AES key state here as an optimization so that
555 * it does not need to be initialized for every packet.
557 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
558 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
559 if (IS_ERR(key->u.ccmp.tfm)) {
560 err = PTR_ERR(key->u.ccmp.tfm);
561 kfree(key);
562 return ERR_PTR(err);
564 break;
565 case WLAN_CIPHER_SUITE_AES_CMAC:
566 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
567 key->conf.iv_len = 0;
568 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
569 key->conf.icv_len = sizeof(struct ieee80211_mmie);
570 else
571 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
572 if (seq)
573 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
574 key->u.aes_cmac.rx_pn[j] =
575 seq[IEEE80211_CMAC_PN_LEN - j - 1];
577 * Initialize AES key state here as an optimization so that
578 * it does not need to be initialized for every packet.
580 key->u.aes_cmac.tfm =
581 ieee80211_aes_cmac_key_setup(key_data, key_len);
582 if (IS_ERR(key->u.aes_cmac.tfm)) {
583 err = PTR_ERR(key->u.aes_cmac.tfm);
584 kfree(key);
585 return ERR_PTR(err);
587 break;
588 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
589 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
590 key->conf.iv_len = 0;
591 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
592 if (seq)
593 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
594 key->u.aes_gmac.rx_pn[j] =
595 seq[IEEE80211_GMAC_PN_LEN - j - 1];
596 /* Initialize AES key state here as an optimization so that
597 * it does not need to be initialized for every packet.
599 key->u.aes_gmac.tfm =
600 ieee80211_aes_gmac_key_setup(key_data, key_len);
601 if (IS_ERR(key->u.aes_gmac.tfm)) {
602 err = PTR_ERR(key->u.aes_gmac.tfm);
603 kfree(key);
604 return ERR_PTR(err);
606 break;
607 case WLAN_CIPHER_SUITE_GCMP:
608 case WLAN_CIPHER_SUITE_GCMP_256:
609 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
610 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
611 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
612 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
613 key->u.gcmp.rx_pn[i][j] =
614 seq[IEEE80211_GCMP_PN_LEN - j - 1];
615 /* Initialize AES key state here as an optimization so that
616 * it does not need to be initialized for every packet.
618 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
619 key_len);
620 if (IS_ERR(key->u.gcmp.tfm)) {
621 err = PTR_ERR(key->u.gcmp.tfm);
622 kfree(key);
623 return ERR_PTR(err);
625 break;
626 default:
627 if (cs) {
628 if (seq_len && seq_len != cs->pn_len) {
629 kfree(key);
630 return ERR_PTR(-EINVAL);
633 key->conf.iv_len = cs->hdr_len;
634 key->conf.icv_len = cs->mic_len;
635 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
636 for (j = 0; j < seq_len; j++)
637 key->u.gen.rx_pn[i][j] =
638 seq[seq_len - j - 1];
639 key->flags |= KEY_FLAG_CIPHER_SCHEME;
642 memcpy(key->conf.key, key_data, key_len);
643 INIT_LIST_HEAD(&key->list);
645 return key;
648 static void ieee80211_key_free_common(struct ieee80211_key *key)
650 switch (key->conf.cipher) {
651 case WLAN_CIPHER_SUITE_CCMP:
652 case WLAN_CIPHER_SUITE_CCMP_256:
653 ieee80211_aes_key_free(key->u.ccmp.tfm);
654 break;
655 case WLAN_CIPHER_SUITE_AES_CMAC:
656 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
657 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
658 break;
659 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
660 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
661 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
662 break;
663 case WLAN_CIPHER_SUITE_GCMP:
664 case WLAN_CIPHER_SUITE_GCMP_256:
665 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
666 break;
668 kzfree(key);
671 static void __ieee80211_key_destroy(struct ieee80211_key *key,
672 bool delay_tailroom)
674 if (key->local) {
675 struct ieee80211_sub_if_data *sdata = key->sdata;
677 ieee80211_debugfs_key_remove(key);
679 if (delay_tailroom) {
680 /* see ieee80211_delayed_tailroom_dec */
681 sdata->crypto_tx_tailroom_pending_dec++;
682 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
683 HZ/2);
684 } else {
685 decrease_tailroom_need_count(sdata, 1);
689 ieee80211_key_free_common(key);
692 static void ieee80211_key_destroy(struct ieee80211_key *key,
693 bool delay_tailroom)
695 if (!key)
696 return;
699 * Synchronize so the TX path and rcu key iterators
700 * can no longer be using this key before we free/remove it.
702 synchronize_net();
704 __ieee80211_key_destroy(key, delay_tailroom);
707 void ieee80211_key_free_unused(struct ieee80211_key *key)
709 WARN_ON(key->sdata || key->local);
710 ieee80211_key_free_common(key);
713 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
714 struct ieee80211_key *old,
715 struct ieee80211_key *new)
717 u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
718 u8 *tk_old, *tk_new;
720 if (!old || new->conf.keylen != old->conf.keylen)
721 return false;
723 tk_old = old->conf.key;
724 tk_new = new->conf.key;
727 * In station mode, don't compare the TX MIC key, as it's never used
728 * and offloaded rekeying may not care to send it to the host. This
729 * is the case in iwlwifi, for example.
731 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
732 new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
733 new->conf.keylen == WLAN_KEY_LEN_TKIP &&
734 !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
735 memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
736 memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
737 memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
738 memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
739 tk_old = tkip_old;
740 tk_new = tkip_new;
743 return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
746 int ieee80211_key_link(struct ieee80211_key *key,
747 struct ieee80211_sub_if_data *sdata,
748 struct sta_info *sta)
750 struct ieee80211_key *old_key;
751 int idx = key->conf.keyidx;
752 bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
754 * We want to delay tailroom updates only for station - in that
755 * case it helps roaming speed, but in other cases it hurts and
756 * can cause warnings to appear.
758 bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
759 int ret = -EOPNOTSUPP;
761 mutex_lock(&sdata->local->key_mtx);
763 if (sta && pairwise) {
764 struct ieee80211_key *alt_key;
766 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
767 alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]);
769 /* The rekey code assumes that the old and new key are using
770 * the same cipher. Enforce the assumption for pairwise keys.
772 if (key &&
773 ((alt_key && alt_key->conf.cipher != key->conf.cipher) ||
774 (old_key && old_key->conf.cipher != key->conf.cipher)))
775 goto out;
776 } else if (sta) {
777 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
778 } else {
779 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
782 /* Non-pairwise keys must also not switch the cipher on rekey */
783 if (!pairwise) {
784 if (key && old_key && old_key->conf.cipher != key->conf.cipher)
785 goto out;
789 * Silently accept key re-installation without really installing the
790 * new version of the key to avoid nonce reuse or replay issues.
792 if (ieee80211_key_identical(sdata, old_key, key)) {
793 ieee80211_key_free_unused(key);
794 ret = 0;
795 goto out;
798 key->local = sdata->local;
799 key->sdata = sdata;
800 key->sta = sta;
802 increment_tailroom_need_count(sdata);
804 ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
806 if (!ret) {
807 ieee80211_debugfs_key_add(key);
808 ieee80211_key_destroy(old_key, delay_tailroom);
809 } else {
810 ieee80211_key_free(key, delay_tailroom);
813 out:
814 mutex_unlock(&sdata->local->key_mtx);
816 return ret;
819 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
821 if (!key)
822 return;
825 * Replace key with nothingness if it was ever used.
827 if (key->sdata)
828 ieee80211_key_replace(key->sdata, key->sta,
829 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
830 key, NULL);
831 ieee80211_key_destroy(key, delay_tailroom);
834 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
836 struct ieee80211_key *key;
837 struct ieee80211_sub_if_data *vlan;
839 ASSERT_RTNL();
841 if (WARN_ON(!ieee80211_sdata_running(sdata)))
842 return;
844 mutex_lock(&sdata->local->key_mtx);
846 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
847 sdata->crypto_tx_tailroom_pending_dec);
849 if (sdata->vif.type == NL80211_IFTYPE_AP) {
850 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
851 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
852 vlan->crypto_tx_tailroom_pending_dec);
855 list_for_each_entry(key, &sdata->key_list, list) {
856 increment_tailroom_need_count(sdata);
857 ieee80211_key_enable_hw_accel(key);
860 mutex_unlock(&sdata->local->key_mtx);
863 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
865 struct ieee80211_sub_if_data *vlan;
867 mutex_lock(&sdata->local->key_mtx);
869 sdata->crypto_tx_tailroom_needed_cnt = 0;
871 if (sdata->vif.type == NL80211_IFTYPE_AP) {
872 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
873 vlan->crypto_tx_tailroom_needed_cnt = 0;
876 mutex_unlock(&sdata->local->key_mtx);
879 void ieee80211_iter_keys(struct ieee80211_hw *hw,
880 struct ieee80211_vif *vif,
881 void (*iter)(struct ieee80211_hw *hw,
882 struct ieee80211_vif *vif,
883 struct ieee80211_sta *sta,
884 struct ieee80211_key_conf *key,
885 void *data),
886 void *iter_data)
888 struct ieee80211_local *local = hw_to_local(hw);
889 struct ieee80211_key *key, *tmp;
890 struct ieee80211_sub_if_data *sdata;
892 ASSERT_RTNL();
894 mutex_lock(&local->key_mtx);
895 if (vif) {
896 sdata = vif_to_sdata(vif);
897 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
898 iter(hw, &sdata->vif,
899 key->sta ? &key->sta->sta : NULL,
900 &key->conf, iter_data);
901 } else {
902 list_for_each_entry(sdata, &local->interfaces, list)
903 list_for_each_entry_safe(key, tmp,
904 &sdata->key_list, list)
905 iter(hw, &sdata->vif,
906 key->sta ? &key->sta->sta : NULL,
907 &key->conf, iter_data);
909 mutex_unlock(&local->key_mtx);
911 EXPORT_SYMBOL(ieee80211_iter_keys);
913 static void
914 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
915 struct ieee80211_sub_if_data *sdata,
916 void (*iter)(struct ieee80211_hw *hw,
917 struct ieee80211_vif *vif,
918 struct ieee80211_sta *sta,
919 struct ieee80211_key_conf *key,
920 void *data),
921 void *iter_data)
923 struct ieee80211_key *key;
925 list_for_each_entry_rcu(key, &sdata->key_list, list) {
926 /* skip keys of station in removal process */
927 if (key->sta && key->sta->removed)
928 continue;
929 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
930 continue;
932 iter(hw, &sdata->vif,
933 key->sta ? &key->sta->sta : NULL,
934 &key->conf, iter_data);
938 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
939 struct ieee80211_vif *vif,
940 void (*iter)(struct ieee80211_hw *hw,
941 struct ieee80211_vif *vif,
942 struct ieee80211_sta *sta,
943 struct ieee80211_key_conf *key,
944 void *data),
945 void *iter_data)
947 struct ieee80211_local *local = hw_to_local(hw);
948 struct ieee80211_sub_if_data *sdata;
950 if (vif) {
951 sdata = vif_to_sdata(vif);
952 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
953 } else {
954 list_for_each_entry_rcu(sdata, &local->interfaces, list)
955 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
958 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
960 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
961 struct list_head *keys)
963 struct ieee80211_key *key, *tmp;
965 decrease_tailroom_need_count(sdata,
966 sdata->crypto_tx_tailroom_pending_dec);
967 sdata->crypto_tx_tailroom_pending_dec = 0;
969 ieee80211_debugfs_key_remove_mgmt_default(sdata);
971 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
972 ieee80211_key_replace(key->sdata, key->sta,
973 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
974 key, NULL);
975 list_add_tail(&key->list, keys);
978 ieee80211_debugfs_key_update_default(sdata);
981 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
982 bool force_synchronize)
984 struct ieee80211_local *local = sdata->local;
985 struct ieee80211_sub_if_data *vlan;
986 struct ieee80211_sub_if_data *master;
987 struct ieee80211_key *key, *tmp;
988 LIST_HEAD(keys);
990 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
992 mutex_lock(&local->key_mtx);
994 ieee80211_free_keys_iface(sdata, &keys);
996 if (sdata->vif.type == NL80211_IFTYPE_AP) {
997 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
998 ieee80211_free_keys_iface(vlan, &keys);
1001 if (!list_empty(&keys) || force_synchronize)
1002 synchronize_net();
1003 list_for_each_entry_safe(key, tmp, &keys, list)
1004 __ieee80211_key_destroy(key, false);
1006 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1007 if (sdata->bss) {
1008 master = container_of(sdata->bss,
1009 struct ieee80211_sub_if_data,
1010 u.ap);
1012 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
1013 master->crypto_tx_tailroom_needed_cnt);
1015 } else {
1016 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
1017 sdata->crypto_tx_tailroom_pending_dec);
1020 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1021 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1022 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
1023 vlan->crypto_tx_tailroom_pending_dec);
1026 mutex_unlock(&local->key_mtx);
1029 void ieee80211_free_sta_keys(struct ieee80211_local *local,
1030 struct sta_info *sta)
1032 struct ieee80211_key *key;
1033 int i;
1035 mutex_lock(&local->key_mtx);
1036 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
1037 key = key_mtx_dereference(local, sta->gtk[i]);
1038 if (!key)
1039 continue;
1040 ieee80211_key_replace(key->sdata, key->sta,
1041 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1042 key, NULL);
1043 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1044 NL80211_IFTYPE_STATION);
1047 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1048 key = key_mtx_dereference(local, sta->ptk[i]);
1049 if (!key)
1050 continue;
1051 ieee80211_key_replace(key->sdata, key->sta,
1052 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1053 key, NULL);
1054 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1055 NL80211_IFTYPE_STATION);
1058 mutex_unlock(&local->key_mtx);
1061 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
1063 struct ieee80211_sub_if_data *sdata;
1065 sdata = container_of(wk, struct ieee80211_sub_if_data,
1066 dec_tailroom_needed_wk.work);
1069 * The reason for the delayed tailroom needed decrementing is to
1070 * make roaming faster: during roaming, all keys are first deleted
1071 * and then new keys are installed. The first new key causes the
1072 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1073 * the cost of synchronize_net() (which can be slow). Avoid this
1074 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1075 * key removal for a while, so if we roam the value is larger than
1076 * zero and no 0->1 transition happens.
1078 * The cost is that if the AP switching was from an AP with keys
1079 * to one without, we still allocate tailroom while it would no
1080 * longer be needed. However, in the typical (fast) roaming case
1081 * within an ESS this usually won't happen.
1084 mutex_lock(&sdata->local->key_mtx);
1085 decrease_tailroom_need_count(sdata,
1086 sdata->crypto_tx_tailroom_pending_dec);
1087 sdata->crypto_tx_tailroom_pending_dec = 0;
1088 mutex_unlock(&sdata->local->key_mtx);
1091 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
1092 const u8 *replay_ctr, gfp_t gfp)
1094 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1096 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
1098 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
1100 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
1102 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
1103 int tid, struct ieee80211_key_seq *seq)
1105 struct ieee80211_key *key;
1106 const u8 *pn;
1108 key = container_of(keyconf, struct ieee80211_key, conf);
1110 switch (key->conf.cipher) {
1111 case WLAN_CIPHER_SUITE_TKIP:
1112 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1113 return;
1114 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
1115 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
1116 break;
1117 case WLAN_CIPHER_SUITE_CCMP:
1118 case WLAN_CIPHER_SUITE_CCMP_256:
1119 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1120 return;
1121 if (tid < 0)
1122 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1123 else
1124 pn = key->u.ccmp.rx_pn[tid];
1125 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1126 break;
1127 case WLAN_CIPHER_SUITE_AES_CMAC:
1128 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1129 if (WARN_ON(tid != 0))
1130 return;
1131 pn = key->u.aes_cmac.rx_pn;
1132 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1133 break;
1134 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1135 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1136 if (WARN_ON(tid != 0))
1137 return;
1138 pn = key->u.aes_gmac.rx_pn;
1139 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1140 break;
1141 case WLAN_CIPHER_SUITE_GCMP:
1142 case WLAN_CIPHER_SUITE_GCMP_256:
1143 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1144 return;
1145 if (tid < 0)
1146 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1147 else
1148 pn = key->u.gcmp.rx_pn[tid];
1149 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1150 break;
1153 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1155 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1156 int tid, struct ieee80211_key_seq *seq)
1158 struct ieee80211_key *key;
1159 u8 *pn;
1161 key = container_of(keyconf, struct ieee80211_key, conf);
1163 switch (key->conf.cipher) {
1164 case WLAN_CIPHER_SUITE_TKIP:
1165 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1166 return;
1167 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1168 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1169 break;
1170 case WLAN_CIPHER_SUITE_CCMP:
1171 case WLAN_CIPHER_SUITE_CCMP_256:
1172 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1173 return;
1174 if (tid < 0)
1175 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1176 else
1177 pn = key->u.ccmp.rx_pn[tid];
1178 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1179 break;
1180 case WLAN_CIPHER_SUITE_AES_CMAC:
1181 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1182 if (WARN_ON(tid != 0))
1183 return;
1184 pn = key->u.aes_cmac.rx_pn;
1185 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1186 break;
1187 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1188 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1189 if (WARN_ON(tid != 0))
1190 return;
1191 pn = key->u.aes_gmac.rx_pn;
1192 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1193 break;
1194 case WLAN_CIPHER_SUITE_GCMP:
1195 case WLAN_CIPHER_SUITE_GCMP_256:
1196 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1197 return;
1198 if (tid < 0)
1199 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1200 else
1201 pn = key->u.gcmp.rx_pn[tid];
1202 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1203 break;
1204 default:
1205 WARN_ON(1);
1206 break;
1209 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1211 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1213 struct ieee80211_key *key;
1215 key = container_of(keyconf, struct ieee80211_key, conf);
1217 assert_key_lock(key->local);
1220 * if key was uploaded, we assume the driver will/has remove(d)
1221 * it, so adjust bookkeeping accordingly
1223 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1224 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1226 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
1227 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
1228 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1229 increment_tailroom_need_count(key->sdata);
1232 ieee80211_key_free(key, false);
1234 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1236 struct ieee80211_key_conf *
1237 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1238 struct ieee80211_key_conf *keyconf)
1240 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1241 struct ieee80211_local *local = sdata->local;
1242 struct ieee80211_key *key;
1243 int err;
1245 if (WARN_ON(!local->wowlan))
1246 return ERR_PTR(-EINVAL);
1248 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1249 return ERR_PTR(-EINVAL);
1251 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1252 keyconf->keylen, keyconf->key,
1253 0, NULL, NULL);
1254 if (IS_ERR(key))
1255 return ERR_CAST(key);
1257 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1258 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1260 err = ieee80211_key_link(key, sdata, NULL);
1261 if (err)
1262 return ERR_PTR(err);
1264 return &key->conf;
1266 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);