1 // SPDX-License-Identifier: GPL-2.0-only
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
113 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
114 static void vsock_sk_destruct(struct sock
*sk
);
115 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
117 /* Protocol family. */
118 static struct proto vsock_proto
= {
120 .owner
= THIS_MODULE
,
121 .obj_size
= sizeof(struct vsock_sock
),
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129 static const struct vsock_transport
*transport
;
130 static DEFINE_MUTEX(vsock_register_mutex
);
134 /* Get the ID of the local context. This is transport dependent. */
136 int vm_sockets_get_local_cid(void)
138 return transport
->get_local_cid();
140 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid
);
144 /* Each bound VSocket is stored in the bind hash table and each connected
145 * VSocket is stored in the connected hash table.
147 * Unbound sockets are all put on the same list attached to the end of the hash
148 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
149 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
150 * represents the list that addr hashes to).
152 * Specifically, we initialize the vsock_bind_table array to a size of
153 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
154 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
155 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
156 * mods with VSOCK_HASH_SIZE to ensure this.
158 #define MAX_PORT_RETRIES 24
160 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
161 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
162 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
164 /* XXX This can probably be implemented in a better way. */
165 #define VSOCK_CONN_HASH(src, dst) \
166 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
167 #define vsock_connected_sockets(src, dst) \
168 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
169 #define vsock_connected_sockets_vsk(vsk) \
170 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
173 EXPORT_SYMBOL_GPL(vsock_bind_table
);
174 struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
175 EXPORT_SYMBOL_GPL(vsock_connected_table
);
176 DEFINE_SPINLOCK(vsock_table_lock
);
177 EXPORT_SYMBOL_GPL(vsock_table_lock
);
179 /* Autobind this socket to the local address if necessary. */
180 static int vsock_auto_bind(struct vsock_sock
*vsk
)
182 struct sock
*sk
= sk_vsock(vsk
);
183 struct sockaddr_vm local_addr
;
185 if (vsock_addr_bound(&vsk
->local_addr
))
187 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
188 return __vsock_bind(sk
, &local_addr
);
191 static int __init
vsock_init_tables(void)
195 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
196 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
198 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
199 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
203 static void __vsock_insert_bound(struct list_head
*list
,
204 struct vsock_sock
*vsk
)
207 list_add(&vsk
->bound_table
, list
);
210 static void __vsock_insert_connected(struct list_head
*list
,
211 struct vsock_sock
*vsk
)
214 list_add(&vsk
->connected_table
, list
);
217 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
219 list_del_init(&vsk
->bound_table
);
223 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
225 list_del_init(&vsk
->connected_table
);
229 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
231 struct vsock_sock
*vsk
;
233 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
)
234 if (addr
->svm_port
== vsk
->local_addr
.svm_port
)
235 return sk_vsock(vsk
);
240 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
241 struct sockaddr_vm
*dst
)
243 struct vsock_sock
*vsk
;
245 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
247 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
248 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
249 return sk_vsock(vsk
);
256 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
258 spin_lock_bh(&vsock_table_lock
);
259 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
260 spin_unlock_bh(&vsock_table_lock
);
263 void vsock_insert_connected(struct vsock_sock
*vsk
)
265 struct list_head
*list
= vsock_connected_sockets(
266 &vsk
->remote_addr
, &vsk
->local_addr
);
268 spin_lock_bh(&vsock_table_lock
);
269 __vsock_insert_connected(list
, vsk
);
270 spin_unlock_bh(&vsock_table_lock
);
272 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
274 void vsock_remove_bound(struct vsock_sock
*vsk
)
276 spin_lock_bh(&vsock_table_lock
);
277 __vsock_remove_bound(vsk
);
278 spin_unlock_bh(&vsock_table_lock
);
280 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
282 void vsock_remove_connected(struct vsock_sock
*vsk
)
284 spin_lock_bh(&vsock_table_lock
);
285 __vsock_remove_connected(vsk
);
286 spin_unlock_bh(&vsock_table_lock
);
288 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
290 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
294 spin_lock_bh(&vsock_table_lock
);
295 sk
= __vsock_find_bound_socket(addr
);
299 spin_unlock_bh(&vsock_table_lock
);
303 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
305 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
306 struct sockaddr_vm
*dst
)
310 spin_lock_bh(&vsock_table_lock
);
311 sk
= __vsock_find_connected_socket(src
, dst
);
315 spin_unlock_bh(&vsock_table_lock
);
319 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
321 static bool vsock_in_bound_table(struct vsock_sock
*vsk
)
325 spin_lock_bh(&vsock_table_lock
);
326 ret
= __vsock_in_bound_table(vsk
);
327 spin_unlock_bh(&vsock_table_lock
);
332 static bool vsock_in_connected_table(struct vsock_sock
*vsk
)
336 spin_lock_bh(&vsock_table_lock
);
337 ret
= __vsock_in_connected_table(vsk
);
338 spin_unlock_bh(&vsock_table_lock
);
343 void vsock_remove_sock(struct vsock_sock
*vsk
)
345 if (vsock_in_bound_table(vsk
))
346 vsock_remove_bound(vsk
);
348 if (vsock_in_connected_table(vsk
))
349 vsock_remove_connected(vsk
);
351 EXPORT_SYMBOL_GPL(vsock_remove_sock
);
353 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
357 spin_lock_bh(&vsock_table_lock
);
359 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
360 struct vsock_sock
*vsk
;
361 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
366 spin_unlock_bh(&vsock_table_lock
);
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
370 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
372 struct vsock_sock
*vlistener
;
373 struct vsock_sock
*vpending
;
375 vlistener
= vsock_sk(listener
);
376 vpending
= vsock_sk(pending
);
380 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
382 EXPORT_SYMBOL_GPL(vsock_add_pending
);
384 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
386 struct vsock_sock
*vpending
= vsock_sk(pending
);
388 list_del_init(&vpending
->pending_links
);
392 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
394 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
396 struct vsock_sock
*vlistener
;
397 struct vsock_sock
*vconnected
;
399 vlistener
= vsock_sk(listener
);
400 vconnected
= vsock_sk(connected
);
402 sock_hold(connected
);
404 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
408 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
410 struct vsock_sock
*vlistener
;
411 struct vsock_sock
*vconnected
;
413 vlistener
= vsock_sk(listener
);
415 if (list_empty(&vlistener
->accept_queue
))
418 vconnected
= list_entry(vlistener
->accept_queue
.next
,
419 struct vsock_sock
, accept_queue
);
421 list_del_init(&vconnected
->accept_queue
);
423 /* The caller will need a reference on the connected socket so we let
424 * it call sock_put().
427 return sk_vsock(vconnected
);
430 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
432 struct vsock_sock
*vsk
= vsock_sk(sk
);
433 return list_empty(&vsk
->accept_queue
);
436 static bool vsock_is_pending(struct sock
*sk
)
438 struct vsock_sock
*vsk
= vsock_sk(sk
);
439 return !list_empty(&vsk
->pending_links
);
442 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
444 return transport
->shutdown(vsock_sk(sk
), mode
);
447 static void vsock_pending_work(struct work_struct
*work
)
450 struct sock
*listener
;
451 struct vsock_sock
*vsk
;
454 vsk
= container_of(work
, struct vsock_sock
, pending_work
.work
);
456 listener
= vsk
->listener
;
460 lock_sock_nested(sk
, SINGLE_DEPTH_NESTING
);
462 if (vsock_is_pending(sk
)) {
463 vsock_remove_pending(listener
, sk
);
465 listener
->sk_ack_backlog
--;
466 } else if (!vsk
->rejected
) {
467 /* We are not on the pending list and accept() did not reject
468 * us, so we must have been accepted by our user process. We
469 * just need to drop our references to the sockets and be on
476 /* We need to remove ourself from the global connected sockets list so
477 * incoming packets can't find this socket, and to reduce the reference
480 if (vsock_in_connected_table(vsk
))
481 vsock_remove_connected(vsk
);
483 sk
->sk_state
= TCP_CLOSE
;
487 release_sock(listener
);
495 /**** SOCKET OPERATIONS ****/
497 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
498 struct sockaddr_vm
*addr
)
501 struct sockaddr_vm new_addr
;
504 port
= LAST_RESERVED_PORT
+ 1 +
505 prandom_u32_max(U32_MAX
- LAST_RESERVED_PORT
);
507 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
509 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
513 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
514 if (port
<= LAST_RESERVED_PORT
)
515 port
= LAST_RESERVED_PORT
+ 1;
517 new_addr
.svm_port
= port
++;
519 if (!__vsock_find_bound_socket(&new_addr
)) {
526 return -EADDRNOTAVAIL
;
528 /* If port is in reserved range, ensure caller
529 * has necessary privileges.
531 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
532 !capable(CAP_NET_BIND_SERVICE
)) {
536 if (__vsock_find_bound_socket(&new_addr
))
540 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
542 /* Remove stream sockets from the unbound list and add them to the hash
543 * table for easy lookup by its address. The unbound list is simply an
544 * extra entry at the end of the hash table, a trick used by AF_UNIX.
546 __vsock_remove_bound(vsk
);
547 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
552 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
553 struct sockaddr_vm
*addr
)
555 return transport
->dgram_bind(vsk
, addr
);
558 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
560 struct vsock_sock
*vsk
= vsock_sk(sk
);
564 /* First ensure this socket isn't already bound. */
565 if (vsock_addr_bound(&vsk
->local_addr
))
568 /* Now bind to the provided address or select appropriate values if
569 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
570 * like AF_INET prevents binding to a non-local IP address (in most
571 * cases), we only allow binding to the local CID.
573 cid
= transport
->get_local_cid();
574 if (addr
->svm_cid
!= cid
&& addr
->svm_cid
!= VMADDR_CID_ANY
)
575 return -EADDRNOTAVAIL
;
577 switch (sk
->sk_socket
->type
) {
579 spin_lock_bh(&vsock_table_lock
);
580 retval
= __vsock_bind_stream(vsk
, addr
);
581 spin_unlock_bh(&vsock_table_lock
);
585 retval
= __vsock_bind_dgram(vsk
, addr
);
596 static void vsock_connect_timeout(struct work_struct
*work
);
598 struct sock
*__vsock_create(struct net
*net
,
606 struct vsock_sock
*psk
;
607 struct vsock_sock
*vsk
;
609 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
, kern
);
613 sock_init_data(sock
, sk
);
615 /* sk->sk_type is normally set in sock_init_data, but only if sock is
616 * non-NULL. We make sure that our sockets always have a type by
617 * setting it here if needed.
623 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
624 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
626 sk
->sk_destruct
= vsock_sk_destruct
;
627 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
628 sock_reset_flag(sk
, SOCK_DONE
);
630 INIT_LIST_HEAD(&vsk
->bound_table
);
631 INIT_LIST_HEAD(&vsk
->connected_table
);
632 vsk
->listener
= NULL
;
633 INIT_LIST_HEAD(&vsk
->pending_links
);
634 INIT_LIST_HEAD(&vsk
->accept_queue
);
635 vsk
->rejected
= false;
636 vsk
->sent_request
= false;
637 vsk
->ignore_connecting_rst
= false;
638 vsk
->peer_shutdown
= 0;
639 INIT_DELAYED_WORK(&vsk
->connect_work
, vsock_connect_timeout
);
640 INIT_DELAYED_WORK(&vsk
->pending_work
, vsock_pending_work
);
642 psk
= parent
? vsock_sk(parent
) : NULL
;
644 vsk
->trusted
= psk
->trusted
;
645 vsk
->owner
= get_cred(psk
->owner
);
646 vsk
->connect_timeout
= psk
->connect_timeout
;
648 vsk
->trusted
= capable(CAP_NET_ADMIN
);
649 vsk
->owner
= get_current_cred();
650 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
653 if (transport
->init(vsk
, psk
) < 0) {
659 vsock_insert_unbound(vsk
);
663 EXPORT_SYMBOL_GPL(__vsock_create
);
665 static void __vsock_release(struct sock
*sk
)
669 struct sock
*pending
;
670 struct vsock_sock
*vsk
;
673 pending
= NULL
; /* Compiler warning. */
675 transport
->release(vsk
);
679 sk
->sk_shutdown
= SHUTDOWN_MASK
;
681 while ((skb
= skb_dequeue(&sk
->sk_receive_queue
)))
684 /* Clean up any sockets that never were accepted. */
685 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
686 __vsock_release(pending
);
695 static void vsock_sk_destruct(struct sock
*sk
)
697 struct vsock_sock
*vsk
= vsock_sk(sk
);
699 transport
->destruct(vsk
);
701 /* When clearing these addresses, there's no need to set the family and
702 * possibly register the address family with the kernel.
704 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
705 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
707 put_cred(vsk
->owner
);
710 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
714 err
= sock_queue_rcv_skb(sk
, skb
);
721 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
723 return transport
->stream_has_data(vsk
);
725 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
727 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
729 return transport
->stream_has_space(vsk
);
731 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
733 static int vsock_release(struct socket
*sock
)
735 __vsock_release(sock
->sk
);
737 sock
->state
= SS_FREE
;
743 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
747 struct sockaddr_vm
*vm_addr
;
751 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
755 err
= __vsock_bind(sk
, vm_addr
);
761 static int vsock_getname(struct socket
*sock
,
762 struct sockaddr
*addr
, int peer
)
766 struct vsock_sock
*vsk
;
767 struct sockaddr_vm
*vm_addr
;
776 if (sock
->state
!= SS_CONNECTED
) {
780 vm_addr
= &vsk
->remote_addr
;
782 vm_addr
= &vsk
->local_addr
;
790 /* sys_getsockname() and sys_getpeername() pass us a
791 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
792 * that macro is defined in socket.c instead of .h, so we hardcode its
795 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
796 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
797 err
= sizeof(*vm_addr
);
804 static int vsock_shutdown(struct socket
*sock
, int mode
)
809 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
810 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
811 * here like the other address families do. Note also that the
812 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
813 * which is what we want.
817 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
820 /* If this is a STREAM socket and it is not connected then bail out
821 * immediately. If it is a DGRAM socket then we must first kick the
822 * socket so that it wakes up from any sleeping calls, for example
823 * recv(), and then afterwards return the error.
827 if (sock
->state
== SS_UNCONNECTED
) {
829 if (sk
->sk_type
== SOCK_STREAM
)
832 sock
->state
= SS_DISCONNECTING
;
836 /* Receive and send shutdowns are treated alike. */
837 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
840 sk
->sk_shutdown
|= mode
;
841 sk
->sk_state_change(sk
);
844 if (sk
->sk_type
== SOCK_STREAM
) {
845 sock_reset_flag(sk
, SOCK_DONE
);
846 vsock_send_shutdown(sk
, mode
);
853 static __poll_t
vsock_poll(struct file
*file
, struct socket
*sock
,
858 struct vsock_sock
*vsk
;
863 poll_wait(file
, sk_sleep(sk
), wait
);
867 /* Signify that there has been an error on this socket. */
870 /* INET sockets treat local write shutdown and peer write shutdown as a
871 * case of EPOLLHUP set.
873 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
874 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
875 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
879 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
880 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
884 if (sock
->type
== SOCK_DGRAM
) {
885 /* For datagram sockets we can read if there is something in
886 * the queue and write as long as the socket isn't shutdown for
889 if (!skb_queue_empty(&sk
->sk_receive_queue
) ||
890 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
891 mask
|= EPOLLIN
| EPOLLRDNORM
;
894 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
895 mask
|= EPOLLOUT
| EPOLLWRNORM
| EPOLLWRBAND
;
897 } else if (sock
->type
== SOCK_STREAM
) {
900 /* Listening sockets that have connections in their accept
903 if (sk
->sk_state
== TCP_LISTEN
904 && !vsock_is_accept_queue_empty(sk
))
905 mask
|= EPOLLIN
| EPOLLRDNORM
;
907 /* If there is something in the queue then we can read. */
908 if (transport
->stream_is_active(vsk
) &&
909 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
910 bool data_ready_now
= false;
911 int ret
= transport
->notify_poll_in(
912 vsk
, 1, &data_ready_now
);
917 mask
|= EPOLLIN
| EPOLLRDNORM
;
922 /* Sockets whose connections have been closed, reset, or
923 * terminated should also be considered read, and we check the
924 * shutdown flag for that.
926 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
927 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
928 mask
|= EPOLLIN
| EPOLLRDNORM
;
931 /* Connected sockets that can produce data can be written. */
932 if (sk
->sk_state
== TCP_ESTABLISHED
) {
933 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
934 bool space_avail_now
= false;
935 int ret
= transport
->notify_poll_out(
936 vsk
, 1, &space_avail_now
);
941 /* Remove EPOLLWRBAND since INET
942 * sockets are not setting it.
944 mask
|= EPOLLOUT
| EPOLLWRNORM
;
950 /* Simulate INET socket poll behaviors, which sets
951 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
952 * but local send is not shutdown.
954 if (sk
->sk_state
== TCP_CLOSE
|| sk
->sk_state
== TCP_CLOSING
) {
955 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
956 mask
|= EPOLLOUT
| EPOLLWRNORM
;
966 static int vsock_dgram_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
971 struct vsock_sock
*vsk
;
972 struct sockaddr_vm
*remote_addr
;
974 if (msg
->msg_flags
& MSG_OOB
)
977 /* For now, MSG_DONTWAIT is always assumed... */
984 err
= vsock_auto_bind(vsk
);
989 /* If the provided message contains an address, use that. Otherwise
990 * fall back on the socket's remote handle (if it has been connected).
993 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
994 &remote_addr
) == 0) {
995 /* Ensure this address is of the right type and is a valid
999 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1000 remote_addr
->svm_cid
= transport
->get_local_cid();
1002 if (!vsock_addr_bound(remote_addr
)) {
1006 } else if (sock
->state
== SS_CONNECTED
) {
1007 remote_addr
= &vsk
->remote_addr
;
1009 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1010 remote_addr
->svm_cid
= transport
->get_local_cid();
1012 /* XXX Should connect() or this function ensure remote_addr is
1015 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1024 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1025 remote_addr
->svm_port
)) {
1030 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
, len
);
1037 static int vsock_dgram_connect(struct socket
*sock
,
1038 struct sockaddr
*addr
, int addr_len
, int flags
)
1042 struct vsock_sock
*vsk
;
1043 struct sockaddr_vm
*remote_addr
;
1048 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1049 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1051 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1053 sock
->state
= SS_UNCONNECTED
;
1056 } else if (err
!= 0)
1061 err
= vsock_auto_bind(vsk
);
1065 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1066 remote_addr
->svm_port
)) {
1071 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1072 sock
->state
= SS_CONNECTED
;
1079 static int vsock_dgram_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1080 size_t len
, int flags
)
1082 return transport
->dgram_dequeue(vsock_sk(sock
->sk
), msg
, len
, flags
);
1085 static const struct proto_ops vsock_dgram_ops
= {
1087 .owner
= THIS_MODULE
,
1088 .release
= vsock_release
,
1090 .connect
= vsock_dgram_connect
,
1091 .socketpair
= sock_no_socketpair
,
1092 .accept
= sock_no_accept
,
1093 .getname
= vsock_getname
,
1095 .ioctl
= sock_no_ioctl
,
1096 .listen
= sock_no_listen
,
1097 .shutdown
= vsock_shutdown
,
1098 .setsockopt
= sock_no_setsockopt
,
1099 .getsockopt
= sock_no_getsockopt
,
1100 .sendmsg
= vsock_dgram_sendmsg
,
1101 .recvmsg
= vsock_dgram_recvmsg
,
1102 .mmap
= sock_no_mmap
,
1103 .sendpage
= sock_no_sendpage
,
1106 static int vsock_transport_cancel_pkt(struct vsock_sock
*vsk
)
1108 if (!transport
->cancel_pkt
)
1111 return transport
->cancel_pkt(vsk
);
1114 static void vsock_connect_timeout(struct work_struct
*work
)
1117 struct vsock_sock
*vsk
;
1120 vsk
= container_of(work
, struct vsock_sock
, connect_work
.work
);
1124 if (sk
->sk_state
== TCP_SYN_SENT
&&
1125 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1126 sk
->sk_state
= TCP_CLOSE
;
1127 sk
->sk_err
= ETIMEDOUT
;
1128 sk
->sk_error_report(sk
);
1133 vsock_transport_cancel_pkt(vsk
);
1138 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1139 int addr_len
, int flags
)
1143 struct vsock_sock
*vsk
;
1144 struct sockaddr_vm
*remote_addr
;
1154 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1155 switch (sock
->state
) {
1159 case SS_DISCONNECTING
:
1163 /* This continues on so we can move sock into the SS_CONNECTED
1164 * state once the connection has completed (at which point err
1165 * will be set to zero also). Otherwise, we will either wait
1166 * for the connection or return -EALREADY should this be a
1167 * non-blocking call.
1172 if ((sk
->sk_state
== TCP_LISTEN
) ||
1173 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1178 /* The hypervisor and well-known contexts do not have socket
1181 if (!transport
->stream_allow(remote_addr
->svm_cid
,
1182 remote_addr
->svm_port
)) {
1187 /* Set the remote address that we are connecting to. */
1188 memcpy(&vsk
->remote_addr
, remote_addr
,
1189 sizeof(vsk
->remote_addr
));
1191 err
= vsock_auto_bind(vsk
);
1195 sk
->sk_state
= TCP_SYN_SENT
;
1197 err
= transport
->connect(vsk
);
1201 /* Mark sock as connecting and set the error code to in
1202 * progress in case this is a non-blocking connect.
1204 sock
->state
= SS_CONNECTING
;
1208 /* The receive path will handle all communication until we are able to
1209 * enter the connected state. Here we wait for the connection to be
1210 * completed or a notification of an error.
1212 timeout
= vsk
->connect_timeout
;
1213 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1215 while (sk
->sk_state
!= TCP_ESTABLISHED
&& sk
->sk_err
== 0) {
1216 if (flags
& O_NONBLOCK
) {
1217 /* If we're not going to block, we schedule a timeout
1218 * function to generate a timeout on the connection
1219 * attempt, in case the peer doesn't respond in a
1220 * timely manner. We hold on to the socket until the
1224 schedule_delayed_work(&vsk
->connect_work
, timeout
);
1226 /* Skip ahead to preserve error code set above. */
1231 timeout
= schedule_timeout(timeout
);
1234 if (signal_pending(current
)) {
1235 err
= sock_intr_errno(timeout
);
1236 sk
->sk_state
= TCP_CLOSE
;
1237 sock
->state
= SS_UNCONNECTED
;
1238 vsock_transport_cancel_pkt(vsk
);
1240 } else if (timeout
== 0) {
1242 sk
->sk_state
= TCP_CLOSE
;
1243 sock
->state
= SS_UNCONNECTED
;
1244 vsock_transport_cancel_pkt(vsk
);
1248 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1253 sk
->sk_state
= TCP_CLOSE
;
1254 sock
->state
= SS_UNCONNECTED
;
1260 finish_wait(sk_sleep(sk
), &wait
);
1266 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
1269 struct sock
*listener
;
1271 struct sock
*connected
;
1272 struct vsock_sock
*vconnected
;
1277 listener
= sock
->sk
;
1279 lock_sock(listener
);
1281 if (sock
->type
!= SOCK_STREAM
) {
1286 if (listener
->sk_state
!= TCP_LISTEN
) {
1291 /* Wait for children sockets to appear; these are the new sockets
1292 * created upon connection establishment.
1294 timeout
= sock_sndtimeo(listener
, flags
& O_NONBLOCK
);
1295 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1297 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1298 listener
->sk_err
== 0) {
1299 release_sock(listener
);
1300 timeout
= schedule_timeout(timeout
);
1301 finish_wait(sk_sleep(listener
), &wait
);
1302 lock_sock(listener
);
1304 if (signal_pending(current
)) {
1305 err
= sock_intr_errno(timeout
);
1307 } else if (timeout
== 0) {
1312 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1314 finish_wait(sk_sleep(listener
), &wait
);
1316 if (listener
->sk_err
)
1317 err
= -listener
->sk_err
;
1320 listener
->sk_ack_backlog
--;
1322 lock_sock_nested(connected
, SINGLE_DEPTH_NESTING
);
1323 vconnected
= vsock_sk(connected
);
1325 /* If the listener socket has received an error, then we should
1326 * reject this socket and return. Note that we simply mark the
1327 * socket rejected, drop our reference, and let the cleanup
1328 * function handle the cleanup; the fact that we found it in
1329 * the listener's accept queue guarantees that the cleanup
1330 * function hasn't run yet.
1333 vconnected
->rejected
= true;
1335 newsock
->state
= SS_CONNECTED
;
1336 sock_graft(connected
, newsock
);
1339 release_sock(connected
);
1340 sock_put(connected
);
1344 release_sock(listener
);
1348 static int vsock_listen(struct socket
*sock
, int backlog
)
1352 struct vsock_sock
*vsk
;
1358 if (sock
->type
!= SOCK_STREAM
) {
1363 if (sock
->state
!= SS_UNCONNECTED
) {
1370 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1375 sk
->sk_max_ack_backlog
= backlog
;
1376 sk
->sk_state
= TCP_LISTEN
;
1385 static int vsock_stream_setsockopt(struct socket
*sock
,
1388 char __user
*optval
,
1389 unsigned int optlen
)
1393 struct vsock_sock
*vsk
;
1396 if (level
!= AF_VSOCK
)
1397 return -ENOPROTOOPT
;
1399 #define COPY_IN(_v) \
1401 if (optlen < sizeof(_v)) { \
1405 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1418 case SO_VM_SOCKETS_BUFFER_SIZE
:
1420 transport
->set_buffer_size(vsk
, val
);
1423 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1425 transport
->set_max_buffer_size(vsk
, val
);
1428 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1430 transport
->set_min_buffer_size(vsk
, val
);
1433 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1434 struct __kernel_old_timeval tv
;
1436 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1437 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1438 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1439 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1440 if (vsk
->connect_timeout
== 0)
1441 vsk
->connect_timeout
=
1442 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1462 static int vsock_stream_getsockopt(struct socket
*sock
,
1463 int level
, int optname
,
1464 char __user
*optval
,
1470 struct vsock_sock
*vsk
;
1473 if (level
!= AF_VSOCK
)
1474 return -ENOPROTOOPT
;
1476 err
= get_user(len
, optlen
);
1480 #define COPY_OUT(_v) \
1482 if (len < sizeof(_v)) \
1486 if (copy_to_user(optval, &_v, len) != 0) \
1496 case SO_VM_SOCKETS_BUFFER_SIZE
:
1497 val
= transport
->get_buffer_size(vsk
);
1501 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1502 val
= transport
->get_max_buffer_size(vsk
);
1506 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1507 val
= transport
->get_min_buffer_size(vsk
);
1511 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1512 struct __kernel_old_timeval tv
;
1513 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1515 (vsk
->connect_timeout
-
1516 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1521 return -ENOPROTOOPT
;
1524 err
= put_user(len
, optlen
);
1533 static int vsock_stream_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1537 struct vsock_sock
*vsk
;
1538 ssize_t total_written
;
1541 struct vsock_transport_send_notify_data send_data
;
1542 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
1549 if (msg
->msg_flags
& MSG_OOB
)
1554 /* Callers should not provide a destination with stream sockets. */
1555 if (msg
->msg_namelen
) {
1556 err
= sk
->sk_state
== TCP_ESTABLISHED
? -EISCONN
: -EOPNOTSUPP
;
1560 /* Send data only if both sides are not shutdown in the direction. */
1561 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1562 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1567 if (sk
->sk_state
!= TCP_ESTABLISHED
||
1568 !vsock_addr_bound(&vsk
->local_addr
)) {
1573 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1574 err
= -EDESTADDRREQ
;
1578 /* Wait for room in the produce queue to enqueue our user's data. */
1579 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1581 err
= transport
->notify_send_init(vsk
, &send_data
);
1585 while (total_written
< len
) {
1588 add_wait_queue(sk_sleep(sk
), &wait
);
1589 while (vsock_stream_has_space(vsk
) == 0 &&
1591 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1592 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1594 /* Don't wait for non-blocking sockets. */
1597 remove_wait_queue(sk_sleep(sk
), &wait
);
1601 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1603 remove_wait_queue(sk_sleep(sk
), &wait
);
1608 timeout
= wait_woken(&wait
, TASK_INTERRUPTIBLE
, timeout
);
1610 if (signal_pending(current
)) {
1611 err
= sock_intr_errno(timeout
);
1612 remove_wait_queue(sk_sleep(sk
), &wait
);
1614 } else if (timeout
== 0) {
1616 remove_wait_queue(sk_sleep(sk
), &wait
);
1620 remove_wait_queue(sk_sleep(sk
), &wait
);
1622 /* These checks occur both as part of and after the loop
1623 * conditional since we need to check before and after
1629 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1630 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1635 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1639 /* Note that enqueue will only write as many bytes as are free
1640 * in the produce queue, so we don't need to ensure len is
1641 * smaller than the queue size. It is the caller's
1642 * responsibility to check how many bytes we were able to send.
1645 written
= transport
->stream_enqueue(
1647 len
- total_written
);
1653 total_written
+= written
;
1655 err
= transport
->notify_send_post_enqueue(
1656 vsk
, written
, &send_data
);
1663 if (total_written
> 0)
1664 err
= total_written
;
1672 vsock_stream_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t len
,
1676 struct vsock_sock
*vsk
;
1681 struct vsock_transport_recv_notify_data recv_data
;
1691 if (sk
->sk_state
!= TCP_ESTABLISHED
) {
1692 /* Recvmsg is supposed to return 0 if a peer performs an
1693 * orderly shutdown. Differentiate between that case and when a
1694 * peer has not connected or a local shutdown occured with the
1697 if (sock_flag(sk
, SOCK_DONE
))
1705 if (flags
& MSG_OOB
) {
1710 /* We don't check peer_shutdown flag here since peer may actually shut
1711 * down, but there can be data in the queue that a local socket can
1714 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1719 /* It is valid on Linux to pass in a zero-length receive buffer. This
1720 * is not an error. We may as well bail out now.
1727 /* We must not copy less than target bytes into the user's buffer
1728 * before returning successfully, so we wait for the consume queue to
1729 * have that much data to consume before dequeueing. Note that this
1730 * makes it impossible to handle cases where target is greater than the
1733 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1734 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1738 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1741 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1749 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1750 ready
= vsock_stream_has_data(vsk
);
1753 if (sk
->sk_err
!= 0 ||
1754 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1755 (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1756 finish_wait(sk_sleep(sk
), &wait
);
1759 /* Don't wait for non-blocking sockets. */
1762 finish_wait(sk_sleep(sk
), &wait
);
1766 err
= transport
->notify_recv_pre_block(
1767 vsk
, target
, &recv_data
);
1769 finish_wait(sk_sleep(sk
), &wait
);
1773 timeout
= schedule_timeout(timeout
);
1776 if (signal_pending(current
)) {
1777 err
= sock_intr_errno(timeout
);
1778 finish_wait(sk_sleep(sk
), &wait
);
1780 } else if (timeout
== 0) {
1782 finish_wait(sk_sleep(sk
), &wait
);
1788 finish_wait(sk_sleep(sk
), &wait
);
1791 /* Invalid queue pair content. XXX This should
1792 * be changed to a connection reset in a later
1800 err
= transport
->notify_recv_pre_dequeue(
1801 vsk
, target
, &recv_data
);
1805 read
= transport
->stream_dequeue(
1807 len
- copied
, flags
);
1815 err
= transport
->notify_recv_post_dequeue(
1817 !(flags
& MSG_PEEK
), &recv_data
);
1821 if (read
>= target
|| flags
& MSG_PEEK
)
1830 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1841 static const struct proto_ops vsock_stream_ops
= {
1843 .owner
= THIS_MODULE
,
1844 .release
= vsock_release
,
1846 .connect
= vsock_stream_connect
,
1847 .socketpair
= sock_no_socketpair
,
1848 .accept
= vsock_accept
,
1849 .getname
= vsock_getname
,
1851 .ioctl
= sock_no_ioctl
,
1852 .listen
= vsock_listen
,
1853 .shutdown
= vsock_shutdown
,
1854 .setsockopt
= vsock_stream_setsockopt
,
1855 .getsockopt
= vsock_stream_getsockopt
,
1856 .sendmsg
= vsock_stream_sendmsg
,
1857 .recvmsg
= vsock_stream_recvmsg
,
1858 .mmap
= sock_no_mmap
,
1859 .sendpage
= sock_no_sendpage
,
1862 static int vsock_create(struct net
*net
, struct socket
*sock
,
1863 int protocol
, int kern
)
1868 if (protocol
&& protocol
!= PF_VSOCK
)
1869 return -EPROTONOSUPPORT
;
1871 switch (sock
->type
) {
1873 sock
->ops
= &vsock_dgram_ops
;
1876 sock
->ops
= &vsock_stream_ops
;
1879 return -ESOCKTNOSUPPORT
;
1882 sock
->state
= SS_UNCONNECTED
;
1884 return __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0, kern
) ? 0 : -ENOMEM
;
1887 static const struct net_proto_family vsock_family_ops
= {
1889 .create
= vsock_create
,
1890 .owner
= THIS_MODULE
,
1893 static long vsock_dev_do_ioctl(struct file
*filp
,
1894 unsigned int cmd
, void __user
*ptr
)
1896 u32 __user
*p
= ptr
;
1900 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
1901 if (put_user(transport
->get_local_cid(), p
) != 0)
1906 pr_err("Unknown ioctl %d\n", cmd
);
1913 static long vsock_dev_ioctl(struct file
*filp
,
1914 unsigned int cmd
, unsigned long arg
)
1916 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
1919 #ifdef CONFIG_COMPAT
1920 static long vsock_dev_compat_ioctl(struct file
*filp
,
1921 unsigned int cmd
, unsigned long arg
)
1923 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
1927 static const struct file_operations vsock_device_ops
= {
1928 .owner
= THIS_MODULE
,
1929 .unlocked_ioctl
= vsock_dev_ioctl
,
1930 #ifdef CONFIG_COMPAT
1931 .compat_ioctl
= vsock_dev_compat_ioctl
,
1933 .open
= nonseekable_open
,
1936 static struct miscdevice vsock_device
= {
1938 .fops
= &vsock_device_ops
,
1941 int __vsock_core_init(const struct vsock_transport
*t
, struct module
*owner
)
1943 int err
= mutex_lock_interruptible(&vsock_register_mutex
);
1953 /* Transport must be the owner of the protocol so that it can't
1954 * unload while there are open sockets.
1956 vsock_proto
.owner
= owner
;
1959 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
1960 err
= misc_register(&vsock_device
);
1962 pr_err("Failed to register misc device\n");
1963 goto err_reset_transport
;
1966 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
1968 pr_err("Cannot register vsock protocol\n");
1969 goto err_deregister_misc
;
1972 err
= sock_register(&vsock_family_ops
);
1974 pr_err("could not register af_vsock (%d) address family: %d\n",
1976 goto err_unregister_proto
;
1979 mutex_unlock(&vsock_register_mutex
);
1982 err_unregister_proto
:
1983 proto_unregister(&vsock_proto
);
1984 err_deregister_misc
:
1985 misc_deregister(&vsock_device
);
1986 err_reset_transport
:
1989 mutex_unlock(&vsock_register_mutex
);
1992 EXPORT_SYMBOL_GPL(__vsock_core_init
);
1994 void vsock_core_exit(void)
1996 mutex_lock(&vsock_register_mutex
);
1998 misc_deregister(&vsock_device
);
1999 sock_unregister(AF_VSOCK
);
2000 proto_unregister(&vsock_proto
);
2002 /* We do not want the assignment below re-ordered. */
2006 mutex_unlock(&vsock_register_mutex
);
2008 EXPORT_SYMBOL_GPL(vsock_core_exit
);
2010 const struct vsock_transport
*vsock_core_get_transport(void)
2012 /* vsock_register_mutex not taken since only the transport uses this
2013 * function and only while registered.
2017 EXPORT_SYMBOL_GPL(vsock_core_get_transport
);
2019 static void __exit
vsock_exit(void)
2021 /* Do nothing. This function makes this module removable. */
2024 module_init(vsock_init_tables
);
2025 module_exit(vsock_exit
);
2027 MODULE_AUTHOR("VMware, Inc.");
2028 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2029 MODULE_VERSION("1.0.2.0-k");
2030 MODULE_LICENSE("GPL v2");