1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
20 #include <trace/events/block.h>
22 #include "blk-rq-qos.h"
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
28 #define BIO_INLINE_VECS 4
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES
, max
),
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
45 struct bio_set fs_bio_set
;
46 EXPORT_SYMBOL(fs_bio_set
);
49 * Our slab pool management
52 struct kmem_cache
*slab
;
53 unsigned int slab_ref
;
54 unsigned int slab_size
;
57 static DEFINE_MUTEX(bio_slab_lock
);
58 static struct bio_slab
*bio_slabs
;
59 static unsigned int bio_slab_nr
, bio_slab_max
;
61 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
63 unsigned int sz
= sizeof(struct bio
) + extra_size
;
64 struct kmem_cache
*slab
= NULL
;
65 struct bio_slab
*bslab
, *new_bio_slabs
;
66 unsigned int new_bio_slab_max
;
67 unsigned int i
, entry
= -1;
69 mutex_lock(&bio_slab_lock
);
72 while (i
< bio_slab_nr
) {
73 bslab
= &bio_slabs
[i
];
75 if (!bslab
->slab
&& entry
== -1)
77 else if (bslab
->slab_size
== sz
) {
88 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
89 new_bio_slab_max
= bio_slab_max
<< 1;
90 new_bio_slabs
= krealloc(bio_slabs
,
91 new_bio_slab_max
* sizeof(struct bio_slab
),
95 bio_slab_max
= new_bio_slab_max
;
96 bio_slabs
= new_bio_slabs
;
99 entry
= bio_slab_nr
++;
101 bslab
= &bio_slabs
[entry
];
103 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
104 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
105 SLAB_HWCACHE_ALIGN
, NULL
);
111 bslab
->slab_size
= sz
;
113 mutex_unlock(&bio_slab_lock
);
117 static void bio_put_slab(struct bio_set
*bs
)
119 struct bio_slab
*bslab
= NULL
;
122 mutex_lock(&bio_slab_lock
);
124 for (i
= 0; i
< bio_slab_nr
; i
++) {
125 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
126 bslab
= &bio_slabs
[i
];
131 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
134 WARN_ON(!bslab
->slab_ref
);
136 if (--bslab
->slab_ref
)
139 kmem_cache_destroy(bslab
->slab
);
143 mutex_unlock(&bio_slab_lock
);
146 unsigned int bvec_nr_vecs(unsigned short idx
)
148 return bvec_slabs
[--idx
].nr_vecs
;
151 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
157 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
159 if (idx
== BVEC_POOL_MAX
) {
160 mempool_free(bv
, pool
);
162 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
164 kmem_cache_free(bvs
->slab
, bv
);
168 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
174 * see comment near bvec_array define!
192 case 129 ... BIO_MAX_PAGES
:
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
203 if (*idx
== BVEC_POOL_MAX
) {
205 bvl
= mempool_alloc(pool
, gfp_mask
);
207 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
208 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
215 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 * is set, retry with the 1-entry mempool
221 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
222 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
223 *idx
= BVEC_POOL_MAX
;
232 void bio_uninit(struct bio
*bio
)
234 bio_disassociate_blkg(bio
);
236 EXPORT_SYMBOL(bio_uninit
);
238 static void bio_free(struct bio
*bio
)
240 struct bio_set
*bs
= bio
->bi_pool
;
246 bvec_free(&bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
249 * If we have front padding, adjust the bio pointer before freeing
254 mempool_free(p
, &bs
->bio_pool
);
256 /* Bio was allocated by bio_kmalloc() */
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
266 void bio_init(struct bio
*bio
, struct bio_vec
*table
,
267 unsigned short max_vecs
)
269 memset(bio
, 0, sizeof(*bio
));
270 atomic_set(&bio
->__bi_remaining
, 1);
271 atomic_set(&bio
->__bi_cnt
, 1);
273 bio
->bi_io_vec
= table
;
274 bio
->bi_max_vecs
= max_vecs
;
276 EXPORT_SYMBOL(bio_init
);
279 * bio_reset - reinitialize a bio
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
288 void bio_reset(struct bio
*bio
)
290 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
294 memset(bio
, 0, BIO_RESET_BYTES
);
295 bio
->bi_flags
= flags
;
296 atomic_set(&bio
->__bi_remaining
, 1);
298 EXPORT_SYMBOL(bio_reset
);
300 static struct bio
*__bio_chain_endio(struct bio
*bio
)
302 struct bio
*parent
= bio
->bi_private
;
304 if (!parent
->bi_status
)
305 parent
->bi_status
= bio
->bi_status
;
310 static void bio_chain_endio(struct bio
*bio
)
312 bio_endio(__bio_chain_endio(bio
));
316 * bio_chain - chain bio completions
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
324 * The caller must not set bi_private or bi_end_io in @bio.
326 void bio_chain(struct bio
*bio
, struct bio
*parent
)
328 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
330 bio
->bi_private
= parent
;
331 bio
->bi_end_io
= bio_chain_endio
;
332 bio_inc_remaining(parent
);
334 EXPORT_SYMBOL(bio_chain
);
336 static void bio_alloc_rescue(struct work_struct
*work
)
338 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
342 spin_lock(&bs
->rescue_lock
);
343 bio
= bio_list_pop(&bs
->rescue_list
);
344 spin_unlock(&bs
->rescue_lock
);
349 generic_make_request(bio
);
353 static void punt_bios_to_rescuer(struct bio_set
*bs
)
355 struct bio_list punt
, nopunt
;
358 if (WARN_ON_ONCE(!bs
->rescue_workqueue
))
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
371 bio_list_init(&punt
);
372 bio_list_init(&nopunt
);
374 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
375 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
376 current
->bio_list
[0] = nopunt
;
378 bio_list_init(&nopunt
);
379 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
380 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
381 current
->bio_list
[1] = nopunt
;
383 spin_lock(&bs
->rescue_lock
);
384 bio_list_merge(&bs
->rescue_list
, &punt
);
385 spin_unlock(&bs
->rescue_lock
);
387 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
391 * bio_alloc_bioset - allocate a bio for I/O
392 * @gfp_mask: the GFP_* mask given to the slab allocator
393 * @nr_iovecs: number of iovecs to pre-allocate
394 * @bs: the bio_set to allocate from.
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
423 * Pointer to new bio on success, NULL on failure.
425 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, unsigned int nr_iovecs
,
428 gfp_t saved_gfp
= gfp_mask
;
430 unsigned inline_vecs
;
431 struct bio_vec
*bvl
= NULL
;
436 if (nr_iovecs
> UIO_MAXIOV
)
439 p
= kmalloc(sizeof(struct bio
) +
440 nr_iovecs
* sizeof(struct bio_vec
),
443 inline_vecs
= nr_iovecs
;
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!mempool_initialized(&bs
->bvec_pool
) &&
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
470 if (current
->bio_list
&&
471 (!bio_list_empty(¤t
->bio_list
[0]) ||
472 !bio_list_empty(¤t
->bio_list
[1])) &&
473 bs
->rescue_workqueue
)
474 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
476 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
477 if (!p
&& gfp_mask
!= saved_gfp
) {
478 punt_bios_to_rescuer(bs
);
479 gfp_mask
= saved_gfp
;
480 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
483 front_pad
= bs
->front_pad
;
484 inline_vecs
= BIO_INLINE_VECS
;
491 bio_init(bio
, NULL
, 0);
493 if (nr_iovecs
> inline_vecs
) {
494 unsigned long idx
= 0;
496 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
497 if (!bvl
&& gfp_mask
!= saved_gfp
) {
498 punt_bios_to_rescuer(bs
);
499 gfp_mask
= saved_gfp
;
500 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
506 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
507 } else if (nr_iovecs
) {
508 bvl
= bio
->bi_inline_vecs
;
512 bio
->bi_max_vecs
= nr_iovecs
;
513 bio
->bi_io_vec
= bvl
;
517 mempool_free(p
, &bs
->bio_pool
);
520 EXPORT_SYMBOL(bio_alloc_bioset
);
522 void zero_fill_bio_iter(struct bio
*bio
, struct bvec_iter start
)
526 struct bvec_iter iter
;
528 __bio_for_each_segment(bv
, bio
, iter
, start
) {
529 char *data
= bvec_kmap_irq(&bv
, &flags
);
530 memset(data
, 0, bv
.bv_len
);
531 flush_dcache_page(bv
.bv_page
);
532 bvec_kunmap_irq(data
, &flags
);
535 EXPORT_SYMBOL(zero_fill_bio_iter
);
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
542 * Put a reference to a &struct bio, either one you have gotten with
543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
545 void bio_put(struct bio
*bio
)
547 if (!bio_flagged(bio
, BIO_REFFED
))
550 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
555 if (atomic_dec_and_test(&bio
->__bi_cnt
))
559 EXPORT_SYMBOL(bio_put
);
561 int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
563 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
564 blk_recount_segments(q
, bio
);
566 return bio
->bi_phys_segments
;
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
578 * Caller must ensure that @bio_src is not freed before @bio.
580 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
582 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
585 * most users will be overriding ->bi_disk with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
588 bio
->bi_disk
= bio_src
->bi_disk
;
589 bio
->bi_partno
= bio_src
->bi_partno
;
590 bio_set_flag(bio
, BIO_CLONED
);
591 if (bio_flagged(bio_src
, BIO_THROTTLED
))
592 bio_set_flag(bio
, BIO_THROTTLED
);
593 bio
->bi_opf
= bio_src
->bi_opf
;
594 bio
->bi_ioprio
= bio_src
->bi_ioprio
;
595 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
596 bio
->bi_iter
= bio_src
->bi_iter
;
597 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
599 bio_clone_blkg_association(bio
, bio_src
);
600 blkcg_bio_issue_init(bio
);
602 EXPORT_SYMBOL(__bio_clone_fast
);
605 * bio_clone_fast - clone a bio that shares the original bio's biovec
607 * @gfp_mask: allocation priority
608 * @bs: bio_set to allocate from
610 * Like __bio_clone_fast, only also allocates the returned bio
612 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
616 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
620 __bio_clone_fast(b
, bio
);
622 if (bio_integrity(bio
)) {
625 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
635 EXPORT_SYMBOL(bio_clone_fast
);
637 static inline bool page_is_mergeable(const struct bio_vec
*bv
,
638 struct page
*page
, unsigned int len
, unsigned int off
,
641 phys_addr_t vec_end_addr
= page_to_phys(bv
->bv_page
) +
642 bv
->bv_offset
+ bv
->bv_len
- 1;
643 phys_addr_t page_addr
= page_to_phys(page
);
645 if (vec_end_addr
+ 1 != page_addr
+ off
)
647 if (xen_domain() && !xen_biovec_phys_mergeable(bv
, page
))
650 *same_page
= ((vec_end_addr
& PAGE_MASK
) == page_addr
);
651 if (!*same_page
&& pfn_to_page(PFN_DOWN(vec_end_addr
)) + 1 != page
)
657 * Check if the @page can be added to the current segment(@bv), and make
658 * sure to call it only if page_is_mergeable(@bv, @page) is true
660 static bool can_add_page_to_seg(struct request_queue
*q
,
661 struct bio_vec
*bv
, struct page
*page
, unsigned len
,
664 unsigned long mask
= queue_segment_boundary(q
);
665 phys_addr_t addr1
= page_to_phys(bv
->bv_page
) + bv
->bv_offset
;
666 phys_addr_t addr2
= page_to_phys(page
) + offset
+ len
- 1;
668 if ((addr1
| mask
) != (addr2
| mask
))
671 if (bv
->bv_len
+ len
> queue_max_segment_size(q
))
678 * __bio_add_pc_page - attempt to add page to passthrough bio
679 * @q: the target queue
680 * @bio: destination bio
682 * @len: vec entry length
683 * @offset: vec entry offset
684 * @put_same_page: put the page if it is same with last added page
686 * Attempt to add a page to the bio_vec maplist. This can fail for a
687 * number of reasons, such as the bio being full or target block device
688 * limitations. The target block device must allow bio's up to PAGE_SIZE,
689 * so it is always possible to add a single page to an empty bio.
691 * This should only be used by passthrough bios.
693 static int __bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
694 struct page
*page
, unsigned int len
, unsigned int offset
,
697 struct bio_vec
*bvec
;
698 bool same_page
= false;
701 * cloned bio must not modify vec list
703 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
706 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
709 if (bio
->bi_vcnt
> 0) {
710 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
712 if (page
== bvec
->bv_page
&&
713 offset
== bvec
->bv_offset
+ bvec
->bv_len
) {
721 * If the queue doesn't support SG gaps and adding this
722 * offset would create a gap, disallow it.
724 if (bvec_gap_to_prev(q
, bvec
, offset
))
727 if (page_is_mergeable(bvec
, page
, len
, offset
, &same_page
) &&
728 can_add_page_to_seg(q
, bvec
, page
, len
, offset
)) {
737 if (bio
->bi_phys_segments
>= queue_max_segments(q
))
740 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
741 bvec
->bv_page
= page
;
743 bvec
->bv_offset
= offset
;
746 bio
->bi_iter
.bi_size
+= len
;
747 bio
->bi_phys_segments
= bio
->bi_vcnt
;
748 bio_set_flag(bio
, BIO_SEG_VALID
);
752 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
753 struct page
*page
, unsigned int len
, unsigned int offset
)
755 return __bio_add_pc_page(q
, bio
, page
, len
, offset
, false);
757 EXPORT_SYMBOL(bio_add_pc_page
);
760 * __bio_try_merge_page - try appending data to an existing bvec.
761 * @bio: destination bio
762 * @page: start page to add
763 * @len: length of the data to add
764 * @off: offset of the data relative to @page
765 * @same_page: return if the segment has been merged inside the same page
767 * Try to add the data at @page + @off to the last bvec of @bio. This is a
768 * a useful optimisation for file systems with a block size smaller than the
771 * Warn if (@len, @off) crosses pages in case that @same_page is true.
773 * Return %true on success or %false on failure.
775 bool __bio_try_merge_page(struct bio
*bio
, struct page
*page
,
776 unsigned int len
, unsigned int off
, bool *same_page
)
778 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
781 if (bio
->bi_vcnt
> 0) {
782 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
784 if (page_is_mergeable(bv
, page
, len
, off
, same_page
)) {
786 bio
->bi_iter
.bi_size
+= len
;
792 EXPORT_SYMBOL_GPL(__bio_try_merge_page
);
795 * __bio_add_page - add page(s) to a bio in a new segment
796 * @bio: destination bio
797 * @page: start page to add
798 * @len: length of the data to add, may cross pages
799 * @off: offset of the data relative to @page, may cross pages
801 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
802 * that @bio has space for another bvec.
804 void __bio_add_page(struct bio
*bio
, struct page
*page
,
805 unsigned int len
, unsigned int off
)
807 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
809 WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
));
810 WARN_ON_ONCE(bio_full(bio
));
816 bio
->bi_iter
.bi_size
+= len
;
819 EXPORT_SYMBOL_GPL(__bio_add_page
);
822 * bio_add_page - attempt to add page(s) to bio
823 * @bio: destination bio
824 * @page: start page to add
825 * @len: vec entry length, may cross pages
826 * @offset: vec entry offset relative to @page, may cross pages
828 * Attempt to add page(s) to the bio_vec maplist. This will only fail
829 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
831 int bio_add_page(struct bio
*bio
, struct page
*page
,
832 unsigned int len
, unsigned int offset
)
834 bool same_page
= false;
836 if (!__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
839 __bio_add_page(bio
, page
, len
, offset
);
843 EXPORT_SYMBOL(bio_add_page
);
845 static void bio_get_pages(struct bio
*bio
)
847 struct bvec_iter_all iter_all
;
848 struct bio_vec
*bvec
;
850 bio_for_each_segment_all(bvec
, bio
, iter_all
)
851 get_page(bvec
->bv_page
);
854 static void bio_release_pages(struct bio
*bio
)
856 struct bvec_iter_all iter_all
;
857 struct bio_vec
*bvec
;
859 bio_for_each_segment_all(bvec
, bio
, iter_all
)
860 put_page(bvec
->bv_page
);
863 static int __bio_iov_bvec_add_pages(struct bio
*bio
, struct iov_iter
*iter
)
865 const struct bio_vec
*bv
= iter
->bvec
;
869 if (WARN_ON_ONCE(iter
->iov_offset
> bv
->bv_len
))
872 len
= min_t(size_t, bv
->bv_len
- iter
->iov_offset
, iter
->count
);
873 size
= bio_add_page(bio
, bv
->bv_page
, len
,
874 bv
->bv_offset
+ iter
->iov_offset
);
875 if (unlikely(size
!= len
))
877 iov_iter_advance(iter
, size
);
881 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
884 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
885 * @bio: bio to add pages to
886 * @iter: iov iterator describing the region to be mapped
888 * Pins pages from *iter and appends them to @bio's bvec array. The
889 * pages will have to be released using put_page() when done.
890 * For multi-segment *iter, this function only adds pages from the
891 * the next non-empty segment of the iov iterator.
893 static int __bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
895 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
896 unsigned short entries_left
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
897 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
898 struct page
**pages
= (struct page
**)bv
;
899 bool same_page
= false;
905 * Move page array up in the allocated memory for the bio vecs as far as
906 * possible so that we can start filling biovecs from the beginning
907 * without overwriting the temporary page array.
909 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC
< 2);
910 pages
+= entries_left
* (PAGE_PTRS_PER_BVEC
- 1);
912 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
913 if (unlikely(size
<= 0))
914 return size
? size
: -EFAULT
;
916 for (left
= size
, i
= 0; left
> 0; left
-= len
, i
++) {
917 struct page
*page
= pages
[i
];
919 len
= min_t(size_t, PAGE_SIZE
- offset
, left
);
921 if (__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
925 if (WARN_ON_ONCE(bio_full(bio
)))
927 __bio_add_page(bio
, page
, len
, offset
);
932 iov_iter_advance(iter
, size
);
937 * bio_iov_iter_get_pages - add user or kernel pages to a bio
938 * @bio: bio to add pages to
939 * @iter: iov iterator describing the region to be added
941 * This takes either an iterator pointing to user memory, or one pointing to
942 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
943 * map them into the kernel. On IO completion, the caller should put those
944 * pages. If we're adding kernel pages, and the caller told us it's safe to
945 * do so, we just have to add the pages to the bio directly. We don't grab an
946 * extra reference to those pages (the user should already have that), and we
947 * don't put the page on IO completion. The caller needs to check if the bio is
948 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
951 * The function tries, but does not guarantee, to pin as many pages as
952 * fit into the bio, or are requested in *iter, whatever is smaller. If
953 * MM encounters an error pinning the requested pages, it stops. Error
954 * is returned only if 0 pages could be pinned.
956 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
958 const bool is_bvec
= iov_iter_is_bvec(iter
);
961 if (WARN_ON_ONCE(bio
->bi_vcnt
))
966 ret
= __bio_iov_bvec_add_pages(bio
, iter
);
968 ret
= __bio_iov_iter_get_pages(bio
, iter
);
969 } while (!ret
&& iov_iter_count(iter
) && !bio_full(bio
));
971 if (iov_iter_bvec_no_ref(iter
))
972 bio_set_flag(bio
, BIO_NO_PAGE_REF
);
976 return bio
->bi_vcnt
? 0 : ret
;
979 static void submit_bio_wait_endio(struct bio
*bio
)
981 complete(bio
->bi_private
);
985 * submit_bio_wait - submit a bio, and wait until it completes
986 * @bio: The &struct bio which describes the I/O
988 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
989 * bio_endio() on failure.
991 * WARNING: Unlike to how submit_bio() is usually used, this function does not
992 * result in bio reference to be consumed. The caller must drop the reference
995 int submit_bio_wait(struct bio
*bio
)
997 DECLARE_COMPLETION_ONSTACK_MAP(done
, bio
->bi_disk
->lockdep_map
);
999 bio
->bi_private
= &done
;
1000 bio
->bi_end_io
= submit_bio_wait_endio
;
1001 bio
->bi_opf
|= REQ_SYNC
;
1003 wait_for_completion_io(&done
);
1005 return blk_status_to_errno(bio
->bi_status
);
1007 EXPORT_SYMBOL(submit_bio_wait
);
1010 * bio_advance - increment/complete a bio by some number of bytes
1011 * @bio: bio to advance
1012 * @bytes: number of bytes to complete
1014 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1015 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1016 * be updated on the last bvec as well.
1018 * @bio will then represent the remaining, uncompleted portion of the io.
1020 void bio_advance(struct bio
*bio
, unsigned bytes
)
1022 if (bio_integrity(bio
))
1023 bio_integrity_advance(bio
, bytes
);
1025 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
1027 EXPORT_SYMBOL(bio_advance
);
1029 void bio_copy_data_iter(struct bio
*dst
, struct bvec_iter
*dst_iter
,
1030 struct bio
*src
, struct bvec_iter
*src_iter
)
1032 struct bio_vec src_bv
, dst_bv
;
1033 void *src_p
, *dst_p
;
1036 while (src_iter
->bi_size
&& dst_iter
->bi_size
) {
1037 src_bv
= bio_iter_iovec(src
, *src_iter
);
1038 dst_bv
= bio_iter_iovec(dst
, *dst_iter
);
1040 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1042 src_p
= kmap_atomic(src_bv
.bv_page
);
1043 dst_p
= kmap_atomic(dst_bv
.bv_page
);
1045 memcpy(dst_p
+ dst_bv
.bv_offset
,
1046 src_p
+ src_bv
.bv_offset
,
1049 kunmap_atomic(dst_p
);
1050 kunmap_atomic(src_p
);
1052 flush_dcache_page(dst_bv
.bv_page
);
1054 bio_advance_iter(src
, src_iter
, bytes
);
1055 bio_advance_iter(dst
, dst_iter
, bytes
);
1058 EXPORT_SYMBOL(bio_copy_data_iter
);
1061 * bio_copy_data - copy contents of data buffers from one bio to another
1063 * @dst: destination bio
1065 * Stops when it reaches the end of either @src or @dst - that is, copies
1066 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1068 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1070 struct bvec_iter src_iter
= src
->bi_iter
;
1071 struct bvec_iter dst_iter
= dst
->bi_iter
;
1073 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1075 EXPORT_SYMBOL(bio_copy_data
);
1078 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1080 * @src: source bio list
1081 * @dst: destination bio list
1083 * Stops when it reaches the end of either the @src list or @dst list - that is,
1084 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1087 void bio_list_copy_data(struct bio
*dst
, struct bio
*src
)
1089 struct bvec_iter src_iter
= src
->bi_iter
;
1090 struct bvec_iter dst_iter
= dst
->bi_iter
;
1093 if (!src_iter
.bi_size
) {
1098 src_iter
= src
->bi_iter
;
1101 if (!dst_iter
.bi_size
) {
1106 dst_iter
= dst
->bi_iter
;
1109 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1112 EXPORT_SYMBOL(bio_list_copy_data
);
1114 struct bio_map_data
{
1116 struct iov_iter iter
;
1120 static struct bio_map_data
*bio_alloc_map_data(struct iov_iter
*data
,
1123 struct bio_map_data
*bmd
;
1124 if (data
->nr_segs
> UIO_MAXIOV
)
1127 bmd
= kmalloc(sizeof(struct bio_map_data
) +
1128 sizeof(struct iovec
) * data
->nr_segs
, gfp_mask
);
1131 memcpy(bmd
->iov
, data
->iov
, sizeof(struct iovec
) * data
->nr_segs
);
1133 bmd
->iter
.iov
= bmd
->iov
;
1138 * bio_copy_from_iter - copy all pages from iov_iter to bio
1139 * @bio: The &struct bio which describes the I/O as destination
1140 * @iter: iov_iter as source
1142 * Copy all pages from iov_iter to bio.
1143 * Returns 0 on success, or error on failure.
1145 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter
*iter
)
1147 struct bio_vec
*bvec
;
1148 struct bvec_iter_all iter_all
;
1150 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1153 ret
= copy_page_from_iter(bvec
->bv_page
,
1158 if (!iov_iter_count(iter
))
1161 if (ret
< bvec
->bv_len
)
1169 * bio_copy_to_iter - copy all pages from bio to iov_iter
1170 * @bio: The &struct bio which describes the I/O as source
1171 * @iter: iov_iter as destination
1173 * Copy all pages from bio to iov_iter.
1174 * Returns 0 on success, or error on failure.
1176 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1178 struct bio_vec
*bvec
;
1179 struct bvec_iter_all iter_all
;
1181 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1184 ret
= copy_page_to_iter(bvec
->bv_page
,
1189 if (!iov_iter_count(&iter
))
1192 if (ret
< bvec
->bv_len
)
1199 void bio_free_pages(struct bio
*bio
)
1201 struct bio_vec
*bvec
;
1202 struct bvec_iter_all iter_all
;
1204 bio_for_each_segment_all(bvec
, bio
, iter_all
)
1205 __free_page(bvec
->bv_page
);
1207 EXPORT_SYMBOL(bio_free_pages
);
1210 * bio_uncopy_user - finish previously mapped bio
1211 * @bio: bio being terminated
1213 * Free pages allocated from bio_copy_user_iov() and write back data
1214 * to user space in case of a read.
1216 int bio_uncopy_user(struct bio
*bio
)
1218 struct bio_map_data
*bmd
= bio
->bi_private
;
1221 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1223 * if we're in a workqueue, the request is orphaned, so
1224 * don't copy into a random user address space, just free
1225 * and return -EINTR so user space doesn't expect any data.
1229 else if (bio_data_dir(bio
) == READ
)
1230 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1231 if (bmd
->is_our_pages
)
1232 bio_free_pages(bio
);
1240 * bio_copy_user_iov - copy user data to bio
1241 * @q: destination block queue
1242 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1243 * @iter: iovec iterator
1244 * @gfp_mask: memory allocation flags
1246 * Prepares and returns a bio for indirect user io, bouncing data
1247 * to/from kernel pages as necessary. Must be paired with
1248 * call bio_uncopy_user() on io completion.
1250 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1251 struct rq_map_data
*map_data
,
1252 struct iov_iter
*iter
,
1255 struct bio_map_data
*bmd
;
1260 unsigned int len
= iter
->count
;
1261 unsigned int offset
= map_data
? offset_in_page(map_data
->offset
) : 0;
1263 bmd
= bio_alloc_map_data(iter
, gfp_mask
);
1265 return ERR_PTR(-ENOMEM
);
1268 * We need to do a deep copy of the iov_iter including the iovecs.
1269 * The caller provided iov might point to an on-stack or otherwise
1272 bmd
->is_our_pages
= map_data
? 0 : 1;
1274 nr_pages
= DIV_ROUND_UP(offset
+ len
, PAGE_SIZE
);
1275 if (nr_pages
> BIO_MAX_PAGES
)
1276 nr_pages
= BIO_MAX_PAGES
;
1279 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1286 nr_pages
= 1 << map_data
->page_order
;
1287 i
= map_data
->offset
/ PAGE_SIZE
;
1290 unsigned int bytes
= PAGE_SIZE
;
1298 if (i
== map_data
->nr_entries
* nr_pages
) {
1303 page
= map_data
->pages
[i
/ nr_pages
];
1304 page
+= (i
% nr_pages
);
1308 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1315 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
) {
1329 map_data
->offset
+= bio
->bi_iter
.bi_size
;
1334 if ((iov_iter_rw(iter
) == WRITE
&& (!map_data
|| !map_data
->null_mapped
)) ||
1335 (map_data
&& map_data
->from_user
)) {
1336 ret
= bio_copy_from_iter(bio
, iter
);
1340 if (bmd
->is_our_pages
)
1342 iov_iter_advance(iter
, bio
->bi_iter
.bi_size
);
1345 bio
->bi_private
= bmd
;
1346 if (map_data
&& map_data
->null_mapped
)
1347 bio_set_flag(bio
, BIO_NULL_MAPPED
);
1351 bio_free_pages(bio
);
1355 return ERR_PTR(ret
);
1359 * bio_map_user_iov - map user iovec into bio
1360 * @q: the struct request_queue for the bio
1361 * @iter: iovec iterator
1362 * @gfp_mask: memory allocation flags
1364 * Map the user space address into a bio suitable for io to a block
1365 * device. Returns an error pointer in case of error.
1367 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1368 struct iov_iter
*iter
,
1374 struct bio_vec
*bvec
;
1375 struct bvec_iter_all iter_all
;
1377 if (!iov_iter_count(iter
))
1378 return ERR_PTR(-EINVAL
);
1380 bio
= bio_kmalloc(gfp_mask
, iov_iter_npages(iter
, BIO_MAX_PAGES
));
1382 return ERR_PTR(-ENOMEM
);
1384 while (iov_iter_count(iter
)) {
1385 struct page
**pages
;
1387 size_t offs
, added
= 0;
1390 bytes
= iov_iter_get_pages_alloc(iter
, &pages
, LONG_MAX
, &offs
);
1391 if (unlikely(bytes
<= 0)) {
1392 ret
= bytes
? bytes
: -EFAULT
;
1396 npages
= DIV_ROUND_UP(offs
+ bytes
, PAGE_SIZE
);
1398 if (unlikely(offs
& queue_dma_alignment(q
))) {
1402 for (j
= 0; j
< npages
; j
++) {
1403 struct page
*page
= pages
[j
];
1404 unsigned int n
= PAGE_SIZE
- offs
;
1409 if (!__bio_add_pc_page(q
, bio
, page
, n
, offs
,
1417 iov_iter_advance(iter
, added
);
1420 * release the pages we didn't map into the bio, if any
1423 put_page(pages
[j
++]);
1425 /* couldn't stuff something into bio? */
1430 bio_set_flag(bio
, BIO_USER_MAPPED
);
1433 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1434 * it would normally disappear when its bi_end_io is run.
1435 * however, we need it for the unmap, so grab an extra
1442 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1443 put_page(bvec
->bv_page
);
1446 return ERR_PTR(ret
);
1449 static void __bio_unmap_user(struct bio
*bio
)
1451 struct bio_vec
*bvec
;
1452 struct bvec_iter_all iter_all
;
1455 * make sure we dirty pages we wrote to
1457 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1458 if (bio_data_dir(bio
) == READ
)
1459 set_page_dirty_lock(bvec
->bv_page
);
1461 put_page(bvec
->bv_page
);
1468 * bio_unmap_user - unmap a bio
1469 * @bio: the bio being unmapped
1471 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1474 * bio_unmap_user() may sleep.
1476 void bio_unmap_user(struct bio
*bio
)
1478 __bio_unmap_user(bio
);
1482 static void bio_map_kern_endio(struct bio
*bio
)
1488 * bio_map_kern - map kernel address into bio
1489 * @q: the struct request_queue for the bio
1490 * @data: pointer to buffer to map
1491 * @len: length in bytes
1492 * @gfp_mask: allocation flags for bio allocation
1494 * Map the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1497 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1500 unsigned long kaddr
= (unsigned long)data
;
1501 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1502 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1503 const int nr_pages
= end
- start
;
1507 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1509 return ERR_PTR(-ENOMEM
);
1511 offset
= offset_in_page(kaddr
);
1512 for (i
= 0; i
< nr_pages
; i
++) {
1513 unsigned int bytes
= PAGE_SIZE
- offset
;
1521 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
1523 /* we don't support partial mappings */
1525 return ERR_PTR(-EINVAL
);
1533 bio
->bi_end_io
= bio_map_kern_endio
;
1536 EXPORT_SYMBOL(bio_map_kern
);
1538 static void bio_copy_kern_endio(struct bio
*bio
)
1540 bio_free_pages(bio
);
1544 static void bio_copy_kern_endio_read(struct bio
*bio
)
1546 char *p
= bio
->bi_private
;
1547 struct bio_vec
*bvec
;
1548 struct bvec_iter_all iter_all
;
1550 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1551 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1555 bio_copy_kern_endio(bio
);
1559 * bio_copy_kern - copy kernel address into bio
1560 * @q: the struct request_queue for the bio
1561 * @data: pointer to buffer to copy
1562 * @len: length in bytes
1563 * @gfp_mask: allocation flags for bio and page allocation
1564 * @reading: data direction is READ
1566 * copy the kernel address into a bio suitable for io to a block
1567 * device. Returns an error pointer in case of error.
1569 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1570 gfp_t gfp_mask
, int reading
)
1572 unsigned long kaddr
= (unsigned long)data
;
1573 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1574 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1583 return ERR_PTR(-EINVAL
);
1585 nr_pages
= end
- start
;
1586 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1588 return ERR_PTR(-ENOMEM
);
1592 unsigned int bytes
= PAGE_SIZE
;
1597 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1602 memcpy(page_address(page
), p
, bytes
);
1604 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1612 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1613 bio
->bi_private
= data
;
1615 bio
->bi_end_io
= bio_copy_kern_endio
;
1621 bio_free_pages(bio
);
1623 return ERR_PTR(-ENOMEM
);
1627 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1628 * for performing direct-IO in BIOs.
1630 * The problem is that we cannot run set_page_dirty() from interrupt context
1631 * because the required locks are not interrupt-safe. So what we can do is to
1632 * mark the pages dirty _before_ performing IO. And in interrupt context,
1633 * check that the pages are still dirty. If so, fine. If not, redirty them
1634 * in process context.
1636 * We special-case compound pages here: normally this means reads into hugetlb
1637 * pages. The logic in here doesn't really work right for compound pages
1638 * because the VM does not uniformly chase down the head page in all cases.
1639 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1640 * handle them at all. So we skip compound pages here at an early stage.
1642 * Note that this code is very hard to test under normal circumstances because
1643 * direct-io pins the pages with get_user_pages(). This makes
1644 * is_page_cache_freeable return false, and the VM will not clean the pages.
1645 * But other code (eg, flusher threads) could clean the pages if they are mapped
1648 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1649 * deferred bio dirtying paths.
1653 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1655 void bio_set_pages_dirty(struct bio
*bio
)
1657 struct bio_vec
*bvec
;
1658 struct bvec_iter_all iter_all
;
1660 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1661 if (!PageCompound(bvec
->bv_page
))
1662 set_page_dirty_lock(bvec
->bv_page
);
1667 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1668 * If they are, then fine. If, however, some pages are clean then they must
1669 * have been written out during the direct-IO read. So we take another ref on
1670 * the BIO and re-dirty the pages in process context.
1672 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1673 * here on. It will run one put_page() against each page and will run one
1674 * bio_put() against the BIO.
1677 static void bio_dirty_fn(struct work_struct
*work
);
1679 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1680 static DEFINE_SPINLOCK(bio_dirty_lock
);
1681 static struct bio
*bio_dirty_list
;
1684 * This runs in process context
1686 static void bio_dirty_fn(struct work_struct
*work
)
1688 struct bio
*bio
, *next
;
1690 spin_lock_irq(&bio_dirty_lock
);
1691 next
= bio_dirty_list
;
1692 bio_dirty_list
= NULL
;
1693 spin_unlock_irq(&bio_dirty_lock
);
1695 while ((bio
= next
) != NULL
) {
1696 next
= bio
->bi_private
;
1698 bio_set_pages_dirty(bio
);
1699 if (!bio_flagged(bio
, BIO_NO_PAGE_REF
))
1700 bio_release_pages(bio
);
1705 void bio_check_pages_dirty(struct bio
*bio
)
1707 struct bio_vec
*bvec
;
1708 unsigned long flags
;
1709 struct bvec_iter_all iter_all
;
1711 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1712 if (!PageDirty(bvec
->bv_page
) && !PageCompound(bvec
->bv_page
))
1716 if (!bio_flagged(bio
, BIO_NO_PAGE_REF
))
1717 bio_release_pages(bio
);
1721 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1722 bio
->bi_private
= bio_dirty_list
;
1723 bio_dirty_list
= bio
;
1724 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1725 schedule_work(&bio_dirty_work
);
1728 void update_io_ticks(struct hd_struct
*part
, unsigned long now
)
1730 unsigned long stamp
;
1732 stamp
= READ_ONCE(part
->stamp
);
1733 if (unlikely(stamp
!= now
)) {
1734 if (likely(cmpxchg(&part
->stamp
, stamp
, now
) == stamp
)) {
1735 __part_stat_add(part
, io_ticks
, 1);
1739 part
= &part_to_disk(part
)->part0
;
1744 void generic_start_io_acct(struct request_queue
*q
, int op
,
1745 unsigned long sectors
, struct hd_struct
*part
)
1747 const int sgrp
= op_stat_group(op
);
1751 update_io_ticks(part
, jiffies
);
1752 part_stat_inc(part
, ios
[sgrp
]);
1753 part_stat_add(part
, sectors
[sgrp
], sectors
);
1754 part_inc_in_flight(q
, part
, op_is_write(op
));
1758 EXPORT_SYMBOL(generic_start_io_acct
);
1760 void generic_end_io_acct(struct request_queue
*q
, int req_op
,
1761 struct hd_struct
*part
, unsigned long start_time
)
1763 unsigned long now
= jiffies
;
1764 unsigned long duration
= now
- start_time
;
1765 const int sgrp
= op_stat_group(req_op
);
1769 update_io_ticks(part
, now
);
1770 part_stat_add(part
, nsecs
[sgrp
], jiffies_to_nsecs(duration
));
1771 part_stat_add(part
, time_in_queue
, duration
);
1772 part_dec_in_flight(q
, part
, op_is_write(req_op
));
1776 EXPORT_SYMBOL(generic_end_io_acct
);
1778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1779 void bio_flush_dcache_pages(struct bio
*bi
)
1781 struct bio_vec bvec
;
1782 struct bvec_iter iter
;
1784 bio_for_each_segment(bvec
, bi
, iter
)
1785 flush_dcache_page(bvec
.bv_page
);
1787 EXPORT_SYMBOL(bio_flush_dcache_pages
);
1790 static inline bool bio_remaining_done(struct bio
*bio
)
1793 * If we're not chaining, then ->__bi_remaining is always 1 and
1794 * we always end io on the first invocation.
1796 if (!bio_flagged(bio
, BIO_CHAIN
))
1799 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1801 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1802 bio_clear_flag(bio
, BIO_CHAIN
);
1810 * bio_endio - end I/O on a bio
1814 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1815 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1816 * bio unless they own it and thus know that it has an end_io function.
1818 * bio_endio() can be called several times on a bio that has been chained
1819 * using bio_chain(). The ->bi_end_io() function will only be called the
1820 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1821 * generated if BIO_TRACE_COMPLETION is set.
1823 void bio_endio(struct bio
*bio
)
1826 if (!bio_remaining_done(bio
))
1828 if (!bio_integrity_endio(bio
))
1832 rq_qos_done_bio(bio
->bi_disk
->queue
, bio
);
1835 * Need to have a real endio function for chained bios, otherwise
1836 * various corner cases will break (like stacking block devices that
1837 * save/restore bi_end_io) - however, we want to avoid unbounded
1838 * recursion and blowing the stack. Tail call optimization would
1839 * handle this, but compiling with frame pointers also disables
1840 * gcc's sibling call optimization.
1842 if (bio
->bi_end_io
== bio_chain_endio
) {
1843 bio
= __bio_chain_endio(bio
);
1847 if (bio
->bi_disk
&& bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1848 trace_block_bio_complete(bio
->bi_disk
->queue
, bio
,
1849 blk_status_to_errno(bio
->bi_status
));
1850 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1853 blk_throtl_bio_endio(bio
);
1854 /* release cgroup info */
1857 bio
->bi_end_io(bio
);
1859 EXPORT_SYMBOL(bio_endio
);
1862 * bio_split - split a bio
1863 * @bio: bio to split
1864 * @sectors: number of sectors to split from the front of @bio
1866 * @bs: bio set to allocate from
1868 * Allocates and returns a new bio which represents @sectors from the start of
1869 * @bio, and updates @bio to represent the remaining sectors.
1871 * Unless this is a discard request the newly allocated bio will point
1872 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1873 * @bio is not freed before the split.
1875 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1876 gfp_t gfp
, struct bio_set
*bs
)
1880 BUG_ON(sectors
<= 0);
1881 BUG_ON(sectors
>= bio_sectors(bio
));
1883 split
= bio_clone_fast(bio
, gfp
, bs
);
1887 split
->bi_iter
.bi_size
= sectors
<< 9;
1889 if (bio_integrity(split
))
1890 bio_integrity_trim(split
);
1892 bio_advance(bio
, split
->bi_iter
.bi_size
);
1894 if (bio_flagged(bio
, BIO_TRACE_COMPLETION
))
1895 bio_set_flag(split
, BIO_TRACE_COMPLETION
);
1899 EXPORT_SYMBOL(bio_split
);
1902 * bio_trim - trim a bio
1904 * @offset: number of sectors to trim from the front of @bio
1905 * @size: size we want to trim @bio to, in sectors
1907 void bio_trim(struct bio
*bio
, int offset
, int size
)
1909 /* 'bio' is a cloned bio which we need to trim to match
1910 * the given offset and size.
1914 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1917 bio_clear_flag(bio
, BIO_SEG_VALID
);
1919 bio_advance(bio
, offset
<< 9);
1921 bio
->bi_iter
.bi_size
= size
;
1923 if (bio_integrity(bio
))
1924 bio_integrity_trim(bio
);
1927 EXPORT_SYMBOL_GPL(bio_trim
);
1930 * create memory pools for biovec's in a bio_set.
1931 * use the global biovec slabs created for general use.
1933 int biovec_init_pool(mempool_t
*pool
, int pool_entries
)
1935 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1937 return mempool_init_slab_pool(pool
, pool_entries
, bp
->slab
);
1941 * bioset_exit - exit a bioset initialized with bioset_init()
1943 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1946 void bioset_exit(struct bio_set
*bs
)
1948 if (bs
->rescue_workqueue
)
1949 destroy_workqueue(bs
->rescue_workqueue
);
1950 bs
->rescue_workqueue
= NULL
;
1952 mempool_exit(&bs
->bio_pool
);
1953 mempool_exit(&bs
->bvec_pool
);
1955 bioset_integrity_free(bs
);
1958 bs
->bio_slab
= NULL
;
1960 EXPORT_SYMBOL(bioset_exit
);
1963 * bioset_init - Initialize a bio_set
1964 * @bs: pool to initialize
1965 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1966 * @front_pad: Number of bytes to allocate in front of the returned bio
1967 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1968 * and %BIOSET_NEED_RESCUER
1971 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1972 * to ask for a number of bytes to be allocated in front of the bio.
1973 * Front pad allocation is useful for embedding the bio inside
1974 * another structure, to avoid allocating extra data to go with the bio.
1975 * Note that the bio must be embedded at the END of that structure always,
1976 * or things will break badly.
1977 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1978 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1979 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1980 * dispatch queued requests when the mempool runs out of space.
1983 int bioset_init(struct bio_set
*bs
,
1984 unsigned int pool_size
,
1985 unsigned int front_pad
,
1988 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1990 bs
->front_pad
= front_pad
;
1992 spin_lock_init(&bs
->rescue_lock
);
1993 bio_list_init(&bs
->rescue_list
);
1994 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1996 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
2000 if (mempool_init_slab_pool(&bs
->bio_pool
, pool_size
, bs
->bio_slab
))
2003 if ((flags
& BIOSET_NEED_BVECS
) &&
2004 biovec_init_pool(&bs
->bvec_pool
, pool_size
))
2007 if (!(flags
& BIOSET_NEED_RESCUER
))
2010 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
2011 if (!bs
->rescue_workqueue
)
2019 EXPORT_SYMBOL(bioset_init
);
2022 * Initialize and setup a new bio_set, based on the settings from
2025 int bioset_init_from_src(struct bio_set
*bs
, struct bio_set
*src
)
2030 if (src
->bvec_pool
.min_nr
)
2031 flags
|= BIOSET_NEED_BVECS
;
2032 if (src
->rescue_workqueue
)
2033 flags
|= BIOSET_NEED_RESCUER
;
2035 return bioset_init(bs
, src
->bio_pool
.min_nr
, src
->front_pad
, flags
);
2037 EXPORT_SYMBOL(bioset_init_from_src
);
2039 #ifdef CONFIG_BLK_CGROUP
2042 * bio_disassociate_blkg - puts back the blkg reference if associated
2045 * Helper to disassociate the blkg from @bio if a blkg is associated.
2047 void bio_disassociate_blkg(struct bio
*bio
)
2050 blkg_put(bio
->bi_blkg
);
2051 bio
->bi_blkg
= NULL
;
2054 EXPORT_SYMBOL_GPL(bio_disassociate_blkg
);
2057 * __bio_associate_blkg - associate a bio with the a blkg
2059 * @blkg: the blkg to associate
2061 * This tries to associate @bio with the specified @blkg. Association failure
2062 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2063 * be anything between @blkg and the root_blkg. This situation only happens
2064 * when a cgroup is dying and then the remaining bios will spill to the closest
2067 * A reference will be taken on the @blkg and will be released when @bio is
2070 static void __bio_associate_blkg(struct bio
*bio
, struct blkcg_gq
*blkg
)
2072 bio_disassociate_blkg(bio
);
2074 bio
->bi_blkg
= blkg_tryget_closest(blkg
);
2078 * bio_associate_blkg_from_css - associate a bio with a specified css
2082 * Associate @bio with the blkg found by combining the css's blkg and the
2083 * request_queue of the @bio. This falls back to the queue's root_blkg if
2084 * the association fails with the css.
2086 void bio_associate_blkg_from_css(struct bio
*bio
,
2087 struct cgroup_subsys_state
*css
)
2089 struct request_queue
*q
= bio
->bi_disk
->queue
;
2090 struct blkcg_gq
*blkg
;
2094 if (!css
|| !css
->parent
)
2095 blkg
= q
->root_blkg
;
2097 blkg
= blkg_lookup_create(css_to_blkcg(css
), q
);
2099 __bio_associate_blkg(bio
, blkg
);
2103 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css
);
2107 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2109 * @page: the page to lookup the blkcg from
2111 * Associate @bio with the blkg from @page's owning memcg and the respective
2112 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2115 void bio_associate_blkg_from_page(struct bio
*bio
, struct page
*page
)
2117 struct cgroup_subsys_state
*css
;
2119 if (!page
->mem_cgroup
)
2124 css
= cgroup_e_css(page
->mem_cgroup
->css
.cgroup
, &io_cgrp_subsys
);
2125 bio_associate_blkg_from_css(bio
, css
);
2129 #endif /* CONFIG_MEMCG */
2132 * bio_associate_blkg - associate a bio with a blkg
2135 * Associate @bio with the blkg found from the bio's css and request_queue.
2136 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2137 * already associated, the css is reused and association redone as the
2138 * request_queue may have changed.
2140 void bio_associate_blkg(struct bio
*bio
)
2142 struct cgroup_subsys_state
*css
;
2147 css
= &bio_blkcg(bio
)->css
;
2151 bio_associate_blkg_from_css(bio
, css
);
2155 EXPORT_SYMBOL_GPL(bio_associate_blkg
);
2158 * bio_clone_blkg_association - clone blkg association from src to dst bio
2159 * @dst: destination bio
2162 void bio_clone_blkg_association(struct bio
*dst
, struct bio
*src
)
2167 __bio_associate_blkg(dst
, src
->bi_blkg
);
2171 EXPORT_SYMBOL_GPL(bio_clone_blkg_association
);
2172 #endif /* CONFIG_BLK_CGROUP */
2174 static void __init
biovec_init_slabs(void)
2178 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
2180 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2182 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2187 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2188 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2189 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2193 static int __init
init_bio(void)
2197 bio_slabs
= kcalloc(bio_slab_max
, sizeof(struct bio_slab
),
2200 BUILD_BUG_ON(BIO_FLAG_LAST
> BVEC_POOL_OFFSET
);
2203 panic("bio: can't allocate bios\n");
2205 bio_integrity_init();
2206 biovec_init_slabs();
2208 if (bioset_init(&fs_bio_set
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
))
2209 panic("bio: can't allocate bios\n");
2211 if (bioset_integrity_create(&fs_bio_set
, BIO_POOL_SIZE
))
2212 panic("bio: can't create integrity pool\n");
2216 subsys_initcall(init_bio
);