Merge tag 'mips_fixes_5.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips...
[linux-2.6/linux-2.6-arm.git] / net / rds / ib_recv.c
blob3cae88cbdaa023728460ceca809b27a3d474bfe3
1 /*
2 * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
49 struct rds_ib_recv_work *recv;
50 u32 i;
52 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 struct ib_sge *sge;
55 recv->r_ibinc = NULL;
56 recv->r_frag = NULL;
58 recv->r_wr.next = NULL;
59 recv->r_wr.wr_id = i;
60 recv->r_wr.sg_list = recv->r_sge;
61 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
63 sge = &recv->r_sge[0];
64 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
65 sge->length = sizeof(struct rds_header);
66 sge->lkey = ic->i_pd->local_dma_lkey;
68 sge = &recv->r_sge[1];
69 sge->addr = 0;
70 sge->length = RDS_FRAG_SIZE;
71 sge->lkey = ic->i_pd->local_dma_lkey;
76 * The entire 'from' list, including the from element itself, is put on
77 * to the tail of the 'to' list.
79 static void list_splice_entire_tail(struct list_head *from,
80 struct list_head *to)
82 struct list_head *from_last = from->prev;
84 list_splice_tail(from_last, to);
85 list_add_tail(from_last, to);
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
90 struct list_head *tmp;
92 tmp = xchg(&cache->xfer, NULL);
93 if (tmp) {
94 if (cache->ready)
95 list_splice_entire_tail(tmp, cache->ready);
96 else
97 cache->ready = tmp;
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
103 struct rds_ib_cache_head *head;
104 int cpu;
106 cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107 if (!cache->percpu)
108 return -ENOMEM;
110 for_each_possible_cpu(cpu) {
111 head = per_cpu_ptr(cache->percpu, cpu);
112 head->first = NULL;
113 head->count = 0;
115 cache->xfer = NULL;
116 cache->ready = NULL;
118 return 0;
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
123 int ret;
125 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126 if (!ret) {
127 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128 if (ret)
129 free_percpu(ic->i_cache_incs.percpu);
132 return ret;
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 struct list_head *caller_list)
138 struct rds_ib_cache_head *head;
139 int cpu;
141 for_each_possible_cpu(cpu) {
142 head = per_cpu_ptr(cache->percpu, cpu);
143 if (head->first) {
144 list_splice_entire_tail(head->first, caller_list);
145 head->first = NULL;
149 if (cache->ready) {
150 list_splice_entire_tail(cache->ready, caller_list);
151 cache->ready = NULL;
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
157 struct rds_ib_incoming *inc;
158 struct rds_ib_incoming *inc_tmp;
159 struct rds_page_frag *frag;
160 struct rds_page_frag *frag_tmp;
161 LIST_HEAD(list);
163 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 free_percpu(ic->i_cache_incs.percpu);
167 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 list_del(&inc->ii_cache_entry);
169 WARN_ON(!list_empty(&inc->ii_frags));
170 kmem_cache_free(rds_ib_incoming_slab, inc);
171 atomic_dec(&rds_ib_allocation);
174 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
175 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
176 free_percpu(ic->i_cache_frags.percpu);
178 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
179 list_del(&frag->f_cache_entry);
180 WARN_ON(!list_empty(&frag->f_item));
181 kmem_cache_free(rds_ib_frag_slab, frag);
185 /* fwd decl */
186 static void rds_ib_recv_cache_put(struct list_head *new_item,
187 struct rds_ib_refill_cache *cache);
188 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
191 /* Recycle frag and attached recv buffer f_sg */
192 static void rds_ib_frag_free(struct rds_ib_connection *ic,
193 struct rds_page_frag *frag)
195 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
197 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198 atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
199 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
202 /* Recycle inc after freeing attached frags */
203 void rds_ib_inc_free(struct rds_incoming *inc)
205 struct rds_ib_incoming *ibinc;
206 struct rds_page_frag *frag;
207 struct rds_page_frag *pos;
208 struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
210 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
212 /* Free attached frags */
213 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
214 list_del_init(&frag->f_item);
215 rds_ib_frag_free(ic, frag);
217 BUG_ON(!list_empty(&ibinc->ii_frags));
219 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
220 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
223 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
224 struct rds_ib_recv_work *recv)
226 if (recv->r_ibinc) {
227 rds_inc_put(&recv->r_ibinc->ii_inc);
228 recv->r_ibinc = NULL;
230 if (recv->r_frag) {
231 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
232 rds_ib_frag_free(ic, recv->r_frag);
233 recv->r_frag = NULL;
237 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
239 u32 i;
241 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
242 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
245 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
246 gfp_t slab_mask)
248 struct rds_ib_incoming *ibinc;
249 struct list_head *cache_item;
250 int avail_allocs;
252 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
253 if (cache_item) {
254 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
255 } else {
256 avail_allocs = atomic_add_unless(&rds_ib_allocation,
257 1, rds_ib_sysctl_max_recv_allocation);
258 if (!avail_allocs) {
259 rds_ib_stats_inc(s_ib_rx_alloc_limit);
260 return NULL;
262 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
263 if (!ibinc) {
264 atomic_dec(&rds_ib_allocation);
265 return NULL;
267 rds_ib_stats_inc(s_ib_rx_total_incs);
269 INIT_LIST_HEAD(&ibinc->ii_frags);
270 rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
272 return ibinc;
275 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
276 gfp_t slab_mask, gfp_t page_mask)
278 struct rds_page_frag *frag;
279 struct list_head *cache_item;
280 int ret;
282 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
283 if (cache_item) {
284 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
285 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
286 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
287 } else {
288 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
289 if (!frag)
290 return NULL;
292 sg_init_table(&frag->f_sg, 1);
293 ret = rds_page_remainder_alloc(&frag->f_sg,
294 RDS_FRAG_SIZE, page_mask);
295 if (ret) {
296 kmem_cache_free(rds_ib_frag_slab, frag);
297 return NULL;
299 rds_ib_stats_inc(s_ib_rx_total_frags);
302 INIT_LIST_HEAD(&frag->f_item);
304 return frag;
307 static int rds_ib_recv_refill_one(struct rds_connection *conn,
308 struct rds_ib_recv_work *recv, gfp_t gfp)
310 struct rds_ib_connection *ic = conn->c_transport_data;
311 struct ib_sge *sge;
312 int ret = -ENOMEM;
313 gfp_t slab_mask = GFP_NOWAIT;
314 gfp_t page_mask = GFP_NOWAIT;
316 if (gfp & __GFP_DIRECT_RECLAIM) {
317 slab_mask = GFP_KERNEL;
318 page_mask = GFP_HIGHUSER;
321 if (!ic->i_cache_incs.ready)
322 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
323 if (!ic->i_cache_frags.ready)
324 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
327 * ibinc was taken from recv if recv contained the start of a message.
328 * recvs that were continuations will still have this allocated.
330 if (!recv->r_ibinc) {
331 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
332 if (!recv->r_ibinc)
333 goto out;
336 WARN_ON(recv->r_frag); /* leak! */
337 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
338 if (!recv->r_frag)
339 goto out;
341 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
342 1, DMA_FROM_DEVICE);
343 WARN_ON(ret != 1);
345 sge = &recv->r_sge[0];
346 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
347 sge->length = sizeof(struct rds_header);
349 sge = &recv->r_sge[1];
350 sge->addr = sg_dma_address(&recv->r_frag->f_sg);
351 sge->length = sg_dma_len(&recv->r_frag->f_sg);
353 ret = 0;
354 out:
355 return ret;
358 static int acquire_refill(struct rds_connection *conn)
360 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
363 static void release_refill(struct rds_connection *conn)
365 clear_bit(RDS_RECV_REFILL, &conn->c_flags);
367 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
368 * hot path and finding waiters is very rare. We don't want to walk
369 * the system-wide hashed waitqueue buckets in the fast path only to
370 * almost never find waiters.
372 if (waitqueue_active(&conn->c_waitq))
373 wake_up_all(&conn->c_waitq);
377 * This tries to allocate and post unused work requests after making sure that
378 * they have all the allocations they need to queue received fragments into
379 * sockets.
381 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
383 struct rds_ib_connection *ic = conn->c_transport_data;
384 struct rds_ib_recv_work *recv;
385 unsigned int posted = 0;
386 int ret = 0;
387 bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
388 u32 pos;
390 /* the goal here is to just make sure that someone, somewhere
391 * is posting buffers. If we can't get the refill lock,
392 * let them do their thing
394 if (!acquire_refill(conn))
395 return;
397 while ((prefill || rds_conn_up(conn)) &&
398 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
399 if (pos >= ic->i_recv_ring.w_nr) {
400 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
401 pos);
402 break;
405 recv = &ic->i_recvs[pos];
406 ret = rds_ib_recv_refill_one(conn, recv, gfp);
407 if (ret) {
408 break;
411 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
412 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
413 (long)sg_dma_address(&recv->r_frag->f_sg));
415 /* XXX when can this fail? */
416 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
417 if (ret) {
418 rds_ib_conn_error(conn, "recv post on "
419 "%pI6c returned %d, disconnecting and "
420 "reconnecting\n", &conn->c_faddr,
421 ret);
422 break;
425 posted++;
428 /* We're doing flow control - update the window. */
429 if (ic->i_flowctl && posted)
430 rds_ib_advertise_credits(conn, posted);
432 if (ret)
433 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
435 release_refill(conn);
437 /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
438 * in this case the ring being low is going to lead to more interrupts
439 * and we can safely let the softirq code take care of it unless the
440 * ring is completely empty.
442 * if we're called from krdsd, we'll be GFP_KERNEL. In this case
443 * we might have raced with the softirq code while we had the refill
444 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
445 * if we should requeue.
447 if (rds_conn_up(conn) &&
448 ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
449 rds_ib_ring_empty(&ic->i_recv_ring))) {
450 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
455 * We want to recycle several types of recv allocations, like incs and frags.
456 * To use this, the *_free() function passes in the ptr to a list_head within
457 * the recyclee, as well as the cache to put it on.
459 * First, we put the memory on a percpu list. When this reaches a certain size,
460 * We move it to an intermediate non-percpu list in a lockless manner, with some
461 * xchg/compxchg wizardry.
463 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
464 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
465 * list_empty() will return true with one element is actually present.
467 static void rds_ib_recv_cache_put(struct list_head *new_item,
468 struct rds_ib_refill_cache *cache)
470 unsigned long flags;
471 struct list_head *old, *chpfirst;
473 local_irq_save(flags);
475 chpfirst = __this_cpu_read(cache->percpu->first);
476 if (!chpfirst)
477 INIT_LIST_HEAD(new_item);
478 else /* put on front */
479 list_add_tail(new_item, chpfirst);
481 __this_cpu_write(cache->percpu->first, new_item);
482 __this_cpu_inc(cache->percpu->count);
484 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
485 goto end;
488 * Return our per-cpu first list to the cache's xfer by atomically
489 * grabbing the current xfer list, appending it to our per-cpu list,
490 * and then atomically returning that entire list back to the
491 * cache's xfer list as long as it's still empty.
493 do {
494 old = xchg(&cache->xfer, NULL);
495 if (old)
496 list_splice_entire_tail(old, chpfirst);
497 old = cmpxchg(&cache->xfer, NULL, chpfirst);
498 } while (old);
501 __this_cpu_write(cache->percpu->first, NULL);
502 __this_cpu_write(cache->percpu->count, 0);
503 end:
504 local_irq_restore(flags);
507 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
509 struct list_head *head = cache->ready;
511 if (head) {
512 if (!list_empty(head)) {
513 cache->ready = head->next;
514 list_del_init(head);
515 } else
516 cache->ready = NULL;
519 return head;
522 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
524 struct rds_ib_incoming *ibinc;
525 struct rds_page_frag *frag;
526 unsigned long to_copy;
527 unsigned long frag_off = 0;
528 int copied = 0;
529 int ret;
530 u32 len;
532 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
533 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
534 len = be32_to_cpu(inc->i_hdr.h_len);
536 while (iov_iter_count(to) && copied < len) {
537 if (frag_off == RDS_FRAG_SIZE) {
538 frag = list_entry(frag->f_item.next,
539 struct rds_page_frag, f_item);
540 frag_off = 0;
542 to_copy = min_t(unsigned long, iov_iter_count(to),
543 RDS_FRAG_SIZE - frag_off);
544 to_copy = min_t(unsigned long, to_copy, len - copied);
546 /* XXX needs + offset for multiple recvs per page */
547 rds_stats_add(s_copy_to_user, to_copy);
548 ret = copy_page_to_iter(sg_page(&frag->f_sg),
549 frag->f_sg.offset + frag_off,
550 to_copy,
551 to);
552 if (ret != to_copy)
553 return -EFAULT;
555 frag_off += to_copy;
556 copied += to_copy;
559 return copied;
562 /* ic starts out kzalloc()ed */
563 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
565 struct ib_send_wr *wr = &ic->i_ack_wr;
566 struct ib_sge *sge = &ic->i_ack_sge;
568 sge->addr = ic->i_ack_dma;
569 sge->length = sizeof(struct rds_header);
570 sge->lkey = ic->i_pd->local_dma_lkey;
572 wr->sg_list = sge;
573 wr->num_sge = 1;
574 wr->opcode = IB_WR_SEND;
575 wr->wr_id = RDS_IB_ACK_WR_ID;
576 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
580 * You'd think that with reliable IB connections you wouldn't need to ack
581 * messages that have been received. The problem is that IB hardware generates
582 * an ack message before it has DMAed the message into memory. This creates a
583 * potential message loss if the HCA is disabled for any reason between when it
584 * sends the ack and before the message is DMAed and processed. This is only a
585 * potential issue if another HCA is available for fail-over.
587 * When the remote host receives our ack they'll free the sent message from
588 * their send queue. To decrease the latency of this we always send an ack
589 * immediately after we've received messages.
591 * For simplicity, we only have one ack in flight at a time. This puts
592 * pressure on senders to have deep enough send queues to absorb the latency of
593 * a single ack frame being in flight. This might not be good enough.
595 * This is implemented by have a long-lived send_wr and sge which point to a
596 * statically allocated ack frame. This ack wr does not fall under the ring
597 * accounting that the tx and rx wrs do. The QP attribute specifically makes
598 * room for it beyond the ring size. Send completion notices its special
599 * wr_id and avoids working with the ring in that case.
601 #ifndef KERNEL_HAS_ATOMIC64
602 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
604 unsigned long flags;
606 spin_lock_irqsave(&ic->i_ack_lock, flags);
607 ic->i_ack_next = seq;
608 if (ack_required)
609 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
610 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
613 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
615 unsigned long flags;
616 u64 seq;
618 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
620 spin_lock_irqsave(&ic->i_ack_lock, flags);
621 seq = ic->i_ack_next;
622 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
624 return seq;
626 #else
627 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
629 atomic64_set(&ic->i_ack_next, seq);
630 if (ack_required) {
631 smp_mb__before_atomic();
632 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
636 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
638 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
639 smp_mb__after_atomic();
641 return atomic64_read(&ic->i_ack_next);
643 #endif
646 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
648 struct rds_header *hdr = ic->i_ack;
649 u64 seq;
650 int ret;
652 seq = rds_ib_get_ack(ic);
654 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
655 rds_message_populate_header(hdr, 0, 0, 0);
656 hdr->h_ack = cpu_to_be64(seq);
657 hdr->h_credit = adv_credits;
658 rds_message_make_checksum(hdr);
659 ic->i_ack_queued = jiffies;
661 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
662 if (unlikely(ret)) {
663 /* Failed to send. Release the WR, and
664 * force another ACK.
666 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
667 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
669 rds_ib_stats_inc(s_ib_ack_send_failure);
671 rds_ib_conn_error(ic->conn, "sending ack failed\n");
672 } else
673 rds_ib_stats_inc(s_ib_ack_sent);
677 * There are 3 ways of getting acknowledgements to the peer:
678 * 1. We call rds_ib_attempt_ack from the recv completion handler
679 * to send an ACK-only frame.
680 * However, there can be only one such frame in the send queue
681 * at any time, so we may have to postpone it.
682 * 2. When another (data) packet is transmitted while there's
683 * an ACK in the queue, we piggyback the ACK sequence number
684 * on the data packet.
685 * 3. If the ACK WR is done sending, we get called from the
686 * send queue completion handler, and check whether there's
687 * another ACK pending (postponed because the WR was on the
688 * queue). If so, we transmit it.
690 * We maintain 2 variables:
691 * - i_ack_flags, which keeps track of whether the ACK WR
692 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
693 * - i_ack_next, which is the last sequence number we received
695 * Potentially, send queue and receive queue handlers can run concurrently.
696 * It would be nice to not have to use a spinlock to synchronize things,
697 * but the one problem that rules this out is that 64bit updates are
698 * not atomic on all platforms. Things would be a lot simpler if
699 * we had atomic64 or maybe cmpxchg64 everywhere.
701 * Reconnecting complicates this picture just slightly. When we
702 * reconnect, we may be seeing duplicate packets. The peer
703 * is retransmitting them, because it hasn't seen an ACK for
704 * them. It is important that we ACK these.
706 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
707 * this flag set *MUST* be acknowledged immediately.
711 * When we get here, we're called from the recv queue handler.
712 * Check whether we ought to transmit an ACK.
714 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
716 unsigned int adv_credits;
718 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
719 return;
721 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
722 rds_ib_stats_inc(s_ib_ack_send_delayed);
723 return;
726 /* Can we get a send credit? */
727 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
728 rds_ib_stats_inc(s_ib_tx_throttle);
729 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
730 return;
733 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
734 rds_ib_send_ack(ic, adv_credits);
738 * We get here from the send completion handler, when the
739 * adapter tells us the ACK frame was sent.
741 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
743 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
744 rds_ib_attempt_ack(ic);
748 * This is called by the regular xmit code when it wants to piggyback
749 * an ACK on an outgoing frame.
751 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
753 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
754 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
755 return rds_ib_get_ack(ic);
759 * It's kind of lame that we're copying from the posted receive pages into
760 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
761 * them. But receiving new congestion bitmaps should be a *rare* event, so
762 * hopefully we won't need to invest that complexity in making it more
763 * efficient. By copying we can share a simpler core with TCP which has to
764 * copy.
766 static void rds_ib_cong_recv(struct rds_connection *conn,
767 struct rds_ib_incoming *ibinc)
769 struct rds_cong_map *map;
770 unsigned int map_off;
771 unsigned int map_page;
772 struct rds_page_frag *frag;
773 unsigned long frag_off;
774 unsigned long to_copy;
775 unsigned long copied;
776 __le64 uncongested = 0;
777 void *addr;
779 /* catch completely corrupt packets */
780 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
781 return;
783 map = conn->c_fcong;
784 map_page = 0;
785 map_off = 0;
787 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
788 frag_off = 0;
790 copied = 0;
792 while (copied < RDS_CONG_MAP_BYTES) {
793 __le64 *src, *dst;
794 unsigned int k;
796 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
797 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
799 addr = kmap_atomic(sg_page(&frag->f_sg));
801 src = addr + frag->f_sg.offset + frag_off;
802 dst = (void *)map->m_page_addrs[map_page] + map_off;
803 for (k = 0; k < to_copy; k += 8) {
804 /* Record ports that became uncongested, ie
805 * bits that changed from 0 to 1. */
806 uncongested |= ~(*src) & *dst;
807 *dst++ = *src++;
809 kunmap_atomic(addr);
811 copied += to_copy;
813 map_off += to_copy;
814 if (map_off == PAGE_SIZE) {
815 map_off = 0;
816 map_page++;
819 frag_off += to_copy;
820 if (frag_off == RDS_FRAG_SIZE) {
821 frag = list_entry(frag->f_item.next,
822 struct rds_page_frag, f_item);
823 frag_off = 0;
827 /* the congestion map is in little endian order */
828 rds_cong_map_updated(map, le64_to_cpu(uncongested));
831 static void rds_ib_process_recv(struct rds_connection *conn,
832 struct rds_ib_recv_work *recv, u32 data_len,
833 struct rds_ib_ack_state *state)
835 struct rds_ib_connection *ic = conn->c_transport_data;
836 struct rds_ib_incoming *ibinc = ic->i_ibinc;
837 struct rds_header *ihdr, *hdr;
839 /* XXX shut down the connection if port 0,0 are seen? */
841 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
842 data_len);
844 if (data_len < sizeof(struct rds_header)) {
845 rds_ib_conn_error(conn, "incoming message "
846 "from %pI6c didn't include a "
847 "header, disconnecting and "
848 "reconnecting\n",
849 &conn->c_faddr);
850 return;
852 data_len -= sizeof(struct rds_header);
854 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
856 /* Validate the checksum. */
857 if (!rds_message_verify_checksum(ihdr)) {
858 rds_ib_conn_error(conn, "incoming message "
859 "from %pI6c has corrupted header - "
860 "forcing a reconnect\n",
861 &conn->c_faddr);
862 rds_stats_inc(s_recv_drop_bad_checksum);
863 return;
866 /* Process the ACK sequence which comes with every packet */
867 state->ack_recv = be64_to_cpu(ihdr->h_ack);
868 state->ack_recv_valid = 1;
870 /* Process the credits update if there was one */
871 if (ihdr->h_credit)
872 rds_ib_send_add_credits(conn, ihdr->h_credit);
874 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
875 /* This is an ACK-only packet. The fact that it gets
876 * special treatment here is that historically, ACKs
877 * were rather special beasts.
879 rds_ib_stats_inc(s_ib_ack_received);
882 * Usually the frags make their way on to incs and are then freed as
883 * the inc is freed. We don't go that route, so we have to drop the
884 * page ref ourselves. We can't just leave the page on the recv
885 * because that confuses the dma mapping of pages and each recv's use
886 * of a partial page.
888 * FIXME: Fold this into the code path below.
890 rds_ib_frag_free(ic, recv->r_frag);
891 recv->r_frag = NULL;
892 return;
896 * If we don't already have an inc on the connection then this
897 * fragment has a header and starts a message.. copy its header
898 * into the inc and save the inc so we can hang upcoming fragments
899 * off its list.
901 if (!ibinc) {
902 ibinc = recv->r_ibinc;
903 recv->r_ibinc = NULL;
904 ic->i_ibinc = ibinc;
906 hdr = &ibinc->ii_inc.i_hdr;
907 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
908 local_clock();
909 memcpy(hdr, ihdr, sizeof(*hdr));
910 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
911 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
912 local_clock();
914 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
915 ic->i_recv_data_rem, hdr->h_flags);
916 } else {
917 hdr = &ibinc->ii_inc.i_hdr;
918 /* We can't just use memcmp here; fragments of a
919 * single message may carry different ACKs */
920 if (hdr->h_sequence != ihdr->h_sequence ||
921 hdr->h_len != ihdr->h_len ||
922 hdr->h_sport != ihdr->h_sport ||
923 hdr->h_dport != ihdr->h_dport) {
924 rds_ib_conn_error(conn,
925 "fragment header mismatch; forcing reconnect\n");
926 return;
930 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
931 recv->r_frag = NULL;
933 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
934 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
935 else {
936 ic->i_recv_data_rem = 0;
937 ic->i_ibinc = NULL;
939 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
940 rds_ib_cong_recv(conn, ibinc);
941 } else {
942 rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
943 &ibinc->ii_inc, GFP_ATOMIC);
944 state->ack_next = be64_to_cpu(hdr->h_sequence);
945 state->ack_next_valid = 1;
948 /* Evaluate the ACK_REQUIRED flag *after* we received
949 * the complete frame, and after bumping the next_rx
950 * sequence. */
951 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
952 rds_stats_inc(s_recv_ack_required);
953 state->ack_required = 1;
956 rds_inc_put(&ibinc->ii_inc);
960 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
961 struct ib_wc *wc,
962 struct rds_ib_ack_state *state)
964 struct rds_connection *conn = ic->conn;
965 struct rds_ib_recv_work *recv;
967 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
968 (unsigned long long)wc->wr_id, wc->status,
969 ib_wc_status_msg(wc->status), wc->byte_len,
970 be32_to_cpu(wc->ex.imm_data));
972 rds_ib_stats_inc(s_ib_rx_cq_event);
973 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
974 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
975 DMA_FROM_DEVICE);
977 /* Also process recvs in connecting state because it is possible
978 * to get a recv completion _before_ the rdmacm ESTABLISHED
979 * event is processed.
981 if (wc->status == IB_WC_SUCCESS) {
982 rds_ib_process_recv(conn, recv, wc->byte_len, state);
983 } else {
984 /* We expect errors as the qp is drained during shutdown */
985 if (rds_conn_up(conn) || rds_conn_connecting(conn))
986 rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), disconnecting and reconnecting\n",
987 &conn->c_laddr, &conn->c_faddr,
988 conn->c_tos, wc->status,
989 ib_wc_status_msg(wc->status));
992 /* rds_ib_process_recv() doesn't always consume the frag, and
993 * we might not have called it at all if the wc didn't indicate
994 * success. We already unmapped the frag's pages, though, and
995 * the following rds_ib_ring_free() call tells the refill path
996 * that it will not find an allocated frag here. Make sure we
997 * keep that promise by freeing a frag that's still on the ring.
999 if (recv->r_frag) {
1000 rds_ib_frag_free(ic, recv->r_frag);
1001 recv->r_frag = NULL;
1003 rds_ib_ring_free(&ic->i_recv_ring, 1);
1005 /* If we ever end up with a really empty receive ring, we're
1006 * in deep trouble, as the sender will definitely see RNR
1007 * timeouts. */
1008 if (rds_ib_ring_empty(&ic->i_recv_ring))
1009 rds_ib_stats_inc(s_ib_rx_ring_empty);
1011 if (rds_ib_ring_low(&ic->i_recv_ring)) {
1012 rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1013 rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1017 int rds_ib_recv_path(struct rds_conn_path *cp)
1019 struct rds_connection *conn = cp->cp_conn;
1020 struct rds_ib_connection *ic = conn->c_transport_data;
1022 rdsdebug("conn %p\n", conn);
1023 if (rds_conn_up(conn)) {
1024 rds_ib_attempt_ack(ic);
1025 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1026 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1029 return 0;
1032 int rds_ib_recv_init(void)
1034 struct sysinfo si;
1035 int ret = -ENOMEM;
1037 /* Default to 30% of all available RAM for recv memory */
1038 si_meminfo(&si);
1039 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1041 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1042 sizeof(struct rds_ib_incoming),
1043 0, SLAB_HWCACHE_ALIGN, NULL);
1044 if (!rds_ib_incoming_slab)
1045 goto out;
1047 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1048 sizeof(struct rds_page_frag),
1049 0, SLAB_HWCACHE_ALIGN, NULL);
1050 if (!rds_ib_frag_slab) {
1051 kmem_cache_destroy(rds_ib_incoming_slab);
1052 rds_ib_incoming_slab = NULL;
1053 } else
1054 ret = 0;
1055 out:
1056 return ret;
1059 void rds_ib_recv_exit(void)
1061 WARN_ON(atomic_read(&rds_ib_allocation));
1063 kmem_cache_destroy(rds_ib_incoming_slab);
1064 kmem_cache_destroy(rds_ib_frag_slab);