Merge tag 'mips_fixes_5.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips...
[linux-2.6/linux-2.6-arm.git] / net / vmw_vsock / af_vsock.c
blob169112f8aa1ef82b8650b162ef9fe25e007aa1ec
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129 static const struct vsock_transport *transport;
130 static DEFINE_MUTEX(vsock_register_mutex);
132 /**** EXPORTS ****/
134 /* Get the ID of the local context. This is transport dependent. */
136 int vm_sockets_get_local_cid(void)
138 return transport->get_local_cid();
140 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
142 /**** UTILS ****/
144 /* Each bound VSocket is stored in the bind hash table and each connected
145 * VSocket is stored in the connected hash table.
147 * Unbound sockets are all put on the same list attached to the end of the hash
148 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
149 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
150 * represents the list that addr hashes to).
152 * Specifically, we initialize the vsock_bind_table array to a size of
153 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
154 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
155 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
156 * mods with VSOCK_HASH_SIZE to ensure this.
158 #define MAX_PORT_RETRIES 24
160 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
161 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
162 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
164 /* XXX This can probably be implemented in a better way. */
165 #define VSOCK_CONN_HASH(src, dst) \
166 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
167 #define vsock_connected_sockets(src, dst) \
168 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
169 #define vsock_connected_sockets_vsk(vsk) \
170 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
173 EXPORT_SYMBOL_GPL(vsock_bind_table);
174 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
175 EXPORT_SYMBOL_GPL(vsock_connected_table);
176 DEFINE_SPINLOCK(vsock_table_lock);
177 EXPORT_SYMBOL_GPL(vsock_table_lock);
179 /* Autobind this socket to the local address if necessary. */
180 static int vsock_auto_bind(struct vsock_sock *vsk)
182 struct sock *sk = sk_vsock(vsk);
183 struct sockaddr_vm local_addr;
185 if (vsock_addr_bound(&vsk->local_addr))
186 return 0;
187 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
188 return __vsock_bind(sk, &local_addr);
191 static int __init vsock_init_tables(void)
193 int i;
195 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
196 INIT_LIST_HEAD(&vsock_bind_table[i]);
198 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
199 INIT_LIST_HEAD(&vsock_connected_table[i]);
200 return 0;
203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 struct vsock_sock *vsk;
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
234 if (addr->svm_port == vsk->local_addr.svm_port)
235 return sk_vsock(vsk);
237 return NULL;
240 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
241 struct sockaddr_vm *dst)
243 struct vsock_sock *vsk;
245 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
246 connected_table) {
247 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
248 dst->svm_port == vsk->local_addr.svm_port) {
249 return sk_vsock(vsk);
253 return NULL;
256 static void vsock_insert_unbound(struct vsock_sock *vsk)
258 spin_lock_bh(&vsock_table_lock);
259 __vsock_insert_bound(vsock_unbound_sockets, vsk);
260 spin_unlock_bh(&vsock_table_lock);
263 void vsock_insert_connected(struct vsock_sock *vsk)
265 struct list_head *list = vsock_connected_sockets(
266 &vsk->remote_addr, &vsk->local_addr);
268 spin_lock_bh(&vsock_table_lock);
269 __vsock_insert_connected(list, vsk);
270 spin_unlock_bh(&vsock_table_lock);
272 EXPORT_SYMBOL_GPL(vsock_insert_connected);
274 void vsock_remove_bound(struct vsock_sock *vsk)
276 spin_lock_bh(&vsock_table_lock);
277 __vsock_remove_bound(vsk);
278 spin_unlock_bh(&vsock_table_lock);
280 EXPORT_SYMBOL_GPL(vsock_remove_bound);
282 void vsock_remove_connected(struct vsock_sock *vsk)
284 spin_lock_bh(&vsock_table_lock);
285 __vsock_remove_connected(vsk);
286 spin_unlock_bh(&vsock_table_lock);
288 EXPORT_SYMBOL_GPL(vsock_remove_connected);
290 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
292 struct sock *sk;
294 spin_lock_bh(&vsock_table_lock);
295 sk = __vsock_find_bound_socket(addr);
296 if (sk)
297 sock_hold(sk);
299 spin_unlock_bh(&vsock_table_lock);
301 return sk;
303 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
305 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
306 struct sockaddr_vm *dst)
308 struct sock *sk;
310 spin_lock_bh(&vsock_table_lock);
311 sk = __vsock_find_connected_socket(src, dst);
312 if (sk)
313 sock_hold(sk);
315 spin_unlock_bh(&vsock_table_lock);
317 return sk;
319 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
321 static bool vsock_in_bound_table(struct vsock_sock *vsk)
323 bool ret;
325 spin_lock_bh(&vsock_table_lock);
326 ret = __vsock_in_bound_table(vsk);
327 spin_unlock_bh(&vsock_table_lock);
329 return ret;
332 static bool vsock_in_connected_table(struct vsock_sock *vsk)
334 bool ret;
336 spin_lock_bh(&vsock_table_lock);
337 ret = __vsock_in_connected_table(vsk);
338 spin_unlock_bh(&vsock_table_lock);
340 return ret;
343 void vsock_remove_sock(struct vsock_sock *vsk)
345 if (vsock_in_bound_table(vsk))
346 vsock_remove_bound(vsk);
348 if (vsock_in_connected_table(vsk))
349 vsock_remove_connected(vsk);
351 EXPORT_SYMBOL_GPL(vsock_remove_sock);
353 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
355 int i;
357 spin_lock_bh(&vsock_table_lock);
359 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
360 struct vsock_sock *vsk;
361 list_for_each_entry(vsk, &vsock_connected_table[i],
362 connected_table)
363 fn(sk_vsock(vsk));
366 spin_unlock_bh(&vsock_table_lock);
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
370 void vsock_add_pending(struct sock *listener, struct sock *pending)
372 struct vsock_sock *vlistener;
373 struct vsock_sock *vpending;
375 vlistener = vsock_sk(listener);
376 vpending = vsock_sk(pending);
378 sock_hold(pending);
379 sock_hold(listener);
380 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
386 struct vsock_sock *vpending = vsock_sk(pending);
388 list_del_init(&vpending->pending_links);
389 sock_put(listener);
390 sock_put(pending);
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
396 struct vsock_sock *vlistener;
397 struct vsock_sock *vconnected;
399 vlistener = vsock_sk(listener);
400 vconnected = vsock_sk(connected);
402 sock_hold(connected);
403 sock_hold(listener);
404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
408 static struct sock *vsock_dequeue_accept(struct sock *listener)
410 struct vsock_sock *vlistener;
411 struct vsock_sock *vconnected;
413 vlistener = vsock_sk(listener);
415 if (list_empty(&vlistener->accept_queue))
416 return NULL;
418 vconnected = list_entry(vlistener->accept_queue.next,
419 struct vsock_sock, accept_queue);
421 list_del_init(&vconnected->accept_queue);
422 sock_put(listener);
423 /* The caller will need a reference on the connected socket so we let
424 * it call sock_put().
427 return sk_vsock(vconnected);
430 static bool vsock_is_accept_queue_empty(struct sock *sk)
432 struct vsock_sock *vsk = vsock_sk(sk);
433 return list_empty(&vsk->accept_queue);
436 static bool vsock_is_pending(struct sock *sk)
438 struct vsock_sock *vsk = vsock_sk(sk);
439 return !list_empty(&vsk->pending_links);
442 static int vsock_send_shutdown(struct sock *sk, int mode)
444 return transport->shutdown(vsock_sk(sk), mode);
447 static void vsock_pending_work(struct work_struct *work)
449 struct sock *sk;
450 struct sock *listener;
451 struct vsock_sock *vsk;
452 bool cleanup;
454 vsk = container_of(work, struct vsock_sock, pending_work.work);
455 sk = sk_vsock(vsk);
456 listener = vsk->listener;
457 cleanup = true;
459 lock_sock(listener);
460 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
462 if (vsock_is_pending(sk)) {
463 vsock_remove_pending(listener, sk);
465 listener->sk_ack_backlog--;
466 } else if (!vsk->rejected) {
467 /* We are not on the pending list and accept() did not reject
468 * us, so we must have been accepted by our user process. We
469 * just need to drop our references to the sockets and be on
470 * our way.
472 cleanup = false;
473 goto out;
476 /* We need to remove ourself from the global connected sockets list so
477 * incoming packets can't find this socket, and to reduce the reference
478 * count.
480 if (vsock_in_connected_table(vsk))
481 vsock_remove_connected(vsk);
483 sk->sk_state = TCP_CLOSE;
485 out:
486 release_sock(sk);
487 release_sock(listener);
488 if (cleanup)
489 sock_put(sk);
491 sock_put(sk);
492 sock_put(listener);
495 /**** SOCKET OPERATIONS ****/
497 static int __vsock_bind_stream(struct vsock_sock *vsk,
498 struct sockaddr_vm *addr)
500 static u32 port;
501 struct sockaddr_vm new_addr;
503 if (!port)
504 port = LAST_RESERVED_PORT + 1 +
505 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
507 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
509 if (addr->svm_port == VMADDR_PORT_ANY) {
510 bool found = false;
511 unsigned int i;
513 for (i = 0; i < MAX_PORT_RETRIES; i++) {
514 if (port <= LAST_RESERVED_PORT)
515 port = LAST_RESERVED_PORT + 1;
517 new_addr.svm_port = port++;
519 if (!__vsock_find_bound_socket(&new_addr)) {
520 found = true;
521 break;
525 if (!found)
526 return -EADDRNOTAVAIL;
527 } else {
528 /* If port is in reserved range, ensure caller
529 * has necessary privileges.
531 if (addr->svm_port <= LAST_RESERVED_PORT &&
532 !capable(CAP_NET_BIND_SERVICE)) {
533 return -EACCES;
536 if (__vsock_find_bound_socket(&new_addr))
537 return -EADDRINUSE;
540 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
542 /* Remove stream sockets from the unbound list and add them to the hash
543 * table for easy lookup by its address. The unbound list is simply an
544 * extra entry at the end of the hash table, a trick used by AF_UNIX.
546 __vsock_remove_bound(vsk);
547 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
549 return 0;
552 static int __vsock_bind_dgram(struct vsock_sock *vsk,
553 struct sockaddr_vm *addr)
555 return transport->dgram_bind(vsk, addr);
558 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
560 struct vsock_sock *vsk = vsock_sk(sk);
561 u32 cid;
562 int retval;
564 /* First ensure this socket isn't already bound. */
565 if (vsock_addr_bound(&vsk->local_addr))
566 return -EINVAL;
568 /* Now bind to the provided address or select appropriate values if
569 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
570 * like AF_INET prevents binding to a non-local IP address (in most
571 * cases), we only allow binding to the local CID.
573 cid = transport->get_local_cid();
574 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
575 return -EADDRNOTAVAIL;
577 switch (sk->sk_socket->type) {
578 case SOCK_STREAM:
579 spin_lock_bh(&vsock_table_lock);
580 retval = __vsock_bind_stream(vsk, addr);
581 spin_unlock_bh(&vsock_table_lock);
582 break;
584 case SOCK_DGRAM:
585 retval = __vsock_bind_dgram(vsk, addr);
586 break;
588 default:
589 retval = -EINVAL;
590 break;
593 return retval;
596 static void vsock_connect_timeout(struct work_struct *work);
598 struct sock *__vsock_create(struct net *net,
599 struct socket *sock,
600 struct sock *parent,
601 gfp_t priority,
602 unsigned short type,
603 int kern)
605 struct sock *sk;
606 struct vsock_sock *psk;
607 struct vsock_sock *vsk;
609 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
610 if (!sk)
611 return NULL;
613 sock_init_data(sock, sk);
615 /* sk->sk_type is normally set in sock_init_data, but only if sock is
616 * non-NULL. We make sure that our sockets always have a type by
617 * setting it here if needed.
619 if (!sock)
620 sk->sk_type = type;
622 vsk = vsock_sk(sk);
623 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
626 sk->sk_destruct = vsock_sk_destruct;
627 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
628 sock_reset_flag(sk, SOCK_DONE);
630 INIT_LIST_HEAD(&vsk->bound_table);
631 INIT_LIST_HEAD(&vsk->connected_table);
632 vsk->listener = NULL;
633 INIT_LIST_HEAD(&vsk->pending_links);
634 INIT_LIST_HEAD(&vsk->accept_queue);
635 vsk->rejected = false;
636 vsk->sent_request = false;
637 vsk->ignore_connecting_rst = false;
638 vsk->peer_shutdown = 0;
639 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
640 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
642 psk = parent ? vsock_sk(parent) : NULL;
643 if (parent) {
644 vsk->trusted = psk->trusted;
645 vsk->owner = get_cred(psk->owner);
646 vsk->connect_timeout = psk->connect_timeout;
647 } else {
648 vsk->trusted = capable(CAP_NET_ADMIN);
649 vsk->owner = get_current_cred();
650 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
653 if (transport->init(vsk, psk) < 0) {
654 sk_free(sk);
655 return NULL;
658 if (sock)
659 vsock_insert_unbound(vsk);
661 return sk;
663 EXPORT_SYMBOL_GPL(__vsock_create);
665 static void __vsock_release(struct sock *sk)
667 if (sk) {
668 struct sk_buff *skb;
669 struct sock *pending;
670 struct vsock_sock *vsk;
672 vsk = vsock_sk(sk);
673 pending = NULL; /* Compiler warning. */
675 transport->release(vsk);
677 lock_sock(sk);
678 sock_orphan(sk);
679 sk->sk_shutdown = SHUTDOWN_MASK;
681 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
682 kfree_skb(skb);
684 /* Clean up any sockets that never were accepted. */
685 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
686 __vsock_release(pending);
687 sock_put(pending);
690 release_sock(sk);
691 sock_put(sk);
695 static void vsock_sk_destruct(struct sock *sk)
697 struct vsock_sock *vsk = vsock_sk(sk);
699 transport->destruct(vsk);
701 /* When clearing these addresses, there's no need to set the family and
702 * possibly register the address family with the kernel.
704 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
707 put_cred(vsk->owner);
710 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
712 int err;
714 err = sock_queue_rcv_skb(sk, skb);
715 if (err)
716 kfree_skb(skb);
718 return err;
721 s64 vsock_stream_has_data(struct vsock_sock *vsk)
723 return transport->stream_has_data(vsk);
725 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
727 s64 vsock_stream_has_space(struct vsock_sock *vsk)
729 return transport->stream_has_space(vsk);
731 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
733 static int vsock_release(struct socket *sock)
735 __vsock_release(sock->sk);
736 sock->sk = NULL;
737 sock->state = SS_FREE;
739 return 0;
742 static int
743 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
745 int err;
746 struct sock *sk;
747 struct sockaddr_vm *vm_addr;
749 sk = sock->sk;
751 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
752 return -EINVAL;
754 lock_sock(sk);
755 err = __vsock_bind(sk, vm_addr);
756 release_sock(sk);
758 return err;
761 static int vsock_getname(struct socket *sock,
762 struct sockaddr *addr, int peer)
764 int err;
765 struct sock *sk;
766 struct vsock_sock *vsk;
767 struct sockaddr_vm *vm_addr;
769 sk = sock->sk;
770 vsk = vsock_sk(sk);
771 err = 0;
773 lock_sock(sk);
775 if (peer) {
776 if (sock->state != SS_CONNECTED) {
777 err = -ENOTCONN;
778 goto out;
780 vm_addr = &vsk->remote_addr;
781 } else {
782 vm_addr = &vsk->local_addr;
785 if (!vm_addr) {
786 err = -EINVAL;
787 goto out;
790 /* sys_getsockname() and sys_getpeername() pass us a
791 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
792 * that macro is defined in socket.c instead of .h, so we hardcode its
793 * value here.
795 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
796 memcpy(addr, vm_addr, sizeof(*vm_addr));
797 err = sizeof(*vm_addr);
799 out:
800 release_sock(sk);
801 return err;
804 static int vsock_shutdown(struct socket *sock, int mode)
806 int err;
807 struct sock *sk;
809 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
810 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
811 * here like the other address families do. Note also that the
812 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
813 * which is what we want.
815 mode++;
817 if ((mode & ~SHUTDOWN_MASK) || !mode)
818 return -EINVAL;
820 /* If this is a STREAM socket and it is not connected then bail out
821 * immediately. If it is a DGRAM socket then we must first kick the
822 * socket so that it wakes up from any sleeping calls, for example
823 * recv(), and then afterwards return the error.
826 sk = sock->sk;
827 if (sock->state == SS_UNCONNECTED) {
828 err = -ENOTCONN;
829 if (sk->sk_type == SOCK_STREAM)
830 return err;
831 } else {
832 sock->state = SS_DISCONNECTING;
833 err = 0;
836 /* Receive and send shutdowns are treated alike. */
837 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
838 if (mode) {
839 lock_sock(sk);
840 sk->sk_shutdown |= mode;
841 sk->sk_state_change(sk);
842 release_sock(sk);
844 if (sk->sk_type == SOCK_STREAM) {
845 sock_reset_flag(sk, SOCK_DONE);
846 vsock_send_shutdown(sk, mode);
850 return err;
853 static __poll_t vsock_poll(struct file *file, struct socket *sock,
854 poll_table *wait)
856 struct sock *sk;
857 __poll_t mask;
858 struct vsock_sock *vsk;
860 sk = sock->sk;
861 vsk = vsock_sk(sk);
863 poll_wait(file, sk_sleep(sk), wait);
864 mask = 0;
866 if (sk->sk_err)
867 /* Signify that there has been an error on this socket. */
868 mask |= EPOLLERR;
870 /* INET sockets treat local write shutdown and peer write shutdown as a
871 * case of EPOLLHUP set.
873 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
874 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
875 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
876 mask |= EPOLLHUP;
879 if (sk->sk_shutdown & RCV_SHUTDOWN ||
880 vsk->peer_shutdown & SEND_SHUTDOWN) {
881 mask |= EPOLLRDHUP;
884 if (sock->type == SOCK_DGRAM) {
885 /* For datagram sockets we can read if there is something in
886 * the queue and write as long as the socket isn't shutdown for
887 * sending.
889 if (!skb_queue_empty(&sk->sk_receive_queue) ||
890 (sk->sk_shutdown & RCV_SHUTDOWN)) {
891 mask |= EPOLLIN | EPOLLRDNORM;
894 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
895 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
897 } else if (sock->type == SOCK_STREAM) {
898 lock_sock(sk);
900 /* Listening sockets that have connections in their accept
901 * queue can be read.
903 if (sk->sk_state == TCP_LISTEN
904 && !vsock_is_accept_queue_empty(sk))
905 mask |= EPOLLIN | EPOLLRDNORM;
907 /* If there is something in the queue then we can read. */
908 if (transport->stream_is_active(vsk) &&
909 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
910 bool data_ready_now = false;
911 int ret = transport->notify_poll_in(
912 vsk, 1, &data_ready_now);
913 if (ret < 0) {
914 mask |= EPOLLERR;
915 } else {
916 if (data_ready_now)
917 mask |= EPOLLIN | EPOLLRDNORM;
922 /* Sockets whose connections have been closed, reset, or
923 * terminated should also be considered read, and we check the
924 * shutdown flag for that.
926 if (sk->sk_shutdown & RCV_SHUTDOWN ||
927 vsk->peer_shutdown & SEND_SHUTDOWN) {
928 mask |= EPOLLIN | EPOLLRDNORM;
931 /* Connected sockets that can produce data can be written. */
932 if (sk->sk_state == TCP_ESTABLISHED) {
933 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
934 bool space_avail_now = false;
935 int ret = transport->notify_poll_out(
936 vsk, 1, &space_avail_now);
937 if (ret < 0) {
938 mask |= EPOLLERR;
939 } else {
940 if (space_avail_now)
941 /* Remove EPOLLWRBAND since INET
942 * sockets are not setting it.
944 mask |= EPOLLOUT | EPOLLWRNORM;
950 /* Simulate INET socket poll behaviors, which sets
951 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
952 * but local send is not shutdown.
954 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
955 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
956 mask |= EPOLLOUT | EPOLLWRNORM;
960 release_sock(sk);
963 return mask;
966 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
967 size_t len)
969 int err;
970 struct sock *sk;
971 struct vsock_sock *vsk;
972 struct sockaddr_vm *remote_addr;
974 if (msg->msg_flags & MSG_OOB)
975 return -EOPNOTSUPP;
977 /* For now, MSG_DONTWAIT is always assumed... */
978 err = 0;
979 sk = sock->sk;
980 vsk = vsock_sk(sk);
982 lock_sock(sk);
984 err = vsock_auto_bind(vsk);
985 if (err)
986 goto out;
989 /* If the provided message contains an address, use that. Otherwise
990 * fall back on the socket's remote handle (if it has been connected).
992 if (msg->msg_name &&
993 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
994 &remote_addr) == 0) {
995 /* Ensure this address is of the right type and is a valid
996 * destination.
999 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1000 remote_addr->svm_cid = transport->get_local_cid();
1002 if (!vsock_addr_bound(remote_addr)) {
1003 err = -EINVAL;
1004 goto out;
1006 } else if (sock->state == SS_CONNECTED) {
1007 remote_addr = &vsk->remote_addr;
1009 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1010 remote_addr->svm_cid = transport->get_local_cid();
1012 /* XXX Should connect() or this function ensure remote_addr is
1013 * bound?
1015 if (!vsock_addr_bound(&vsk->remote_addr)) {
1016 err = -EINVAL;
1017 goto out;
1019 } else {
1020 err = -EINVAL;
1021 goto out;
1024 if (!transport->dgram_allow(remote_addr->svm_cid,
1025 remote_addr->svm_port)) {
1026 err = -EINVAL;
1027 goto out;
1030 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1032 out:
1033 release_sock(sk);
1034 return err;
1037 static int vsock_dgram_connect(struct socket *sock,
1038 struct sockaddr *addr, int addr_len, int flags)
1040 int err;
1041 struct sock *sk;
1042 struct vsock_sock *vsk;
1043 struct sockaddr_vm *remote_addr;
1045 sk = sock->sk;
1046 vsk = vsock_sk(sk);
1048 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1049 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1050 lock_sock(sk);
1051 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1052 VMADDR_PORT_ANY);
1053 sock->state = SS_UNCONNECTED;
1054 release_sock(sk);
1055 return 0;
1056 } else if (err != 0)
1057 return -EINVAL;
1059 lock_sock(sk);
1061 err = vsock_auto_bind(vsk);
1062 if (err)
1063 goto out;
1065 if (!transport->dgram_allow(remote_addr->svm_cid,
1066 remote_addr->svm_port)) {
1067 err = -EINVAL;
1068 goto out;
1071 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1072 sock->state = SS_CONNECTED;
1074 out:
1075 release_sock(sk);
1076 return err;
1079 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1080 size_t len, int flags)
1082 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1085 static const struct proto_ops vsock_dgram_ops = {
1086 .family = PF_VSOCK,
1087 .owner = THIS_MODULE,
1088 .release = vsock_release,
1089 .bind = vsock_bind,
1090 .connect = vsock_dgram_connect,
1091 .socketpair = sock_no_socketpair,
1092 .accept = sock_no_accept,
1093 .getname = vsock_getname,
1094 .poll = vsock_poll,
1095 .ioctl = sock_no_ioctl,
1096 .listen = sock_no_listen,
1097 .shutdown = vsock_shutdown,
1098 .setsockopt = sock_no_setsockopt,
1099 .getsockopt = sock_no_getsockopt,
1100 .sendmsg = vsock_dgram_sendmsg,
1101 .recvmsg = vsock_dgram_recvmsg,
1102 .mmap = sock_no_mmap,
1103 .sendpage = sock_no_sendpage,
1106 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1108 if (!transport->cancel_pkt)
1109 return -EOPNOTSUPP;
1111 return transport->cancel_pkt(vsk);
1114 static void vsock_connect_timeout(struct work_struct *work)
1116 struct sock *sk;
1117 struct vsock_sock *vsk;
1118 int cancel = 0;
1120 vsk = container_of(work, struct vsock_sock, connect_work.work);
1121 sk = sk_vsock(vsk);
1123 lock_sock(sk);
1124 if (sk->sk_state == TCP_SYN_SENT &&
1125 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1126 sk->sk_state = TCP_CLOSE;
1127 sk->sk_err = ETIMEDOUT;
1128 sk->sk_error_report(sk);
1129 cancel = 1;
1131 release_sock(sk);
1132 if (cancel)
1133 vsock_transport_cancel_pkt(vsk);
1135 sock_put(sk);
1138 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1139 int addr_len, int flags)
1141 int err;
1142 struct sock *sk;
1143 struct vsock_sock *vsk;
1144 struct sockaddr_vm *remote_addr;
1145 long timeout;
1146 DEFINE_WAIT(wait);
1148 err = 0;
1149 sk = sock->sk;
1150 vsk = vsock_sk(sk);
1152 lock_sock(sk);
1154 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1155 switch (sock->state) {
1156 case SS_CONNECTED:
1157 err = -EISCONN;
1158 goto out;
1159 case SS_DISCONNECTING:
1160 err = -EINVAL;
1161 goto out;
1162 case SS_CONNECTING:
1163 /* This continues on so we can move sock into the SS_CONNECTED
1164 * state once the connection has completed (at which point err
1165 * will be set to zero also). Otherwise, we will either wait
1166 * for the connection or return -EALREADY should this be a
1167 * non-blocking call.
1169 err = -EALREADY;
1170 break;
1171 default:
1172 if ((sk->sk_state == TCP_LISTEN) ||
1173 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1174 err = -EINVAL;
1175 goto out;
1178 /* The hypervisor and well-known contexts do not have socket
1179 * endpoints.
1181 if (!transport->stream_allow(remote_addr->svm_cid,
1182 remote_addr->svm_port)) {
1183 err = -ENETUNREACH;
1184 goto out;
1187 /* Set the remote address that we are connecting to. */
1188 memcpy(&vsk->remote_addr, remote_addr,
1189 sizeof(vsk->remote_addr));
1191 err = vsock_auto_bind(vsk);
1192 if (err)
1193 goto out;
1195 sk->sk_state = TCP_SYN_SENT;
1197 err = transport->connect(vsk);
1198 if (err < 0)
1199 goto out;
1201 /* Mark sock as connecting and set the error code to in
1202 * progress in case this is a non-blocking connect.
1204 sock->state = SS_CONNECTING;
1205 err = -EINPROGRESS;
1208 /* The receive path will handle all communication until we are able to
1209 * enter the connected state. Here we wait for the connection to be
1210 * completed or a notification of an error.
1212 timeout = vsk->connect_timeout;
1213 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1215 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1216 if (flags & O_NONBLOCK) {
1217 /* If we're not going to block, we schedule a timeout
1218 * function to generate a timeout on the connection
1219 * attempt, in case the peer doesn't respond in a
1220 * timely manner. We hold on to the socket until the
1221 * timeout fires.
1223 sock_hold(sk);
1224 schedule_delayed_work(&vsk->connect_work, timeout);
1226 /* Skip ahead to preserve error code set above. */
1227 goto out_wait;
1230 release_sock(sk);
1231 timeout = schedule_timeout(timeout);
1232 lock_sock(sk);
1234 if (signal_pending(current)) {
1235 err = sock_intr_errno(timeout);
1236 sk->sk_state = TCP_CLOSE;
1237 sock->state = SS_UNCONNECTED;
1238 vsock_transport_cancel_pkt(vsk);
1239 goto out_wait;
1240 } else if (timeout == 0) {
1241 err = -ETIMEDOUT;
1242 sk->sk_state = TCP_CLOSE;
1243 sock->state = SS_UNCONNECTED;
1244 vsock_transport_cancel_pkt(vsk);
1245 goto out_wait;
1248 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1251 if (sk->sk_err) {
1252 err = -sk->sk_err;
1253 sk->sk_state = TCP_CLOSE;
1254 sock->state = SS_UNCONNECTED;
1255 } else {
1256 err = 0;
1259 out_wait:
1260 finish_wait(sk_sleep(sk), &wait);
1261 out:
1262 release_sock(sk);
1263 return err;
1266 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1267 bool kern)
1269 struct sock *listener;
1270 int err;
1271 struct sock *connected;
1272 struct vsock_sock *vconnected;
1273 long timeout;
1274 DEFINE_WAIT(wait);
1276 err = 0;
1277 listener = sock->sk;
1279 lock_sock(listener);
1281 if (sock->type != SOCK_STREAM) {
1282 err = -EOPNOTSUPP;
1283 goto out;
1286 if (listener->sk_state != TCP_LISTEN) {
1287 err = -EINVAL;
1288 goto out;
1291 /* Wait for children sockets to appear; these are the new sockets
1292 * created upon connection establishment.
1294 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1295 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1297 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1298 listener->sk_err == 0) {
1299 release_sock(listener);
1300 timeout = schedule_timeout(timeout);
1301 finish_wait(sk_sleep(listener), &wait);
1302 lock_sock(listener);
1304 if (signal_pending(current)) {
1305 err = sock_intr_errno(timeout);
1306 goto out;
1307 } else if (timeout == 0) {
1308 err = -EAGAIN;
1309 goto out;
1312 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1314 finish_wait(sk_sleep(listener), &wait);
1316 if (listener->sk_err)
1317 err = -listener->sk_err;
1319 if (connected) {
1320 listener->sk_ack_backlog--;
1322 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1323 vconnected = vsock_sk(connected);
1325 /* If the listener socket has received an error, then we should
1326 * reject this socket and return. Note that we simply mark the
1327 * socket rejected, drop our reference, and let the cleanup
1328 * function handle the cleanup; the fact that we found it in
1329 * the listener's accept queue guarantees that the cleanup
1330 * function hasn't run yet.
1332 if (err) {
1333 vconnected->rejected = true;
1334 } else {
1335 newsock->state = SS_CONNECTED;
1336 sock_graft(connected, newsock);
1339 release_sock(connected);
1340 sock_put(connected);
1343 out:
1344 release_sock(listener);
1345 return err;
1348 static int vsock_listen(struct socket *sock, int backlog)
1350 int err;
1351 struct sock *sk;
1352 struct vsock_sock *vsk;
1354 sk = sock->sk;
1356 lock_sock(sk);
1358 if (sock->type != SOCK_STREAM) {
1359 err = -EOPNOTSUPP;
1360 goto out;
1363 if (sock->state != SS_UNCONNECTED) {
1364 err = -EINVAL;
1365 goto out;
1368 vsk = vsock_sk(sk);
1370 if (!vsock_addr_bound(&vsk->local_addr)) {
1371 err = -EINVAL;
1372 goto out;
1375 sk->sk_max_ack_backlog = backlog;
1376 sk->sk_state = TCP_LISTEN;
1378 err = 0;
1380 out:
1381 release_sock(sk);
1382 return err;
1385 static int vsock_stream_setsockopt(struct socket *sock,
1386 int level,
1387 int optname,
1388 char __user *optval,
1389 unsigned int optlen)
1391 int err;
1392 struct sock *sk;
1393 struct vsock_sock *vsk;
1394 u64 val;
1396 if (level != AF_VSOCK)
1397 return -ENOPROTOOPT;
1399 #define COPY_IN(_v) \
1400 do { \
1401 if (optlen < sizeof(_v)) { \
1402 err = -EINVAL; \
1403 goto exit; \
1405 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1406 err = -EFAULT; \
1407 goto exit; \
1409 } while (0)
1411 err = 0;
1412 sk = sock->sk;
1413 vsk = vsock_sk(sk);
1415 lock_sock(sk);
1417 switch (optname) {
1418 case SO_VM_SOCKETS_BUFFER_SIZE:
1419 COPY_IN(val);
1420 transport->set_buffer_size(vsk, val);
1421 break;
1423 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1424 COPY_IN(val);
1425 transport->set_max_buffer_size(vsk, val);
1426 break;
1428 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1429 COPY_IN(val);
1430 transport->set_min_buffer_size(vsk, val);
1431 break;
1433 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1434 struct __kernel_old_timeval tv;
1435 COPY_IN(tv);
1436 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1437 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1438 vsk->connect_timeout = tv.tv_sec * HZ +
1439 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1440 if (vsk->connect_timeout == 0)
1441 vsk->connect_timeout =
1442 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1444 } else {
1445 err = -ERANGE;
1447 break;
1450 default:
1451 err = -ENOPROTOOPT;
1452 break;
1455 #undef COPY_IN
1457 exit:
1458 release_sock(sk);
1459 return err;
1462 static int vsock_stream_getsockopt(struct socket *sock,
1463 int level, int optname,
1464 char __user *optval,
1465 int __user *optlen)
1467 int err;
1468 int len;
1469 struct sock *sk;
1470 struct vsock_sock *vsk;
1471 u64 val;
1473 if (level != AF_VSOCK)
1474 return -ENOPROTOOPT;
1476 err = get_user(len, optlen);
1477 if (err != 0)
1478 return err;
1480 #define COPY_OUT(_v) \
1481 do { \
1482 if (len < sizeof(_v)) \
1483 return -EINVAL; \
1485 len = sizeof(_v); \
1486 if (copy_to_user(optval, &_v, len) != 0) \
1487 return -EFAULT; \
1489 } while (0)
1491 err = 0;
1492 sk = sock->sk;
1493 vsk = vsock_sk(sk);
1495 switch (optname) {
1496 case SO_VM_SOCKETS_BUFFER_SIZE:
1497 val = transport->get_buffer_size(vsk);
1498 COPY_OUT(val);
1499 break;
1501 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1502 val = transport->get_max_buffer_size(vsk);
1503 COPY_OUT(val);
1504 break;
1506 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1507 val = transport->get_min_buffer_size(vsk);
1508 COPY_OUT(val);
1509 break;
1511 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1512 struct __kernel_old_timeval tv;
1513 tv.tv_sec = vsk->connect_timeout / HZ;
1514 tv.tv_usec =
1515 (vsk->connect_timeout -
1516 tv.tv_sec * HZ) * (1000000 / HZ);
1517 COPY_OUT(tv);
1518 break;
1520 default:
1521 return -ENOPROTOOPT;
1524 err = put_user(len, optlen);
1525 if (err != 0)
1526 return -EFAULT;
1528 #undef COPY_OUT
1530 return 0;
1533 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1534 size_t len)
1536 struct sock *sk;
1537 struct vsock_sock *vsk;
1538 ssize_t total_written;
1539 long timeout;
1540 int err;
1541 struct vsock_transport_send_notify_data send_data;
1542 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1544 sk = sock->sk;
1545 vsk = vsock_sk(sk);
1546 total_written = 0;
1547 err = 0;
1549 if (msg->msg_flags & MSG_OOB)
1550 return -EOPNOTSUPP;
1552 lock_sock(sk);
1554 /* Callers should not provide a destination with stream sockets. */
1555 if (msg->msg_namelen) {
1556 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1557 goto out;
1560 /* Send data only if both sides are not shutdown in the direction. */
1561 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1562 vsk->peer_shutdown & RCV_SHUTDOWN) {
1563 err = -EPIPE;
1564 goto out;
1567 if (sk->sk_state != TCP_ESTABLISHED ||
1568 !vsock_addr_bound(&vsk->local_addr)) {
1569 err = -ENOTCONN;
1570 goto out;
1573 if (!vsock_addr_bound(&vsk->remote_addr)) {
1574 err = -EDESTADDRREQ;
1575 goto out;
1578 /* Wait for room in the produce queue to enqueue our user's data. */
1579 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1581 err = transport->notify_send_init(vsk, &send_data);
1582 if (err < 0)
1583 goto out;
1585 while (total_written < len) {
1586 ssize_t written;
1588 add_wait_queue(sk_sleep(sk), &wait);
1589 while (vsock_stream_has_space(vsk) == 0 &&
1590 sk->sk_err == 0 &&
1591 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1592 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1594 /* Don't wait for non-blocking sockets. */
1595 if (timeout == 0) {
1596 err = -EAGAIN;
1597 remove_wait_queue(sk_sleep(sk), &wait);
1598 goto out_err;
1601 err = transport->notify_send_pre_block(vsk, &send_data);
1602 if (err < 0) {
1603 remove_wait_queue(sk_sleep(sk), &wait);
1604 goto out_err;
1607 release_sock(sk);
1608 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1609 lock_sock(sk);
1610 if (signal_pending(current)) {
1611 err = sock_intr_errno(timeout);
1612 remove_wait_queue(sk_sleep(sk), &wait);
1613 goto out_err;
1614 } else if (timeout == 0) {
1615 err = -EAGAIN;
1616 remove_wait_queue(sk_sleep(sk), &wait);
1617 goto out_err;
1620 remove_wait_queue(sk_sleep(sk), &wait);
1622 /* These checks occur both as part of and after the loop
1623 * conditional since we need to check before and after
1624 * sleeping.
1626 if (sk->sk_err) {
1627 err = -sk->sk_err;
1628 goto out_err;
1629 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1630 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1631 err = -EPIPE;
1632 goto out_err;
1635 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1636 if (err < 0)
1637 goto out_err;
1639 /* Note that enqueue will only write as many bytes as are free
1640 * in the produce queue, so we don't need to ensure len is
1641 * smaller than the queue size. It is the caller's
1642 * responsibility to check how many bytes we were able to send.
1645 written = transport->stream_enqueue(
1646 vsk, msg,
1647 len - total_written);
1648 if (written < 0) {
1649 err = -ENOMEM;
1650 goto out_err;
1653 total_written += written;
1655 err = transport->notify_send_post_enqueue(
1656 vsk, written, &send_data);
1657 if (err < 0)
1658 goto out_err;
1662 out_err:
1663 if (total_written > 0)
1664 err = total_written;
1665 out:
1666 release_sock(sk);
1667 return err;
1671 static int
1672 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1673 int flags)
1675 struct sock *sk;
1676 struct vsock_sock *vsk;
1677 int err;
1678 size_t target;
1679 ssize_t copied;
1680 long timeout;
1681 struct vsock_transport_recv_notify_data recv_data;
1683 DEFINE_WAIT(wait);
1685 sk = sock->sk;
1686 vsk = vsock_sk(sk);
1687 err = 0;
1689 lock_sock(sk);
1691 if (sk->sk_state != TCP_ESTABLISHED) {
1692 /* Recvmsg is supposed to return 0 if a peer performs an
1693 * orderly shutdown. Differentiate between that case and when a
1694 * peer has not connected or a local shutdown occured with the
1695 * SOCK_DONE flag.
1697 if (sock_flag(sk, SOCK_DONE))
1698 err = 0;
1699 else
1700 err = -ENOTCONN;
1702 goto out;
1705 if (flags & MSG_OOB) {
1706 err = -EOPNOTSUPP;
1707 goto out;
1710 /* We don't check peer_shutdown flag here since peer may actually shut
1711 * down, but there can be data in the queue that a local socket can
1712 * receive.
1714 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1715 err = 0;
1716 goto out;
1719 /* It is valid on Linux to pass in a zero-length receive buffer. This
1720 * is not an error. We may as well bail out now.
1722 if (!len) {
1723 err = 0;
1724 goto out;
1727 /* We must not copy less than target bytes into the user's buffer
1728 * before returning successfully, so we wait for the consume queue to
1729 * have that much data to consume before dequeueing. Note that this
1730 * makes it impossible to handle cases where target is greater than the
1731 * queue size.
1733 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1734 if (target >= transport->stream_rcvhiwat(vsk)) {
1735 err = -ENOMEM;
1736 goto out;
1738 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1739 copied = 0;
1741 err = transport->notify_recv_init(vsk, target, &recv_data);
1742 if (err < 0)
1743 goto out;
1746 while (1) {
1747 s64 ready;
1749 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1750 ready = vsock_stream_has_data(vsk);
1752 if (ready == 0) {
1753 if (sk->sk_err != 0 ||
1754 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1755 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1756 finish_wait(sk_sleep(sk), &wait);
1757 break;
1759 /* Don't wait for non-blocking sockets. */
1760 if (timeout == 0) {
1761 err = -EAGAIN;
1762 finish_wait(sk_sleep(sk), &wait);
1763 break;
1766 err = transport->notify_recv_pre_block(
1767 vsk, target, &recv_data);
1768 if (err < 0) {
1769 finish_wait(sk_sleep(sk), &wait);
1770 break;
1772 release_sock(sk);
1773 timeout = schedule_timeout(timeout);
1774 lock_sock(sk);
1776 if (signal_pending(current)) {
1777 err = sock_intr_errno(timeout);
1778 finish_wait(sk_sleep(sk), &wait);
1779 break;
1780 } else if (timeout == 0) {
1781 err = -EAGAIN;
1782 finish_wait(sk_sleep(sk), &wait);
1783 break;
1785 } else {
1786 ssize_t read;
1788 finish_wait(sk_sleep(sk), &wait);
1790 if (ready < 0) {
1791 /* Invalid queue pair content. XXX This should
1792 * be changed to a connection reset in a later
1793 * change.
1796 err = -ENOMEM;
1797 goto out;
1800 err = transport->notify_recv_pre_dequeue(
1801 vsk, target, &recv_data);
1802 if (err < 0)
1803 break;
1805 read = transport->stream_dequeue(
1806 vsk, msg,
1807 len - copied, flags);
1808 if (read < 0) {
1809 err = -ENOMEM;
1810 break;
1813 copied += read;
1815 err = transport->notify_recv_post_dequeue(
1816 vsk, target, read,
1817 !(flags & MSG_PEEK), &recv_data);
1818 if (err < 0)
1819 goto out;
1821 if (read >= target || flags & MSG_PEEK)
1822 break;
1824 target -= read;
1828 if (sk->sk_err)
1829 err = -sk->sk_err;
1830 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1831 err = 0;
1833 if (copied > 0)
1834 err = copied;
1836 out:
1837 release_sock(sk);
1838 return err;
1841 static const struct proto_ops vsock_stream_ops = {
1842 .family = PF_VSOCK,
1843 .owner = THIS_MODULE,
1844 .release = vsock_release,
1845 .bind = vsock_bind,
1846 .connect = vsock_stream_connect,
1847 .socketpair = sock_no_socketpair,
1848 .accept = vsock_accept,
1849 .getname = vsock_getname,
1850 .poll = vsock_poll,
1851 .ioctl = sock_no_ioctl,
1852 .listen = vsock_listen,
1853 .shutdown = vsock_shutdown,
1854 .setsockopt = vsock_stream_setsockopt,
1855 .getsockopt = vsock_stream_getsockopt,
1856 .sendmsg = vsock_stream_sendmsg,
1857 .recvmsg = vsock_stream_recvmsg,
1858 .mmap = sock_no_mmap,
1859 .sendpage = sock_no_sendpage,
1862 static int vsock_create(struct net *net, struct socket *sock,
1863 int protocol, int kern)
1865 if (!sock)
1866 return -EINVAL;
1868 if (protocol && protocol != PF_VSOCK)
1869 return -EPROTONOSUPPORT;
1871 switch (sock->type) {
1872 case SOCK_DGRAM:
1873 sock->ops = &vsock_dgram_ops;
1874 break;
1875 case SOCK_STREAM:
1876 sock->ops = &vsock_stream_ops;
1877 break;
1878 default:
1879 return -ESOCKTNOSUPPORT;
1882 sock->state = SS_UNCONNECTED;
1884 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1887 static const struct net_proto_family vsock_family_ops = {
1888 .family = AF_VSOCK,
1889 .create = vsock_create,
1890 .owner = THIS_MODULE,
1893 static long vsock_dev_do_ioctl(struct file *filp,
1894 unsigned int cmd, void __user *ptr)
1896 u32 __user *p = ptr;
1897 int retval = 0;
1899 switch (cmd) {
1900 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1901 if (put_user(transport->get_local_cid(), p) != 0)
1902 retval = -EFAULT;
1903 break;
1905 default:
1906 pr_err("Unknown ioctl %d\n", cmd);
1907 retval = -EINVAL;
1910 return retval;
1913 static long vsock_dev_ioctl(struct file *filp,
1914 unsigned int cmd, unsigned long arg)
1916 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1919 #ifdef CONFIG_COMPAT
1920 static long vsock_dev_compat_ioctl(struct file *filp,
1921 unsigned int cmd, unsigned long arg)
1923 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1925 #endif
1927 static const struct file_operations vsock_device_ops = {
1928 .owner = THIS_MODULE,
1929 .unlocked_ioctl = vsock_dev_ioctl,
1930 #ifdef CONFIG_COMPAT
1931 .compat_ioctl = vsock_dev_compat_ioctl,
1932 #endif
1933 .open = nonseekable_open,
1936 static struct miscdevice vsock_device = {
1937 .name = "vsock",
1938 .fops = &vsock_device_ops,
1941 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1943 int err = mutex_lock_interruptible(&vsock_register_mutex);
1945 if (err)
1946 return err;
1948 if (transport) {
1949 err = -EBUSY;
1950 goto err_busy;
1953 /* Transport must be the owner of the protocol so that it can't
1954 * unload while there are open sockets.
1956 vsock_proto.owner = owner;
1957 transport = t;
1959 vsock_device.minor = MISC_DYNAMIC_MINOR;
1960 err = misc_register(&vsock_device);
1961 if (err) {
1962 pr_err("Failed to register misc device\n");
1963 goto err_reset_transport;
1966 err = proto_register(&vsock_proto, 1); /* we want our slab */
1967 if (err) {
1968 pr_err("Cannot register vsock protocol\n");
1969 goto err_deregister_misc;
1972 err = sock_register(&vsock_family_ops);
1973 if (err) {
1974 pr_err("could not register af_vsock (%d) address family: %d\n",
1975 AF_VSOCK, err);
1976 goto err_unregister_proto;
1979 mutex_unlock(&vsock_register_mutex);
1980 return 0;
1982 err_unregister_proto:
1983 proto_unregister(&vsock_proto);
1984 err_deregister_misc:
1985 misc_deregister(&vsock_device);
1986 err_reset_transport:
1987 transport = NULL;
1988 err_busy:
1989 mutex_unlock(&vsock_register_mutex);
1990 return err;
1992 EXPORT_SYMBOL_GPL(__vsock_core_init);
1994 void vsock_core_exit(void)
1996 mutex_lock(&vsock_register_mutex);
1998 misc_deregister(&vsock_device);
1999 sock_unregister(AF_VSOCK);
2000 proto_unregister(&vsock_proto);
2002 /* We do not want the assignment below re-ordered. */
2003 mb();
2004 transport = NULL;
2006 mutex_unlock(&vsock_register_mutex);
2008 EXPORT_SYMBOL_GPL(vsock_core_exit);
2010 const struct vsock_transport *vsock_core_get_transport(void)
2012 /* vsock_register_mutex not taken since only the transport uses this
2013 * function and only while registered.
2015 return transport;
2017 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2019 static void __exit vsock_exit(void)
2021 /* Do nothing. This function makes this module removable. */
2024 module_init(vsock_init_tables);
2025 module_exit(vsock_exit);
2027 MODULE_AUTHOR("VMware, Inc.");
2028 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2029 MODULE_VERSION("1.0.2.0-k");
2030 MODULE_LICENSE("GPL v2");