i2c: tegra: Add Dmitry as a reviewer
[linux-2.6/linux-2.6-arm.git] / fs / ext4 / super.c
blob4079605d437ae7c34cce2f2073cac5d25a8997c5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
90 * Lock ordering
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 * page fault path:
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
148 * return.
150 struct buffer_head *
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
153 struct buffer_head *bh = sb_getblk(sb, block);
155 if (bh == NULL)
156 return ERR_PTR(-ENOMEM);
157 if (buffer_uptodate(bh))
158 return bh;
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 wait_on_buffer(bh);
161 if (buffer_uptodate(bh))
162 return bh;
163 put_bh(bh);
164 return ERR_PTR(-EIO);
167 static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
170 if (!ext4_has_feature_metadata_csum(sb))
171 return 1;
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
181 __u32 csum;
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
185 return cpu_to_le32(csum);
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
191 if (!ext4_has_metadata_csum(sb))
192 return 1;
194 return es->s_checksum == ext4_superblock_csum(sb, es);
197 void ext4_superblock_csum_set(struct super_block *sb)
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
201 if (!ext4_has_metadata_csum(sb))
202 return;
204 es->s_checksum = ext4_superblock_csum(sb, es);
207 void *ext4_kvmalloc(size_t size, gfp_t flags)
209 void *ret;
211 ret = kmalloc(size, flags | __GFP_NOWARN);
212 if (!ret)
213 ret = __vmalloc(size, flags, PAGE_KERNEL);
214 return ret;
217 void *ext4_kvzalloc(size_t size, gfp_t flags)
219 void *ret;
221 ret = kzalloc(size, flags | __GFP_NOWARN);
222 if (!ret)
223 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224 return ret;
227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le32_to_cpu(bg->bg_block_bitmap_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le32_to_cpu(bg->bg_inode_table_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
251 __u32 ext4_free_group_clusters(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
259 __u32 ext4_free_inodes_count(struct super_block *sb,
260 struct ext4_group_desc *bg)
262 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
267 __u32 ext4_used_dirs_count(struct super_block *sb,
268 struct ext4_group_desc *bg)
270 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
275 __u32 ext4_itable_unused_count(struct super_block *sb,
276 struct ext4_group_desc *bg)
278 return le16_to_cpu(bg->bg_itable_unused_lo) |
279 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
283 void ext4_block_bitmap_set(struct super_block *sb,
284 struct ext4_group_desc *bg, ext4_fsblk_t blk)
286 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
291 void ext4_inode_bitmap_set(struct super_block *sb,
292 struct ext4_group_desc *bg, ext4_fsblk_t blk)
294 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
299 void ext4_inode_table_set(struct super_block *sb,
300 struct ext4_group_desc *bg, ext4_fsblk_t blk)
302 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
307 void ext4_free_group_clusters_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
315 void ext4_free_inodes_set(struct super_block *sb,
316 struct ext4_group_desc *bg, __u32 count)
318 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
323 void ext4_used_dirs_set(struct super_block *sb,
324 struct ext4_group_desc *bg, __u32 count)
326 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
331 void ext4_itable_unused_set(struct super_block *sb,
332 struct ext4_group_desc *bg, __u32 count)
334 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
341 time64_t now = ktime_get_real_seconds();
343 now = clamp_val(now, 0, (1ull << 40) - 1);
345 *lo = cpu_to_le32(lower_32_bits(now));
346 *hi = upper_32_bits(now);
349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
351 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
353 #define ext4_update_tstamp(es, tstamp) \
354 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
358 static void __save_error_info(struct super_block *sb, const char *func,
359 unsigned int line)
361 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
363 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364 if (bdev_read_only(sb->s_bdev))
365 return;
366 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367 ext4_update_tstamp(es, s_last_error_time);
368 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369 es->s_last_error_line = cpu_to_le32(line);
370 if (!es->s_first_error_time) {
371 es->s_first_error_time = es->s_last_error_time;
372 es->s_first_error_time_hi = es->s_last_error_time_hi;
373 strncpy(es->s_first_error_func, func,
374 sizeof(es->s_first_error_func));
375 es->s_first_error_line = cpu_to_le32(line);
376 es->s_first_error_ino = es->s_last_error_ino;
377 es->s_first_error_block = es->s_last_error_block;
380 * Start the daily error reporting function if it hasn't been
381 * started already
383 if (!es->s_error_count)
384 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385 le32_add_cpu(&es->s_error_count, 1);
388 static void save_error_info(struct super_block *sb, const char *func,
389 unsigned int line)
391 __save_error_info(sb, func, line);
392 ext4_commit_super(sb, 1);
396 * The del_gendisk() function uninitializes the disk-specific data
397 * structures, including the bdi structure, without telling anyone
398 * else. Once this happens, any attempt to call mark_buffer_dirty()
399 * (for example, by ext4_commit_super), will cause a kernel OOPS.
400 * This is a kludge to prevent these oops until we can put in a proper
401 * hook in del_gendisk() to inform the VFS and file system layers.
403 static int block_device_ejected(struct super_block *sb)
405 struct inode *bd_inode = sb->s_bdev->bd_inode;
406 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
408 return bdi->dev == NULL;
411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
413 struct super_block *sb = journal->j_private;
414 struct ext4_sb_info *sbi = EXT4_SB(sb);
415 int error = is_journal_aborted(journal);
416 struct ext4_journal_cb_entry *jce;
418 BUG_ON(txn->t_state == T_FINISHED);
420 ext4_process_freed_data(sb, txn->t_tid);
422 spin_lock(&sbi->s_md_lock);
423 while (!list_empty(&txn->t_private_list)) {
424 jce = list_entry(txn->t_private_list.next,
425 struct ext4_journal_cb_entry, jce_list);
426 list_del_init(&jce->jce_list);
427 spin_unlock(&sbi->s_md_lock);
428 jce->jce_func(sb, jce, error);
429 spin_lock(&sbi->s_md_lock);
431 spin_unlock(&sbi->s_md_lock);
434 static bool system_going_down(void)
436 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 || system_state == SYSTEM_RESTART;
440 /* Deal with the reporting of failure conditions on a filesystem such as
441 * inconsistencies detected or read IO failures.
443 * On ext2, we can store the error state of the filesystem in the
444 * superblock. That is not possible on ext4, because we may have other
445 * write ordering constraints on the superblock which prevent us from
446 * writing it out straight away; and given that the journal is about to
447 * be aborted, we can't rely on the current, or future, transactions to
448 * write out the superblock safely.
450 * We'll just use the jbd2_journal_abort() error code to record an error in
451 * the journal instead. On recovery, the journal will complain about
452 * that error until we've noted it down and cleared it.
455 static void ext4_handle_error(struct super_block *sb)
457 if (test_opt(sb, WARN_ON_ERROR))
458 WARN_ON_ONCE(1);
460 if (sb_rdonly(sb))
461 return;
463 if (!test_opt(sb, ERRORS_CONT)) {
464 journal_t *journal = EXT4_SB(sb)->s_journal;
466 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467 if (journal)
468 jbd2_journal_abort(journal, -EIO);
471 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 * could panic during 'reboot -f' as the underlying device got already
473 * disabled.
475 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
478 * Make sure updated value of ->s_mount_flags will be visible
479 * before ->s_flags update
481 smp_wmb();
482 sb->s_flags |= SB_RDONLY;
483 } else if (test_opt(sb, ERRORS_PANIC)) {
484 if (EXT4_SB(sb)->s_journal &&
485 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486 return;
487 panic("EXT4-fs (device %s): panic forced after error\n",
488 sb->s_id);
492 #define ext4_error_ratelimit(sb) \
493 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
494 "EXT4-fs error")
496 void __ext4_error(struct super_block *sb, const char *function,
497 unsigned int line, const char *fmt, ...)
499 struct va_format vaf;
500 va_list args;
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503 return;
505 trace_ext4_error(sb, function, line);
506 if (ext4_error_ratelimit(sb)) {
507 va_start(args, fmt);
508 vaf.fmt = fmt;
509 vaf.va = &args;
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 sb->s_id, function, line, current->comm, &vaf);
513 va_end(args);
515 save_error_info(sb, function, line);
516 ext4_handle_error(sb);
519 void __ext4_error_inode(struct inode *inode, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
523 va_list args;
524 struct va_format vaf;
525 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
527 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528 return;
530 trace_ext4_error(inode->i_sb, function, line);
531 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 es->s_last_error_block = cpu_to_le64(block);
533 if (ext4_error_ratelimit(inode->i_sb)) {
534 va_start(args, fmt);
535 vaf.fmt = fmt;
536 vaf.va = &args;
537 if (block)
538 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 "inode #%lu: block %llu: comm %s: %pV\n",
540 inode->i_sb->s_id, function, line, inode->i_ino,
541 block, current->comm, &vaf);
542 else
543 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 "inode #%lu: comm %s: %pV\n",
545 inode->i_sb->s_id, function, line, inode->i_ino,
546 current->comm, &vaf);
547 va_end(args);
549 save_error_info(inode->i_sb, function, line);
550 ext4_handle_error(inode->i_sb);
553 void __ext4_error_file(struct file *file, const char *function,
554 unsigned int line, ext4_fsblk_t block,
555 const char *fmt, ...)
557 va_list args;
558 struct va_format vaf;
559 struct ext4_super_block *es;
560 struct inode *inode = file_inode(file);
561 char pathname[80], *path;
563 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564 return;
566 trace_ext4_error(inode->i_sb, function, line);
567 es = EXT4_SB(inode->i_sb)->s_es;
568 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 if (ext4_error_ratelimit(inode->i_sb)) {
570 path = file_path(file, pathname, sizeof(pathname));
571 if (IS_ERR(path))
572 path = "(unknown)";
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 if (block)
577 printk(KERN_CRIT
578 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 "block %llu: comm %s: path %s: %pV\n",
580 inode->i_sb->s_id, function, line, inode->i_ino,
581 block, current->comm, path, &vaf);
582 else
583 printk(KERN_CRIT
584 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 "comm %s: path %s: %pV\n",
586 inode->i_sb->s_id, function, line, inode->i_ino,
587 current->comm, path, &vaf);
588 va_end(args);
590 save_error_info(inode->i_sb, function, line);
591 ext4_handle_error(inode->i_sb);
594 const char *ext4_decode_error(struct super_block *sb, int errno,
595 char nbuf[16])
597 char *errstr = NULL;
599 switch (errno) {
600 case -EFSCORRUPTED:
601 errstr = "Corrupt filesystem";
602 break;
603 case -EFSBADCRC:
604 errstr = "Filesystem failed CRC";
605 break;
606 case -EIO:
607 errstr = "IO failure";
608 break;
609 case -ENOMEM:
610 errstr = "Out of memory";
611 break;
612 case -EROFS:
613 if (!sb || (EXT4_SB(sb)->s_journal &&
614 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 errstr = "Journal has aborted";
616 else
617 errstr = "Readonly filesystem";
618 break;
619 default:
620 /* If the caller passed in an extra buffer for unknown
621 * errors, textualise them now. Else we just return
622 * NULL. */
623 if (nbuf) {
624 /* Check for truncated error codes... */
625 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626 errstr = nbuf;
628 break;
631 return errstr;
634 /* __ext4_std_error decodes expected errors from journaling functions
635 * automatically and invokes the appropriate error response. */
637 void __ext4_std_error(struct super_block *sb, const char *function,
638 unsigned int line, int errno)
640 char nbuf[16];
641 const char *errstr;
643 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644 return;
646 /* Special case: if the error is EROFS, and we're not already
647 * inside a transaction, then there's really no point in logging
648 * an error. */
649 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650 return;
652 if (ext4_error_ratelimit(sb)) {
653 errstr = ext4_decode_error(sb, errno, nbuf);
654 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 sb->s_id, function, line, errstr);
658 save_error_info(sb, function, line);
659 ext4_handle_error(sb);
663 * ext4_abort is a much stronger failure handler than ext4_error. The
664 * abort function may be used to deal with unrecoverable failures such
665 * as journal IO errors or ENOMEM at a critical moment in log management.
667 * We unconditionally force the filesystem into an ABORT|READONLY state,
668 * unless the error response on the fs has been set to panic in which
669 * case we take the easy way out and panic immediately.
672 void __ext4_abort(struct super_block *sb, const char *function,
673 unsigned int line, const char *fmt, ...)
675 struct va_format vaf;
676 va_list args;
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 return;
681 save_error_info(sb, function, line);
682 va_start(args, fmt);
683 vaf.fmt = fmt;
684 vaf.va = &args;
685 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 sb->s_id, function, line, &vaf);
687 va_end(args);
689 if (sb_rdonly(sb) == 0) {
690 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
693 * Make sure updated value of ->s_mount_flags will be visible
694 * before ->s_flags update
696 smp_wmb();
697 sb->s_flags |= SB_RDONLY;
698 if (EXT4_SB(sb)->s_journal)
699 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 save_error_info(sb, function, line);
702 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 if (EXT4_SB(sb)->s_journal &&
704 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705 return;
706 panic("EXT4-fs panic from previous error\n");
710 void __ext4_msg(struct super_block *sb,
711 const char *prefix, const char *fmt, ...)
713 struct va_format vaf;
714 va_list args;
716 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717 return;
719 va_start(args, fmt);
720 vaf.fmt = fmt;
721 vaf.va = &args;
722 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723 va_end(args);
726 #define ext4_warning_ratelimit(sb) \
727 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
728 "EXT4-fs warning")
730 void __ext4_warning(struct super_block *sb, const char *function,
731 unsigned int line, const char *fmt, ...)
733 struct va_format vaf;
734 va_list args;
736 if (!ext4_warning_ratelimit(sb))
737 return;
739 va_start(args, fmt);
740 vaf.fmt = fmt;
741 vaf.va = &args;
742 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 sb->s_id, function, line, &vaf);
744 va_end(args);
747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748 unsigned int line, const char *fmt, ...)
750 struct va_format vaf;
751 va_list args;
753 if (!ext4_warning_ratelimit(inode->i_sb))
754 return;
756 va_start(args, fmt);
757 vaf.fmt = fmt;
758 vaf.va = &args;
759 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 function, line, inode->i_ino, current->comm, &vaf);
762 va_end(args);
765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766 struct super_block *sb, ext4_group_t grp,
767 unsigned long ino, ext4_fsblk_t block,
768 const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
772 struct va_format vaf;
773 va_list args;
774 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
776 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777 return;
779 trace_ext4_error(sb, function, line);
780 es->s_last_error_ino = cpu_to_le32(ino);
781 es->s_last_error_block = cpu_to_le64(block);
782 __save_error_info(sb, function, line);
784 if (ext4_error_ratelimit(sb)) {
785 va_start(args, fmt);
786 vaf.fmt = fmt;
787 vaf.va = &args;
788 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 sb->s_id, function, line, grp);
790 if (ino)
791 printk(KERN_CONT "inode %lu: ", ino);
792 if (block)
793 printk(KERN_CONT "block %llu:",
794 (unsigned long long) block);
795 printk(KERN_CONT "%pV\n", &vaf);
796 va_end(args);
799 if (test_opt(sb, WARN_ON_ERROR))
800 WARN_ON_ONCE(1);
802 if (test_opt(sb, ERRORS_CONT)) {
803 ext4_commit_super(sb, 0);
804 return;
807 ext4_unlock_group(sb, grp);
808 ext4_commit_super(sb, 1);
809 ext4_handle_error(sb);
811 * We only get here in the ERRORS_RO case; relocking the group
812 * may be dangerous, but nothing bad will happen since the
813 * filesystem will have already been marked read/only and the
814 * journal has been aborted. We return 1 as a hint to callers
815 * who might what to use the return value from
816 * ext4_grp_locked_error() to distinguish between the
817 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 * aggressively from the ext4 function in question, with a
819 * more appropriate error code.
821 ext4_lock_group(sb, grp);
822 return;
825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826 ext4_group_t group,
827 unsigned int flags)
829 struct ext4_sb_info *sbi = EXT4_SB(sb);
830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832 int ret;
834 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836 &grp->bb_state);
837 if (!ret)
838 percpu_counter_sub(&sbi->s_freeclusters_counter,
839 grp->bb_free);
842 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844 &grp->bb_state);
845 if (!ret && gdp) {
846 int count;
848 count = ext4_free_inodes_count(sb, gdp);
849 percpu_counter_sub(&sbi->s_freeinodes_counter,
850 count);
855 void ext4_update_dynamic_rev(struct super_block *sb)
857 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
859 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860 return;
862 ext4_warning(sb,
863 "updating to rev %d because of new feature flag, "
864 "running e2fsck is recommended",
865 EXT4_DYNAMIC_REV);
867 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 /* leave es->s_feature_*compat flags alone */
871 /* es->s_uuid will be set by e2fsck if empty */
874 * The rest of the superblock fields should be zero, and if not it
875 * means they are likely already in use, so leave them alone. We
876 * can leave it up to e2fsck to clean up any inconsistencies there.
881 * Open the external journal device
883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
885 struct block_device *bdev;
886 char b[BDEVNAME_SIZE];
888 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889 if (IS_ERR(bdev))
890 goto fail;
891 return bdev;
893 fail:
894 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 __bdevname(dev, b), PTR_ERR(bdev));
896 return NULL;
900 * Release the journal device
902 static void ext4_blkdev_put(struct block_device *bdev)
904 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
909 struct block_device *bdev;
910 bdev = sbi->journal_bdev;
911 if (bdev) {
912 ext4_blkdev_put(bdev);
913 sbi->journal_bdev = NULL;
917 static inline struct inode *orphan_list_entry(struct list_head *l)
919 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
924 struct list_head *l;
926 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 le32_to_cpu(sbi->s_es->s_last_orphan));
929 printk(KERN_ERR "sb_info orphan list:\n");
930 list_for_each(l, &sbi->s_orphan) {
931 struct inode *inode = orphan_list_entry(l);
932 printk(KERN_ERR " "
933 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 inode->i_sb->s_id, inode->i_ino, inode,
935 inode->i_mode, inode->i_nlink,
936 NEXT_ORPHAN(inode));
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
943 static inline void ext4_quota_off_umount(struct super_block *sb)
945 int type;
947 /* Use our quota_off function to clear inode flags etc. */
948 for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 ext4_quota_off(sb, type);
953 * This is a helper function which is used in the mount/remount
954 * codepaths (which holds s_umount) to fetch the quota file name.
956 static inline char *get_qf_name(struct super_block *sb,
957 struct ext4_sb_info *sbi,
958 int type)
960 return rcu_dereference_protected(sbi->s_qf_names[type],
961 lockdep_is_held(&sb->s_umount));
963 #else
964 static inline void ext4_quota_off_umount(struct super_block *sb)
967 #endif
969 static void ext4_put_super(struct super_block *sb)
971 struct ext4_sb_info *sbi = EXT4_SB(sb);
972 struct ext4_super_block *es = sbi->s_es;
973 int aborted = 0;
974 int i, err;
976 ext4_unregister_li_request(sb);
977 ext4_quota_off_umount(sb);
979 destroy_workqueue(sbi->rsv_conversion_wq);
981 if (sbi->s_journal) {
982 aborted = is_journal_aborted(sbi->s_journal);
983 err = jbd2_journal_destroy(sbi->s_journal);
984 sbi->s_journal = NULL;
985 if ((err < 0) && !aborted)
986 ext4_abort(sb, "Couldn't clean up the journal");
989 ext4_unregister_sysfs(sb);
990 ext4_es_unregister_shrinker(sbi);
991 del_timer_sync(&sbi->s_err_report);
992 ext4_release_system_zone(sb);
993 ext4_mb_release(sb);
994 ext4_ext_release(sb);
996 if (!sb_rdonly(sb) && !aborted) {
997 ext4_clear_feature_journal_needs_recovery(sb);
998 es->s_state = cpu_to_le16(sbi->s_mount_state);
1000 if (!sb_rdonly(sb))
1001 ext4_commit_super(sb, 1);
1003 for (i = 0; i < sbi->s_gdb_count; i++)
1004 brelse(sbi->s_group_desc[i]);
1005 kvfree(sbi->s_group_desc);
1006 kvfree(sbi->s_flex_groups);
1007 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009 percpu_counter_destroy(&sbi->s_dirs_counter);
1010 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012 #ifdef CONFIG_QUOTA
1013 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014 kfree(get_qf_name(sb, sbi, i));
1015 #endif
1017 /* Debugging code just in case the in-memory inode orphan list
1018 * isn't empty. The on-disk one can be non-empty if we've
1019 * detected an error and taken the fs readonly, but the
1020 * in-memory list had better be clean by this point. */
1021 if (!list_empty(&sbi->s_orphan))
1022 dump_orphan_list(sb, sbi);
1023 J_ASSERT(list_empty(&sbi->s_orphan));
1025 sync_blockdev(sb->s_bdev);
1026 invalidate_bdev(sb->s_bdev);
1027 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1029 * Invalidate the journal device's buffers. We don't want them
1030 * floating about in memory - the physical journal device may
1031 * hotswapped, and it breaks the `ro-after' testing code.
1033 sync_blockdev(sbi->journal_bdev);
1034 invalidate_bdev(sbi->journal_bdev);
1035 ext4_blkdev_remove(sbi);
1038 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039 sbi->s_ea_inode_cache = NULL;
1041 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042 sbi->s_ea_block_cache = NULL;
1044 if (sbi->s_mmp_tsk)
1045 kthread_stop(sbi->s_mmp_tsk);
1046 brelse(sbi->s_sbh);
1047 sb->s_fs_info = NULL;
1049 * Now that we are completely done shutting down the
1050 * superblock, we need to actually destroy the kobject.
1052 kobject_put(&sbi->s_kobj);
1053 wait_for_completion(&sbi->s_kobj_unregister);
1054 if (sbi->s_chksum_driver)
1055 crypto_free_shash(sbi->s_chksum_driver);
1056 kfree(sbi->s_blockgroup_lock);
1057 fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059 utf8_unload(sbi->s_encoding);
1060 #endif
1061 kfree(sbi);
1064 static struct kmem_cache *ext4_inode_cachep;
1067 * Called inside transaction, so use GFP_NOFS
1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1071 struct ext4_inode_info *ei;
1073 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074 if (!ei)
1075 return NULL;
1077 inode_set_iversion(&ei->vfs_inode, 1);
1078 spin_lock_init(&ei->i_raw_lock);
1079 INIT_LIST_HEAD(&ei->i_prealloc_list);
1080 spin_lock_init(&ei->i_prealloc_lock);
1081 ext4_es_init_tree(&ei->i_es_tree);
1082 rwlock_init(&ei->i_es_lock);
1083 INIT_LIST_HEAD(&ei->i_es_list);
1084 ei->i_es_all_nr = 0;
1085 ei->i_es_shk_nr = 0;
1086 ei->i_es_shrink_lblk = 0;
1087 ei->i_reserved_data_blocks = 0;
1088 ei->i_da_metadata_calc_len = 0;
1089 ei->i_da_metadata_calc_last_lblock = 0;
1090 spin_lock_init(&(ei->i_block_reservation_lock));
1091 ext4_init_pending_tree(&ei->i_pending_tree);
1092 #ifdef CONFIG_QUOTA
1093 ei->i_reserved_quota = 0;
1094 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095 #endif
1096 ei->jinode = NULL;
1097 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098 spin_lock_init(&ei->i_completed_io_lock);
1099 ei->i_sync_tid = 0;
1100 ei->i_datasync_tid = 0;
1101 atomic_set(&ei->i_unwritten, 0);
1102 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103 return &ei->vfs_inode;
1106 static int ext4_drop_inode(struct inode *inode)
1108 int drop = generic_drop_inode(inode);
1110 trace_ext4_drop_inode(inode, drop);
1111 return drop;
1114 static void ext4_free_in_core_inode(struct inode *inode)
1116 fscrypt_free_inode(inode);
1117 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1120 static void ext4_destroy_inode(struct inode *inode)
1122 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1123 ext4_msg(inode->i_sb, KERN_ERR,
1124 "Inode %lu (%p): orphan list check failed!",
1125 inode->i_ino, EXT4_I(inode));
1126 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1127 EXT4_I(inode), sizeof(struct ext4_inode_info),
1128 true);
1129 dump_stack();
1133 static void init_once(void *foo)
1135 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1137 INIT_LIST_HEAD(&ei->i_orphan);
1138 init_rwsem(&ei->xattr_sem);
1139 init_rwsem(&ei->i_data_sem);
1140 init_rwsem(&ei->i_mmap_sem);
1141 inode_init_once(&ei->vfs_inode);
1144 static int __init init_inodecache(void)
1146 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1147 sizeof(struct ext4_inode_info), 0,
1148 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1149 SLAB_ACCOUNT),
1150 offsetof(struct ext4_inode_info, i_data),
1151 sizeof_field(struct ext4_inode_info, i_data),
1152 init_once);
1153 if (ext4_inode_cachep == NULL)
1154 return -ENOMEM;
1155 return 0;
1158 static void destroy_inodecache(void)
1161 * Make sure all delayed rcu free inodes are flushed before we
1162 * destroy cache.
1164 rcu_barrier();
1165 kmem_cache_destroy(ext4_inode_cachep);
1168 void ext4_clear_inode(struct inode *inode)
1170 invalidate_inode_buffers(inode);
1171 clear_inode(inode);
1172 dquot_drop(inode);
1173 ext4_discard_preallocations(inode);
1174 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1175 if (EXT4_I(inode)->jinode) {
1176 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1177 EXT4_I(inode)->jinode);
1178 jbd2_free_inode(EXT4_I(inode)->jinode);
1179 EXT4_I(inode)->jinode = NULL;
1181 fscrypt_put_encryption_info(inode);
1184 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1185 u64 ino, u32 generation)
1187 struct inode *inode;
1190 * Currently we don't know the generation for parent directory, so
1191 * a generation of 0 means "accept any"
1193 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1194 if (IS_ERR(inode))
1195 return ERR_CAST(inode);
1196 if (generation && inode->i_generation != generation) {
1197 iput(inode);
1198 return ERR_PTR(-ESTALE);
1201 return inode;
1204 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1205 int fh_len, int fh_type)
1207 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1208 ext4_nfs_get_inode);
1211 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1212 int fh_len, int fh_type)
1214 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1215 ext4_nfs_get_inode);
1218 static int ext4_nfs_commit_metadata(struct inode *inode)
1220 struct writeback_control wbc = {
1221 .sync_mode = WB_SYNC_ALL
1224 trace_ext4_nfs_commit_metadata(inode);
1225 return ext4_write_inode(inode, &wbc);
1229 * Try to release metadata pages (indirect blocks, directories) which are
1230 * mapped via the block device. Since these pages could have journal heads
1231 * which would prevent try_to_free_buffers() from freeing them, we must use
1232 * jbd2 layer's try_to_free_buffers() function to release them.
1234 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1235 gfp_t wait)
1237 journal_t *journal = EXT4_SB(sb)->s_journal;
1239 WARN_ON(PageChecked(page));
1240 if (!page_has_buffers(page))
1241 return 0;
1242 if (journal)
1243 return jbd2_journal_try_to_free_buffers(journal, page,
1244 wait & ~__GFP_DIRECT_RECLAIM);
1245 return try_to_free_buffers(page);
1248 #ifdef CONFIG_FS_ENCRYPTION
1249 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1251 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1252 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1255 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1256 void *fs_data)
1258 handle_t *handle = fs_data;
1259 int res, res2, credits, retries = 0;
1262 * Encrypting the root directory is not allowed because e2fsck expects
1263 * lost+found to exist and be unencrypted, and encrypting the root
1264 * directory would imply encrypting the lost+found directory as well as
1265 * the filename "lost+found" itself.
1267 if (inode->i_ino == EXT4_ROOT_INO)
1268 return -EPERM;
1270 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1271 return -EINVAL;
1273 res = ext4_convert_inline_data(inode);
1274 if (res)
1275 return res;
1278 * If a journal handle was specified, then the encryption context is
1279 * being set on a new inode via inheritance and is part of a larger
1280 * transaction to create the inode. Otherwise the encryption context is
1281 * being set on an existing inode in its own transaction. Only in the
1282 * latter case should the "retry on ENOSPC" logic be used.
1285 if (handle) {
1286 res = ext4_xattr_set_handle(handle, inode,
1287 EXT4_XATTR_INDEX_ENCRYPTION,
1288 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1289 ctx, len, 0);
1290 if (!res) {
1291 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1292 ext4_clear_inode_state(inode,
1293 EXT4_STATE_MAY_INLINE_DATA);
1295 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1296 * S_DAX may be disabled
1298 ext4_set_inode_flags(inode);
1300 return res;
1303 res = dquot_initialize(inode);
1304 if (res)
1305 return res;
1306 retry:
1307 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1308 &credits);
1309 if (res)
1310 return res;
1312 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1313 if (IS_ERR(handle))
1314 return PTR_ERR(handle);
1316 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1317 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1318 ctx, len, 0);
1319 if (!res) {
1320 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1322 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1323 * S_DAX may be disabled
1325 ext4_set_inode_flags(inode);
1326 res = ext4_mark_inode_dirty(handle, inode);
1327 if (res)
1328 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1330 res2 = ext4_journal_stop(handle);
1332 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1333 goto retry;
1334 if (!res)
1335 res = res2;
1336 return res;
1339 static bool ext4_dummy_context(struct inode *inode)
1341 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1344 static const struct fscrypt_operations ext4_cryptops = {
1345 .key_prefix = "ext4:",
1346 .get_context = ext4_get_context,
1347 .set_context = ext4_set_context,
1348 .dummy_context = ext4_dummy_context,
1349 .empty_dir = ext4_empty_dir,
1350 .max_namelen = EXT4_NAME_LEN,
1352 #endif
1354 #ifdef CONFIG_QUOTA
1355 static const char * const quotatypes[] = INITQFNAMES;
1356 #define QTYPE2NAME(t) (quotatypes[t])
1358 static int ext4_write_dquot(struct dquot *dquot);
1359 static int ext4_acquire_dquot(struct dquot *dquot);
1360 static int ext4_release_dquot(struct dquot *dquot);
1361 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1362 static int ext4_write_info(struct super_block *sb, int type);
1363 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1364 const struct path *path);
1365 static int ext4_quota_on_mount(struct super_block *sb, int type);
1366 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1367 size_t len, loff_t off);
1368 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1369 const char *data, size_t len, loff_t off);
1370 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1371 unsigned int flags);
1372 static int ext4_enable_quotas(struct super_block *sb);
1373 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1375 static struct dquot **ext4_get_dquots(struct inode *inode)
1377 return EXT4_I(inode)->i_dquot;
1380 static const struct dquot_operations ext4_quota_operations = {
1381 .get_reserved_space = ext4_get_reserved_space,
1382 .write_dquot = ext4_write_dquot,
1383 .acquire_dquot = ext4_acquire_dquot,
1384 .release_dquot = ext4_release_dquot,
1385 .mark_dirty = ext4_mark_dquot_dirty,
1386 .write_info = ext4_write_info,
1387 .alloc_dquot = dquot_alloc,
1388 .destroy_dquot = dquot_destroy,
1389 .get_projid = ext4_get_projid,
1390 .get_inode_usage = ext4_get_inode_usage,
1391 .get_next_id = ext4_get_next_id,
1394 static const struct quotactl_ops ext4_qctl_operations = {
1395 .quota_on = ext4_quota_on,
1396 .quota_off = ext4_quota_off,
1397 .quota_sync = dquot_quota_sync,
1398 .get_state = dquot_get_state,
1399 .set_info = dquot_set_dqinfo,
1400 .get_dqblk = dquot_get_dqblk,
1401 .set_dqblk = dquot_set_dqblk,
1402 .get_nextdqblk = dquot_get_next_dqblk,
1404 #endif
1406 static const struct super_operations ext4_sops = {
1407 .alloc_inode = ext4_alloc_inode,
1408 .free_inode = ext4_free_in_core_inode,
1409 .destroy_inode = ext4_destroy_inode,
1410 .write_inode = ext4_write_inode,
1411 .dirty_inode = ext4_dirty_inode,
1412 .drop_inode = ext4_drop_inode,
1413 .evict_inode = ext4_evict_inode,
1414 .put_super = ext4_put_super,
1415 .sync_fs = ext4_sync_fs,
1416 .freeze_fs = ext4_freeze,
1417 .unfreeze_fs = ext4_unfreeze,
1418 .statfs = ext4_statfs,
1419 .remount_fs = ext4_remount,
1420 .show_options = ext4_show_options,
1421 #ifdef CONFIG_QUOTA
1422 .quota_read = ext4_quota_read,
1423 .quota_write = ext4_quota_write,
1424 .get_dquots = ext4_get_dquots,
1425 #endif
1426 .bdev_try_to_free_page = bdev_try_to_free_page,
1429 static const struct export_operations ext4_export_ops = {
1430 .fh_to_dentry = ext4_fh_to_dentry,
1431 .fh_to_parent = ext4_fh_to_parent,
1432 .get_parent = ext4_get_parent,
1433 .commit_metadata = ext4_nfs_commit_metadata,
1436 enum {
1437 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1438 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1439 Opt_nouid32, Opt_debug, Opt_removed,
1440 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1441 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1442 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1443 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1444 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1445 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1446 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1447 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1448 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1449 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1450 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1451 Opt_nowarn_on_error, Opt_mblk_io_submit,
1452 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1453 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1454 Opt_inode_readahead_blks, Opt_journal_ioprio,
1455 Opt_dioread_nolock, Opt_dioread_lock,
1456 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1457 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1460 static const match_table_t tokens = {
1461 {Opt_bsd_df, "bsddf"},
1462 {Opt_minix_df, "minixdf"},
1463 {Opt_grpid, "grpid"},
1464 {Opt_grpid, "bsdgroups"},
1465 {Opt_nogrpid, "nogrpid"},
1466 {Opt_nogrpid, "sysvgroups"},
1467 {Opt_resgid, "resgid=%u"},
1468 {Opt_resuid, "resuid=%u"},
1469 {Opt_sb, "sb=%u"},
1470 {Opt_err_cont, "errors=continue"},
1471 {Opt_err_panic, "errors=panic"},
1472 {Opt_err_ro, "errors=remount-ro"},
1473 {Opt_nouid32, "nouid32"},
1474 {Opt_debug, "debug"},
1475 {Opt_removed, "oldalloc"},
1476 {Opt_removed, "orlov"},
1477 {Opt_user_xattr, "user_xattr"},
1478 {Opt_nouser_xattr, "nouser_xattr"},
1479 {Opt_acl, "acl"},
1480 {Opt_noacl, "noacl"},
1481 {Opt_noload, "norecovery"},
1482 {Opt_noload, "noload"},
1483 {Opt_removed, "nobh"},
1484 {Opt_removed, "bh"},
1485 {Opt_commit, "commit=%u"},
1486 {Opt_min_batch_time, "min_batch_time=%u"},
1487 {Opt_max_batch_time, "max_batch_time=%u"},
1488 {Opt_journal_dev, "journal_dev=%u"},
1489 {Opt_journal_path, "journal_path=%s"},
1490 {Opt_journal_checksum, "journal_checksum"},
1491 {Opt_nojournal_checksum, "nojournal_checksum"},
1492 {Opt_journal_async_commit, "journal_async_commit"},
1493 {Opt_abort, "abort"},
1494 {Opt_data_journal, "data=journal"},
1495 {Opt_data_ordered, "data=ordered"},
1496 {Opt_data_writeback, "data=writeback"},
1497 {Opt_data_err_abort, "data_err=abort"},
1498 {Opt_data_err_ignore, "data_err=ignore"},
1499 {Opt_offusrjquota, "usrjquota="},
1500 {Opt_usrjquota, "usrjquota=%s"},
1501 {Opt_offgrpjquota, "grpjquota="},
1502 {Opt_grpjquota, "grpjquota=%s"},
1503 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1504 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1505 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1506 {Opt_grpquota, "grpquota"},
1507 {Opt_noquota, "noquota"},
1508 {Opt_quota, "quota"},
1509 {Opt_usrquota, "usrquota"},
1510 {Opt_prjquota, "prjquota"},
1511 {Opt_barrier, "barrier=%u"},
1512 {Opt_barrier, "barrier"},
1513 {Opt_nobarrier, "nobarrier"},
1514 {Opt_i_version, "i_version"},
1515 {Opt_dax, "dax"},
1516 {Opt_stripe, "stripe=%u"},
1517 {Opt_delalloc, "delalloc"},
1518 {Opt_warn_on_error, "warn_on_error"},
1519 {Opt_nowarn_on_error, "nowarn_on_error"},
1520 {Opt_lazytime, "lazytime"},
1521 {Opt_nolazytime, "nolazytime"},
1522 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1523 {Opt_nodelalloc, "nodelalloc"},
1524 {Opt_removed, "mblk_io_submit"},
1525 {Opt_removed, "nomblk_io_submit"},
1526 {Opt_block_validity, "block_validity"},
1527 {Opt_noblock_validity, "noblock_validity"},
1528 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1529 {Opt_journal_ioprio, "journal_ioprio=%u"},
1530 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1531 {Opt_auto_da_alloc, "auto_da_alloc"},
1532 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1533 {Opt_dioread_nolock, "dioread_nolock"},
1534 {Opt_dioread_lock, "dioread_lock"},
1535 {Opt_discard, "discard"},
1536 {Opt_nodiscard, "nodiscard"},
1537 {Opt_init_itable, "init_itable=%u"},
1538 {Opt_init_itable, "init_itable"},
1539 {Opt_noinit_itable, "noinit_itable"},
1540 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1541 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1542 {Opt_nombcache, "nombcache"},
1543 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1544 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1545 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1546 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1547 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1548 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1549 {Opt_err, NULL},
1552 static ext4_fsblk_t get_sb_block(void **data)
1554 ext4_fsblk_t sb_block;
1555 char *options = (char *) *data;
1557 if (!options || strncmp(options, "sb=", 3) != 0)
1558 return 1; /* Default location */
1560 options += 3;
1561 /* TODO: use simple_strtoll with >32bit ext4 */
1562 sb_block = simple_strtoul(options, &options, 0);
1563 if (*options && *options != ',') {
1564 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1565 (char *) *data);
1566 return 1;
1568 if (*options == ',')
1569 options++;
1570 *data = (void *) options;
1572 return sb_block;
1575 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1576 static const char deprecated_msg[] =
1577 "Mount option \"%s\" will be removed by %s\n"
1578 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1580 #ifdef CONFIG_QUOTA
1581 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1583 struct ext4_sb_info *sbi = EXT4_SB(sb);
1584 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1585 int ret = -1;
1587 if (sb_any_quota_loaded(sb) && !old_qname) {
1588 ext4_msg(sb, KERN_ERR,
1589 "Cannot change journaled "
1590 "quota options when quota turned on");
1591 return -1;
1593 if (ext4_has_feature_quota(sb)) {
1594 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1595 "ignored when QUOTA feature is enabled");
1596 return 1;
1598 qname = match_strdup(args);
1599 if (!qname) {
1600 ext4_msg(sb, KERN_ERR,
1601 "Not enough memory for storing quotafile name");
1602 return -1;
1604 if (old_qname) {
1605 if (strcmp(old_qname, qname) == 0)
1606 ret = 1;
1607 else
1608 ext4_msg(sb, KERN_ERR,
1609 "%s quota file already specified",
1610 QTYPE2NAME(qtype));
1611 goto errout;
1613 if (strchr(qname, '/')) {
1614 ext4_msg(sb, KERN_ERR,
1615 "quotafile must be on filesystem root");
1616 goto errout;
1618 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1619 set_opt(sb, QUOTA);
1620 return 1;
1621 errout:
1622 kfree(qname);
1623 return ret;
1626 static int clear_qf_name(struct super_block *sb, int qtype)
1629 struct ext4_sb_info *sbi = EXT4_SB(sb);
1630 char *old_qname = get_qf_name(sb, sbi, qtype);
1632 if (sb_any_quota_loaded(sb) && old_qname) {
1633 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1634 " when quota turned on");
1635 return -1;
1637 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1638 synchronize_rcu();
1639 kfree(old_qname);
1640 return 1;
1642 #endif
1644 #define MOPT_SET 0x0001
1645 #define MOPT_CLEAR 0x0002
1646 #define MOPT_NOSUPPORT 0x0004
1647 #define MOPT_EXPLICIT 0x0008
1648 #define MOPT_CLEAR_ERR 0x0010
1649 #define MOPT_GTE0 0x0020
1650 #ifdef CONFIG_QUOTA
1651 #define MOPT_Q 0
1652 #define MOPT_QFMT 0x0040
1653 #else
1654 #define MOPT_Q MOPT_NOSUPPORT
1655 #define MOPT_QFMT MOPT_NOSUPPORT
1656 #endif
1657 #define MOPT_DATAJ 0x0080
1658 #define MOPT_NO_EXT2 0x0100
1659 #define MOPT_NO_EXT3 0x0200
1660 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1661 #define MOPT_STRING 0x0400
1663 static const struct mount_opts {
1664 int token;
1665 int mount_opt;
1666 int flags;
1667 } ext4_mount_opts[] = {
1668 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1669 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1670 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1671 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1672 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1673 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1674 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1675 MOPT_EXT4_ONLY | MOPT_SET},
1676 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1677 MOPT_EXT4_ONLY | MOPT_CLEAR},
1678 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1679 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1680 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1681 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1682 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1683 MOPT_EXT4_ONLY | MOPT_CLEAR},
1684 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1685 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1686 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1687 MOPT_EXT4_ONLY | MOPT_CLEAR},
1688 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1689 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1690 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1691 EXT4_MOUNT_JOURNAL_CHECKSUM),
1692 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1693 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1694 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1695 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1696 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1697 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1698 MOPT_NO_EXT2},
1699 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1700 MOPT_NO_EXT2},
1701 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1702 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1703 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1704 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1705 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1706 {Opt_commit, 0, MOPT_GTE0},
1707 {Opt_max_batch_time, 0, MOPT_GTE0},
1708 {Opt_min_batch_time, 0, MOPT_GTE0},
1709 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1710 {Opt_init_itable, 0, MOPT_GTE0},
1711 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1712 {Opt_stripe, 0, MOPT_GTE0},
1713 {Opt_resuid, 0, MOPT_GTE0},
1714 {Opt_resgid, 0, MOPT_GTE0},
1715 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1716 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1717 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1718 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1719 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1720 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1721 MOPT_NO_EXT2 | MOPT_DATAJ},
1722 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1723 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1724 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1725 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1726 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1727 #else
1728 {Opt_acl, 0, MOPT_NOSUPPORT},
1729 {Opt_noacl, 0, MOPT_NOSUPPORT},
1730 #endif
1731 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1732 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1733 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1734 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1735 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1736 MOPT_SET | MOPT_Q},
1737 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1738 MOPT_SET | MOPT_Q},
1739 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1740 MOPT_SET | MOPT_Q},
1741 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1742 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1743 MOPT_CLEAR | MOPT_Q},
1744 {Opt_usrjquota, 0, MOPT_Q},
1745 {Opt_grpjquota, 0, MOPT_Q},
1746 {Opt_offusrjquota, 0, MOPT_Q},
1747 {Opt_offgrpjquota, 0, MOPT_Q},
1748 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1749 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1750 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1751 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1752 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1753 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1754 {Opt_err, 0, 0}
1757 #ifdef CONFIG_UNICODE
1758 static const struct ext4_sb_encodings {
1759 __u16 magic;
1760 char *name;
1761 char *version;
1762 } ext4_sb_encoding_map[] = {
1763 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1766 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1767 const struct ext4_sb_encodings **encoding,
1768 __u16 *flags)
1770 __u16 magic = le16_to_cpu(es->s_encoding);
1771 int i;
1773 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1774 if (magic == ext4_sb_encoding_map[i].magic)
1775 break;
1777 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1778 return -EINVAL;
1780 *encoding = &ext4_sb_encoding_map[i];
1781 *flags = le16_to_cpu(es->s_encoding_flags);
1783 return 0;
1785 #endif
1787 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1788 substring_t *args, unsigned long *journal_devnum,
1789 unsigned int *journal_ioprio, int is_remount)
1791 struct ext4_sb_info *sbi = EXT4_SB(sb);
1792 const struct mount_opts *m;
1793 kuid_t uid;
1794 kgid_t gid;
1795 int arg = 0;
1797 #ifdef CONFIG_QUOTA
1798 if (token == Opt_usrjquota)
1799 return set_qf_name(sb, USRQUOTA, &args[0]);
1800 else if (token == Opt_grpjquota)
1801 return set_qf_name(sb, GRPQUOTA, &args[0]);
1802 else if (token == Opt_offusrjquota)
1803 return clear_qf_name(sb, USRQUOTA);
1804 else if (token == Opt_offgrpjquota)
1805 return clear_qf_name(sb, GRPQUOTA);
1806 #endif
1807 switch (token) {
1808 case Opt_noacl:
1809 case Opt_nouser_xattr:
1810 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1811 break;
1812 case Opt_sb:
1813 return 1; /* handled by get_sb_block() */
1814 case Opt_removed:
1815 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1816 return 1;
1817 case Opt_abort:
1818 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1819 return 1;
1820 case Opt_i_version:
1821 sb->s_flags |= SB_I_VERSION;
1822 return 1;
1823 case Opt_lazytime:
1824 sb->s_flags |= SB_LAZYTIME;
1825 return 1;
1826 case Opt_nolazytime:
1827 sb->s_flags &= ~SB_LAZYTIME;
1828 return 1;
1831 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1832 if (token == m->token)
1833 break;
1835 if (m->token == Opt_err) {
1836 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1837 "or missing value", opt);
1838 return -1;
1841 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1842 ext4_msg(sb, KERN_ERR,
1843 "Mount option \"%s\" incompatible with ext2", opt);
1844 return -1;
1846 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1847 ext4_msg(sb, KERN_ERR,
1848 "Mount option \"%s\" incompatible with ext3", opt);
1849 return -1;
1852 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1853 return -1;
1854 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1855 return -1;
1856 if (m->flags & MOPT_EXPLICIT) {
1857 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1858 set_opt2(sb, EXPLICIT_DELALLOC);
1859 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1860 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1861 } else
1862 return -1;
1864 if (m->flags & MOPT_CLEAR_ERR)
1865 clear_opt(sb, ERRORS_MASK);
1866 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1867 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1868 "options when quota turned on");
1869 return -1;
1872 if (m->flags & MOPT_NOSUPPORT) {
1873 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1874 } else if (token == Opt_commit) {
1875 if (arg == 0)
1876 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1877 sbi->s_commit_interval = HZ * arg;
1878 } else if (token == Opt_debug_want_extra_isize) {
1879 sbi->s_want_extra_isize = arg;
1880 } else if (token == Opt_max_batch_time) {
1881 sbi->s_max_batch_time = arg;
1882 } else if (token == Opt_min_batch_time) {
1883 sbi->s_min_batch_time = arg;
1884 } else if (token == Opt_inode_readahead_blks) {
1885 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1886 ext4_msg(sb, KERN_ERR,
1887 "EXT4-fs: inode_readahead_blks must be "
1888 "0 or a power of 2 smaller than 2^31");
1889 return -1;
1891 sbi->s_inode_readahead_blks = arg;
1892 } else if (token == Opt_init_itable) {
1893 set_opt(sb, INIT_INODE_TABLE);
1894 if (!args->from)
1895 arg = EXT4_DEF_LI_WAIT_MULT;
1896 sbi->s_li_wait_mult = arg;
1897 } else if (token == Opt_max_dir_size_kb) {
1898 sbi->s_max_dir_size_kb = arg;
1899 } else if (token == Opt_stripe) {
1900 sbi->s_stripe = arg;
1901 } else if (token == Opt_resuid) {
1902 uid = make_kuid(current_user_ns(), arg);
1903 if (!uid_valid(uid)) {
1904 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1905 return -1;
1907 sbi->s_resuid = uid;
1908 } else if (token == Opt_resgid) {
1909 gid = make_kgid(current_user_ns(), arg);
1910 if (!gid_valid(gid)) {
1911 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1912 return -1;
1914 sbi->s_resgid = gid;
1915 } else if (token == Opt_journal_dev) {
1916 if (is_remount) {
1917 ext4_msg(sb, KERN_ERR,
1918 "Cannot specify journal on remount");
1919 return -1;
1921 *journal_devnum = arg;
1922 } else if (token == Opt_journal_path) {
1923 char *journal_path;
1924 struct inode *journal_inode;
1925 struct path path;
1926 int error;
1928 if (is_remount) {
1929 ext4_msg(sb, KERN_ERR,
1930 "Cannot specify journal on remount");
1931 return -1;
1933 journal_path = match_strdup(&args[0]);
1934 if (!journal_path) {
1935 ext4_msg(sb, KERN_ERR, "error: could not dup "
1936 "journal device string");
1937 return -1;
1940 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1941 if (error) {
1942 ext4_msg(sb, KERN_ERR, "error: could not find "
1943 "journal device path: error %d", error);
1944 kfree(journal_path);
1945 return -1;
1948 journal_inode = d_inode(path.dentry);
1949 if (!S_ISBLK(journal_inode->i_mode)) {
1950 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1951 "is not a block device", journal_path);
1952 path_put(&path);
1953 kfree(journal_path);
1954 return -1;
1957 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1958 path_put(&path);
1959 kfree(journal_path);
1960 } else if (token == Opt_journal_ioprio) {
1961 if (arg > 7) {
1962 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1963 " (must be 0-7)");
1964 return -1;
1966 *journal_ioprio =
1967 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1968 } else if (token == Opt_test_dummy_encryption) {
1969 #ifdef CONFIG_FS_ENCRYPTION
1970 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1971 ext4_msg(sb, KERN_WARNING,
1972 "Test dummy encryption mode enabled");
1973 #else
1974 ext4_msg(sb, KERN_WARNING,
1975 "Test dummy encryption mount option ignored");
1976 #endif
1977 } else if (m->flags & MOPT_DATAJ) {
1978 if (is_remount) {
1979 if (!sbi->s_journal)
1980 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1981 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1982 ext4_msg(sb, KERN_ERR,
1983 "Cannot change data mode on remount");
1984 return -1;
1986 } else {
1987 clear_opt(sb, DATA_FLAGS);
1988 sbi->s_mount_opt |= m->mount_opt;
1990 #ifdef CONFIG_QUOTA
1991 } else if (m->flags & MOPT_QFMT) {
1992 if (sb_any_quota_loaded(sb) &&
1993 sbi->s_jquota_fmt != m->mount_opt) {
1994 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1995 "quota options when quota turned on");
1996 return -1;
1998 if (ext4_has_feature_quota(sb)) {
1999 ext4_msg(sb, KERN_INFO,
2000 "Quota format mount options ignored "
2001 "when QUOTA feature is enabled");
2002 return 1;
2004 sbi->s_jquota_fmt = m->mount_opt;
2005 #endif
2006 } else if (token == Opt_dax) {
2007 #ifdef CONFIG_FS_DAX
2008 ext4_msg(sb, KERN_WARNING,
2009 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2010 sbi->s_mount_opt |= m->mount_opt;
2011 #else
2012 ext4_msg(sb, KERN_INFO, "dax option not supported");
2013 return -1;
2014 #endif
2015 } else if (token == Opt_data_err_abort) {
2016 sbi->s_mount_opt |= m->mount_opt;
2017 } else if (token == Opt_data_err_ignore) {
2018 sbi->s_mount_opt &= ~m->mount_opt;
2019 } else {
2020 if (!args->from)
2021 arg = 1;
2022 if (m->flags & MOPT_CLEAR)
2023 arg = !arg;
2024 else if (unlikely(!(m->flags & MOPT_SET))) {
2025 ext4_msg(sb, KERN_WARNING,
2026 "buggy handling of option %s", opt);
2027 WARN_ON(1);
2028 return -1;
2030 if (arg != 0)
2031 sbi->s_mount_opt |= m->mount_opt;
2032 else
2033 sbi->s_mount_opt &= ~m->mount_opt;
2035 return 1;
2038 static int parse_options(char *options, struct super_block *sb,
2039 unsigned long *journal_devnum,
2040 unsigned int *journal_ioprio,
2041 int is_remount)
2043 struct ext4_sb_info *sbi = EXT4_SB(sb);
2044 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2045 substring_t args[MAX_OPT_ARGS];
2046 int token;
2048 if (!options)
2049 return 1;
2051 while ((p = strsep(&options, ",")) != NULL) {
2052 if (!*p)
2053 continue;
2055 * Initialize args struct so we know whether arg was
2056 * found; some options take optional arguments.
2058 args[0].to = args[0].from = NULL;
2059 token = match_token(p, tokens, args);
2060 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2061 journal_ioprio, is_remount) < 0)
2062 return 0;
2064 #ifdef CONFIG_QUOTA
2066 * We do the test below only for project quotas. 'usrquota' and
2067 * 'grpquota' mount options are allowed even without quota feature
2068 * to support legacy quotas in quota files.
2070 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2071 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2072 "Cannot enable project quota enforcement.");
2073 return 0;
2075 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2076 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2077 if (usr_qf_name || grp_qf_name) {
2078 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2079 clear_opt(sb, USRQUOTA);
2081 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2082 clear_opt(sb, GRPQUOTA);
2084 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2085 ext4_msg(sb, KERN_ERR, "old and new quota "
2086 "format mixing");
2087 return 0;
2090 if (!sbi->s_jquota_fmt) {
2091 ext4_msg(sb, KERN_ERR, "journaled quota format "
2092 "not specified");
2093 return 0;
2096 #endif
2097 if (test_opt(sb, DIOREAD_NOLOCK)) {
2098 int blocksize =
2099 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2101 if (blocksize < PAGE_SIZE) {
2102 ext4_msg(sb, KERN_ERR, "can't mount with "
2103 "dioread_nolock if block size != PAGE_SIZE");
2104 return 0;
2107 return 1;
2110 static inline void ext4_show_quota_options(struct seq_file *seq,
2111 struct super_block *sb)
2113 #if defined(CONFIG_QUOTA)
2114 struct ext4_sb_info *sbi = EXT4_SB(sb);
2115 char *usr_qf_name, *grp_qf_name;
2117 if (sbi->s_jquota_fmt) {
2118 char *fmtname = "";
2120 switch (sbi->s_jquota_fmt) {
2121 case QFMT_VFS_OLD:
2122 fmtname = "vfsold";
2123 break;
2124 case QFMT_VFS_V0:
2125 fmtname = "vfsv0";
2126 break;
2127 case QFMT_VFS_V1:
2128 fmtname = "vfsv1";
2129 break;
2131 seq_printf(seq, ",jqfmt=%s", fmtname);
2134 rcu_read_lock();
2135 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2136 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2137 if (usr_qf_name)
2138 seq_show_option(seq, "usrjquota", usr_qf_name);
2139 if (grp_qf_name)
2140 seq_show_option(seq, "grpjquota", grp_qf_name);
2141 rcu_read_unlock();
2142 #endif
2145 static const char *token2str(int token)
2147 const struct match_token *t;
2149 for (t = tokens; t->token != Opt_err; t++)
2150 if (t->token == token && !strchr(t->pattern, '='))
2151 break;
2152 return t->pattern;
2156 * Show an option if
2157 * - it's set to a non-default value OR
2158 * - if the per-sb default is different from the global default
2160 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2161 int nodefs)
2163 struct ext4_sb_info *sbi = EXT4_SB(sb);
2164 struct ext4_super_block *es = sbi->s_es;
2165 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2166 const struct mount_opts *m;
2167 char sep = nodefs ? '\n' : ',';
2169 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2170 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2172 if (sbi->s_sb_block != 1)
2173 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2175 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2176 int want_set = m->flags & MOPT_SET;
2177 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2178 (m->flags & MOPT_CLEAR_ERR))
2179 continue;
2180 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2181 continue; /* skip if same as the default */
2182 if ((want_set &&
2183 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2184 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2185 continue; /* select Opt_noFoo vs Opt_Foo */
2186 SEQ_OPTS_PRINT("%s", token2str(m->token));
2189 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2190 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2191 SEQ_OPTS_PRINT("resuid=%u",
2192 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2193 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2194 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2195 SEQ_OPTS_PRINT("resgid=%u",
2196 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2197 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2198 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2199 SEQ_OPTS_PUTS("errors=remount-ro");
2200 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2201 SEQ_OPTS_PUTS("errors=continue");
2202 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2203 SEQ_OPTS_PUTS("errors=panic");
2204 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2205 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2206 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2207 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2208 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2209 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2210 if (sb->s_flags & SB_I_VERSION)
2211 SEQ_OPTS_PUTS("i_version");
2212 if (nodefs || sbi->s_stripe)
2213 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2214 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2215 (sbi->s_mount_opt ^ def_mount_opt)) {
2216 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2217 SEQ_OPTS_PUTS("data=journal");
2218 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2219 SEQ_OPTS_PUTS("data=ordered");
2220 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2221 SEQ_OPTS_PUTS("data=writeback");
2223 if (nodefs ||
2224 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2225 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2226 sbi->s_inode_readahead_blks);
2228 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2229 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2230 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2231 if (nodefs || sbi->s_max_dir_size_kb)
2232 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2233 if (test_opt(sb, DATA_ERR_ABORT))
2234 SEQ_OPTS_PUTS("data_err=abort");
2235 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2236 SEQ_OPTS_PUTS("test_dummy_encryption");
2238 ext4_show_quota_options(seq, sb);
2239 return 0;
2242 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2244 return _ext4_show_options(seq, root->d_sb, 0);
2247 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2249 struct super_block *sb = seq->private;
2250 int rc;
2252 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2253 rc = _ext4_show_options(seq, sb, 1);
2254 seq_puts(seq, "\n");
2255 return rc;
2258 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2259 int read_only)
2261 struct ext4_sb_info *sbi = EXT4_SB(sb);
2262 int err = 0;
2264 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2265 ext4_msg(sb, KERN_ERR, "revision level too high, "
2266 "forcing read-only mode");
2267 err = -EROFS;
2269 if (read_only)
2270 goto done;
2271 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2272 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2273 "running e2fsck is recommended");
2274 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2275 ext4_msg(sb, KERN_WARNING,
2276 "warning: mounting fs with errors, "
2277 "running e2fsck is recommended");
2278 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2279 le16_to_cpu(es->s_mnt_count) >=
2280 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2281 ext4_msg(sb, KERN_WARNING,
2282 "warning: maximal mount count reached, "
2283 "running e2fsck is recommended");
2284 else if (le32_to_cpu(es->s_checkinterval) &&
2285 (ext4_get_tstamp(es, s_lastcheck) +
2286 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2287 ext4_msg(sb, KERN_WARNING,
2288 "warning: checktime reached, "
2289 "running e2fsck is recommended");
2290 if (!sbi->s_journal)
2291 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2292 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2293 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2294 le16_add_cpu(&es->s_mnt_count, 1);
2295 ext4_update_tstamp(es, s_mtime);
2296 if (sbi->s_journal)
2297 ext4_set_feature_journal_needs_recovery(sb);
2299 err = ext4_commit_super(sb, 1);
2300 done:
2301 if (test_opt(sb, DEBUG))
2302 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2303 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2304 sb->s_blocksize,
2305 sbi->s_groups_count,
2306 EXT4_BLOCKS_PER_GROUP(sb),
2307 EXT4_INODES_PER_GROUP(sb),
2308 sbi->s_mount_opt, sbi->s_mount_opt2);
2310 cleancache_init_fs(sb);
2311 return err;
2314 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2316 struct ext4_sb_info *sbi = EXT4_SB(sb);
2317 struct flex_groups *new_groups;
2318 int size;
2320 if (!sbi->s_log_groups_per_flex)
2321 return 0;
2323 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2324 if (size <= sbi->s_flex_groups_allocated)
2325 return 0;
2327 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2328 new_groups = kvzalloc(size, GFP_KERNEL);
2329 if (!new_groups) {
2330 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2331 size / (int) sizeof(struct flex_groups));
2332 return -ENOMEM;
2335 if (sbi->s_flex_groups) {
2336 memcpy(new_groups, sbi->s_flex_groups,
2337 (sbi->s_flex_groups_allocated *
2338 sizeof(struct flex_groups)));
2339 kvfree(sbi->s_flex_groups);
2341 sbi->s_flex_groups = new_groups;
2342 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2343 return 0;
2346 static int ext4_fill_flex_info(struct super_block *sb)
2348 struct ext4_sb_info *sbi = EXT4_SB(sb);
2349 struct ext4_group_desc *gdp = NULL;
2350 ext4_group_t flex_group;
2351 int i, err;
2353 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2354 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2355 sbi->s_log_groups_per_flex = 0;
2356 return 1;
2359 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2360 if (err)
2361 goto failed;
2363 for (i = 0; i < sbi->s_groups_count; i++) {
2364 gdp = ext4_get_group_desc(sb, i, NULL);
2366 flex_group = ext4_flex_group(sbi, i);
2367 atomic_add(ext4_free_inodes_count(sb, gdp),
2368 &sbi->s_flex_groups[flex_group].free_inodes);
2369 atomic64_add(ext4_free_group_clusters(sb, gdp),
2370 &sbi->s_flex_groups[flex_group].free_clusters);
2371 atomic_add(ext4_used_dirs_count(sb, gdp),
2372 &sbi->s_flex_groups[flex_group].used_dirs);
2375 return 1;
2376 failed:
2377 return 0;
2380 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2381 struct ext4_group_desc *gdp)
2383 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2384 __u16 crc = 0;
2385 __le32 le_group = cpu_to_le32(block_group);
2386 struct ext4_sb_info *sbi = EXT4_SB(sb);
2388 if (ext4_has_metadata_csum(sbi->s_sb)) {
2389 /* Use new metadata_csum algorithm */
2390 __u32 csum32;
2391 __u16 dummy_csum = 0;
2393 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2394 sizeof(le_group));
2395 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2396 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2397 sizeof(dummy_csum));
2398 offset += sizeof(dummy_csum);
2399 if (offset < sbi->s_desc_size)
2400 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2401 sbi->s_desc_size - offset);
2403 crc = csum32 & 0xFFFF;
2404 goto out;
2407 /* old crc16 code */
2408 if (!ext4_has_feature_gdt_csum(sb))
2409 return 0;
2411 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2412 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2413 crc = crc16(crc, (__u8 *)gdp, offset);
2414 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2415 /* for checksum of struct ext4_group_desc do the rest...*/
2416 if (ext4_has_feature_64bit(sb) &&
2417 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2418 crc = crc16(crc, (__u8 *)gdp + offset,
2419 le16_to_cpu(sbi->s_es->s_desc_size) -
2420 offset);
2422 out:
2423 return cpu_to_le16(crc);
2426 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2427 struct ext4_group_desc *gdp)
2429 if (ext4_has_group_desc_csum(sb) &&
2430 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2431 return 0;
2433 return 1;
2436 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2437 struct ext4_group_desc *gdp)
2439 if (!ext4_has_group_desc_csum(sb))
2440 return;
2441 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2444 /* Called at mount-time, super-block is locked */
2445 static int ext4_check_descriptors(struct super_block *sb,
2446 ext4_fsblk_t sb_block,
2447 ext4_group_t *first_not_zeroed)
2449 struct ext4_sb_info *sbi = EXT4_SB(sb);
2450 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2451 ext4_fsblk_t last_block;
2452 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2453 ext4_fsblk_t block_bitmap;
2454 ext4_fsblk_t inode_bitmap;
2455 ext4_fsblk_t inode_table;
2456 int flexbg_flag = 0;
2457 ext4_group_t i, grp = sbi->s_groups_count;
2459 if (ext4_has_feature_flex_bg(sb))
2460 flexbg_flag = 1;
2462 ext4_debug("Checking group descriptors");
2464 for (i = 0; i < sbi->s_groups_count; i++) {
2465 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2467 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2468 last_block = ext4_blocks_count(sbi->s_es) - 1;
2469 else
2470 last_block = first_block +
2471 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2473 if ((grp == sbi->s_groups_count) &&
2474 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2475 grp = i;
2477 block_bitmap = ext4_block_bitmap(sb, gdp);
2478 if (block_bitmap == sb_block) {
2479 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2480 "Block bitmap for group %u overlaps "
2481 "superblock", i);
2482 if (!sb_rdonly(sb))
2483 return 0;
2485 if (block_bitmap >= sb_block + 1 &&
2486 block_bitmap <= last_bg_block) {
2487 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2488 "Block bitmap for group %u overlaps "
2489 "block group descriptors", i);
2490 if (!sb_rdonly(sb))
2491 return 0;
2493 if (block_bitmap < first_block || block_bitmap > last_block) {
2494 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2495 "Block bitmap for group %u not in group "
2496 "(block %llu)!", i, block_bitmap);
2497 return 0;
2499 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2500 if (inode_bitmap == sb_block) {
2501 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2502 "Inode bitmap for group %u overlaps "
2503 "superblock", i);
2504 if (!sb_rdonly(sb))
2505 return 0;
2507 if (inode_bitmap >= sb_block + 1 &&
2508 inode_bitmap <= last_bg_block) {
2509 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2510 "Inode bitmap for group %u overlaps "
2511 "block group descriptors", i);
2512 if (!sb_rdonly(sb))
2513 return 0;
2515 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2516 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2517 "Inode bitmap for group %u not in group "
2518 "(block %llu)!", i, inode_bitmap);
2519 return 0;
2521 inode_table = ext4_inode_table(sb, gdp);
2522 if (inode_table == sb_block) {
2523 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2524 "Inode table for group %u overlaps "
2525 "superblock", i);
2526 if (!sb_rdonly(sb))
2527 return 0;
2529 if (inode_table >= sb_block + 1 &&
2530 inode_table <= last_bg_block) {
2531 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2532 "Inode table for group %u overlaps "
2533 "block group descriptors", i);
2534 if (!sb_rdonly(sb))
2535 return 0;
2537 if (inode_table < first_block ||
2538 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2539 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2540 "Inode table for group %u not in group "
2541 "(block %llu)!", i, inode_table);
2542 return 0;
2544 ext4_lock_group(sb, i);
2545 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2546 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2547 "Checksum for group %u failed (%u!=%u)",
2548 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2549 gdp)), le16_to_cpu(gdp->bg_checksum));
2550 if (!sb_rdonly(sb)) {
2551 ext4_unlock_group(sb, i);
2552 return 0;
2555 ext4_unlock_group(sb, i);
2556 if (!flexbg_flag)
2557 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2559 if (NULL != first_not_zeroed)
2560 *first_not_zeroed = grp;
2561 return 1;
2564 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2565 * the superblock) which were deleted from all directories, but held open by
2566 * a process at the time of a crash. We walk the list and try to delete these
2567 * inodes at recovery time (only with a read-write filesystem).
2569 * In order to keep the orphan inode chain consistent during traversal (in
2570 * case of crash during recovery), we link each inode into the superblock
2571 * orphan list_head and handle it the same way as an inode deletion during
2572 * normal operation (which journals the operations for us).
2574 * We only do an iget() and an iput() on each inode, which is very safe if we
2575 * accidentally point at an in-use or already deleted inode. The worst that
2576 * can happen in this case is that we get a "bit already cleared" message from
2577 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2578 * e2fsck was run on this filesystem, and it must have already done the orphan
2579 * inode cleanup for us, so we can safely abort without any further action.
2581 static void ext4_orphan_cleanup(struct super_block *sb,
2582 struct ext4_super_block *es)
2584 unsigned int s_flags = sb->s_flags;
2585 int ret, nr_orphans = 0, nr_truncates = 0;
2586 #ifdef CONFIG_QUOTA
2587 int quota_update = 0;
2588 int i;
2589 #endif
2590 if (!es->s_last_orphan) {
2591 jbd_debug(4, "no orphan inodes to clean up\n");
2592 return;
2595 if (bdev_read_only(sb->s_bdev)) {
2596 ext4_msg(sb, KERN_ERR, "write access "
2597 "unavailable, skipping orphan cleanup");
2598 return;
2601 /* Check if feature set would not allow a r/w mount */
2602 if (!ext4_feature_set_ok(sb, 0)) {
2603 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2604 "unknown ROCOMPAT features");
2605 return;
2608 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2609 /* don't clear list on RO mount w/ errors */
2610 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2611 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2612 "clearing orphan list.\n");
2613 es->s_last_orphan = 0;
2615 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2616 return;
2619 if (s_flags & SB_RDONLY) {
2620 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2621 sb->s_flags &= ~SB_RDONLY;
2623 #ifdef CONFIG_QUOTA
2624 /* Needed for iput() to work correctly and not trash data */
2625 sb->s_flags |= SB_ACTIVE;
2628 * Turn on quotas which were not enabled for read-only mounts if
2629 * filesystem has quota feature, so that they are updated correctly.
2631 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2632 int ret = ext4_enable_quotas(sb);
2634 if (!ret)
2635 quota_update = 1;
2636 else
2637 ext4_msg(sb, KERN_ERR,
2638 "Cannot turn on quotas: error %d", ret);
2641 /* Turn on journaled quotas used for old sytle */
2642 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2643 if (EXT4_SB(sb)->s_qf_names[i]) {
2644 int ret = ext4_quota_on_mount(sb, i);
2646 if (!ret)
2647 quota_update = 1;
2648 else
2649 ext4_msg(sb, KERN_ERR,
2650 "Cannot turn on journaled "
2651 "quota: type %d: error %d", i, ret);
2654 #endif
2656 while (es->s_last_orphan) {
2657 struct inode *inode;
2660 * We may have encountered an error during cleanup; if
2661 * so, skip the rest.
2663 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2664 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2665 es->s_last_orphan = 0;
2666 break;
2669 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2670 if (IS_ERR(inode)) {
2671 es->s_last_orphan = 0;
2672 break;
2675 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2676 dquot_initialize(inode);
2677 if (inode->i_nlink) {
2678 if (test_opt(sb, DEBUG))
2679 ext4_msg(sb, KERN_DEBUG,
2680 "%s: truncating inode %lu to %lld bytes",
2681 __func__, inode->i_ino, inode->i_size);
2682 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2683 inode->i_ino, inode->i_size);
2684 inode_lock(inode);
2685 truncate_inode_pages(inode->i_mapping, inode->i_size);
2686 ret = ext4_truncate(inode);
2687 if (ret)
2688 ext4_std_error(inode->i_sb, ret);
2689 inode_unlock(inode);
2690 nr_truncates++;
2691 } else {
2692 if (test_opt(sb, DEBUG))
2693 ext4_msg(sb, KERN_DEBUG,
2694 "%s: deleting unreferenced inode %lu",
2695 __func__, inode->i_ino);
2696 jbd_debug(2, "deleting unreferenced inode %lu\n",
2697 inode->i_ino);
2698 nr_orphans++;
2700 iput(inode); /* The delete magic happens here! */
2703 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2705 if (nr_orphans)
2706 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2707 PLURAL(nr_orphans));
2708 if (nr_truncates)
2709 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2710 PLURAL(nr_truncates));
2711 #ifdef CONFIG_QUOTA
2712 /* Turn off quotas if they were enabled for orphan cleanup */
2713 if (quota_update) {
2714 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2715 if (sb_dqopt(sb)->files[i])
2716 dquot_quota_off(sb, i);
2719 #endif
2720 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2724 * Maximal extent format file size.
2725 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2726 * extent format containers, within a sector_t, and within i_blocks
2727 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2728 * so that won't be a limiting factor.
2730 * However there is other limiting factor. We do store extents in the form
2731 * of starting block and length, hence the resulting length of the extent
2732 * covering maximum file size must fit into on-disk format containers as
2733 * well. Given that length is always by 1 unit bigger than max unit (because
2734 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2736 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2738 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2740 loff_t res;
2741 loff_t upper_limit = MAX_LFS_FILESIZE;
2743 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2745 if (!has_huge_files) {
2746 upper_limit = (1LL << 32) - 1;
2748 /* total blocks in file system block size */
2749 upper_limit >>= (blkbits - 9);
2750 upper_limit <<= blkbits;
2754 * 32-bit extent-start container, ee_block. We lower the maxbytes
2755 * by one fs block, so ee_len can cover the extent of maximum file
2756 * size
2758 res = (1LL << 32) - 1;
2759 res <<= blkbits;
2761 /* Sanity check against vm- & vfs- imposed limits */
2762 if (res > upper_limit)
2763 res = upper_limit;
2765 return res;
2769 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2770 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2771 * We need to be 1 filesystem block less than the 2^48 sector limit.
2773 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2775 loff_t res = EXT4_NDIR_BLOCKS;
2776 int meta_blocks;
2777 loff_t upper_limit;
2778 /* This is calculated to be the largest file size for a dense, block
2779 * mapped file such that the file's total number of 512-byte sectors,
2780 * including data and all indirect blocks, does not exceed (2^48 - 1).
2782 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2783 * number of 512-byte sectors of the file.
2786 if (!has_huge_files) {
2788 * !has_huge_files or implies that the inode i_block field
2789 * represents total file blocks in 2^32 512-byte sectors ==
2790 * size of vfs inode i_blocks * 8
2792 upper_limit = (1LL << 32) - 1;
2794 /* total blocks in file system block size */
2795 upper_limit >>= (bits - 9);
2797 } else {
2799 * We use 48 bit ext4_inode i_blocks
2800 * With EXT4_HUGE_FILE_FL set the i_blocks
2801 * represent total number of blocks in
2802 * file system block size
2804 upper_limit = (1LL << 48) - 1;
2808 /* indirect blocks */
2809 meta_blocks = 1;
2810 /* double indirect blocks */
2811 meta_blocks += 1 + (1LL << (bits-2));
2812 /* tripple indirect blocks */
2813 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2815 upper_limit -= meta_blocks;
2816 upper_limit <<= bits;
2818 res += 1LL << (bits-2);
2819 res += 1LL << (2*(bits-2));
2820 res += 1LL << (3*(bits-2));
2821 res <<= bits;
2822 if (res > upper_limit)
2823 res = upper_limit;
2825 if (res > MAX_LFS_FILESIZE)
2826 res = MAX_LFS_FILESIZE;
2828 return res;
2831 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2832 ext4_fsblk_t logical_sb_block, int nr)
2834 struct ext4_sb_info *sbi = EXT4_SB(sb);
2835 ext4_group_t bg, first_meta_bg;
2836 int has_super = 0;
2838 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2840 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2841 return logical_sb_block + nr + 1;
2842 bg = sbi->s_desc_per_block * nr;
2843 if (ext4_bg_has_super(sb, bg))
2844 has_super = 1;
2847 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2848 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2849 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2850 * compensate.
2852 if (sb->s_blocksize == 1024 && nr == 0 &&
2853 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2854 has_super++;
2856 return (has_super + ext4_group_first_block_no(sb, bg));
2860 * ext4_get_stripe_size: Get the stripe size.
2861 * @sbi: In memory super block info
2863 * If we have specified it via mount option, then
2864 * use the mount option value. If the value specified at mount time is
2865 * greater than the blocks per group use the super block value.
2866 * If the super block value is greater than blocks per group return 0.
2867 * Allocator needs it be less than blocks per group.
2870 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2872 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2873 unsigned long stripe_width =
2874 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2875 int ret;
2877 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2878 ret = sbi->s_stripe;
2879 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2880 ret = stripe_width;
2881 else if (stride && stride <= sbi->s_blocks_per_group)
2882 ret = stride;
2883 else
2884 ret = 0;
2887 * If the stripe width is 1, this makes no sense and
2888 * we set it to 0 to turn off stripe handling code.
2890 if (ret <= 1)
2891 ret = 0;
2893 return ret;
2897 * Check whether this filesystem can be mounted based on
2898 * the features present and the RDONLY/RDWR mount requested.
2899 * Returns 1 if this filesystem can be mounted as requested,
2900 * 0 if it cannot be.
2902 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2904 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2905 ext4_msg(sb, KERN_ERR,
2906 "Couldn't mount because of "
2907 "unsupported optional features (%x)",
2908 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2909 ~EXT4_FEATURE_INCOMPAT_SUPP));
2910 return 0;
2913 #ifndef CONFIG_UNICODE
2914 if (ext4_has_feature_casefold(sb)) {
2915 ext4_msg(sb, KERN_ERR,
2916 "Filesystem with casefold feature cannot be "
2917 "mounted without CONFIG_UNICODE");
2918 return 0;
2920 #endif
2922 if (readonly)
2923 return 1;
2925 if (ext4_has_feature_readonly(sb)) {
2926 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2927 sb->s_flags |= SB_RDONLY;
2928 return 1;
2931 /* Check that feature set is OK for a read-write mount */
2932 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2933 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2934 "unsupported optional features (%x)",
2935 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2936 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2937 return 0;
2939 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2940 ext4_msg(sb, KERN_ERR,
2941 "Can't support bigalloc feature without "
2942 "extents feature\n");
2943 return 0;
2946 #ifndef CONFIG_QUOTA
2947 if (ext4_has_feature_quota(sb) && !readonly) {
2948 ext4_msg(sb, KERN_ERR,
2949 "Filesystem with quota feature cannot be mounted RDWR "
2950 "without CONFIG_QUOTA");
2951 return 0;
2953 if (ext4_has_feature_project(sb) && !readonly) {
2954 ext4_msg(sb, KERN_ERR,
2955 "Filesystem with project quota feature cannot be mounted RDWR "
2956 "without CONFIG_QUOTA");
2957 return 0;
2959 #endif /* CONFIG_QUOTA */
2960 return 1;
2964 * This function is called once a day if we have errors logged
2965 * on the file system
2967 static void print_daily_error_info(struct timer_list *t)
2969 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2970 struct super_block *sb = sbi->s_sb;
2971 struct ext4_super_block *es = sbi->s_es;
2973 if (es->s_error_count)
2974 /* fsck newer than v1.41.13 is needed to clean this condition. */
2975 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2976 le32_to_cpu(es->s_error_count));
2977 if (es->s_first_error_time) {
2978 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2979 sb->s_id,
2980 ext4_get_tstamp(es, s_first_error_time),
2981 (int) sizeof(es->s_first_error_func),
2982 es->s_first_error_func,
2983 le32_to_cpu(es->s_first_error_line));
2984 if (es->s_first_error_ino)
2985 printk(KERN_CONT ": inode %u",
2986 le32_to_cpu(es->s_first_error_ino));
2987 if (es->s_first_error_block)
2988 printk(KERN_CONT ": block %llu", (unsigned long long)
2989 le64_to_cpu(es->s_first_error_block));
2990 printk(KERN_CONT "\n");
2992 if (es->s_last_error_time) {
2993 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2994 sb->s_id,
2995 ext4_get_tstamp(es, s_last_error_time),
2996 (int) sizeof(es->s_last_error_func),
2997 es->s_last_error_func,
2998 le32_to_cpu(es->s_last_error_line));
2999 if (es->s_last_error_ino)
3000 printk(KERN_CONT ": inode %u",
3001 le32_to_cpu(es->s_last_error_ino));
3002 if (es->s_last_error_block)
3003 printk(KERN_CONT ": block %llu", (unsigned long long)
3004 le64_to_cpu(es->s_last_error_block));
3005 printk(KERN_CONT "\n");
3007 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3010 /* Find next suitable group and run ext4_init_inode_table */
3011 static int ext4_run_li_request(struct ext4_li_request *elr)
3013 struct ext4_group_desc *gdp = NULL;
3014 ext4_group_t group, ngroups;
3015 struct super_block *sb;
3016 unsigned long timeout = 0;
3017 int ret = 0;
3019 sb = elr->lr_super;
3020 ngroups = EXT4_SB(sb)->s_groups_count;
3022 for (group = elr->lr_next_group; group < ngroups; group++) {
3023 gdp = ext4_get_group_desc(sb, group, NULL);
3024 if (!gdp) {
3025 ret = 1;
3026 break;
3029 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3030 break;
3033 if (group >= ngroups)
3034 ret = 1;
3036 if (!ret) {
3037 timeout = jiffies;
3038 ret = ext4_init_inode_table(sb, group,
3039 elr->lr_timeout ? 0 : 1);
3040 if (elr->lr_timeout == 0) {
3041 timeout = (jiffies - timeout) *
3042 elr->lr_sbi->s_li_wait_mult;
3043 elr->lr_timeout = timeout;
3045 elr->lr_next_sched = jiffies + elr->lr_timeout;
3046 elr->lr_next_group = group + 1;
3048 return ret;
3052 * Remove lr_request from the list_request and free the
3053 * request structure. Should be called with li_list_mtx held
3055 static void ext4_remove_li_request(struct ext4_li_request *elr)
3057 struct ext4_sb_info *sbi;
3059 if (!elr)
3060 return;
3062 sbi = elr->lr_sbi;
3064 list_del(&elr->lr_request);
3065 sbi->s_li_request = NULL;
3066 kfree(elr);
3069 static void ext4_unregister_li_request(struct super_block *sb)
3071 mutex_lock(&ext4_li_mtx);
3072 if (!ext4_li_info) {
3073 mutex_unlock(&ext4_li_mtx);
3074 return;
3077 mutex_lock(&ext4_li_info->li_list_mtx);
3078 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3079 mutex_unlock(&ext4_li_info->li_list_mtx);
3080 mutex_unlock(&ext4_li_mtx);
3083 static struct task_struct *ext4_lazyinit_task;
3086 * This is the function where ext4lazyinit thread lives. It walks
3087 * through the request list searching for next scheduled filesystem.
3088 * When such a fs is found, run the lazy initialization request
3089 * (ext4_rn_li_request) and keep track of the time spend in this
3090 * function. Based on that time we compute next schedule time of
3091 * the request. When walking through the list is complete, compute
3092 * next waking time and put itself into sleep.
3094 static int ext4_lazyinit_thread(void *arg)
3096 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3097 struct list_head *pos, *n;
3098 struct ext4_li_request *elr;
3099 unsigned long next_wakeup, cur;
3101 BUG_ON(NULL == eli);
3103 cont_thread:
3104 while (true) {
3105 next_wakeup = MAX_JIFFY_OFFSET;
3107 mutex_lock(&eli->li_list_mtx);
3108 if (list_empty(&eli->li_request_list)) {
3109 mutex_unlock(&eli->li_list_mtx);
3110 goto exit_thread;
3112 list_for_each_safe(pos, n, &eli->li_request_list) {
3113 int err = 0;
3114 int progress = 0;
3115 elr = list_entry(pos, struct ext4_li_request,
3116 lr_request);
3118 if (time_before(jiffies, elr->lr_next_sched)) {
3119 if (time_before(elr->lr_next_sched, next_wakeup))
3120 next_wakeup = elr->lr_next_sched;
3121 continue;
3123 if (down_read_trylock(&elr->lr_super->s_umount)) {
3124 if (sb_start_write_trylock(elr->lr_super)) {
3125 progress = 1;
3127 * We hold sb->s_umount, sb can not
3128 * be removed from the list, it is
3129 * now safe to drop li_list_mtx
3131 mutex_unlock(&eli->li_list_mtx);
3132 err = ext4_run_li_request(elr);
3133 sb_end_write(elr->lr_super);
3134 mutex_lock(&eli->li_list_mtx);
3135 n = pos->next;
3137 up_read((&elr->lr_super->s_umount));
3139 /* error, remove the lazy_init job */
3140 if (err) {
3141 ext4_remove_li_request(elr);
3142 continue;
3144 if (!progress) {
3145 elr->lr_next_sched = jiffies +
3146 (prandom_u32()
3147 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3149 if (time_before(elr->lr_next_sched, next_wakeup))
3150 next_wakeup = elr->lr_next_sched;
3152 mutex_unlock(&eli->li_list_mtx);
3154 try_to_freeze();
3156 cur = jiffies;
3157 if ((time_after_eq(cur, next_wakeup)) ||
3158 (MAX_JIFFY_OFFSET == next_wakeup)) {
3159 cond_resched();
3160 continue;
3163 schedule_timeout_interruptible(next_wakeup - cur);
3165 if (kthread_should_stop()) {
3166 ext4_clear_request_list();
3167 goto exit_thread;
3171 exit_thread:
3173 * It looks like the request list is empty, but we need
3174 * to check it under the li_list_mtx lock, to prevent any
3175 * additions into it, and of course we should lock ext4_li_mtx
3176 * to atomically free the list and ext4_li_info, because at
3177 * this point another ext4 filesystem could be registering
3178 * new one.
3180 mutex_lock(&ext4_li_mtx);
3181 mutex_lock(&eli->li_list_mtx);
3182 if (!list_empty(&eli->li_request_list)) {
3183 mutex_unlock(&eli->li_list_mtx);
3184 mutex_unlock(&ext4_li_mtx);
3185 goto cont_thread;
3187 mutex_unlock(&eli->li_list_mtx);
3188 kfree(ext4_li_info);
3189 ext4_li_info = NULL;
3190 mutex_unlock(&ext4_li_mtx);
3192 return 0;
3195 static void ext4_clear_request_list(void)
3197 struct list_head *pos, *n;
3198 struct ext4_li_request *elr;
3200 mutex_lock(&ext4_li_info->li_list_mtx);
3201 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3202 elr = list_entry(pos, struct ext4_li_request,
3203 lr_request);
3204 ext4_remove_li_request(elr);
3206 mutex_unlock(&ext4_li_info->li_list_mtx);
3209 static int ext4_run_lazyinit_thread(void)
3211 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3212 ext4_li_info, "ext4lazyinit");
3213 if (IS_ERR(ext4_lazyinit_task)) {
3214 int err = PTR_ERR(ext4_lazyinit_task);
3215 ext4_clear_request_list();
3216 kfree(ext4_li_info);
3217 ext4_li_info = NULL;
3218 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3219 "initialization thread\n",
3220 err);
3221 return err;
3223 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3224 return 0;
3228 * Check whether it make sense to run itable init. thread or not.
3229 * If there is at least one uninitialized inode table, return
3230 * corresponding group number, else the loop goes through all
3231 * groups and return total number of groups.
3233 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3235 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3236 struct ext4_group_desc *gdp = NULL;
3238 if (!ext4_has_group_desc_csum(sb))
3239 return ngroups;
3241 for (group = 0; group < ngroups; group++) {
3242 gdp = ext4_get_group_desc(sb, group, NULL);
3243 if (!gdp)
3244 continue;
3246 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3247 break;
3250 return group;
3253 static int ext4_li_info_new(void)
3255 struct ext4_lazy_init *eli = NULL;
3257 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3258 if (!eli)
3259 return -ENOMEM;
3261 INIT_LIST_HEAD(&eli->li_request_list);
3262 mutex_init(&eli->li_list_mtx);
3264 eli->li_state |= EXT4_LAZYINIT_QUIT;
3266 ext4_li_info = eli;
3268 return 0;
3271 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3272 ext4_group_t start)
3274 struct ext4_sb_info *sbi = EXT4_SB(sb);
3275 struct ext4_li_request *elr;
3277 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3278 if (!elr)
3279 return NULL;
3281 elr->lr_super = sb;
3282 elr->lr_sbi = sbi;
3283 elr->lr_next_group = start;
3286 * Randomize first schedule time of the request to
3287 * spread the inode table initialization requests
3288 * better.
3290 elr->lr_next_sched = jiffies + (prandom_u32() %
3291 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3292 return elr;
3295 int ext4_register_li_request(struct super_block *sb,
3296 ext4_group_t first_not_zeroed)
3298 struct ext4_sb_info *sbi = EXT4_SB(sb);
3299 struct ext4_li_request *elr = NULL;
3300 ext4_group_t ngroups = sbi->s_groups_count;
3301 int ret = 0;
3303 mutex_lock(&ext4_li_mtx);
3304 if (sbi->s_li_request != NULL) {
3306 * Reset timeout so it can be computed again, because
3307 * s_li_wait_mult might have changed.
3309 sbi->s_li_request->lr_timeout = 0;
3310 goto out;
3313 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3314 !test_opt(sb, INIT_INODE_TABLE))
3315 goto out;
3317 elr = ext4_li_request_new(sb, first_not_zeroed);
3318 if (!elr) {
3319 ret = -ENOMEM;
3320 goto out;
3323 if (NULL == ext4_li_info) {
3324 ret = ext4_li_info_new();
3325 if (ret)
3326 goto out;
3329 mutex_lock(&ext4_li_info->li_list_mtx);
3330 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3331 mutex_unlock(&ext4_li_info->li_list_mtx);
3333 sbi->s_li_request = elr;
3335 * set elr to NULL here since it has been inserted to
3336 * the request_list and the removal and free of it is
3337 * handled by ext4_clear_request_list from now on.
3339 elr = NULL;
3341 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3342 ret = ext4_run_lazyinit_thread();
3343 if (ret)
3344 goto out;
3346 out:
3347 mutex_unlock(&ext4_li_mtx);
3348 if (ret)
3349 kfree(elr);
3350 return ret;
3354 * We do not need to lock anything since this is called on
3355 * module unload.
3357 static void ext4_destroy_lazyinit_thread(void)
3360 * If thread exited earlier
3361 * there's nothing to be done.
3363 if (!ext4_li_info || !ext4_lazyinit_task)
3364 return;
3366 kthread_stop(ext4_lazyinit_task);
3369 static int set_journal_csum_feature_set(struct super_block *sb)
3371 int ret = 1;
3372 int compat, incompat;
3373 struct ext4_sb_info *sbi = EXT4_SB(sb);
3375 if (ext4_has_metadata_csum(sb)) {
3376 /* journal checksum v3 */
3377 compat = 0;
3378 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3379 } else {
3380 /* journal checksum v1 */
3381 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3382 incompat = 0;
3385 jbd2_journal_clear_features(sbi->s_journal,
3386 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3387 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3388 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3389 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3390 ret = jbd2_journal_set_features(sbi->s_journal,
3391 compat, 0,
3392 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3393 incompat);
3394 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3395 ret = jbd2_journal_set_features(sbi->s_journal,
3396 compat, 0,
3397 incompat);
3398 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3399 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3400 } else {
3401 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3402 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3405 return ret;
3409 * Note: calculating the overhead so we can be compatible with
3410 * historical BSD practice is quite difficult in the face of
3411 * clusters/bigalloc. This is because multiple metadata blocks from
3412 * different block group can end up in the same allocation cluster.
3413 * Calculating the exact overhead in the face of clustered allocation
3414 * requires either O(all block bitmaps) in memory or O(number of block
3415 * groups**2) in time. We will still calculate the superblock for
3416 * older file systems --- and if we come across with a bigalloc file
3417 * system with zero in s_overhead_clusters the estimate will be close to
3418 * correct especially for very large cluster sizes --- but for newer
3419 * file systems, it's better to calculate this figure once at mkfs
3420 * time, and store it in the superblock. If the superblock value is
3421 * present (even for non-bigalloc file systems), we will use it.
3423 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3424 char *buf)
3426 struct ext4_sb_info *sbi = EXT4_SB(sb);
3427 struct ext4_group_desc *gdp;
3428 ext4_fsblk_t first_block, last_block, b;
3429 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3430 int s, j, count = 0;
3432 if (!ext4_has_feature_bigalloc(sb))
3433 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3434 sbi->s_itb_per_group + 2);
3436 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3437 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3438 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3439 for (i = 0; i < ngroups; i++) {
3440 gdp = ext4_get_group_desc(sb, i, NULL);
3441 b = ext4_block_bitmap(sb, gdp);
3442 if (b >= first_block && b <= last_block) {
3443 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3444 count++;
3446 b = ext4_inode_bitmap(sb, gdp);
3447 if (b >= first_block && b <= last_block) {
3448 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3449 count++;
3451 b = ext4_inode_table(sb, gdp);
3452 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3453 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3454 int c = EXT4_B2C(sbi, b - first_block);
3455 ext4_set_bit(c, buf);
3456 count++;
3458 if (i != grp)
3459 continue;
3460 s = 0;
3461 if (ext4_bg_has_super(sb, grp)) {
3462 ext4_set_bit(s++, buf);
3463 count++;
3465 j = ext4_bg_num_gdb(sb, grp);
3466 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3467 ext4_error(sb, "Invalid number of block group "
3468 "descriptor blocks: %d", j);
3469 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3471 count += j;
3472 for (; j > 0; j--)
3473 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3475 if (!count)
3476 return 0;
3477 return EXT4_CLUSTERS_PER_GROUP(sb) -
3478 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3482 * Compute the overhead and stash it in sbi->s_overhead
3484 int ext4_calculate_overhead(struct super_block *sb)
3486 struct ext4_sb_info *sbi = EXT4_SB(sb);
3487 struct ext4_super_block *es = sbi->s_es;
3488 struct inode *j_inode;
3489 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3490 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3491 ext4_fsblk_t overhead = 0;
3492 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3494 if (!buf)
3495 return -ENOMEM;
3498 * Compute the overhead (FS structures). This is constant
3499 * for a given filesystem unless the number of block groups
3500 * changes so we cache the previous value until it does.
3504 * All of the blocks before first_data_block are overhead
3506 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3509 * Add the overhead found in each block group
3511 for (i = 0; i < ngroups; i++) {
3512 int blks;
3514 blks = count_overhead(sb, i, buf);
3515 overhead += blks;
3516 if (blks)
3517 memset(buf, 0, PAGE_SIZE);
3518 cond_resched();
3522 * Add the internal journal blocks whether the journal has been
3523 * loaded or not
3525 if (sbi->s_journal && !sbi->journal_bdev)
3526 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3527 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3528 j_inode = ext4_get_journal_inode(sb, j_inum);
3529 if (j_inode) {
3530 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3531 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3532 iput(j_inode);
3533 } else {
3534 ext4_msg(sb, KERN_ERR, "can't get journal size");
3537 sbi->s_overhead = overhead;
3538 smp_wmb();
3539 free_page((unsigned long) buf);
3540 return 0;
3543 static void ext4_clamp_want_extra_isize(struct super_block *sb)
3545 struct ext4_sb_info *sbi = EXT4_SB(sb);
3546 struct ext4_super_block *es = sbi->s_es;
3548 /* determine the minimum size of new large inodes, if present */
3549 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
3550 sbi->s_want_extra_isize == 0) {
3551 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3552 EXT4_GOOD_OLD_INODE_SIZE;
3553 if (ext4_has_feature_extra_isize(sb)) {
3554 if (sbi->s_want_extra_isize <
3555 le16_to_cpu(es->s_want_extra_isize))
3556 sbi->s_want_extra_isize =
3557 le16_to_cpu(es->s_want_extra_isize);
3558 if (sbi->s_want_extra_isize <
3559 le16_to_cpu(es->s_min_extra_isize))
3560 sbi->s_want_extra_isize =
3561 le16_to_cpu(es->s_min_extra_isize);
3564 /* Check if enough inode space is available */
3565 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3566 sbi->s_inode_size) {
3567 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3568 EXT4_GOOD_OLD_INODE_SIZE;
3569 ext4_msg(sb, KERN_INFO,
3570 "required extra inode space not available");
3574 static void ext4_set_resv_clusters(struct super_block *sb)
3576 ext4_fsblk_t resv_clusters;
3577 struct ext4_sb_info *sbi = EXT4_SB(sb);
3580 * There's no need to reserve anything when we aren't using extents.
3581 * The space estimates are exact, there are no unwritten extents,
3582 * hole punching doesn't need new metadata... This is needed especially
3583 * to keep ext2/3 backward compatibility.
3585 if (!ext4_has_feature_extents(sb))
3586 return;
3588 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3589 * This should cover the situations where we can not afford to run
3590 * out of space like for example punch hole, or converting
3591 * unwritten extents in delalloc path. In most cases such
3592 * allocation would require 1, or 2 blocks, higher numbers are
3593 * very rare.
3595 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3596 sbi->s_cluster_bits);
3598 do_div(resv_clusters, 50);
3599 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3601 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3604 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3606 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3607 char *orig_data = kstrdup(data, GFP_KERNEL);
3608 struct buffer_head *bh;
3609 struct ext4_super_block *es = NULL;
3610 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3611 ext4_fsblk_t block;
3612 ext4_fsblk_t sb_block = get_sb_block(&data);
3613 ext4_fsblk_t logical_sb_block;
3614 unsigned long offset = 0;
3615 unsigned long journal_devnum = 0;
3616 unsigned long def_mount_opts;
3617 struct inode *root;
3618 const char *descr;
3619 int ret = -ENOMEM;
3620 int blocksize, clustersize;
3621 unsigned int db_count;
3622 unsigned int i;
3623 int needs_recovery, has_huge_files, has_bigalloc;
3624 __u64 blocks_count;
3625 int err = 0;
3626 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3627 ext4_group_t first_not_zeroed;
3629 if ((data && !orig_data) || !sbi)
3630 goto out_free_base;
3632 sbi->s_daxdev = dax_dev;
3633 sbi->s_blockgroup_lock =
3634 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3635 if (!sbi->s_blockgroup_lock)
3636 goto out_free_base;
3638 sb->s_fs_info = sbi;
3639 sbi->s_sb = sb;
3640 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3641 sbi->s_sb_block = sb_block;
3642 if (sb->s_bdev->bd_part)
3643 sbi->s_sectors_written_start =
3644 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3646 /* Cleanup superblock name */
3647 strreplace(sb->s_id, '/', '!');
3649 /* -EINVAL is default */
3650 ret = -EINVAL;
3651 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3652 if (!blocksize) {
3653 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3654 goto out_fail;
3658 * The ext4 superblock will not be buffer aligned for other than 1kB
3659 * block sizes. We need to calculate the offset from buffer start.
3661 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3662 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3663 offset = do_div(logical_sb_block, blocksize);
3664 } else {
3665 logical_sb_block = sb_block;
3668 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3669 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3670 goto out_fail;
3673 * Note: s_es must be initialized as soon as possible because
3674 * some ext4 macro-instructions depend on its value
3676 es = (struct ext4_super_block *) (bh->b_data + offset);
3677 sbi->s_es = es;
3678 sb->s_magic = le16_to_cpu(es->s_magic);
3679 if (sb->s_magic != EXT4_SUPER_MAGIC)
3680 goto cantfind_ext4;
3681 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3683 /* Warn if metadata_csum and gdt_csum are both set. */
3684 if (ext4_has_feature_metadata_csum(sb) &&
3685 ext4_has_feature_gdt_csum(sb))
3686 ext4_warning(sb, "metadata_csum and uninit_bg are "
3687 "redundant flags; please run fsck.");
3689 /* Check for a known checksum algorithm */
3690 if (!ext4_verify_csum_type(sb, es)) {
3691 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3692 "unknown checksum algorithm.");
3693 silent = 1;
3694 goto cantfind_ext4;
3697 /* Load the checksum driver */
3698 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3699 if (IS_ERR(sbi->s_chksum_driver)) {
3700 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3701 ret = PTR_ERR(sbi->s_chksum_driver);
3702 sbi->s_chksum_driver = NULL;
3703 goto failed_mount;
3706 /* Check superblock checksum */
3707 if (!ext4_superblock_csum_verify(sb, es)) {
3708 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3709 "invalid superblock checksum. Run e2fsck?");
3710 silent = 1;
3711 ret = -EFSBADCRC;
3712 goto cantfind_ext4;
3715 /* Precompute checksum seed for all metadata */
3716 if (ext4_has_feature_csum_seed(sb))
3717 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3718 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3719 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3720 sizeof(es->s_uuid));
3722 /* Set defaults before we parse the mount options */
3723 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3724 set_opt(sb, INIT_INODE_TABLE);
3725 if (def_mount_opts & EXT4_DEFM_DEBUG)
3726 set_opt(sb, DEBUG);
3727 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3728 set_opt(sb, GRPID);
3729 if (def_mount_opts & EXT4_DEFM_UID16)
3730 set_opt(sb, NO_UID32);
3731 /* xattr user namespace & acls are now defaulted on */
3732 set_opt(sb, XATTR_USER);
3733 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3734 set_opt(sb, POSIX_ACL);
3735 #endif
3736 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3737 if (ext4_has_metadata_csum(sb))
3738 set_opt(sb, JOURNAL_CHECKSUM);
3740 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3741 set_opt(sb, JOURNAL_DATA);
3742 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3743 set_opt(sb, ORDERED_DATA);
3744 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3745 set_opt(sb, WRITEBACK_DATA);
3747 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3748 set_opt(sb, ERRORS_PANIC);
3749 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3750 set_opt(sb, ERRORS_CONT);
3751 else
3752 set_opt(sb, ERRORS_RO);
3753 /* block_validity enabled by default; disable with noblock_validity */
3754 set_opt(sb, BLOCK_VALIDITY);
3755 if (def_mount_opts & EXT4_DEFM_DISCARD)
3756 set_opt(sb, DISCARD);
3758 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3759 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3760 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3761 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3762 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3764 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3765 set_opt(sb, BARRIER);
3768 * enable delayed allocation by default
3769 * Use -o nodelalloc to turn it off
3771 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3772 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3773 set_opt(sb, DELALLOC);
3776 * set default s_li_wait_mult for lazyinit, for the case there is
3777 * no mount option specified.
3779 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3781 if (sbi->s_es->s_mount_opts[0]) {
3782 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3783 sizeof(sbi->s_es->s_mount_opts),
3784 GFP_KERNEL);
3785 if (!s_mount_opts)
3786 goto failed_mount;
3787 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3788 &journal_ioprio, 0)) {
3789 ext4_msg(sb, KERN_WARNING,
3790 "failed to parse options in superblock: %s",
3791 s_mount_opts);
3793 kfree(s_mount_opts);
3795 sbi->s_def_mount_opt = sbi->s_mount_opt;
3796 if (!parse_options((char *) data, sb, &journal_devnum,
3797 &journal_ioprio, 0))
3798 goto failed_mount;
3800 #ifdef CONFIG_UNICODE
3801 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3802 const struct ext4_sb_encodings *encoding_info;
3803 struct unicode_map *encoding;
3804 __u16 encoding_flags;
3806 if (ext4_has_feature_encrypt(sb)) {
3807 ext4_msg(sb, KERN_ERR,
3808 "Can't mount with encoding and encryption");
3809 goto failed_mount;
3812 if (ext4_sb_read_encoding(es, &encoding_info,
3813 &encoding_flags)) {
3814 ext4_msg(sb, KERN_ERR,
3815 "Encoding requested by superblock is unknown");
3816 goto failed_mount;
3819 encoding = utf8_load(encoding_info->version);
3820 if (IS_ERR(encoding)) {
3821 ext4_msg(sb, KERN_ERR,
3822 "can't mount with superblock charset: %s-%s "
3823 "not supported by the kernel. flags: 0x%x.",
3824 encoding_info->name, encoding_info->version,
3825 encoding_flags);
3826 goto failed_mount;
3828 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3829 "%s-%s with flags 0x%hx", encoding_info->name,
3830 encoding_info->version?:"\b", encoding_flags);
3832 sbi->s_encoding = encoding;
3833 sbi->s_encoding_flags = encoding_flags;
3835 #endif
3837 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3838 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3839 "with data=journal disables delayed "
3840 "allocation and O_DIRECT support!\n");
3841 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3842 ext4_msg(sb, KERN_ERR, "can't mount with "
3843 "both data=journal and delalloc");
3844 goto failed_mount;
3846 if (test_opt(sb, DIOREAD_NOLOCK)) {
3847 ext4_msg(sb, KERN_ERR, "can't mount with "
3848 "both data=journal and dioread_nolock");
3849 goto failed_mount;
3851 if (test_opt(sb, DAX)) {
3852 ext4_msg(sb, KERN_ERR, "can't mount with "
3853 "both data=journal and dax");
3854 goto failed_mount;
3856 if (ext4_has_feature_encrypt(sb)) {
3857 ext4_msg(sb, KERN_WARNING,
3858 "encrypted files will use data=ordered "
3859 "instead of data journaling mode");
3861 if (test_opt(sb, DELALLOC))
3862 clear_opt(sb, DELALLOC);
3863 } else {
3864 sb->s_iflags |= SB_I_CGROUPWB;
3867 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3868 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3870 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3871 (ext4_has_compat_features(sb) ||
3872 ext4_has_ro_compat_features(sb) ||
3873 ext4_has_incompat_features(sb)))
3874 ext4_msg(sb, KERN_WARNING,
3875 "feature flags set on rev 0 fs, "
3876 "running e2fsck is recommended");
3878 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3879 set_opt2(sb, HURD_COMPAT);
3880 if (ext4_has_feature_64bit(sb)) {
3881 ext4_msg(sb, KERN_ERR,
3882 "The Hurd can't support 64-bit file systems");
3883 goto failed_mount;
3887 * ea_inode feature uses l_i_version field which is not
3888 * available in HURD_COMPAT mode.
3890 if (ext4_has_feature_ea_inode(sb)) {
3891 ext4_msg(sb, KERN_ERR,
3892 "ea_inode feature is not supported for Hurd");
3893 goto failed_mount;
3897 if (IS_EXT2_SB(sb)) {
3898 if (ext2_feature_set_ok(sb))
3899 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3900 "using the ext4 subsystem");
3901 else {
3903 * If we're probing be silent, if this looks like
3904 * it's actually an ext[34] filesystem.
3906 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3907 goto failed_mount;
3908 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3909 "to feature incompatibilities");
3910 goto failed_mount;
3914 if (IS_EXT3_SB(sb)) {
3915 if (ext3_feature_set_ok(sb))
3916 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3917 "using the ext4 subsystem");
3918 else {
3920 * If we're probing be silent, if this looks like
3921 * it's actually an ext4 filesystem.
3923 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3924 goto failed_mount;
3925 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3926 "to feature incompatibilities");
3927 goto failed_mount;
3932 * Check feature flags regardless of the revision level, since we
3933 * previously didn't change the revision level when setting the flags,
3934 * so there is a chance incompat flags are set on a rev 0 filesystem.
3936 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3937 goto failed_mount;
3939 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3940 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3941 blocksize > EXT4_MAX_BLOCK_SIZE) {
3942 ext4_msg(sb, KERN_ERR,
3943 "Unsupported filesystem blocksize %d (%d log_block_size)",
3944 blocksize, le32_to_cpu(es->s_log_block_size));
3945 goto failed_mount;
3947 if (le32_to_cpu(es->s_log_block_size) >
3948 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3949 ext4_msg(sb, KERN_ERR,
3950 "Invalid log block size: %u",
3951 le32_to_cpu(es->s_log_block_size));
3952 goto failed_mount;
3954 if (le32_to_cpu(es->s_log_cluster_size) >
3955 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3956 ext4_msg(sb, KERN_ERR,
3957 "Invalid log cluster size: %u",
3958 le32_to_cpu(es->s_log_cluster_size));
3959 goto failed_mount;
3962 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3963 ext4_msg(sb, KERN_ERR,
3964 "Number of reserved GDT blocks insanely large: %d",
3965 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3966 goto failed_mount;
3969 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3970 if (ext4_has_feature_inline_data(sb)) {
3971 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3972 " that may contain inline data");
3973 goto failed_mount;
3975 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3976 ext4_msg(sb, KERN_ERR,
3977 "DAX unsupported by block device.");
3978 goto failed_mount;
3982 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3983 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3984 es->s_encryption_level);
3985 goto failed_mount;
3988 if (sb->s_blocksize != blocksize) {
3989 /* Validate the filesystem blocksize */
3990 if (!sb_set_blocksize(sb, blocksize)) {
3991 ext4_msg(sb, KERN_ERR, "bad block size %d",
3992 blocksize);
3993 goto failed_mount;
3996 brelse(bh);
3997 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3998 offset = do_div(logical_sb_block, blocksize);
3999 bh = sb_bread_unmovable(sb, logical_sb_block);
4000 if (!bh) {
4001 ext4_msg(sb, KERN_ERR,
4002 "Can't read superblock on 2nd try");
4003 goto failed_mount;
4005 es = (struct ext4_super_block *)(bh->b_data + offset);
4006 sbi->s_es = es;
4007 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4008 ext4_msg(sb, KERN_ERR,
4009 "Magic mismatch, very weird!");
4010 goto failed_mount;
4014 has_huge_files = ext4_has_feature_huge_file(sb);
4015 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4016 has_huge_files);
4017 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4019 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4020 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4021 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4022 } else {
4023 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4024 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4025 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4026 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4027 sbi->s_first_ino);
4028 goto failed_mount;
4030 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4031 (!is_power_of_2(sbi->s_inode_size)) ||
4032 (sbi->s_inode_size > blocksize)) {
4033 ext4_msg(sb, KERN_ERR,
4034 "unsupported inode size: %d",
4035 sbi->s_inode_size);
4036 goto failed_mount;
4038 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
4039 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
4042 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4043 if (ext4_has_feature_64bit(sb)) {
4044 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4045 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4046 !is_power_of_2(sbi->s_desc_size)) {
4047 ext4_msg(sb, KERN_ERR,
4048 "unsupported descriptor size %lu",
4049 sbi->s_desc_size);
4050 goto failed_mount;
4052 } else
4053 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4055 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4056 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4058 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4059 if (sbi->s_inodes_per_block == 0)
4060 goto cantfind_ext4;
4061 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4062 sbi->s_inodes_per_group > blocksize * 8) {
4063 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4064 sbi->s_blocks_per_group);
4065 goto failed_mount;
4067 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4068 sbi->s_inodes_per_block;
4069 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4070 sbi->s_sbh = bh;
4071 sbi->s_mount_state = le16_to_cpu(es->s_state);
4072 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4073 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4075 for (i = 0; i < 4; i++)
4076 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4077 sbi->s_def_hash_version = es->s_def_hash_version;
4078 if (ext4_has_feature_dir_index(sb)) {
4079 i = le32_to_cpu(es->s_flags);
4080 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4081 sbi->s_hash_unsigned = 3;
4082 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4083 #ifdef __CHAR_UNSIGNED__
4084 if (!sb_rdonly(sb))
4085 es->s_flags |=
4086 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4087 sbi->s_hash_unsigned = 3;
4088 #else
4089 if (!sb_rdonly(sb))
4090 es->s_flags |=
4091 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4092 #endif
4096 /* Handle clustersize */
4097 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4098 has_bigalloc = ext4_has_feature_bigalloc(sb);
4099 if (has_bigalloc) {
4100 if (clustersize < blocksize) {
4101 ext4_msg(sb, KERN_ERR,
4102 "cluster size (%d) smaller than "
4103 "block size (%d)", clustersize, blocksize);
4104 goto failed_mount;
4106 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4107 le32_to_cpu(es->s_log_block_size);
4108 sbi->s_clusters_per_group =
4109 le32_to_cpu(es->s_clusters_per_group);
4110 if (sbi->s_clusters_per_group > blocksize * 8) {
4111 ext4_msg(sb, KERN_ERR,
4112 "#clusters per group too big: %lu",
4113 sbi->s_clusters_per_group);
4114 goto failed_mount;
4116 if (sbi->s_blocks_per_group !=
4117 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4118 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4119 "clusters per group (%lu) inconsistent",
4120 sbi->s_blocks_per_group,
4121 sbi->s_clusters_per_group);
4122 goto failed_mount;
4124 } else {
4125 if (clustersize != blocksize) {
4126 ext4_msg(sb, KERN_ERR,
4127 "fragment/cluster size (%d) != "
4128 "block size (%d)", clustersize, blocksize);
4129 goto failed_mount;
4131 if (sbi->s_blocks_per_group > blocksize * 8) {
4132 ext4_msg(sb, KERN_ERR,
4133 "#blocks per group too big: %lu",
4134 sbi->s_blocks_per_group);
4135 goto failed_mount;
4137 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4138 sbi->s_cluster_bits = 0;
4140 sbi->s_cluster_ratio = clustersize / blocksize;
4142 /* Do we have standard group size of clustersize * 8 blocks ? */
4143 if (sbi->s_blocks_per_group == clustersize << 3)
4144 set_opt2(sb, STD_GROUP_SIZE);
4147 * Test whether we have more sectors than will fit in sector_t,
4148 * and whether the max offset is addressable by the page cache.
4150 err = generic_check_addressable(sb->s_blocksize_bits,
4151 ext4_blocks_count(es));
4152 if (err) {
4153 ext4_msg(sb, KERN_ERR, "filesystem"
4154 " too large to mount safely on this system");
4155 goto failed_mount;
4158 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4159 goto cantfind_ext4;
4161 /* check blocks count against device size */
4162 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4163 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4164 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4165 "exceeds size of device (%llu blocks)",
4166 ext4_blocks_count(es), blocks_count);
4167 goto failed_mount;
4171 * It makes no sense for the first data block to be beyond the end
4172 * of the filesystem.
4174 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4175 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4176 "block %u is beyond end of filesystem (%llu)",
4177 le32_to_cpu(es->s_first_data_block),
4178 ext4_blocks_count(es));
4179 goto failed_mount;
4181 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4182 (sbi->s_cluster_ratio == 1)) {
4183 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4184 "block is 0 with a 1k block and cluster size");
4185 goto failed_mount;
4188 blocks_count = (ext4_blocks_count(es) -
4189 le32_to_cpu(es->s_first_data_block) +
4190 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4191 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4192 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4193 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4194 "(block count %llu, first data block %u, "
4195 "blocks per group %lu)", sbi->s_groups_count,
4196 ext4_blocks_count(es),
4197 le32_to_cpu(es->s_first_data_block),
4198 EXT4_BLOCKS_PER_GROUP(sb));
4199 goto failed_mount;
4201 sbi->s_groups_count = blocks_count;
4202 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4203 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4204 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4205 le32_to_cpu(es->s_inodes_count)) {
4206 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4207 le32_to_cpu(es->s_inodes_count),
4208 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4209 ret = -EINVAL;
4210 goto failed_mount;
4212 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4213 EXT4_DESC_PER_BLOCK(sb);
4214 if (ext4_has_feature_meta_bg(sb)) {
4215 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4216 ext4_msg(sb, KERN_WARNING,
4217 "first meta block group too large: %u "
4218 "(group descriptor block count %u)",
4219 le32_to_cpu(es->s_first_meta_bg), db_count);
4220 goto failed_mount;
4223 sbi->s_group_desc = kvmalloc_array(db_count,
4224 sizeof(struct buffer_head *),
4225 GFP_KERNEL);
4226 if (sbi->s_group_desc == NULL) {
4227 ext4_msg(sb, KERN_ERR, "not enough memory");
4228 ret = -ENOMEM;
4229 goto failed_mount;
4232 bgl_lock_init(sbi->s_blockgroup_lock);
4234 /* Pre-read the descriptors into the buffer cache */
4235 for (i = 0; i < db_count; i++) {
4236 block = descriptor_loc(sb, logical_sb_block, i);
4237 sb_breadahead(sb, block);
4240 for (i = 0; i < db_count; i++) {
4241 block = descriptor_loc(sb, logical_sb_block, i);
4242 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4243 if (!sbi->s_group_desc[i]) {
4244 ext4_msg(sb, KERN_ERR,
4245 "can't read group descriptor %d", i);
4246 db_count = i;
4247 goto failed_mount2;
4250 sbi->s_gdb_count = db_count;
4251 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4252 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4253 ret = -EFSCORRUPTED;
4254 goto failed_mount2;
4257 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4259 /* Register extent status tree shrinker */
4260 if (ext4_es_register_shrinker(sbi))
4261 goto failed_mount3;
4263 sbi->s_stripe = ext4_get_stripe_size(sbi);
4264 sbi->s_extent_max_zeroout_kb = 32;
4267 * set up enough so that it can read an inode
4269 sb->s_op = &ext4_sops;
4270 sb->s_export_op = &ext4_export_ops;
4271 sb->s_xattr = ext4_xattr_handlers;
4272 #ifdef CONFIG_FS_ENCRYPTION
4273 sb->s_cop = &ext4_cryptops;
4274 #endif
4275 #ifdef CONFIG_QUOTA
4276 sb->dq_op = &ext4_quota_operations;
4277 if (ext4_has_feature_quota(sb))
4278 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4279 else
4280 sb->s_qcop = &ext4_qctl_operations;
4281 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4282 #endif
4283 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4285 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4286 mutex_init(&sbi->s_orphan_lock);
4288 sb->s_root = NULL;
4290 needs_recovery = (es->s_last_orphan != 0 ||
4291 ext4_has_feature_journal_needs_recovery(sb));
4293 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4294 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4295 goto failed_mount3a;
4298 * The first inode we look at is the journal inode. Don't try
4299 * root first: it may be modified in the journal!
4301 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4302 err = ext4_load_journal(sb, es, journal_devnum);
4303 if (err)
4304 goto failed_mount3a;
4305 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4306 ext4_has_feature_journal_needs_recovery(sb)) {
4307 ext4_msg(sb, KERN_ERR, "required journal recovery "
4308 "suppressed and not mounted read-only");
4309 goto failed_mount_wq;
4310 } else {
4311 /* Nojournal mode, all journal mount options are illegal */
4312 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4313 ext4_msg(sb, KERN_ERR, "can't mount with "
4314 "journal_checksum, fs mounted w/o journal");
4315 goto failed_mount_wq;
4317 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4318 ext4_msg(sb, KERN_ERR, "can't mount with "
4319 "journal_async_commit, fs mounted w/o journal");
4320 goto failed_mount_wq;
4322 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4323 ext4_msg(sb, KERN_ERR, "can't mount with "
4324 "commit=%lu, fs mounted w/o journal",
4325 sbi->s_commit_interval / HZ);
4326 goto failed_mount_wq;
4328 if (EXT4_MOUNT_DATA_FLAGS &
4329 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4330 ext4_msg(sb, KERN_ERR, "can't mount with "
4331 "data=, fs mounted w/o journal");
4332 goto failed_mount_wq;
4334 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4335 clear_opt(sb, JOURNAL_CHECKSUM);
4336 clear_opt(sb, DATA_FLAGS);
4337 sbi->s_journal = NULL;
4338 needs_recovery = 0;
4339 goto no_journal;
4342 if (ext4_has_feature_64bit(sb) &&
4343 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4344 JBD2_FEATURE_INCOMPAT_64BIT)) {
4345 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4346 goto failed_mount_wq;
4349 if (!set_journal_csum_feature_set(sb)) {
4350 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4351 "feature set");
4352 goto failed_mount_wq;
4355 /* We have now updated the journal if required, so we can
4356 * validate the data journaling mode. */
4357 switch (test_opt(sb, DATA_FLAGS)) {
4358 case 0:
4359 /* No mode set, assume a default based on the journal
4360 * capabilities: ORDERED_DATA if the journal can
4361 * cope, else JOURNAL_DATA
4363 if (jbd2_journal_check_available_features
4364 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4365 set_opt(sb, ORDERED_DATA);
4366 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4367 } else {
4368 set_opt(sb, JOURNAL_DATA);
4369 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4371 break;
4373 case EXT4_MOUNT_ORDERED_DATA:
4374 case EXT4_MOUNT_WRITEBACK_DATA:
4375 if (!jbd2_journal_check_available_features
4376 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4377 ext4_msg(sb, KERN_ERR, "Journal does not support "
4378 "requested data journaling mode");
4379 goto failed_mount_wq;
4381 default:
4382 break;
4385 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4386 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4387 ext4_msg(sb, KERN_ERR, "can't mount with "
4388 "journal_async_commit in data=ordered mode");
4389 goto failed_mount_wq;
4392 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4394 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4396 no_journal:
4397 if (!test_opt(sb, NO_MBCACHE)) {
4398 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4399 if (!sbi->s_ea_block_cache) {
4400 ext4_msg(sb, KERN_ERR,
4401 "Failed to create ea_block_cache");
4402 goto failed_mount_wq;
4405 if (ext4_has_feature_ea_inode(sb)) {
4406 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4407 if (!sbi->s_ea_inode_cache) {
4408 ext4_msg(sb, KERN_ERR,
4409 "Failed to create ea_inode_cache");
4410 goto failed_mount_wq;
4415 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4416 (blocksize != PAGE_SIZE)) {
4417 ext4_msg(sb, KERN_ERR,
4418 "Unsupported blocksize for fs encryption");
4419 goto failed_mount_wq;
4422 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4423 !ext4_has_feature_encrypt(sb)) {
4424 ext4_set_feature_encrypt(sb);
4425 ext4_commit_super(sb, 1);
4429 * Get the # of file system overhead blocks from the
4430 * superblock if present.
4432 if (es->s_overhead_clusters)
4433 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4434 else {
4435 err = ext4_calculate_overhead(sb);
4436 if (err)
4437 goto failed_mount_wq;
4441 * The maximum number of concurrent works can be high and
4442 * concurrency isn't really necessary. Limit it to 1.
4444 EXT4_SB(sb)->rsv_conversion_wq =
4445 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4446 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4447 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4448 ret = -ENOMEM;
4449 goto failed_mount4;
4453 * The jbd2_journal_load will have done any necessary log recovery,
4454 * so we can safely mount the rest of the filesystem now.
4457 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4458 if (IS_ERR(root)) {
4459 ext4_msg(sb, KERN_ERR, "get root inode failed");
4460 ret = PTR_ERR(root);
4461 root = NULL;
4462 goto failed_mount4;
4464 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4465 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4466 iput(root);
4467 goto failed_mount4;
4470 #ifdef CONFIG_UNICODE
4471 if (sbi->s_encoding)
4472 sb->s_d_op = &ext4_dentry_ops;
4473 #endif
4475 sb->s_root = d_make_root(root);
4476 if (!sb->s_root) {
4477 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4478 ret = -ENOMEM;
4479 goto failed_mount4;
4482 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4483 if (ret == -EROFS) {
4484 sb->s_flags |= SB_RDONLY;
4485 ret = 0;
4486 } else if (ret)
4487 goto failed_mount4a;
4489 ext4_clamp_want_extra_isize(sb);
4491 ext4_set_resv_clusters(sb);
4493 err = ext4_setup_system_zone(sb);
4494 if (err) {
4495 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4496 "zone (%d)", err);
4497 goto failed_mount4a;
4500 ext4_ext_init(sb);
4501 err = ext4_mb_init(sb);
4502 if (err) {
4503 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4504 err);
4505 goto failed_mount5;
4508 block = ext4_count_free_clusters(sb);
4509 ext4_free_blocks_count_set(sbi->s_es,
4510 EXT4_C2B(sbi, block));
4511 ext4_superblock_csum_set(sb);
4512 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4513 GFP_KERNEL);
4514 if (!err) {
4515 unsigned long freei = ext4_count_free_inodes(sb);
4516 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4517 ext4_superblock_csum_set(sb);
4518 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4519 GFP_KERNEL);
4521 if (!err)
4522 err = percpu_counter_init(&sbi->s_dirs_counter,
4523 ext4_count_dirs(sb), GFP_KERNEL);
4524 if (!err)
4525 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4526 GFP_KERNEL);
4527 if (!err)
4528 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4530 if (err) {
4531 ext4_msg(sb, KERN_ERR, "insufficient memory");
4532 goto failed_mount6;
4535 if (ext4_has_feature_flex_bg(sb))
4536 if (!ext4_fill_flex_info(sb)) {
4537 ext4_msg(sb, KERN_ERR,
4538 "unable to initialize "
4539 "flex_bg meta info!");
4540 goto failed_mount6;
4543 err = ext4_register_li_request(sb, first_not_zeroed);
4544 if (err)
4545 goto failed_mount6;
4547 err = ext4_register_sysfs(sb);
4548 if (err)
4549 goto failed_mount7;
4551 #ifdef CONFIG_QUOTA
4552 /* Enable quota usage during mount. */
4553 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4554 err = ext4_enable_quotas(sb);
4555 if (err)
4556 goto failed_mount8;
4558 #endif /* CONFIG_QUOTA */
4560 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4561 ext4_orphan_cleanup(sb, es);
4562 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4563 if (needs_recovery) {
4564 ext4_msg(sb, KERN_INFO, "recovery complete");
4565 ext4_mark_recovery_complete(sb, es);
4567 if (EXT4_SB(sb)->s_journal) {
4568 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4569 descr = " journalled data mode";
4570 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4571 descr = " ordered data mode";
4572 else
4573 descr = " writeback data mode";
4574 } else
4575 descr = "out journal";
4577 if (test_opt(sb, DISCARD)) {
4578 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4579 if (!blk_queue_discard(q))
4580 ext4_msg(sb, KERN_WARNING,
4581 "mounting with \"discard\" option, but "
4582 "the device does not support discard");
4585 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4586 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4587 "Opts: %.*s%s%s", descr,
4588 (int) sizeof(sbi->s_es->s_mount_opts),
4589 sbi->s_es->s_mount_opts,
4590 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4592 if (es->s_error_count)
4593 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4595 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4596 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4597 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4598 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4600 kfree(orig_data);
4601 return 0;
4603 cantfind_ext4:
4604 if (!silent)
4605 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4606 goto failed_mount;
4608 #ifdef CONFIG_QUOTA
4609 failed_mount8:
4610 ext4_unregister_sysfs(sb);
4611 #endif
4612 failed_mount7:
4613 ext4_unregister_li_request(sb);
4614 failed_mount6:
4615 ext4_mb_release(sb);
4616 if (sbi->s_flex_groups)
4617 kvfree(sbi->s_flex_groups);
4618 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4619 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4620 percpu_counter_destroy(&sbi->s_dirs_counter);
4621 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4622 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4623 failed_mount5:
4624 ext4_ext_release(sb);
4625 ext4_release_system_zone(sb);
4626 failed_mount4a:
4627 dput(sb->s_root);
4628 sb->s_root = NULL;
4629 failed_mount4:
4630 ext4_msg(sb, KERN_ERR, "mount failed");
4631 if (EXT4_SB(sb)->rsv_conversion_wq)
4632 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4633 failed_mount_wq:
4634 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4635 sbi->s_ea_inode_cache = NULL;
4637 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4638 sbi->s_ea_block_cache = NULL;
4640 if (sbi->s_journal) {
4641 jbd2_journal_destroy(sbi->s_journal);
4642 sbi->s_journal = NULL;
4644 failed_mount3a:
4645 ext4_es_unregister_shrinker(sbi);
4646 failed_mount3:
4647 del_timer_sync(&sbi->s_err_report);
4648 if (sbi->s_mmp_tsk)
4649 kthread_stop(sbi->s_mmp_tsk);
4650 failed_mount2:
4651 for (i = 0; i < db_count; i++)
4652 brelse(sbi->s_group_desc[i]);
4653 kvfree(sbi->s_group_desc);
4654 failed_mount:
4655 if (sbi->s_chksum_driver)
4656 crypto_free_shash(sbi->s_chksum_driver);
4658 #ifdef CONFIG_UNICODE
4659 utf8_unload(sbi->s_encoding);
4660 #endif
4662 #ifdef CONFIG_QUOTA
4663 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4664 kfree(get_qf_name(sb, sbi, i));
4665 #endif
4666 ext4_blkdev_remove(sbi);
4667 brelse(bh);
4668 out_fail:
4669 sb->s_fs_info = NULL;
4670 kfree(sbi->s_blockgroup_lock);
4671 out_free_base:
4672 kfree(sbi);
4673 kfree(orig_data);
4674 fs_put_dax(dax_dev);
4675 return err ? err : ret;
4679 * Setup any per-fs journal parameters now. We'll do this both on
4680 * initial mount, once the journal has been initialised but before we've
4681 * done any recovery; and again on any subsequent remount.
4683 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4685 struct ext4_sb_info *sbi = EXT4_SB(sb);
4687 journal->j_commit_interval = sbi->s_commit_interval;
4688 journal->j_min_batch_time = sbi->s_min_batch_time;
4689 journal->j_max_batch_time = sbi->s_max_batch_time;
4691 write_lock(&journal->j_state_lock);
4692 if (test_opt(sb, BARRIER))
4693 journal->j_flags |= JBD2_BARRIER;
4694 else
4695 journal->j_flags &= ~JBD2_BARRIER;
4696 if (test_opt(sb, DATA_ERR_ABORT))
4697 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4698 else
4699 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4700 write_unlock(&journal->j_state_lock);
4703 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4704 unsigned int journal_inum)
4706 struct inode *journal_inode;
4709 * Test for the existence of a valid inode on disk. Bad things
4710 * happen if we iget() an unused inode, as the subsequent iput()
4711 * will try to delete it.
4713 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4714 if (IS_ERR(journal_inode)) {
4715 ext4_msg(sb, KERN_ERR, "no journal found");
4716 return NULL;
4718 if (!journal_inode->i_nlink) {
4719 make_bad_inode(journal_inode);
4720 iput(journal_inode);
4721 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4722 return NULL;
4725 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4726 journal_inode, journal_inode->i_size);
4727 if (!S_ISREG(journal_inode->i_mode)) {
4728 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4729 iput(journal_inode);
4730 return NULL;
4732 return journal_inode;
4735 static journal_t *ext4_get_journal(struct super_block *sb,
4736 unsigned int journal_inum)
4738 struct inode *journal_inode;
4739 journal_t *journal;
4741 BUG_ON(!ext4_has_feature_journal(sb));
4743 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4744 if (!journal_inode)
4745 return NULL;
4747 journal = jbd2_journal_init_inode(journal_inode);
4748 if (!journal) {
4749 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4750 iput(journal_inode);
4751 return NULL;
4753 journal->j_private = sb;
4754 ext4_init_journal_params(sb, journal);
4755 return journal;
4758 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4759 dev_t j_dev)
4761 struct buffer_head *bh;
4762 journal_t *journal;
4763 ext4_fsblk_t start;
4764 ext4_fsblk_t len;
4765 int hblock, blocksize;
4766 ext4_fsblk_t sb_block;
4767 unsigned long offset;
4768 struct ext4_super_block *es;
4769 struct block_device *bdev;
4771 BUG_ON(!ext4_has_feature_journal(sb));
4773 bdev = ext4_blkdev_get(j_dev, sb);
4774 if (bdev == NULL)
4775 return NULL;
4777 blocksize = sb->s_blocksize;
4778 hblock = bdev_logical_block_size(bdev);
4779 if (blocksize < hblock) {
4780 ext4_msg(sb, KERN_ERR,
4781 "blocksize too small for journal device");
4782 goto out_bdev;
4785 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4786 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4787 set_blocksize(bdev, blocksize);
4788 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4789 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4790 "external journal");
4791 goto out_bdev;
4794 es = (struct ext4_super_block *) (bh->b_data + offset);
4795 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4796 !(le32_to_cpu(es->s_feature_incompat) &
4797 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4798 ext4_msg(sb, KERN_ERR, "external journal has "
4799 "bad superblock");
4800 brelse(bh);
4801 goto out_bdev;
4804 if ((le32_to_cpu(es->s_feature_ro_compat) &
4805 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4806 es->s_checksum != ext4_superblock_csum(sb, es)) {
4807 ext4_msg(sb, KERN_ERR, "external journal has "
4808 "corrupt superblock");
4809 brelse(bh);
4810 goto out_bdev;
4813 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4814 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4815 brelse(bh);
4816 goto out_bdev;
4819 len = ext4_blocks_count(es);
4820 start = sb_block + 1;
4821 brelse(bh); /* we're done with the superblock */
4823 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4824 start, len, blocksize);
4825 if (!journal) {
4826 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4827 goto out_bdev;
4829 journal->j_private = sb;
4830 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4831 wait_on_buffer(journal->j_sb_buffer);
4832 if (!buffer_uptodate(journal->j_sb_buffer)) {
4833 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4834 goto out_journal;
4836 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4837 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4838 "user (unsupported) - %d",
4839 be32_to_cpu(journal->j_superblock->s_nr_users));
4840 goto out_journal;
4842 EXT4_SB(sb)->journal_bdev = bdev;
4843 ext4_init_journal_params(sb, journal);
4844 return journal;
4846 out_journal:
4847 jbd2_journal_destroy(journal);
4848 out_bdev:
4849 ext4_blkdev_put(bdev);
4850 return NULL;
4853 static int ext4_load_journal(struct super_block *sb,
4854 struct ext4_super_block *es,
4855 unsigned long journal_devnum)
4857 journal_t *journal;
4858 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4859 dev_t journal_dev;
4860 int err = 0;
4861 int really_read_only;
4863 BUG_ON(!ext4_has_feature_journal(sb));
4865 if (journal_devnum &&
4866 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4867 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4868 "numbers have changed");
4869 journal_dev = new_decode_dev(journal_devnum);
4870 } else
4871 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4873 really_read_only = bdev_read_only(sb->s_bdev);
4876 * Are we loading a blank journal or performing recovery after a
4877 * crash? For recovery, we need to check in advance whether we
4878 * can get read-write access to the device.
4880 if (ext4_has_feature_journal_needs_recovery(sb)) {
4881 if (sb_rdonly(sb)) {
4882 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4883 "required on readonly filesystem");
4884 if (really_read_only) {
4885 ext4_msg(sb, KERN_ERR, "write access "
4886 "unavailable, cannot proceed "
4887 "(try mounting with noload)");
4888 return -EROFS;
4890 ext4_msg(sb, KERN_INFO, "write access will "
4891 "be enabled during recovery");
4895 if (journal_inum && journal_dev) {
4896 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4897 "and inode journals!");
4898 return -EINVAL;
4901 if (journal_inum) {
4902 if (!(journal = ext4_get_journal(sb, journal_inum)))
4903 return -EINVAL;
4904 } else {
4905 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4906 return -EINVAL;
4909 if (!(journal->j_flags & JBD2_BARRIER))
4910 ext4_msg(sb, KERN_INFO, "barriers disabled");
4912 if (!ext4_has_feature_journal_needs_recovery(sb))
4913 err = jbd2_journal_wipe(journal, !really_read_only);
4914 if (!err) {
4915 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4916 if (save)
4917 memcpy(save, ((char *) es) +
4918 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4919 err = jbd2_journal_load(journal);
4920 if (save)
4921 memcpy(((char *) es) + EXT4_S_ERR_START,
4922 save, EXT4_S_ERR_LEN);
4923 kfree(save);
4926 if (err) {
4927 ext4_msg(sb, KERN_ERR, "error loading journal");
4928 jbd2_journal_destroy(journal);
4929 return err;
4932 EXT4_SB(sb)->s_journal = journal;
4933 ext4_clear_journal_err(sb, es);
4935 if (!really_read_only && journal_devnum &&
4936 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4937 es->s_journal_dev = cpu_to_le32(journal_devnum);
4939 /* Make sure we flush the recovery flag to disk. */
4940 ext4_commit_super(sb, 1);
4943 return 0;
4946 static int ext4_commit_super(struct super_block *sb, int sync)
4948 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4949 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4950 int error = 0;
4952 if (!sbh || block_device_ejected(sb))
4953 return error;
4956 * The superblock bh should be mapped, but it might not be if the
4957 * device was hot-removed. Not much we can do but fail the I/O.
4959 if (!buffer_mapped(sbh))
4960 return error;
4963 * If the file system is mounted read-only, don't update the
4964 * superblock write time. This avoids updating the superblock
4965 * write time when we are mounting the root file system
4966 * read/only but we need to replay the journal; at that point,
4967 * for people who are east of GMT and who make their clock
4968 * tick in localtime for Windows bug-for-bug compatibility,
4969 * the clock is set in the future, and this will cause e2fsck
4970 * to complain and force a full file system check.
4972 if (!(sb->s_flags & SB_RDONLY))
4973 ext4_update_tstamp(es, s_wtime);
4974 if (sb->s_bdev->bd_part)
4975 es->s_kbytes_written =
4976 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4977 ((part_stat_read(sb->s_bdev->bd_part,
4978 sectors[STAT_WRITE]) -
4979 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4980 else
4981 es->s_kbytes_written =
4982 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4983 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4984 ext4_free_blocks_count_set(es,
4985 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4986 &EXT4_SB(sb)->s_freeclusters_counter)));
4987 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4988 es->s_free_inodes_count =
4989 cpu_to_le32(percpu_counter_sum_positive(
4990 &EXT4_SB(sb)->s_freeinodes_counter));
4991 BUFFER_TRACE(sbh, "marking dirty");
4992 ext4_superblock_csum_set(sb);
4993 if (sync)
4994 lock_buffer(sbh);
4995 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
4997 * Oh, dear. A previous attempt to write the
4998 * superblock failed. This could happen because the
4999 * USB device was yanked out. Or it could happen to
5000 * be a transient write error and maybe the block will
5001 * be remapped. Nothing we can do but to retry the
5002 * write and hope for the best.
5004 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5005 "superblock detected");
5006 clear_buffer_write_io_error(sbh);
5007 set_buffer_uptodate(sbh);
5009 mark_buffer_dirty(sbh);
5010 if (sync) {
5011 unlock_buffer(sbh);
5012 error = __sync_dirty_buffer(sbh,
5013 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5014 if (buffer_write_io_error(sbh)) {
5015 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5016 "superblock");
5017 clear_buffer_write_io_error(sbh);
5018 set_buffer_uptodate(sbh);
5021 return error;
5025 * Have we just finished recovery? If so, and if we are mounting (or
5026 * remounting) the filesystem readonly, then we will end up with a
5027 * consistent fs on disk. Record that fact.
5029 static void ext4_mark_recovery_complete(struct super_block *sb,
5030 struct ext4_super_block *es)
5032 journal_t *journal = EXT4_SB(sb)->s_journal;
5034 if (!ext4_has_feature_journal(sb)) {
5035 BUG_ON(journal != NULL);
5036 return;
5038 jbd2_journal_lock_updates(journal);
5039 if (jbd2_journal_flush(journal) < 0)
5040 goto out;
5042 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5043 ext4_clear_feature_journal_needs_recovery(sb);
5044 ext4_commit_super(sb, 1);
5047 out:
5048 jbd2_journal_unlock_updates(journal);
5052 * If we are mounting (or read-write remounting) a filesystem whose journal
5053 * has recorded an error from a previous lifetime, move that error to the
5054 * main filesystem now.
5056 static void ext4_clear_journal_err(struct super_block *sb,
5057 struct ext4_super_block *es)
5059 journal_t *journal;
5060 int j_errno;
5061 const char *errstr;
5063 BUG_ON(!ext4_has_feature_journal(sb));
5065 journal = EXT4_SB(sb)->s_journal;
5068 * Now check for any error status which may have been recorded in the
5069 * journal by a prior ext4_error() or ext4_abort()
5072 j_errno = jbd2_journal_errno(journal);
5073 if (j_errno) {
5074 char nbuf[16];
5076 errstr = ext4_decode_error(sb, j_errno, nbuf);
5077 ext4_warning(sb, "Filesystem error recorded "
5078 "from previous mount: %s", errstr);
5079 ext4_warning(sb, "Marking fs in need of filesystem check.");
5081 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5082 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5083 ext4_commit_super(sb, 1);
5085 jbd2_journal_clear_err(journal);
5086 jbd2_journal_update_sb_errno(journal);
5091 * Force the running and committing transactions to commit,
5092 * and wait on the commit.
5094 int ext4_force_commit(struct super_block *sb)
5096 journal_t *journal;
5098 if (sb_rdonly(sb))
5099 return 0;
5101 journal = EXT4_SB(sb)->s_journal;
5102 return ext4_journal_force_commit(journal);
5105 static int ext4_sync_fs(struct super_block *sb, int wait)
5107 int ret = 0;
5108 tid_t target;
5109 bool needs_barrier = false;
5110 struct ext4_sb_info *sbi = EXT4_SB(sb);
5112 if (unlikely(ext4_forced_shutdown(sbi)))
5113 return 0;
5115 trace_ext4_sync_fs(sb, wait);
5116 flush_workqueue(sbi->rsv_conversion_wq);
5118 * Writeback quota in non-journalled quota case - journalled quota has
5119 * no dirty dquots
5121 dquot_writeback_dquots(sb, -1);
5123 * Data writeback is possible w/o journal transaction, so barrier must
5124 * being sent at the end of the function. But we can skip it if
5125 * transaction_commit will do it for us.
5127 if (sbi->s_journal) {
5128 target = jbd2_get_latest_transaction(sbi->s_journal);
5129 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5130 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5131 needs_barrier = true;
5133 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5134 if (wait)
5135 ret = jbd2_log_wait_commit(sbi->s_journal,
5136 target);
5138 } else if (wait && test_opt(sb, BARRIER))
5139 needs_barrier = true;
5140 if (needs_barrier) {
5141 int err;
5142 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5143 if (!ret)
5144 ret = err;
5147 return ret;
5151 * LVM calls this function before a (read-only) snapshot is created. This
5152 * gives us a chance to flush the journal completely and mark the fs clean.
5154 * Note that only this function cannot bring a filesystem to be in a clean
5155 * state independently. It relies on upper layer to stop all data & metadata
5156 * modifications.
5158 static int ext4_freeze(struct super_block *sb)
5160 int error = 0;
5161 journal_t *journal;
5163 if (sb_rdonly(sb))
5164 return 0;
5166 journal = EXT4_SB(sb)->s_journal;
5168 if (journal) {
5169 /* Now we set up the journal barrier. */
5170 jbd2_journal_lock_updates(journal);
5173 * Don't clear the needs_recovery flag if we failed to
5174 * flush the journal.
5176 error = jbd2_journal_flush(journal);
5177 if (error < 0)
5178 goto out;
5180 /* Journal blocked and flushed, clear needs_recovery flag. */
5181 ext4_clear_feature_journal_needs_recovery(sb);
5184 error = ext4_commit_super(sb, 1);
5185 out:
5186 if (journal)
5187 /* we rely on upper layer to stop further updates */
5188 jbd2_journal_unlock_updates(journal);
5189 return error;
5193 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5194 * flag here, even though the filesystem is not technically dirty yet.
5196 static int ext4_unfreeze(struct super_block *sb)
5198 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5199 return 0;
5201 if (EXT4_SB(sb)->s_journal) {
5202 /* Reset the needs_recovery flag before the fs is unlocked. */
5203 ext4_set_feature_journal_needs_recovery(sb);
5206 ext4_commit_super(sb, 1);
5207 return 0;
5211 * Structure to save mount options for ext4_remount's benefit
5213 struct ext4_mount_options {
5214 unsigned long s_mount_opt;
5215 unsigned long s_mount_opt2;
5216 kuid_t s_resuid;
5217 kgid_t s_resgid;
5218 unsigned long s_commit_interval;
5219 u32 s_min_batch_time, s_max_batch_time;
5220 #ifdef CONFIG_QUOTA
5221 int s_jquota_fmt;
5222 char *s_qf_names[EXT4_MAXQUOTAS];
5223 #endif
5226 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5228 struct ext4_super_block *es;
5229 struct ext4_sb_info *sbi = EXT4_SB(sb);
5230 unsigned long old_sb_flags;
5231 struct ext4_mount_options old_opts;
5232 int enable_quota = 0;
5233 ext4_group_t g;
5234 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5235 int err = 0;
5236 #ifdef CONFIG_QUOTA
5237 int i, j;
5238 char *to_free[EXT4_MAXQUOTAS];
5239 #endif
5240 char *orig_data = kstrdup(data, GFP_KERNEL);
5242 if (data && !orig_data)
5243 return -ENOMEM;
5245 /* Store the original options */
5246 old_sb_flags = sb->s_flags;
5247 old_opts.s_mount_opt = sbi->s_mount_opt;
5248 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5249 old_opts.s_resuid = sbi->s_resuid;
5250 old_opts.s_resgid = sbi->s_resgid;
5251 old_opts.s_commit_interval = sbi->s_commit_interval;
5252 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5253 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5254 #ifdef CONFIG_QUOTA
5255 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5256 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5257 if (sbi->s_qf_names[i]) {
5258 char *qf_name = get_qf_name(sb, sbi, i);
5260 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5261 if (!old_opts.s_qf_names[i]) {
5262 for (j = 0; j < i; j++)
5263 kfree(old_opts.s_qf_names[j]);
5264 kfree(orig_data);
5265 return -ENOMEM;
5267 } else
5268 old_opts.s_qf_names[i] = NULL;
5269 #endif
5270 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5271 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5273 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5274 err = -EINVAL;
5275 goto restore_opts;
5278 ext4_clamp_want_extra_isize(sb);
5280 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5281 test_opt(sb, JOURNAL_CHECKSUM)) {
5282 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5283 "during remount not supported; ignoring");
5284 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5287 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5288 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5289 ext4_msg(sb, KERN_ERR, "can't mount with "
5290 "both data=journal and delalloc");
5291 err = -EINVAL;
5292 goto restore_opts;
5294 if (test_opt(sb, DIOREAD_NOLOCK)) {
5295 ext4_msg(sb, KERN_ERR, "can't mount with "
5296 "both data=journal and dioread_nolock");
5297 err = -EINVAL;
5298 goto restore_opts;
5300 if (test_opt(sb, DAX)) {
5301 ext4_msg(sb, KERN_ERR, "can't mount with "
5302 "both data=journal and dax");
5303 err = -EINVAL;
5304 goto restore_opts;
5306 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5307 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5308 ext4_msg(sb, KERN_ERR, "can't mount with "
5309 "journal_async_commit in data=ordered mode");
5310 err = -EINVAL;
5311 goto restore_opts;
5315 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5316 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5317 err = -EINVAL;
5318 goto restore_opts;
5321 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5322 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5323 "dax flag with busy inodes while remounting");
5324 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5327 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5328 ext4_abort(sb, "Abort forced by user");
5330 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5331 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5333 es = sbi->s_es;
5335 if (sbi->s_journal) {
5336 ext4_init_journal_params(sb, sbi->s_journal);
5337 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5340 if (*flags & SB_LAZYTIME)
5341 sb->s_flags |= SB_LAZYTIME;
5343 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5344 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5345 err = -EROFS;
5346 goto restore_opts;
5349 if (*flags & SB_RDONLY) {
5350 err = sync_filesystem(sb);
5351 if (err < 0)
5352 goto restore_opts;
5353 err = dquot_suspend(sb, -1);
5354 if (err < 0)
5355 goto restore_opts;
5358 * First of all, the unconditional stuff we have to do
5359 * to disable replay of the journal when we next remount
5361 sb->s_flags |= SB_RDONLY;
5364 * OK, test if we are remounting a valid rw partition
5365 * readonly, and if so set the rdonly flag and then
5366 * mark the partition as valid again.
5368 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5369 (sbi->s_mount_state & EXT4_VALID_FS))
5370 es->s_state = cpu_to_le16(sbi->s_mount_state);
5372 if (sbi->s_journal)
5373 ext4_mark_recovery_complete(sb, es);
5374 if (sbi->s_mmp_tsk)
5375 kthread_stop(sbi->s_mmp_tsk);
5376 } else {
5377 /* Make sure we can mount this feature set readwrite */
5378 if (ext4_has_feature_readonly(sb) ||
5379 !ext4_feature_set_ok(sb, 0)) {
5380 err = -EROFS;
5381 goto restore_opts;
5384 * Make sure the group descriptor checksums
5385 * are sane. If they aren't, refuse to remount r/w.
5387 for (g = 0; g < sbi->s_groups_count; g++) {
5388 struct ext4_group_desc *gdp =
5389 ext4_get_group_desc(sb, g, NULL);
5391 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5392 ext4_msg(sb, KERN_ERR,
5393 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5394 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5395 le16_to_cpu(gdp->bg_checksum));
5396 err = -EFSBADCRC;
5397 goto restore_opts;
5402 * If we have an unprocessed orphan list hanging
5403 * around from a previously readonly bdev mount,
5404 * require a full umount/remount for now.
5406 if (es->s_last_orphan) {
5407 ext4_msg(sb, KERN_WARNING, "Couldn't "
5408 "remount RDWR because of unprocessed "
5409 "orphan inode list. Please "
5410 "umount/remount instead");
5411 err = -EINVAL;
5412 goto restore_opts;
5416 * Mounting a RDONLY partition read-write, so reread
5417 * and store the current valid flag. (It may have
5418 * been changed by e2fsck since we originally mounted
5419 * the partition.)
5421 if (sbi->s_journal)
5422 ext4_clear_journal_err(sb, es);
5423 sbi->s_mount_state = le16_to_cpu(es->s_state);
5425 err = ext4_setup_super(sb, es, 0);
5426 if (err)
5427 goto restore_opts;
5429 sb->s_flags &= ~SB_RDONLY;
5430 if (ext4_has_feature_mmp(sb))
5431 if (ext4_multi_mount_protect(sb,
5432 le64_to_cpu(es->s_mmp_block))) {
5433 err = -EROFS;
5434 goto restore_opts;
5436 enable_quota = 1;
5441 * Reinitialize lazy itable initialization thread based on
5442 * current settings
5444 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5445 ext4_unregister_li_request(sb);
5446 else {
5447 ext4_group_t first_not_zeroed;
5448 first_not_zeroed = ext4_has_uninit_itable(sb);
5449 ext4_register_li_request(sb, first_not_zeroed);
5452 ext4_setup_system_zone(sb);
5453 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5454 err = ext4_commit_super(sb, 1);
5455 if (err)
5456 goto restore_opts;
5459 #ifdef CONFIG_QUOTA
5460 /* Release old quota file names */
5461 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5462 kfree(old_opts.s_qf_names[i]);
5463 if (enable_quota) {
5464 if (sb_any_quota_suspended(sb))
5465 dquot_resume(sb, -1);
5466 else if (ext4_has_feature_quota(sb)) {
5467 err = ext4_enable_quotas(sb);
5468 if (err)
5469 goto restore_opts;
5472 #endif
5474 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5475 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5476 kfree(orig_data);
5477 return 0;
5479 restore_opts:
5480 sb->s_flags = old_sb_flags;
5481 sbi->s_mount_opt = old_opts.s_mount_opt;
5482 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5483 sbi->s_resuid = old_opts.s_resuid;
5484 sbi->s_resgid = old_opts.s_resgid;
5485 sbi->s_commit_interval = old_opts.s_commit_interval;
5486 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5487 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5488 #ifdef CONFIG_QUOTA
5489 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5490 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5491 to_free[i] = get_qf_name(sb, sbi, i);
5492 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5494 synchronize_rcu();
5495 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5496 kfree(to_free[i]);
5497 #endif
5498 kfree(orig_data);
5499 return err;
5502 #ifdef CONFIG_QUOTA
5503 static int ext4_statfs_project(struct super_block *sb,
5504 kprojid_t projid, struct kstatfs *buf)
5506 struct kqid qid;
5507 struct dquot *dquot;
5508 u64 limit;
5509 u64 curblock;
5511 qid = make_kqid_projid(projid);
5512 dquot = dqget(sb, qid);
5513 if (IS_ERR(dquot))
5514 return PTR_ERR(dquot);
5515 spin_lock(&dquot->dq_dqb_lock);
5517 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5518 dquot->dq_dqb.dqb_bsoftlimit :
5519 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5520 if (limit && buf->f_blocks > limit) {
5521 curblock = (dquot->dq_dqb.dqb_curspace +
5522 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5523 buf->f_blocks = limit;
5524 buf->f_bfree = buf->f_bavail =
5525 (buf->f_blocks > curblock) ?
5526 (buf->f_blocks - curblock) : 0;
5529 limit = dquot->dq_dqb.dqb_isoftlimit ?
5530 dquot->dq_dqb.dqb_isoftlimit :
5531 dquot->dq_dqb.dqb_ihardlimit;
5532 if (limit && buf->f_files > limit) {
5533 buf->f_files = limit;
5534 buf->f_ffree =
5535 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5536 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5539 spin_unlock(&dquot->dq_dqb_lock);
5540 dqput(dquot);
5541 return 0;
5543 #endif
5545 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5547 struct super_block *sb = dentry->d_sb;
5548 struct ext4_sb_info *sbi = EXT4_SB(sb);
5549 struct ext4_super_block *es = sbi->s_es;
5550 ext4_fsblk_t overhead = 0, resv_blocks;
5551 u64 fsid;
5552 s64 bfree;
5553 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5555 if (!test_opt(sb, MINIX_DF))
5556 overhead = sbi->s_overhead;
5558 buf->f_type = EXT4_SUPER_MAGIC;
5559 buf->f_bsize = sb->s_blocksize;
5560 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5561 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5562 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5563 /* prevent underflow in case that few free space is available */
5564 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5565 buf->f_bavail = buf->f_bfree -
5566 (ext4_r_blocks_count(es) + resv_blocks);
5567 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5568 buf->f_bavail = 0;
5569 buf->f_files = le32_to_cpu(es->s_inodes_count);
5570 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5571 buf->f_namelen = EXT4_NAME_LEN;
5572 fsid = le64_to_cpup((void *)es->s_uuid) ^
5573 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5574 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5575 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5577 #ifdef CONFIG_QUOTA
5578 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5579 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5580 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5581 #endif
5582 return 0;
5586 #ifdef CONFIG_QUOTA
5589 * Helper functions so that transaction is started before we acquire dqio_sem
5590 * to keep correct lock ordering of transaction > dqio_sem
5592 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5594 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5597 static int ext4_write_dquot(struct dquot *dquot)
5599 int ret, err;
5600 handle_t *handle;
5601 struct inode *inode;
5603 inode = dquot_to_inode(dquot);
5604 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5605 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5606 if (IS_ERR(handle))
5607 return PTR_ERR(handle);
5608 ret = dquot_commit(dquot);
5609 err = ext4_journal_stop(handle);
5610 if (!ret)
5611 ret = err;
5612 return ret;
5615 static int ext4_acquire_dquot(struct dquot *dquot)
5617 int ret, err;
5618 handle_t *handle;
5620 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5621 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5622 if (IS_ERR(handle))
5623 return PTR_ERR(handle);
5624 ret = dquot_acquire(dquot);
5625 err = ext4_journal_stop(handle);
5626 if (!ret)
5627 ret = err;
5628 return ret;
5631 static int ext4_release_dquot(struct dquot *dquot)
5633 int ret, err;
5634 handle_t *handle;
5636 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5637 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5638 if (IS_ERR(handle)) {
5639 /* Release dquot anyway to avoid endless cycle in dqput() */
5640 dquot_release(dquot);
5641 return PTR_ERR(handle);
5643 ret = dquot_release(dquot);
5644 err = ext4_journal_stop(handle);
5645 if (!ret)
5646 ret = err;
5647 return ret;
5650 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5652 struct super_block *sb = dquot->dq_sb;
5653 struct ext4_sb_info *sbi = EXT4_SB(sb);
5655 /* Are we journaling quotas? */
5656 if (ext4_has_feature_quota(sb) ||
5657 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5658 dquot_mark_dquot_dirty(dquot);
5659 return ext4_write_dquot(dquot);
5660 } else {
5661 return dquot_mark_dquot_dirty(dquot);
5665 static int ext4_write_info(struct super_block *sb, int type)
5667 int ret, err;
5668 handle_t *handle;
5670 /* Data block + inode block */
5671 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5672 if (IS_ERR(handle))
5673 return PTR_ERR(handle);
5674 ret = dquot_commit_info(sb, type);
5675 err = ext4_journal_stop(handle);
5676 if (!ret)
5677 ret = err;
5678 return ret;
5682 * Turn on quotas during mount time - we need to find
5683 * the quota file and such...
5685 static int ext4_quota_on_mount(struct super_block *sb, int type)
5687 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5688 EXT4_SB(sb)->s_jquota_fmt, type);
5691 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5693 struct ext4_inode_info *ei = EXT4_I(inode);
5695 /* The first argument of lockdep_set_subclass has to be
5696 * *exactly* the same as the argument to init_rwsem() --- in
5697 * this case, in init_once() --- or lockdep gets unhappy
5698 * because the name of the lock is set using the
5699 * stringification of the argument to init_rwsem().
5701 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5702 lockdep_set_subclass(&ei->i_data_sem, subclass);
5706 * Standard function to be called on quota_on
5708 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5709 const struct path *path)
5711 int err;
5713 if (!test_opt(sb, QUOTA))
5714 return -EINVAL;
5716 /* Quotafile not on the same filesystem? */
5717 if (path->dentry->d_sb != sb)
5718 return -EXDEV;
5719 /* Journaling quota? */
5720 if (EXT4_SB(sb)->s_qf_names[type]) {
5721 /* Quotafile not in fs root? */
5722 if (path->dentry->d_parent != sb->s_root)
5723 ext4_msg(sb, KERN_WARNING,
5724 "Quota file not on filesystem root. "
5725 "Journaled quota will not work");
5726 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5727 } else {
5729 * Clear the flag just in case mount options changed since
5730 * last time.
5732 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5736 * When we journal data on quota file, we have to flush journal to see
5737 * all updates to the file when we bypass pagecache...
5739 if (EXT4_SB(sb)->s_journal &&
5740 ext4_should_journal_data(d_inode(path->dentry))) {
5742 * We don't need to lock updates but journal_flush() could
5743 * otherwise be livelocked...
5745 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5746 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5747 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5748 if (err)
5749 return err;
5752 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5753 err = dquot_quota_on(sb, type, format_id, path);
5754 if (err) {
5755 lockdep_set_quota_inode(path->dentry->d_inode,
5756 I_DATA_SEM_NORMAL);
5757 } else {
5758 struct inode *inode = d_inode(path->dentry);
5759 handle_t *handle;
5762 * Set inode flags to prevent userspace from messing with quota
5763 * files. If this fails, we return success anyway since quotas
5764 * are already enabled and this is not a hard failure.
5766 inode_lock(inode);
5767 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5768 if (IS_ERR(handle))
5769 goto unlock_inode;
5770 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5771 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5772 S_NOATIME | S_IMMUTABLE);
5773 ext4_mark_inode_dirty(handle, inode);
5774 ext4_journal_stop(handle);
5775 unlock_inode:
5776 inode_unlock(inode);
5778 return err;
5781 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5782 unsigned int flags)
5784 int err;
5785 struct inode *qf_inode;
5786 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5787 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5788 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5789 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5792 BUG_ON(!ext4_has_feature_quota(sb));
5794 if (!qf_inums[type])
5795 return -EPERM;
5797 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5798 if (IS_ERR(qf_inode)) {
5799 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5800 return PTR_ERR(qf_inode);
5803 /* Don't account quota for quota files to avoid recursion */
5804 qf_inode->i_flags |= S_NOQUOTA;
5805 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5806 err = dquot_enable(qf_inode, type, format_id, flags);
5807 if (err)
5808 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5809 iput(qf_inode);
5811 return err;
5814 /* Enable usage tracking for all quota types. */
5815 static int ext4_enable_quotas(struct super_block *sb)
5817 int type, err = 0;
5818 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5819 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5820 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5821 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5823 bool quota_mopt[EXT4_MAXQUOTAS] = {
5824 test_opt(sb, USRQUOTA),
5825 test_opt(sb, GRPQUOTA),
5826 test_opt(sb, PRJQUOTA),
5829 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5830 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5831 if (qf_inums[type]) {
5832 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5833 DQUOT_USAGE_ENABLED |
5834 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5835 if (err) {
5836 ext4_warning(sb,
5837 "Failed to enable quota tracking "
5838 "(type=%d, err=%d). Please run "
5839 "e2fsck to fix.", type, err);
5840 for (type--; type >= 0; type--)
5841 dquot_quota_off(sb, type);
5843 return err;
5847 return 0;
5850 static int ext4_quota_off(struct super_block *sb, int type)
5852 struct inode *inode = sb_dqopt(sb)->files[type];
5853 handle_t *handle;
5854 int err;
5856 /* Force all delayed allocation blocks to be allocated.
5857 * Caller already holds s_umount sem */
5858 if (test_opt(sb, DELALLOC))
5859 sync_filesystem(sb);
5861 if (!inode || !igrab(inode))
5862 goto out;
5864 err = dquot_quota_off(sb, type);
5865 if (err || ext4_has_feature_quota(sb))
5866 goto out_put;
5868 inode_lock(inode);
5870 * Update modification times of quota files when userspace can
5871 * start looking at them. If we fail, we return success anyway since
5872 * this is not a hard failure and quotas are already disabled.
5874 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5875 if (IS_ERR(handle))
5876 goto out_unlock;
5877 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5878 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5879 inode->i_mtime = inode->i_ctime = current_time(inode);
5880 ext4_mark_inode_dirty(handle, inode);
5881 ext4_journal_stop(handle);
5882 out_unlock:
5883 inode_unlock(inode);
5884 out_put:
5885 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5886 iput(inode);
5887 return err;
5888 out:
5889 return dquot_quota_off(sb, type);
5892 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5893 * acquiring the locks... As quota files are never truncated and quota code
5894 * itself serializes the operations (and no one else should touch the files)
5895 * we don't have to be afraid of races */
5896 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5897 size_t len, loff_t off)
5899 struct inode *inode = sb_dqopt(sb)->files[type];
5900 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5901 int offset = off & (sb->s_blocksize - 1);
5902 int tocopy;
5903 size_t toread;
5904 struct buffer_head *bh;
5905 loff_t i_size = i_size_read(inode);
5907 if (off > i_size)
5908 return 0;
5909 if (off+len > i_size)
5910 len = i_size-off;
5911 toread = len;
5912 while (toread > 0) {
5913 tocopy = sb->s_blocksize - offset < toread ?
5914 sb->s_blocksize - offset : toread;
5915 bh = ext4_bread(NULL, inode, blk, 0);
5916 if (IS_ERR(bh))
5917 return PTR_ERR(bh);
5918 if (!bh) /* A hole? */
5919 memset(data, 0, tocopy);
5920 else
5921 memcpy(data, bh->b_data+offset, tocopy);
5922 brelse(bh);
5923 offset = 0;
5924 toread -= tocopy;
5925 data += tocopy;
5926 blk++;
5928 return len;
5931 /* Write to quotafile (we know the transaction is already started and has
5932 * enough credits) */
5933 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5934 const char *data, size_t len, loff_t off)
5936 struct inode *inode = sb_dqopt(sb)->files[type];
5937 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5938 int err, offset = off & (sb->s_blocksize - 1);
5939 int retries = 0;
5940 struct buffer_head *bh;
5941 handle_t *handle = journal_current_handle();
5943 if (EXT4_SB(sb)->s_journal && !handle) {
5944 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5945 " cancelled because transaction is not started",
5946 (unsigned long long)off, (unsigned long long)len);
5947 return -EIO;
5950 * Since we account only one data block in transaction credits,
5951 * then it is impossible to cross a block boundary.
5953 if (sb->s_blocksize - offset < len) {
5954 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5955 " cancelled because not block aligned",
5956 (unsigned long long)off, (unsigned long long)len);
5957 return -EIO;
5960 do {
5961 bh = ext4_bread(handle, inode, blk,
5962 EXT4_GET_BLOCKS_CREATE |
5963 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5964 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5965 ext4_should_retry_alloc(inode->i_sb, &retries));
5966 if (IS_ERR(bh))
5967 return PTR_ERR(bh);
5968 if (!bh)
5969 goto out;
5970 BUFFER_TRACE(bh, "get write access");
5971 err = ext4_journal_get_write_access(handle, bh);
5972 if (err) {
5973 brelse(bh);
5974 return err;
5976 lock_buffer(bh);
5977 memcpy(bh->b_data+offset, data, len);
5978 flush_dcache_page(bh->b_page);
5979 unlock_buffer(bh);
5980 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5981 brelse(bh);
5982 out:
5983 if (inode->i_size < off + len) {
5984 i_size_write(inode, off + len);
5985 EXT4_I(inode)->i_disksize = inode->i_size;
5986 ext4_mark_inode_dirty(handle, inode);
5988 return len;
5991 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5993 const struct quota_format_ops *ops;
5995 if (!sb_has_quota_loaded(sb, qid->type))
5996 return -ESRCH;
5997 ops = sb_dqopt(sb)->ops[qid->type];
5998 if (!ops || !ops->get_next_id)
5999 return -ENOSYS;
6000 return dquot_get_next_id(sb, qid);
6002 #endif
6004 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6005 const char *dev_name, void *data)
6007 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6010 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6011 static inline void register_as_ext2(void)
6013 int err = register_filesystem(&ext2_fs_type);
6014 if (err)
6015 printk(KERN_WARNING
6016 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6019 static inline void unregister_as_ext2(void)
6021 unregister_filesystem(&ext2_fs_type);
6024 static inline int ext2_feature_set_ok(struct super_block *sb)
6026 if (ext4_has_unknown_ext2_incompat_features(sb))
6027 return 0;
6028 if (sb_rdonly(sb))
6029 return 1;
6030 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6031 return 0;
6032 return 1;
6034 #else
6035 static inline void register_as_ext2(void) { }
6036 static inline void unregister_as_ext2(void) { }
6037 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6038 #endif
6040 static inline void register_as_ext3(void)
6042 int err = register_filesystem(&ext3_fs_type);
6043 if (err)
6044 printk(KERN_WARNING
6045 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6048 static inline void unregister_as_ext3(void)
6050 unregister_filesystem(&ext3_fs_type);
6053 static inline int ext3_feature_set_ok(struct super_block *sb)
6055 if (ext4_has_unknown_ext3_incompat_features(sb))
6056 return 0;
6057 if (!ext4_has_feature_journal(sb))
6058 return 0;
6059 if (sb_rdonly(sb))
6060 return 1;
6061 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6062 return 0;
6063 return 1;
6066 static struct file_system_type ext4_fs_type = {
6067 .owner = THIS_MODULE,
6068 .name = "ext4",
6069 .mount = ext4_mount,
6070 .kill_sb = kill_block_super,
6071 .fs_flags = FS_REQUIRES_DEV,
6073 MODULE_ALIAS_FS("ext4");
6075 /* Shared across all ext4 file systems */
6076 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6078 static int __init ext4_init_fs(void)
6080 int i, err;
6082 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6083 ext4_li_info = NULL;
6084 mutex_init(&ext4_li_mtx);
6086 /* Build-time check for flags consistency */
6087 ext4_check_flag_values();
6089 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6090 init_waitqueue_head(&ext4__ioend_wq[i]);
6092 err = ext4_init_es();
6093 if (err)
6094 return err;
6096 err = ext4_init_pending();
6097 if (err)
6098 goto out6;
6100 err = ext4_init_pageio();
6101 if (err)
6102 goto out5;
6104 err = ext4_init_system_zone();
6105 if (err)
6106 goto out4;
6108 err = ext4_init_sysfs();
6109 if (err)
6110 goto out3;
6112 err = ext4_init_mballoc();
6113 if (err)
6114 goto out2;
6115 err = init_inodecache();
6116 if (err)
6117 goto out1;
6118 register_as_ext3();
6119 register_as_ext2();
6120 err = register_filesystem(&ext4_fs_type);
6121 if (err)
6122 goto out;
6124 return 0;
6125 out:
6126 unregister_as_ext2();
6127 unregister_as_ext3();
6128 destroy_inodecache();
6129 out1:
6130 ext4_exit_mballoc();
6131 out2:
6132 ext4_exit_sysfs();
6133 out3:
6134 ext4_exit_system_zone();
6135 out4:
6136 ext4_exit_pageio();
6137 out5:
6138 ext4_exit_pending();
6139 out6:
6140 ext4_exit_es();
6142 return err;
6145 static void __exit ext4_exit_fs(void)
6147 ext4_destroy_lazyinit_thread();
6148 unregister_as_ext2();
6149 unregister_as_ext3();
6150 unregister_filesystem(&ext4_fs_type);
6151 destroy_inodecache();
6152 ext4_exit_mballoc();
6153 ext4_exit_sysfs();
6154 ext4_exit_system_zone();
6155 ext4_exit_pageio();
6156 ext4_exit_es();
6157 ext4_exit_pending();
6160 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6161 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6162 MODULE_LICENSE("GPL");
6163 MODULE_SOFTDEP("pre: crc32c");
6164 module_init(ext4_init_fs)
6165 module_exit(ext4_exit_fs)