1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
33 #include "trace_gfs2.h"
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
65 static const char valid_change
[16] = {
73 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
74 const struct gfs2_inode
*ip
, bool nowrap
);
78 * gfs2_setbit - Set a bit in the bitmaps
79 * @rbm: The position of the bit to set
80 * @do_clone: Also set the clone bitmap, if it exists
81 * @new_state: the new state of the block
85 static inline void gfs2_setbit(const struct gfs2_rbm
*rbm
, bool do_clone
,
86 unsigned char new_state
)
88 unsigned char *byte1
, *byte2
, *end
, cur_state
;
89 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
90 unsigned int buflen
= bi
->bi_bytes
;
91 const unsigned int bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
93 byte1
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
94 end
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ buflen
;
98 cur_state
= (*byte1
>> bit
) & GFS2_BIT_MASK
;
100 if (unlikely(!valid_change
[new_state
* 4 + cur_state
])) {
101 struct gfs2_sbd
*sdp
= rbm
->rgd
->rd_sbd
;
103 fs_warn(sdp
, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
104 rbm
->offset
, cur_state
, new_state
);
105 fs_warn(sdp
, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
106 (unsigned long long)rbm
->rgd
->rd_addr
, bi
->bi_start
,
107 (unsigned long long)bi
->bi_bh
->b_blocknr
);
108 fs_warn(sdp
, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
109 bi
->bi_offset
, bi
->bi_bytes
,
110 (unsigned long long)gfs2_rbm_to_block(rbm
));
112 gfs2_consist_rgrpd(rbm
->rgd
);
115 *byte1
^= (cur_state
^ new_state
) << bit
;
117 if (do_clone
&& bi
->bi_clone
) {
118 byte2
= bi
->bi_clone
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
119 cur_state
= (*byte2
>> bit
) & GFS2_BIT_MASK
;
120 *byte2
^= (cur_state
^ new_state
) << bit
;
125 * gfs2_testbit - test a bit in the bitmaps
126 * @rbm: The bit to test
127 * @use_clone: If true, test the clone bitmap, not the official bitmap.
129 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
130 * not the "real" bitmaps, to avoid allocating recently freed blocks.
132 * Returns: The two bit block state of the requested bit
135 static inline u8
gfs2_testbit(const struct gfs2_rbm
*rbm
, bool use_clone
)
137 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
142 if (use_clone
&& bi
->bi_clone
)
143 buffer
= bi
->bi_clone
;
145 buffer
= bi
->bi_bh
->b_data
;
146 buffer
+= bi
->bi_offset
;
147 byte
= buffer
+ (rbm
->offset
/ GFS2_NBBY
);
148 bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
150 return (*byte
>> bit
) & GFS2_BIT_MASK
;
155 * @ptr: Pointer to bitmap data
156 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
157 * @state: The state we are searching for
159 * We xor the bitmap data with a patter which is the bitwise opposite
160 * of what we are looking for, this gives rise to a pattern of ones
161 * wherever there is a match. Since we have two bits per entry, we
162 * take this pattern, shift it down by one place and then and it with
163 * the original. All the even bit positions (0,2,4, etc) then represent
164 * successful matches, so we mask with 0x55555..... to remove the unwanted
167 * This allows searching of a whole u64 at once (32 blocks) with a
168 * single test (on 64 bit arches).
171 static inline u64
gfs2_bit_search(const __le64
*ptr
, u64 mask
, u8 state
)
174 static const u64 search
[] = {
175 [0] = 0xffffffffffffffffULL
,
176 [1] = 0xaaaaaaaaaaaaaaaaULL
,
177 [2] = 0x5555555555555555ULL
,
178 [3] = 0x0000000000000000ULL
,
180 tmp
= le64_to_cpu(*ptr
) ^ search
[state
];
187 * rs_cmp - multi-block reservation range compare
188 * @blk: absolute file system block number of the new reservation
189 * @len: number of blocks in the new reservation
190 * @rs: existing reservation to compare against
192 * returns: 1 if the block range is beyond the reach of the reservation
193 * -1 if the block range is before the start of the reservation
194 * 0 if the block range overlaps with the reservation
196 static inline int rs_cmp(u64 blk
, u32 len
, struct gfs2_blkreserv
*rs
)
198 u64 startblk
= gfs2_rbm_to_block(&rs
->rs_rbm
);
200 if (blk
>= startblk
+ rs
->rs_free
)
202 if (blk
+ len
- 1 < startblk
)
208 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
209 * a block in a given allocation state.
210 * @buf: the buffer that holds the bitmaps
211 * @len: the length (in bytes) of the buffer
212 * @goal: start search at this block's bit-pair (within @buffer)
213 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
215 * Scope of @goal and returned block number is only within this bitmap buffer,
216 * not entire rgrp or filesystem. @buffer will be offset from the actual
217 * beginning of a bitmap block buffer, skipping any header structures, but
218 * headers are always a multiple of 64 bits long so that the buffer is
219 * always aligned to a 64 bit boundary.
221 * The size of the buffer is in bytes, but is it assumed that it is
222 * always ok to read a complete multiple of 64 bits at the end
223 * of the block in case the end is no aligned to a natural boundary.
225 * Return: the block number (bitmap buffer scope) that was found
228 static u32
gfs2_bitfit(const u8
*buf
, const unsigned int len
,
231 u32 spoint
= (goal
<< 1) & ((8*sizeof(u64
)) - 1);
232 const __le64
*ptr
= ((__le64
*)buf
) + (goal
>> 5);
233 const __le64
*end
= (__le64
*)(buf
+ ALIGN(len
, sizeof(u64
)));
235 u64 mask
= 0x5555555555555555ULL
;
238 /* Mask off bits we don't care about at the start of the search */
240 tmp
= gfs2_bit_search(ptr
, mask
, state
);
242 while(tmp
== 0 && ptr
< end
) {
243 tmp
= gfs2_bit_search(ptr
, 0x5555555555555555ULL
, state
);
246 /* Mask off any bits which are more than len bytes from the start */
247 if (ptr
== end
&& (len
& (sizeof(u64
) - 1)))
248 tmp
&= (((u64
)~0) >> (64 - 8*(len
& (sizeof(u64
) - 1))));
249 /* Didn't find anything, so return */
254 bit
/= 2; /* two bits per entry in the bitmap */
255 return (((const unsigned char *)ptr
- buf
) * GFS2_NBBY
) + bit
;
259 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
260 * @rbm: The rbm with rgd already set correctly
261 * @block: The block number (filesystem relative)
263 * This sets the bi and offset members of an rbm based on a
264 * resource group and a filesystem relative block number. The
265 * resource group must be set in the rbm on entry, the bi and
266 * offset members will be set by this function.
268 * Returns: 0 on success, or an error code
271 static int gfs2_rbm_from_block(struct gfs2_rbm
*rbm
, u64 block
)
273 if (!rgrp_contains_block(rbm
->rgd
, block
))
276 rbm
->offset
= block
- rbm
->rgd
->rd_data0
;
277 /* Check if the block is within the first block */
278 if (rbm
->offset
< rbm_bi(rbm
)->bi_blocks
)
281 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
282 rbm
->offset
+= (sizeof(struct gfs2_rgrp
) -
283 sizeof(struct gfs2_meta_header
)) * GFS2_NBBY
;
284 rbm
->bii
= rbm
->offset
/ rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
285 rbm
->offset
-= rbm
->bii
* rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
290 * gfs2_rbm_incr - increment an rbm structure
291 * @rbm: The rbm with rgd already set correctly
293 * This function takes an existing rbm structure and increments it to the next
294 * viable block offset.
296 * Returns: If incrementing the offset would cause the rbm to go past the
297 * end of the rgrp, true is returned, otherwise false.
301 static bool gfs2_rbm_incr(struct gfs2_rbm
*rbm
)
303 if (rbm
->offset
+ 1 < rbm_bi(rbm
)->bi_blocks
) { /* in the same bitmap */
307 if (rbm
->bii
== rbm
->rgd
->rd_length
- 1) /* at the last bitmap */
316 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
317 * @rbm: Position to search (value/result)
318 * @n_unaligned: Number of unaligned blocks to check
319 * @len: Decremented for each block found (terminate on zero)
321 * Returns: true if a non-free block is encountered
324 static bool gfs2_unaligned_extlen(struct gfs2_rbm
*rbm
, u32 n_unaligned
, u32
*len
)
329 for (n
= 0; n
< n_unaligned
; n
++) {
330 res
= gfs2_testbit(rbm
, true);
331 if (res
!= GFS2_BLKST_FREE
)
336 if (gfs2_rbm_incr(rbm
))
344 * gfs2_free_extlen - Return extent length of free blocks
345 * @rrbm: Starting position
346 * @len: Max length to check
348 * Starting at the block specified by the rbm, see how many free blocks
349 * there are, not reading more than len blocks ahead. This can be done
350 * using memchr_inv when the blocks are byte aligned, but has to be done
351 * on a block by block basis in case of unaligned blocks. Also this
352 * function can cope with bitmap boundaries (although it must stop on
353 * a resource group boundary)
355 * Returns: Number of free blocks in the extent
358 static u32
gfs2_free_extlen(const struct gfs2_rbm
*rrbm
, u32 len
)
360 struct gfs2_rbm rbm
= *rrbm
;
361 u32 n_unaligned
= rbm
.offset
& 3;
365 u8
*ptr
, *start
, *end
;
367 struct gfs2_bitmap
*bi
;
370 gfs2_unaligned_extlen(&rbm
, 4 - n_unaligned
, &len
))
373 n_unaligned
= len
& 3;
374 /* Start is now byte aligned */
377 start
= bi
->bi_bh
->b_data
;
379 start
= bi
->bi_clone
;
380 start
+= bi
->bi_offset
;
381 end
= start
+ bi
->bi_bytes
;
382 BUG_ON(rbm
.offset
& 3);
383 start
+= (rbm
.offset
/ GFS2_NBBY
);
384 bytes
= min_t(u32
, len
/ GFS2_NBBY
, (end
- start
));
385 ptr
= memchr_inv(start
, 0, bytes
);
386 chunk_size
= ((ptr
== NULL
) ? bytes
: (ptr
- start
));
387 chunk_size
*= GFS2_NBBY
;
388 BUG_ON(len
< chunk_size
);
390 block
= gfs2_rbm_to_block(&rbm
);
391 if (gfs2_rbm_from_block(&rbm
, block
+ chunk_size
)) {
399 n_unaligned
= len
& 3;
402 /* Deal with any bits left over at the end */
404 gfs2_unaligned_extlen(&rbm
, n_unaligned
, &len
);
410 * gfs2_bitcount - count the number of bits in a certain state
411 * @rgd: the resource group descriptor
412 * @buffer: the buffer that holds the bitmaps
413 * @buflen: the length (in bytes) of the buffer
414 * @state: the state of the block we're looking for
416 * Returns: The number of bits
419 static u32
gfs2_bitcount(struct gfs2_rgrpd
*rgd
, const u8
*buffer
,
420 unsigned int buflen
, u8 state
)
422 const u8
*byte
= buffer
;
423 const u8
*end
= buffer
+ buflen
;
424 const u8 state1
= state
<< 2;
425 const u8 state2
= state
<< 4;
426 const u8 state3
= state
<< 6;
429 for (; byte
< end
; byte
++) {
430 if (((*byte
) & 0x03) == state
)
432 if (((*byte
) & 0x0C) == state1
)
434 if (((*byte
) & 0x30) == state2
)
436 if (((*byte
) & 0xC0) == state3
)
444 * gfs2_rgrp_verify - Verify that a resource group is consistent
449 void gfs2_rgrp_verify(struct gfs2_rgrpd
*rgd
)
451 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
452 struct gfs2_bitmap
*bi
= NULL
;
453 u32 length
= rgd
->rd_length
;
457 memset(count
, 0, 4 * sizeof(u32
));
459 /* Count # blocks in each of 4 possible allocation states */
460 for (buf
= 0; buf
< length
; buf
++) {
461 bi
= rgd
->rd_bits
+ buf
;
462 for (x
= 0; x
< 4; x
++)
463 count
[x
] += gfs2_bitcount(rgd
,
469 if (count
[0] != rgd
->rd_free
) {
470 if (gfs2_consist_rgrpd(rgd
))
471 fs_err(sdp
, "free data mismatch: %u != %u\n",
472 count
[0], rgd
->rd_free
);
476 tmp
= rgd
->rd_data
- rgd
->rd_free
- rgd
->rd_dinodes
;
477 if (count
[1] != tmp
) {
478 if (gfs2_consist_rgrpd(rgd
))
479 fs_err(sdp
, "used data mismatch: %u != %u\n",
484 if (count
[2] + count
[3] != rgd
->rd_dinodes
) {
485 if (gfs2_consist_rgrpd(rgd
))
486 fs_err(sdp
, "used metadata mismatch: %u != %u\n",
487 count
[2] + count
[3], rgd
->rd_dinodes
);
493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
494 * @sdp: The GFS2 superblock
495 * @blk: The data block number
496 * @exact: True if this needs to be an exact match
498 * The @exact argument should be set to true by most callers. The exception
499 * is when we need to match blocks which are not represented by the rgrp
500 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
501 * there for alignment purposes. Another way of looking at it is that @exact
502 * matches only valid data/metadata blocks, but with @exact false, it will
503 * match any block within the extent of the rgrp.
505 * Returns: The resource group, or NULL if not found
508 struct gfs2_rgrpd
*gfs2_blk2rgrpd(struct gfs2_sbd
*sdp
, u64 blk
, bool exact
)
510 struct rb_node
*n
, *next
;
511 struct gfs2_rgrpd
*cur
;
513 spin_lock(&sdp
->sd_rindex_spin
);
514 n
= sdp
->sd_rindex_tree
.rb_node
;
516 cur
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
518 if (blk
< cur
->rd_addr
)
520 else if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
523 spin_unlock(&sdp
->sd_rindex_spin
);
525 if (blk
< cur
->rd_addr
)
527 if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
534 spin_unlock(&sdp
->sd_rindex_spin
);
540 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
541 * @sdp: The GFS2 superblock
543 * Returns: The first rgrp in the filesystem
546 struct gfs2_rgrpd
*gfs2_rgrpd_get_first(struct gfs2_sbd
*sdp
)
548 const struct rb_node
*n
;
549 struct gfs2_rgrpd
*rgd
;
551 spin_lock(&sdp
->sd_rindex_spin
);
552 n
= rb_first(&sdp
->sd_rindex_tree
);
553 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
554 spin_unlock(&sdp
->sd_rindex_spin
);
560 * gfs2_rgrpd_get_next - get the next RG
561 * @rgd: the resource group descriptor
563 * Returns: The next rgrp
566 struct gfs2_rgrpd
*gfs2_rgrpd_get_next(struct gfs2_rgrpd
*rgd
)
568 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
569 const struct rb_node
*n
;
571 spin_lock(&sdp
->sd_rindex_spin
);
572 n
= rb_next(&rgd
->rd_node
);
574 n
= rb_first(&sdp
->sd_rindex_tree
);
576 if (unlikely(&rgd
->rd_node
== n
)) {
577 spin_unlock(&sdp
->sd_rindex_spin
);
580 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
581 spin_unlock(&sdp
->sd_rindex_spin
);
585 void check_and_update_goal(struct gfs2_inode
*ip
)
587 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
588 if (!ip
->i_goal
|| gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1) == NULL
)
589 ip
->i_goal
= ip
->i_no_addr
;
592 void gfs2_free_clones(struct gfs2_rgrpd
*rgd
)
596 for (x
= 0; x
< rgd
->rd_length
; x
++) {
597 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
604 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
605 * plus a quota allocations data structure, if necessary
606 * @ip: the inode for this reservation
608 int gfs2_rsqa_alloc(struct gfs2_inode
*ip
)
610 return gfs2_qa_alloc(ip
);
613 static void dump_rs(struct seq_file
*seq
, const struct gfs2_blkreserv
*rs
)
615 struct gfs2_inode
*ip
= container_of(rs
, struct gfs2_inode
, i_res
);
617 gfs2_print_dbg(seq
, " B: n:%llu s:%llu b:%u f:%u\n",
618 (unsigned long long)ip
->i_no_addr
,
619 (unsigned long long)gfs2_rbm_to_block(&rs
->rs_rbm
),
620 rs
->rs_rbm
.offset
, rs
->rs_free
);
624 * __rs_deltree - remove a multi-block reservation from the rgd tree
625 * @rs: The reservation to remove
628 static void __rs_deltree(struct gfs2_blkreserv
*rs
)
630 struct gfs2_rgrpd
*rgd
;
632 if (!gfs2_rs_active(rs
))
635 rgd
= rs
->rs_rbm
.rgd
;
636 trace_gfs2_rs(rs
, TRACE_RS_TREEDEL
);
637 rb_erase(&rs
->rs_node
, &rgd
->rd_rstree
);
638 RB_CLEAR_NODE(&rs
->rs_node
);
641 u64 last_block
= gfs2_rbm_to_block(&rs
->rs_rbm
) +
643 struct gfs2_rbm last_rbm
= { .rgd
= rs
->rs_rbm
.rgd
, };
644 struct gfs2_bitmap
*start
, *last
;
646 /* return reserved blocks to the rgrp */
647 BUG_ON(rs
->rs_rbm
.rgd
->rd_reserved
< rs
->rs_free
);
648 rs
->rs_rbm
.rgd
->rd_reserved
-= rs
->rs_free
;
649 /* The rgrp extent failure point is likely not to increase;
650 it will only do so if the freed blocks are somehow
651 contiguous with a span of free blocks that follows. Still,
652 it will force the number to be recalculated later. */
653 rgd
->rd_extfail_pt
+= rs
->rs_free
;
655 if (gfs2_rbm_from_block(&last_rbm
, last_block
))
657 start
= rbm_bi(&rs
->rs_rbm
);
658 last
= rbm_bi(&last_rbm
);
660 clear_bit(GBF_FULL
, &start
->bi_flags
);
661 while (start
++ != last
);
666 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
667 * @rs: The reservation to remove
670 void gfs2_rs_deltree(struct gfs2_blkreserv
*rs
)
672 struct gfs2_rgrpd
*rgd
;
674 rgd
= rs
->rs_rbm
.rgd
;
676 spin_lock(&rgd
->rd_rsspin
);
679 spin_unlock(&rgd
->rd_rsspin
);
684 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
685 * @ip: The inode for this reservation
686 * @wcount: The inode's write count, or NULL
689 void gfs2_rsqa_delete(struct gfs2_inode
*ip
, atomic_t
*wcount
)
691 down_write(&ip
->i_rw_mutex
);
692 if ((wcount
== NULL
) || (atomic_read(wcount
) <= 1))
693 gfs2_rs_deltree(&ip
->i_res
);
694 up_write(&ip
->i_rw_mutex
);
695 gfs2_qa_delete(ip
, wcount
);
699 * return_all_reservations - return all reserved blocks back to the rgrp.
700 * @rgd: the rgrp that needs its space back
702 * We previously reserved a bunch of blocks for allocation. Now we need to
703 * give them back. This leave the reservation structures in tact, but removes
704 * all of their corresponding "no-fly zones".
706 static void return_all_reservations(struct gfs2_rgrpd
*rgd
)
709 struct gfs2_blkreserv
*rs
;
711 spin_lock(&rgd
->rd_rsspin
);
712 while ((n
= rb_first(&rgd
->rd_rstree
))) {
713 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
716 spin_unlock(&rgd
->rd_rsspin
);
719 void gfs2_clear_rgrpd(struct gfs2_sbd
*sdp
)
722 struct gfs2_rgrpd
*rgd
;
723 struct gfs2_glock
*gl
;
725 while ((n
= rb_first(&sdp
->sd_rindex_tree
))) {
726 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
729 rb_erase(n
, &sdp
->sd_rindex_tree
);
732 glock_clear_object(gl
, rgd
);
733 gfs2_rgrp_brelse(rgd
);
737 gfs2_free_clones(rgd
);
740 return_all_reservations(rgd
);
741 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
745 static void gfs2_rindex_print(const struct gfs2_rgrpd
*rgd
)
747 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
749 fs_info(sdp
, "ri_addr = %llu\n", (unsigned long long)rgd
->rd_addr
);
750 fs_info(sdp
, "ri_length = %u\n", rgd
->rd_length
);
751 fs_info(sdp
, "ri_data0 = %llu\n", (unsigned long long)rgd
->rd_data0
);
752 fs_info(sdp
, "ri_data = %u\n", rgd
->rd_data
);
753 fs_info(sdp
, "ri_bitbytes = %u\n", rgd
->rd_bitbytes
);
757 * gfs2_compute_bitstructs - Compute the bitmap sizes
758 * @rgd: The resource group descriptor
760 * Calculates bitmap descriptors, one for each block that contains bitmap data
765 static int compute_bitstructs(struct gfs2_rgrpd
*rgd
)
767 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
768 struct gfs2_bitmap
*bi
;
769 u32 length
= rgd
->rd_length
; /* # blocks in hdr & bitmap */
770 u32 bytes_left
, bytes
;
776 rgd
->rd_bits
= kcalloc(length
, sizeof(struct gfs2_bitmap
), GFP_NOFS
);
780 bytes_left
= rgd
->rd_bitbytes
;
782 for (x
= 0; x
< length
; x
++) {
783 bi
= rgd
->rd_bits
+ x
;
786 /* small rgrp; bitmap stored completely in header block */
789 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
791 bi
->bi_bytes
= bytes
;
792 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
795 bytes
= sdp
->sd_sb
.sb_bsize
- sizeof(struct gfs2_rgrp
);
796 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
798 bi
->bi_bytes
= bytes
;
799 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
801 } else if (x
+ 1 == length
) {
803 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
804 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
805 bi
->bi_bytes
= bytes
;
806 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
809 bytes
= sdp
->sd_sb
.sb_bsize
-
810 sizeof(struct gfs2_meta_header
);
811 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
812 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
813 bi
->bi_bytes
= bytes
;
814 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
821 gfs2_consist_rgrpd(rgd
);
824 bi
= rgd
->rd_bits
+ (length
- 1);
825 if ((bi
->bi_start
+ bi
->bi_bytes
) * GFS2_NBBY
!= rgd
->rd_data
) {
826 if (gfs2_consist_rgrpd(rgd
)) {
827 gfs2_rindex_print(rgd
);
828 fs_err(sdp
, "start=%u len=%u offset=%u\n",
829 bi
->bi_start
, bi
->bi_bytes
, bi
->bi_offset
);
838 * gfs2_ri_total - Total up the file system space, according to the rindex.
839 * @sdp: the filesystem
842 u64
gfs2_ri_total(struct gfs2_sbd
*sdp
)
845 struct inode
*inode
= sdp
->sd_rindex
;
846 struct gfs2_inode
*ip
= GFS2_I(inode
);
847 char buf
[sizeof(struct gfs2_rindex
)];
850 for (rgrps
= 0;; rgrps
++) {
851 loff_t pos
= rgrps
* sizeof(struct gfs2_rindex
);
853 if (pos
+ sizeof(struct gfs2_rindex
) > i_size_read(inode
))
855 error
= gfs2_internal_read(ip
, buf
, &pos
,
856 sizeof(struct gfs2_rindex
));
857 if (error
!= sizeof(struct gfs2_rindex
))
859 total_data
+= be32_to_cpu(((struct gfs2_rindex
*)buf
)->ri_data
);
864 static int rgd_insert(struct gfs2_rgrpd
*rgd
)
866 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
867 struct rb_node
**newn
= &sdp
->sd_rindex_tree
.rb_node
, *parent
= NULL
;
869 /* Figure out where to put new node */
871 struct gfs2_rgrpd
*cur
= rb_entry(*newn
, struct gfs2_rgrpd
,
875 if (rgd
->rd_addr
< cur
->rd_addr
)
876 newn
= &((*newn
)->rb_left
);
877 else if (rgd
->rd_addr
> cur
->rd_addr
)
878 newn
= &((*newn
)->rb_right
);
883 rb_link_node(&rgd
->rd_node
, parent
, newn
);
884 rb_insert_color(&rgd
->rd_node
, &sdp
->sd_rindex_tree
);
890 * read_rindex_entry - Pull in a new resource index entry from the disk
891 * @ip: Pointer to the rindex inode
893 * Returns: 0 on success, > 0 on EOF, error code otherwise
896 static int read_rindex_entry(struct gfs2_inode
*ip
)
898 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
899 const unsigned bsize
= sdp
->sd_sb
.sb_bsize
;
900 loff_t pos
= sdp
->sd_rgrps
* sizeof(struct gfs2_rindex
);
901 struct gfs2_rindex buf
;
903 struct gfs2_rgrpd
*rgd
;
905 if (pos
>= i_size_read(&ip
->i_inode
))
908 error
= gfs2_internal_read(ip
, (char *)&buf
, &pos
,
909 sizeof(struct gfs2_rindex
));
911 if (error
!= sizeof(struct gfs2_rindex
))
912 return (error
== 0) ? 1 : error
;
914 rgd
= kmem_cache_zalloc(gfs2_rgrpd_cachep
, GFP_NOFS
);
920 rgd
->rd_addr
= be64_to_cpu(buf
.ri_addr
);
921 rgd
->rd_length
= be32_to_cpu(buf
.ri_length
);
922 rgd
->rd_data0
= be64_to_cpu(buf
.ri_data0
);
923 rgd
->rd_data
= be32_to_cpu(buf
.ri_data
);
924 rgd
->rd_bitbytes
= be32_to_cpu(buf
.ri_bitbytes
);
925 spin_lock_init(&rgd
->rd_rsspin
);
927 error
= compute_bitstructs(rgd
);
931 error
= gfs2_glock_get(sdp
, rgd
->rd_addr
,
932 &gfs2_rgrp_glops
, CREATE
, &rgd
->rd_gl
);
936 rgd
->rd_rgl
= (struct gfs2_rgrp_lvb
*)rgd
->rd_gl
->gl_lksb
.sb_lvbptr
;
937 rgd
->rd_flags
&= ~(GFS2_RDF_UPTODATE
| GFS2_RDF_PREFERRED
);
938 if (rgd
->rd_data
> sdp
->sd_max_rg_data
)
939 sdp
->sd_max_rg_data
= rgd
->rd_data
;
940 spin_lock(&sdp
->sd_rindex_spin
);
941 error
= rgd_insert(rgd
);
942 spin_unlock(&sdp
->sd_rindex_spin
);
944 glock_set_object(rgd
->rd_gl
, rgd
);
945 rgd
->rd_gl
->gl_vm
.start
= (rgd
->rd_addr
* bsize
) & PAGE_MASK
;
946 rgd
->rd_gl
->gl_vm
.end
= PAGE_ALIGN((rgd
->rd_addr
+
947 rgd
->rd_length
) * bsize
) - 1;
951 error
= 0; /* someone else read in the rgrp; free it and ignore it */
952 gfs2_glock_put(rgd
->rd_gl
);
957 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
962 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
963 * @sdp: the GFS2 superblock
965 * The purpose of this function is to select a subset of the resource groups
966 * and mark them as PREFERRED. We do it in such a way that each node prefers
967 * to use a unique set of rgrps to minimize glock contention.
969 static void set_rgrp_preferences(struct gfs2_sbd
*sdp
)
971 struct gfs2_rgrpd
*rgd
, *first
;
974 /* Skip an initial number of rgrps, based on this node's journal ID.
975 That should start each node out on its own set. */
976 rgd
= gfs2_rgrpd_get_first(sdp
);
977 for (i
= 0; i
< sdp
->sd_lockstruct
.ls_jid
; i
++)
978 rgd
= gfs2_rgrpd_get_next(rgd
);
982 rgd
->rd_flags
|= GFS2_RDF_PREFERRED
;
983 for (i
= 0; i
< sdp
->sd_journals
; i
++) {
984 rgd
= gfs2_rgrpd_get_next(rgd
);
985 if (!rgd
|| rgd
== first
)
988 } while (rgd
&& rgd
!= first
);
992 * gfs2_ri_update - Pull in a new resource index from the disk
993 * @ip: pointer to the rindex inode
995 * Returns: 0 on successful update, error code otherwise
998 static int gfs2_ri_update(struct gfs2_inode
*ip
)
1000 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1004 error
= read_rindex_entry(ip
);
1005 } while (error
== 0);
1010 set_rgrp_preferences(sdp
);
1012 sdp
->sd_rindex_uptodate
= 1;
1017 * gfs2_rindex_update - Update the rindex if required
1018 * @sdp: The GFS2 superblock
1020 * We grab a lock on the rindex inode to make sure that it doesn't
1021 * change whilst we are performing an operation. We keep this lock
1022 * for quite long periods of time compared to other locks. This
1023 * doesn't matter, since it is shared and it is very, very rarely
1024 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026 * This makes sure that we're using the latest copy of the resource index
1027 * special file, which might have been updated if someone expanded the
1028 * filesystem (via gfs2_grow utility), which adds new resource groups.
1030 * Returns: 0 on succeess, error code otherwise
1033 int gfs2_rindex_update(struct gfs2_sbd
*sdp
)
1035 struct gfs2_inode
*ip
= GFS2_I(sdp
->sd_rindex
);
1036 struct gfs2_glock
*gl
= ip
->i_gl
;
1037 struct gfs2_holder ri_gh
;
1039 int unlock_required
= 0;
1041 /* Read new copy from disk if we don't have the latest */
1042 if (!sdp
->sd_rindex_uptodate
) {
1043 if (!gfs2_glock_is_locked_by_me(gl
)) {
1044 error
= gfs2_glock_nq_init(gl
, LM_ST_SHARED
, 0, &ri_gh
);
1047 unlock_required
= 1;
1049 if (!sdp
->sd_rindex_uptodate
)
1050 error
= gfs2_ri_update(ip
);
1051 if (unlock_required
)
1052 gfs2_glock_dq_uninit(&ri_gh
);
1058 static void gfs2_rgrp_in(struct gfs2_rgrpd
*rgd
, const void *buf
)
1060 const struct gfs2_rgrp
*str
= buf
;
1063 rg_flags
= be32_to_cpu(str
->rg_flags
);
1064 rg_flags
&= ~GFS2_RDF_MASK
;
1065 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1066 rgd
->rd_flags
|= rg_flags
;
1067 rgd
->rd_free
= be32_to_cpu(str
->rg_free
);
1068 rgd
->rd_dinodes
= be32_to_cpu(str
->rg_dinodes
);
1069 rgd
->rd_igeneration
= be64_to_cpu(str
->rg_igeneration
);
1070 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1073 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb
*rgl
, const void *buf
)
1075 const struct gfs2_rgrp
*str
= buf
;
1077 rgl
->rl_magic
= cpu_to_be32(GFS2_MAGIC
);
1078 rgl
->rl_flags
= str
->rg_flags
;
1079 rgl
->rl_free
= str
->rg_free
;
1080 rgl
->rl_dinodes
= str
->rg_dinodes
;
1081 rgl
->rl_igeneration
= str
->rg_igeneration
;
1085 static void gfs2_rgrp_out(struct gfs2_rgrpd
*rgd
, void *buf
)
1087 struct gfs2_rgrpd
*next
= gfs2_rgrpd_get_next(rgd
);
1088 struct gfs2_rgrp
*str
= buf
;
1091 str
->rg_flags
= cpu_to_be32(rgd
->rd_flags
& ~GFS2_RDF_MASK
);
1092 str
->rg_free
= cpu_to_be32(rgd
->rd_free
);
1093 str
->rg_dinodes
= cpu_to_be32(rgd
->rd_dinodes
);
1096 else if (next
->rd_addr
> rgd
->rd_addr
)
1097 str
->rg_skip
= cpu_to_be32(next
->rd_addr
- rgd
->rd_addr
);
1098 str
->rg_igeneration
= cpu_to_be64(rgd
->rd_igeneration
);
1099 str
->rg_data0
= cpu_to_be64(rgd
->rd_data0
);
1100 str
->rg_data
= cpu_to_be32(rgd
->rd_data
);
1101 str
->rg_bitbytes
= cpu_to_be32(rgd
->rd_bitbytes
);
1103 crc
= gfs2_disk_hash(buf
, sizeof(struct gfs2_rgrp
));
1104 str
->rg_crc
= cpu_to_be32(crc
);
1106 memset(&str
->rg_reserved
, 0, sizeof(str
->rg_reserved
));
1107 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, buf
);
1110 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd
*rgd
)
1112 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1113 struct gfs2_rgrp
*str
= (struct gfs2_rgrp
*)rgd
->rd_bits
[0].bi_bh
->b_data
;
1116 if (rgl
->rl_flags
!= str
->rg_flags
) {
1117 printk(KERN_WARNING
"GFS2: rgd: %llu lvb flag mismatch %u/%u",
1118 (unsigned long long)rgd
->rd_addr
,
1119 be32_to_cpu(rgl
->rl_flags
), be32_to_cpu(str
->rg_flags
));
1122 if (rgl
->rl_free
!= str
->rg_free
) {
1123 printk(KERN_WARNING
"GFS2: rgd: %llu lvb free mismatch %u/%u",
1124 (unsigned long long)rgd
->rd_addr
,
1125 be32_to_cpu(rgl
->rl_free
), be32_to_cpu(str
->rg_free
));
1128 if (rgl
->rl_dinodes
!= str
->rg_dinodes
) {
1129 printk(KERN_WARNING
"GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1130 (unsigned long long)rgd
->rd_addr
,
1131 be32_to_cpu(rgl
->rl_dinodes
),
1132 be32_to_cpu(str
->rg_dinodes
));
1135 if (rgl
->rl_igeneration
!= str
->rg_igeneration
) {
1136 printk(KERN_WARNING
"GFS2: rgd: %llu lvb igen mismatch "
1137 "%llu/%llu", (unsigned long long)rgd
->rd_addr
,
1138 (unsigned long long)be64_to_cpu(rgl
->rl_igeneration
),
1139 (unsigned long long)be64_to_cpu(str
->rg_igeneration
));
1145 static u32
count_unlinked(struct gfs2_rgrpd
*rgd
)
1147 struct gfs2_bitmap
*bi
;
1148 const u32 length
= rgd
->rd_length
;
1149 const u8
*buffer
= NULL
;
1150 u32 i
, goal
, count
= 0;
1152 for (i
= 0, bi
= rgd
->rd_bits
; i
< length
; i
++, bi
++) {
1154 buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
1155 WARN_ON(!buffer_uptodate(bi
->bi_bh
));
1156 while (goal
< bi
->bi_blocks
) {
1157 goal
= gfs2_bitfit(buffer
, bi
->bi_bytes
, goal
,
1158 GFS2_BLKST_UNLINKED
);
1159 if (goal
== BFITNOENT
)
1171 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1172 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1174 * Read in all of a Resource Group's header and bitmap blocks.
1175 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1180 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd
*rgd
)
1182 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1183 struct gfs2_glock
*gl
= rgd
->rd_gl
;
1184 unsigned int length
= rgd
->rd_length
;
1185 struct gfs2_bitmap
*bi
;
1189 if (rgd
->rd_bits
[0].bi_bh
!= NULL
)
1192 for (x
= 0; x
< length
; x
++) {
1193 bi
= rgd
->rd_bits
+ x
;
1194 error
= gfs2_meta_read(gl
, rgd
->rd_addr
+ x
, 0, 0, &bi
->bi_bh
);
1199 for (y
= length
; y
--;) {
1200 bi
= rgd
->rd_bits
+ y
;
1201 error
= gfs2_meta_wait(sdp
, bi
->bi_bh
);
1204 if (gfs2_metatype_check(sdp
, bi
->bi_bh
, y
? GFS2_METATYPE_RB
:
1205 GFS2_METATYPE_RG
)) {
1211 if (!(rgd
->rd_flags
& GFS2_RDF_UPTODATE
)) {
1212 for (x
= 0; x
< length
; x
++)
1213 clear_bit(GBF_FULL
, &rgd
->rd_bits
[x
].bi_flags
);
1214 gfs2_rgrp_in(rgd
, (rgd
->rd_bits
[0].bi_bh
)->b_data
);
1215 rgd
->rd_flags
|= (GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1216 rgd
->rd_free_clone
= rgd
->rd_free
;
1217 /* max out the rgrp allocation failure point */
1218 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1220 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
) {
1221 rgd
->rd_rgl
->rl_unlinked
= cpu_to_be32(count_unlinked(rgd
));
1222 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
,
1223 rgd
->rd_bits
[0].bi_bh
->b_data
);
1225 else if (sdp
->sd_args
.ar_rgrplvb
) {
1226 if (!gfs2_rgrp_lvb_valid(rgd
)){
1227 gfs2_consist_rgrpd(rgd
);
1231 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1232 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1238 bi
= rgd
->rd_bits
+ x
;
1241 gfs2_assert_warn(sdp
, !bi
->bi_clone
);
1247 static int update_rgrp_lvb(struct gfs2_rgrpd
*rgd
)
1251 if (rgd
->rd_flags
& GFS2_RDF_UPTODATE
)
1254 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
)
1255 return gfs2_rgrp_bh_get(rgd
);
1257 rl_flags
= be32_to_cpu(rgd
->rd_rgl
->rl_flags
);
1258 rl_flags
&= ~GFS2_RDF_MASK
;
1259 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1260 rgd
->rd_flags
|= (rl_flags
| GFS2_RDF_CHECK
);
1261 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1262 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1263 rgd
->rd_free
= be32_to_cpu(rgd
->rd_rgl
->rl_free
);
1264 rgd
->rd_free_clone
= rgd
->rd_free
;
1265 rgd
->rd_dinodes
= be32_to_cpu(rgd
->rd_rgl
->rl_dinodes
);
1266 rgd
->rd_igeneration
= be64_to_cpu(rgd
->rd_rgl
->rl_igeneration
);
1270 int gfs2_rgrp_go_lock(struct gfs2_holder
*gh
)
1272 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1273 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1275 if (gh
->gh_flags
& GL_SKIP
&& sdp
->sd_args
.ar_rgrplvb
)
1277 return gfs2_rgrp_bh_get(rgd
);
1281 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1282 * @rgd: The resource group
1286 void gfs2_rgrp_brelse(struct gfs2_rgrpd
*rgd
)
1288 int x
, length
= rgd
->rd_length
;
1290 for (x
= 0; x
< length
; x
++) {
1291 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1301 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1302 * @gh: The glock holder for the resource group
1306 void gfs2_rgrp_go_unlock(struct gfs2_holder
*gh
)
1308 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1309 int demote_requested
= test_bit(GLF_DEMOTE
, &gh
->gh_gl
->gl_flags
) |
1310 test_bit(GLF_PENDING_DEMOTE
, &gh
->gh_gl
->gl_flags
);
1312 if (rgd
&& demote_requested
)
1313 gfs2_rgrp_brelse(rgd
);
1316 int gfs2_rgrp_send_discards(struct gfs2_sbd
*sdp
, u64 offset
,
1317 struct buffer_head
*bh
,
1318 const struct gfs2_bitmap
*bi
, unsigned minlen
, u64
*ptrimmed
)
1320 struct super_block
*sb
= sdp
->sd_vfs
;
1323 sector_t nr_blks
= 0;
1329 for (x
= 0; x
< bi
->bi_bytes
; x
++) {
1330 const u8
*clone
= bi
->bi_clone
? bi
->bi_clone
: bi
->bi_bh
->b_data
;
1331 clone
+= bi
->bi_offset
;
1334 const u8
*orig
= bh
->b_data
+ bi
->bi_offset
+ x
;
1335 diff
= ~(*orig
| (*orig
>> 1)) & (*clone
| (*clone
>> 1));
1337 diff
= ~(*clone
| (*clone
>> 1));
1342 blk
= offset
+ ((bi
->bi_start
+ x
) * GFS2_NBBY
);
1346 goto start_new_extent
;
1347 if ((start
+ nr_blks
) != blk
) {
1348 if (nr_blks
>= minlen
) {
1349 rv
= sb_issue_discard(sb
,
1366 if (nr_blks
>= minlen
) {
1367 rv
= sb_issue_discard(sb
, start
, nr_blks
, GFP_NOFS
, 0);
1373 *ptrimmed
= trimmed
;
1377 if (sdp
->sd_args
.ar_discard
)
1378 fs_warn(sdp
, "error %d on discard request, turning discards off for this filesystem\n", rv
);
1379 sdp
->sd_args
.ar_discard
= 0;
1384 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1385 * @filp: Any file on the filesystem
1386 * @argp: Pointer to the arguments (also used to pass result)
1388 * Returns: 0 on success, otherwise error code
1391 int gfs2_fitrim(struct file
*filp
, void __user
*argp
)
1393 struct inode
*inode
= file_inode(filp
);
1394 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1395 struct request_queue
*q
= bdev_get_queue(sdp
->sd_vfs
->s_bdev
);
1396 struct buffer_head
*bh
;
1397 struct gfs2_rgrpd
*rgd
;
1398 struct gfs2_rgrpd
*rgd_end
;
1399 struct gfs2_holder gh
;
1400 struct fstrim_range r
;
1404 u64 start
, end
, minlen
;
1406 unsigned bs_shift
= sdp
->sd_sb
.sb_bsize_shift
;
1408 if (!capable(CAP_SYS_ADMIN
))
1411 if (!blk_queue_discard(q
))
1414 if (copy_from_user(&r
, argp
, sizeof(r
)))
1417 ret
= gfs2_rindex_update(sdp
);
1421 start
= r
.start
>> bs_shift
;
1422 end
= start
+ (r
.len
>> bs_shift
);
1423 minlen
= max_t(u64
, r
.minlen
,
1424 q
->limits
.discard_granularity
) >> bs_shift
;
1426 if (end
<= start
|| minlen
> sdp
->sd_max_rg_data
)
1429 rgd
= gfs2_blk2rgrpd(sdp
, start
, 0);
1430 rgd_end
= gfs2_blk2rgrpd(sdp
, end
, 0);
1432 if ((gfs2_rgrpd_get_first(sdp
) == gfs2_rgrpd_get_next(rgd_end
))
1433 && (start
> rgd_end
->rd_data0
+ rgd_end
->rd_data
))
1434 return -EINVAL
; /* start is beyond the end of the fs */
1438 ret
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1442 if (!(rgd
->rd_flags
& GFS2_RGF_TRIMMED
)) {
1443 /* Trim each bitmap in the rgrp */
1444 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1445 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1446 ret
= gfs2_rgrp_send_discards(sdp
,
1447 rgd
->rd_data0
, NULL
, bi
, minlen
,
1450 gfs2_glock_dq_uninit(&gh
);
1456 /* Mark rgrp as having been trimmed */
1457 ret
= gfs2_trans_begin(sdp
, RES_RG_HDR
, 0);
1459 bh
= rgd
->rd_bits
[0].bi_bh
;
1460 rgd
->rd_flags
|= GFS2_RGF_TRIMMED
;
1461 gfs2_trans_add_meta(rgd
->rd_gl
, bh
);
1462 gfs2_rgrp_out(rgd
, bh
->b_data
);
1463 gfs2_trans_end(sdp
);
1466 gfs2_glock_dq_uninit(&gh
);
1471 rgd
= gfs2_rgrpd_get_next(rgd
);
1475 r
.len
= trimmed
<< bs_shift
;
1476 if (copy_to_user(argp
, &r
, sizeof(r
)))
1483 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1484 * @ip: the inode structure
1487 static void rs_insert(struct gfs2_inode
*ip
)
1489 struct rb_node
**newn
, *parent
= NULL
;
1491 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1492 struct gfs2_rgrpd
*rgd
= rs
->rs_rbm
.rgd
;
1493 u64 fsblock
= gfs2_rbm_to_block(&rs
->rs_rbm
);
1495 BUG_ON(gfs2_rs_active(rs
));
1497 spin_lock(&rgd
->rd_rsspin
);
1498 newn
= &rgd
->rd_rstree
.rb_node
;
1500 struct gfs2_blkreserv
*cur
=
1501 rb_entry(*newn
, struct gfs2_blkreserv
, rs_node
);
1504 rc
= rs_cmp(fsblock
, rs
->rs_free
, cur
);
1506 newn
= &((*newn
)->rb_right
);
1508 newn
= &((*newn
)->rb_left
);
1510 spin_unlock(&rgd
->rd_rsspin
);
1516 rb_link_node(&rs
->rs_node
, parent
, newn
);
1517 rb_insert_color(&rs
->rs_node
, &rgd
->rd_rstree
);
1519 /* Do our rgrp accounting for the reservation */
1520 rgd
->rd_reserved
+= rs
->rs_free
; /* blocks reserved */
1521 spin_unlock(&rgd
->rd_rsspin
);
1522 trace_gfs2_rs(rs
, TRACE_RS_INSERT
);
1526 * rgd_free - return the number of free blocks we can allocate.
1527 * @rgd: the resource group
1529 * This function returns the number of free blocks for an rgrp.
1530 * That's the clone-free blocks (blocks that are free, not including those
1531 * still being used for unlinked files that haven't been deleted.)
1533 * It also subtracts any blocks reserved by someone else, but does not
1534 * include free blocks that are still part of our current reservation,
1535 * because obviously we can (and will) allocate them.
1537 static inline u32
rgd_free(struct gfs2_rgrpd
*rgd
, struct gfs2_blkreserv
*rs
)
1539 u32 tot_reserved
, tot_free
;
1541 if (WARN_ON_ONCE(rgd
->rd_reserved
< rs
->rs_free
))
1543 tot_reserved
= rgd
->rd_reserved
- rs
->rs_free
;
1545 if (rgd
->rd_free_clone
< tot_reserved
)
1548 tot_free
= rgd
->rd_free_clone
- tot_reserved
;
1554 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1555 * @rgd: the resource group descriptor
1556 * @ip: pointer to the inode for which we're reserving blocks
1557 * @ap: the allocation parameters
1561 static void rg_mblk_search(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
,
1562 const struct gfs2_alloc_parms
*ap
)
1564 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
1566 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1568 u32 free_blocks
= rgd_free(rgd
, rs
);
1570 struct inode
*inode
= &ip
->i_inode
;
1572 if (S_ISDIR(inode
->i_mode
))
1575 extlen
= max_t(u32
, atomic_read(&ip
->i_sizehint
), ap
->target
);
1576 extlen
= clamp(extlen
, (u32
)RGRP_RSRV_MINBLKS
, free_blocks
);
1578 if ((rgd
->rd_free_clone
< rgd
->rd_reserved
) || (free_blocks
< extlen
))
1581 /* Find bitmap block that contains bits for goal block */
1582 if (rgrp_contains_block(rgd
, ip
->i_goal
))
1585 goal
= rgd
->rd_last_alloc
+ rgd
->rd_data0
;
1587 if (WARN_ON(gfs2_rbm_from_block(&rbm
, goal
)))
1590 ret
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &extlen
, ip
, true);
1593 rs
->rs_free
= extlen
;
1596 if (goal
== rgd
->rd_last_alloc
+ rgd
->rd_data0
)
1597 rgd
->rd_last_alloc
= 0;
1602 * gfs2_next_unreserved_block - Return next block that is not reserved
1603 * @rgd: The resource group
1604 * @block: The starting block
1605 * @length: The required length
1606 * @ip: Ignore any reservations for this inode
1608 * If the block does not appear in any reservation, then return the
1609 * block number unchanged. If it does appear in the reservation, then
1610 * keep looking through the tree of reservations in order to find the
1611 * first block number which is not reserved.
1614 static u64
gfs2_next_unreserved_block(struct gfs2_rgrpd
*rgd
, u64 block
,
1616 const struct gfs2_inode
*ip
)
1618 struct gfs2_blkreserv
*rs
;
1622 spin_lock(&rgd
->rd_rsspin
);
1623 n
= rgd
->rd_rstree
.rb_node
;
1625 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1626 rc
= rs_cmp(block
, length
, rs
);
1636 while ((rs_cmp(block
, length
, rs
) == 0) && (&ip
->i_res
!= rs
)) {
1637 block
= gfs2_rbm_to_block(&rs
->rs_rbm
) + rs
->rs_free
;
1641 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1645 spin_unlock(&rgd
->rd_rsspin
);
1650 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1651 * @rbm: The current position in the resource group
1652 * @ip: The inode for which we are searching for blocks
1653 * @minext: The minimum extent length
1654 * @maxext: A pointer to the maximum extent structure
1656 * This checks the current position in the rgrp to see whether there is
1657 * a reservation covering this block. If not then this function is a
1658 * no-op. If there is, then the position is moved to the end of the
1659 * contiguous reservation(s) so that we are pointing at the first
1660 * non-reserved block.
1662 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1665 static int gfs2_reservation_check_and_update(struct gfs2_rbm
*rbm
,
1666 const struct gfs2_inode
*ip
,
1668 struct gfs2_extent
*maxext
)
1670 u64 block
= gfs2_rbm_to_block(rbm
);
1676 * If we have a minimum extent length, then skip over any extent
1677 * which is less than the min extent length in size.
1680 extlen
= gfs2_free_extlen(rbm
, minext
);
1681 if (extlen
<= maxext
->len
)
1686 * Check the extent which has been found against the reservations
1687 * and skip if parts of it are already reserved
1689 nblock
= gfs2_next_unreserved_block(rbm
->rgd
, block
, extlen
, ip
);
1690 if (nblock
== block
) {
1691 if (!minext
|| extlen
>= minext
)
1694 if (extlen
> maxext
->len
) {
1695 maxext
->len
= extlen
;
1699 nblock
= block
+ extlen
;
1701 ret
= gfs2_rbm_from_block(rbm
, nblock
);
1708 * gfs2_rbm_find - Look for blocks of a particular state
1709 * @rbm: Value/result starting position and final position
1710 * @state: The state which we want to find
1711 * @minext: Pointer to the requested extent length (NULL for a single block)
1712 * This is updated to be the actual reservation size.
1713 * @ip: If set, check for reservations
1714 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1715 * around until we've reached the starting point.
1718 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1719 * has no free blocks in it.
1720 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1721 * has come up short on a free block search.
1723 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1726 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
1727 const struct gfs2_inode
*ip
, bool nowrap
)
1729 bool scan_from_start
= rbm
->bii
== 0 && rbm
->offset
== 0;
1730 struct buffer_head
*bh
;
1734 bool wrapped
= false;
1736 struct gfs2_bitmap
*bi
;
1737 struct gfs2_extent maxext
= { .rbm
.rgd
= rbm
->rgd
, };
1740 * Determine the last bitmap to search. If we're not starting at the
1741 * beginning of a bitmap, we need to search that bitmap twice to scan
1742 * the entire resource group.
1744 last_bii
= rbm
->bii
- (rbm
->offset
== 0);
1748 if ((ip
== NULL
|| !gfs2_rs_active(&ip
->i_res
)) &&
1749 test_bit(GBF_FULL
, &bi
->bi_flags
) &&
1750 (state
== GFS2_BLKST_FREE
))
1754 buffer
= bh
->b_data
+ bi
->bi_offset
;
1755 WARN_ON(!buffer_uptodate(bh
));
1756 if (state
!= GFS2_BLKST_UNLINKED
&& bi
->bi_clone
)
1757 buffer
= bi
->bi_clone
+ bi
->bi_offset
;
1758 offset
= gfs2_bitfit(buffer
, bi
->bi_bytes
, rbm
->offset
, state
);
1759 if (offset
== BFITNOENT
) {
1760 if (state
== GFS2_BLKST_FREE
&& rbm
->offset
== 0)
1761 set_bit(GBF_FULL
, &bi
->bi_flags
);
1764 rbm
->offset
= offset
;
1768 ret
= gfs2_reservation_check_and_update(rbm
, ip
,
1769 minext
? *minext
: 0,
1775 if (ret
== -E2BIG
) {
1778 goto res_covered_end_of_rgrp
;
1782 next_bitmap
: /* Find next bitmap in the rgrp */
1785 if (rbm
->bii
== rbm
->rgd
->rd_length
)
1787 res_covered_end_of_rgrp
:
1788 if (rbm
->bii
== 0) {
1796 /* Have we scanned the entire resource group? */
1797 if (wrapped
&& rbm
->bii
> last_bii
)
1801 if (minext
== NULL
|| state
!= GFS2_BLKST_FREE
)
1804 /* If the extent was too small, and it's smaller than the smallest
1805 to have failed before, remember for future reference that it's
1806 useless to search this rgrp again for this amount or more. */
1807 if (wrapped
&& (scan_from_start
|| rbm
->bii
> last_bii
) &&
1808 *minext
< rbm
->rgd
->rd_extfail_pt
)
1809 rbm
->rgd
->rd_extfail_pt
= *minext
;
1811 /* If the maximum extent we found is big enough to fulfill the
1812 minimum requirements, use it anyway. */
1815 *minext
= maxext
.len
;
1823 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1825 * @last_unlinked: block address of the last dinode we unlinked
1826 * @skip: block address we should explicitly not unlink
1828 * Returns: 0 if no error
1829 * The inode, if one has been found, in inode.
1832 static void try_rgrp_unlink(struct gfs2_rgrpd
*rgd
, u64
*last_unlinked
, u64 skip
)
1835 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1836 struct gfs2_glock
*gl
;
1837 struct gfs2_inode
*ip
;
1840 struct gfs2_rbm rbm
= { .rgd
= rgd
, .bii
= 0, .offset
= 0 };
1843 down_write(&sdp
->sd_log_flush_lock
);
1844 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_UNLINKED
, NULL
, NULL
,
1846 up_write(&sdp
->sd_log_flush_lock
);
1847 if (error
== -ENOSPC
)
1849 if (WARN_ON_ONCE(error
))
1852 block
= gfs2_rbm_to_block(&rbm
);
1853 if (gfs2_rbm_from_block(&rbm
, block
+ 1))
1855 if (*last_unlinked
!= NO_BLOCK
&& block
<= *last_unlinked
)
1859 *last_unlinked
= block
;
1861 error
= gfs2_glock_get(sdp
, block
, &gfs2_iopen_glops
, CREATE
, &gl
);
1865 /* If the inode is already in cache, we can ignore it here
1866 * because the existing inode disposal code will deal with
1867 * it when all refs have gone away. Accessing gl_object like
1868 * this is not safe in general. Here it is ok because we do
1869 * not dereference the pointer, and we only need an approx
1870 * answer to whether it is NULL or not.
1874 if (ip
|| queue_work(gfs2_delete_workqueue
, &gl
->gl_delete
) == 0)
1879 /* Limit reclaim to sensible number of tasks */
1880 if (found
> NR_CPUS
)
1884 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1889 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1890 * @rgd: The rgrp in question
1891 * @loops: An indication of how picky we can be (0=very, 1=less so)
1893 * This function uses the recently added glock statistics in order to
1894 * figure out whether a parciular resource group is suffering from
1895 * contention from multiple nodes. This is done purely on the basis
1896 * of timings, since this is the only data we have to work with and
1897 * our aim here is to reject a resource group which is highly contended
1898 * but (very important) not to do this too often in order to ensure that
1899 * we do not land up introducing fragmentation by changing resource
1900 * groups when not actually required.
1902 * The calculation is fairly simple, we want to know whether the SRTTB
1903 * (i.e. smoothed round trip time for blocking operations) to acquire
1904 * the lock for this rgrp's glock is significantly greater than the
1905 * time taken for resource groups on average. We introduce a margin in
1906 * the form of the variable @var which is computed as the sum of the two
1907 * respective variences, and multiplied by a factor depending on @loops
1908 * and whether we have a lot of data to base the decision on. This is
1909 * then tested against the square difference of the means in order to
1910 * decide whether the result is statistically significant or not.
1912 * Returns: A boolean verdict on the congestion status
1915 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd
*rgd
, int loops
)
1917 const struct gfs2_glock
*gl
= rgd
->rd_gl
;
1918 const struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
1919 struct gfs2_lkstats
*st
;
1920 u64 r_dcount
, l_dcount
;
1921 u64 l_srttb
, a_srttb
= 0;
1925 int cpu
, nonzero
= 0;
1928 for_each_present_cpu(cpu
) {
1929 st
= &per_cpu_ptr(sdp
->sd_lkstats
, cpu
)->lkstats
[LM_TYPE_RGRP
];
1930 if (st
->stats
[GFS2_LKS_SRTTB
]) {
1931 a_srttb
+= st
->stats
[GFS2_LKS_SRTTB
];
1935 st
= &this_cpu_ptr(sdp
->sd_lkstats
)->lkstats
[LM_TYPE_RGRP
];
1937 do_div(a_srttb
, nonzero
);
1938 r_dcount
= st
->stats
[GFS2_LKS_DCOUNT
];
1939 var
= st
->stats
[GFS2_LKS_SRTTVARB
] +
1940 gl
->gl_stats
.stats
[GFS2_LKS_SRTTVARB
];
1943 l_srttb
= gl
->gl_stats
.stats
[GFS2_LKS_SRTTB
];
1944 l_dcount
= gl
->gl_stats
.stats
[GFS2_LKS_DCOUNT
];
1946 if ((l_dcount
< 1) || (r_dcount
< 1) || (a_srttb
== 0))
1949 srttb_diff
= a_srttb
- l_srttb
;
1950 sqr_diff
= srttb_diff
* srttb_diff
;
1953 if (l_dcount
< 8 || r_dcount
< 8)
1958 return ((srttb_diff
< 0) && (sqr_diff
> var
));
1962 * gfs2_rgrp_used_recently
1963 * @rs: The block reservation with the rgrp to test
1964 * @msecs: The time limit in milliseconds
1966 * Returns: True if the rgrp glock has been used within the time limit
1968 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv
*rs
,
1973 tdiff
= ktime_to_ns(ktime_sub(ktime_get_real(),
1974 rs
->rs_rbm
.rgd
->rd_gl
->gl_dstamp
));
1976 return tdiff
> (msecs
* 1000 * 1000);
1979 static u32
gfs2_orlov_skip(const struct gfs2_inode
*ip
)
1981 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1984 get_random_bytes(&skip
, sizeof(skip
));
1985 return skip
% sdp
->sd_rgrps
;
1988 static bool gfs2_select_rgrp(struct gfs2_rgrpd
**pos
, const struct gfs2_rgrpd
*begin
)
1990 struct gfs2_rgrpd
*rgd
= *pos
;
1991 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1993 rgd
= gfs2_rgrpd_get_next(rgd
);
1995 rgd
= gfs2_rgrpd_get_first(sdp
);
1997 if (rgd
!= begin
) /* If we didn't wrap */
2003 * fast_to_acquire - determine if a resource group will be fast to acquire
2005 * If this is one of our preferred rgrps, it should be quicker to acquire,
2006 * because we tried to set ourselves up as dlm lock master.
2008 static inline int fast_to_acquire(struct gfs2_rgrpd
*rgd
)
2010 struct gfs2_glock
*gl
= rgd
->rd_gl
;
2012 if (gl
->gl_state
!= LM_ST_UNLOCKED
&& list_empty(&gl
->gl_holders
) &&
2013 !test_bit(GLF_DEMOTE_IN_PROGRESS
, &gl
->gl_flags
) &&
2014 !test_bit(GLF_DEMOTE
, &gl
->gl_flags
))
2016 if (rgd
->rd_flags
& GFS2_RDF_PREFERRED
)
2022 * gfs2_inplace_reserve - Reserve space in the filesystem
2023 * @ip: the inode to reserve space for
2024 * @ap: the allocation parameters
2026 * We try our best to find an rgrp that has at least ap->target blocks
2027 * available. After a couple of passes (loops == 2), the prospects of finding
2028 * such an rgrp diminish. At this stage, we return the first rgrp that has
2029 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2030 * the number of blocks available in the chosen rgrp.
2032 * Returns: 0 on success,
2033 * -ENOMEM if a suitable rgrp can't be found
2037 int gfs2_inplace_reserve(struct gfs2_inode
*ip
, struct gfs2_alloc_parms
*ap
)
2039 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2040 struct gfs2_rgrpd
*begin
= NULL
;
2041 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2042 int error
= 0, rg_locked
, flags
= 0;
2043 u64 last_unlinked
= NO_BLOCK
;
2045 u32 free_blocks
, skip
= 0;
2047 if (sdp
->sd_args
.ar_rgrplvb
)
2049 if (gfs2_assert_warn(sdp
, ap
->target
))
2051 if (gfs2_rs_active(rs
)) {
2052 begin
= rs
->rs_rbm
.rgd
;
2053 } else if (rs
->rs_rbm
.rgd
&&
2054 rgrp_contains_block(rs
->rs_rbm
.rgd
, ip
->i_goal
)) {
2055 begin
= rs
->rs_rbm
.rgd
;
2057 check_and_update_goal(ip
);
2058 rs
->rs_rbm
.rgd
= begin
= gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1);
2060 if (S_ISDIR(ip
->i_inode
.i_mode
) && (ap
->aflags
& GFS2_AF_ORLOV
))
2061 skip
= gfs2_orlov_skip(ip
);
2062 if (rs
->rs_rbm
.rgd
== NULL
)
2068 if (!gfs2_glock_is_locked_by_me(rs
->rs_rbm
.rgd
->rd_gl
)) {
2072 if (!gfs2_rs_active(rs
)) {
2074 !fast_to_acquire(rs
->rs_rbm
.rgd
))
2077 gfs2_rgrp_used_recently(rs
, 1000) &&
2078 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2081 error
= gfs2_glock_nq_init(rs
->rs_rbm
.rgd
->rd_gl
,
2082 LM_ST_EXCLUSIVE
, flags
,
2084 if (unlikely(error
))
2086 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
2087 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2089 if (sdp
->sd_args
.ar_rgrplvb
) {
2090 error
= update_rgrp_lvb(rs
->rs_rbm
.rgd
);
2091 if (unlikely(error
)) {
2092 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2098 /* Skip unusable resource groups */
2099 if ((rs
->rs_rbm
.rgd
->rd_flags
& (GFS2_RGF_NOALLOC
|
2101 (loops
== 0 && ap
->target
> rs
->rs_rbm
.rgd
->rd_extfail_pt
))
2104 if (sdp
->sd_args
.ar_rgrplvb
)
2105 gfs2_rgrp_bh_get(rs
->rs_rbm
.rgd
);
2107 /* Get a reservation if we don't already have one */
2108 if (!gfs2_rs_active(rs
))
2109 rg_mblk_search(rs
->rs_rbm
.rgd
, ip
, ap
);
2111 /* Skip rgrps when we can't get a reservation on first pass */
2112 if (!gfs2_rs_active(rs
) && (loops
< 1))
2115 /* If rgrp has enough free space, use it */
2116 free_blocks
= rgd_free(rs
->rs_rbm
.rgd
, rs
);
2117 if (free_blocks
>= ap
->target
||
2118 (loops
== 2 && ap
->min_target
&&
2119 free_blocks
>= ap
->min_target
)) {
2120 ap
->allowed
= free_blocks
;
2124 /* Check for unlinked inodes which can be reclaimed */
2125 if (rs
->rs_rbm
.rgd
->rd_flags
& GFS2_RDF_CHECK
)
2126 try_rgrp_unlink(rs
->rs_rbm
.rgd
, &last_unlinked
,
2129 /* Drop reservation, if we couldn't use reserved rgrp */
2130 if (gfs2_rs_active(rs
))
2131 gfs2_rs_deltree(rs
);
2133 /* Unlock rgrp if required */
2135 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2137 /* Find the next rgrp, and continue looking */
2138 if (gfs2_select_rgrp(&rs
->rs_rbm
.rgd
, begin
))
2143 /* If we've scanned all the rgrps, but found no free blocks
2144 * then this checks for some less likely conditions before
2148 /* Check that fs hasn't grown if writing to rindex */
2149 if (ip
== GFS2_I(sdp
->sd_rindex
) && !sdp
->sd_rindex_uptodate
) {
2150 error
= gfs2_ri_update(ip
);
2154 /* Flushing the log may release space */
2156 gfs2_log_flush(sdp
, NULL
, GFS2_LOG_HEAD_FLUSH_NORMAL
|
2157 GFS2_LFC_INPLACE_RESERVE
);
2164 * gfs2_inplace_release - release an inplace reservation
2165 * @ip: the inode the reservation was taken out on
2167 * Release a reservation made by gfs2_inplace_reserve().
2170 void gfs2_inplace_release(struct gfs2_inode
*ip
)
2172 if (gfs2_holder_initialized(&ip
->i_rgd_gh
))
2173 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2177 * gfs2_alloc_extent - allocate an extent from a given bitmap
2178 * @rbm: the resource group information
2179 * @dinode: TRUE if the first block we allocate is for a dinode
2180 * @n: The extent length (value/result)
2182 * Add the bitmap buffer to the transaction.
2183 * Set the found bits to @new_state to change block's allocation state.
2185 static void gfs2_alloc_extent(const struct gfs2_rbm
*rbm
, bool dinode
,
2188 struct gfs2_rbm pos
= { .rgd
= rbm
->rgd
, };
2189 const unsigned int elen
= *n
;
2194 block
= gfs2_rbm_to_block(rbm
);
2195 gfs2_trans_add_meta(rbm
->rgd
->rd_gl
, rbm_bi(rbm
)->bi_bh
);
2196 gfs2_setbit(rbm
, true, dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2199 ret
= gfs2_rbm_from_block(&pos
, block
);
2200 if (ret
|| gfs2_testbit(&pos
, true) != GFS2_BLKST_FREE
)
2202 gfs2_trans_add_meta(pos
.rgd
->rd_gl
, rbm_bi(&pos
)->bi_bh
);
2203 gfs2_setbit(&pos
, true, GFS2_BLKST_USED
);
2210 * rgblk_free - Change alloc state of given block(s)
2211 * @sdp: the filesystem
2212 * @rgd: the resource group the blocks are in
2213 * @bstart: the start of a run of blocks to free
2214 * @blen: the length of the block run (all must lie within ONE RG!)
2215 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2218 static void rgblk_free(struct gfs2_sbd
*sdp
, struct gfs2_rgrpd
*rgd
,
2219 u64 bstart
, u32 blen
, unsigned char new_state
)
2221 struct gfs2_rbm rbm
;
2222 struct gfs2_bitmap
*bi
, *bi_prev
= NULL
;
2225 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm
, bstart
)))
2229 if (bi
!= bi_prev
) {
2230 if (!bi
->bi_clone
) {
2231 bi
->bi_clone
= kmalloc(bi
->bi_bh
->b_size
,
2232 GFP_NOFS
| __GFP_NOFAIL
);
2233 memcpy(bi
->bi_clone
+ bi
->bi_offset
,
2234 bi
->bi_bh
->b_data
+ bi
->bi_offset
,
2237 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, bi
->bi_bh
);
2240 gfs2_setbit(&rbm
, false, new_state
);
2241 gfs2_rbm_incr(&rbm
);
2246 * gfs2_rgrp_dump - print out an rgrp
2247 * @seq: The iterator
2248 * @gl: The glock in question
2252 void gfs2_rgrp_dump(struct seq_file
*seq
, struct gfs2_glock
*gl
)
2254 struct gfs2_rgrpd
*rgd
= gl
->gl_object
;
2255 struct gfs2_blkreserv
*trs
;
2256 const struct rb_node
*n
;
2260 gfs2_print_dbg(seq
, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2261 (unsigned long long)rgd
->rd_addr
, rgd
->rd_flags
,
2262 rgd
->rd_free
, rgd
->rd_free_clone
, rgd
->rd_dinodes
,
2263 rgd
->rd_reserved
, rgd
->rd_extfail_pt
);
2264 if (rgd
->rd_sbd
->sd_args
.ar_rgrplvb
) {
2265 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
2267 gfs2_print_dbg(seq
, " L: f:%02x b:%u i:%u\n",
2268 be32_to_cpu(rgl
->rl_flags
),
2269 be32_to_cpu(rgl
->rl_free
),
2270 be32_to_cpu(rgl
->rl_dinodes
));
2272 spin_lock(&rgd
->rd_rsspin
);
2273 for (n
= rb_first(&rgd
->rd_rstree
); n
; n
= rb_next(&trs
->rs_node
)) {
2274 trs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
2277 spin_unlock(&rgd
->rd_rsspin
);
2280 static void gfs2_rgrp_error(struct gfs2_rgrpd
*rgd
)
2282 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2283 fs_warn(sdp
, "rgrp %llu has an error, marking it readonly until umount\n",
2284 (unsigned long long)rgd
->rd_addr
);
2285 fs_warn(sdp
, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2286 gfs2_rgrp_dump(NULL
, rgd
->rd_gl
);
2287 rgd
->rd_flags
|= GFS2_RDF_ERROR
;
2291 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2292 * @ip: The inode we have just allocated blocks for
2293 * @rbm: The start of the allocated blocks
2294 * @len: The extent length
2296 * Adjusts a reservation after an allocation has taken place. If the
2297 * reservation does not match the allocation, or if it is now empty
2298 * then it is removed.
2301 static void gfs2_adjust_reservation(struct gfs2_inode
*ip
,
2302 const struct gfs2_rbm
*rbm
, unsigned len
)
2304 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2305 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
2310 spin_lock(&rgd
->rd_rsspin
);
2311 if (gfs2_rs_active(rs
)) {
2312 if (gfs2_rbm_eq(&rs
->rs_rbm
, rbm
)) {
2313 block
= gfs2_rbm_to_block(rbm
);
2314 ret
= gfs2_rbm_from_block(&rs
->rs_rbm
, block
+ len
);
2315 rlen
= min(rs
->rs_free
, len
);
2316 rs
->rs_free
-= rlen
;
2317 rgd
->rd_reserved
-= rlen
;
2318 trace_gfs2_rs(rs
, TRACE_RS_CLAIM
);
2319 if (rs
->rs_free
&& !ret
)
2321 /* We used up our block reservation, so we should
2322 reserve more blocks next time. */
2323 atomic_add(RGRP_RSRV_ADDBLKS
, &ip
->i_sizehint
);
2328 spin_unlock(&rgd
->rd_rsspin
);
2332 * gfs2_set_alloc_start - Set starting point for block allocation
2333 * @rbm: The rbm which will be set to the required location
2334 * @ip: The gfs2 inode
2335 * @dinode: Flag to say if allocation includes a new inode
2337 * This sets the starting point from the reservation if one is active
2338 * otherwise it falls back to guessing a start point based on the
2339 * inode's goal block or the last allocation point in the rgrp.
2342 static void gfs2_set_alloc_start(struct gfs2_rbm
*rbm
,
2343 const struct gfs2_inode
*ip
, bool dinode
)
2347 if (gfs2_rs_active(&ip
->i_res
)) {
2348 *rbm
= ip
->i_res
.rs_rbm
;
2352 if (!dinode
&& rgrp_contains_block(rbm
->rgd
, ip
->i_goal
))
2355 goal
= rbm
->rgd
->rd_last_alloc
+ rbm
->rgd
->rd_data0
;
2357 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm
, goal
))) {
2364 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2365 * @ip: the inode to allocate the block for
2366 * @bn: Used to return the starting block number
2367 * @nblocks: requested number of blocks/extent length (value/result)
2368 * @dinode: 1 if we're allocating a dinode block, else 0
2369 * @generation: the generation number of the inode
2371 * Returns: 0 or error
2374 int gfs2_alloc_blocks(struct gfs2_inode
*ip
, u64
*bn
, unsigned int *nblocks
,
2375 bool dinode
, u64
*generation
)
2377 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2378 struct buffer_head
*dibh
;
2379 struct gfs2_rbm rbm
= { .rgd
= ip
->i_res
.rs_rbm
.rgd
, };
2381 u64 block
; /* block, within the file system scope */
2384 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2385 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, ip
, false);
2387 if (error
== -ENOSPC
) {
2388 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2389 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, NULL
, false);
2392 /* Since all blocks are reserved in advance, this shouldn't happen */
2394 fs_warn(sdp
, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2395 (unsigned long long)ip
->i_no_addr
, error
, *nblocks
,
2396 test_bit(GBF_FULL
, &rbm
.rgd
->rd_bits
->bi_flags
),
2397 rbm
.rgd
->rd_extfail_pt
);
2401 gfs2_alloc_extent(&rbm
, dinode
, nblocks
);
2402 block
= gfs2_rbm_to_block(&rbm
);
2403 rbm
.rgd
->rd_last_alloc
= block
- rbm
.rgd
->rd_data0
;
2404 if (gfs2_rs_active(&ip
->i_res
))
2405 gfs2_adjust_reservation(ip
, &rbm
, *nblocks
);
2411 ip
->i_goal
= block
+ ndata
- 1;
2412 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
2414 struct gfs2_dinode
*di
=
2415 (struct gfs2_dinode
*)dibh
->b_data
;
2416 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
2417 di
->di_goal_meta
= di
->di_goal_data
=
2418 cpu_to_be64(ip
->i_goal
);
2422 if (rbm
.rgd
->rd_free
< *nblocks
) {
2423 fs_warn(sdp
, "nblocks=%u\n", *nblocks
);
2427 rbm
.rgd
->rd_free
-= *nblocks
;
2429 rbm
.rgd
->rd_dinodes
++;
2430 *generation
= rbm
.rgd
->rd_igeneration
++;
2431 if (*generation
== 0)
2432 *generation
= rbm
.rgd
->rd_igeneration
++;
2435 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_bits
[0].bi_bh
);
2436 gfs2_rgrp_out(rbm
.rgd
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2438 gfs2_statfs_change(sdp
, 0, -(s64
)*nblocks
, dinode
? 1 : 0);
2440 gfs2_trans_remove_revoke(sdp
, block
, *nblocks
);
2442 gfs2_quota_change(ip
, *nblocks
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2444 rbm
.rgd
->rd_free_clone
-= *nblocks
;
2445 trace_gfs2_block_alloc(ip
, rbm
.rgd
, block
, *nblocks
,
2446 dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2451 gfs2_rgrp_error(rbm
.rgd
);
2456 * __gfs2_free_blocks - free a contiguous run of block(s)
2457 * @ip: the inode these blocks are being freed from
2458 * @rgd: the resource group the blocks are in
2459 * @bstart: first block of a run of contiguous blocks
2460 * @blen: the length of the block run
2461 * @meta: 1 if the blocks represent metadata
2465 void __gfs2_free_blocks(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2466 u64 bstart
, u32 blen
, int meta
)
2468 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2470 rgblk_free(sdp
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2471 trace_gfs2_block_alloc(ip
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2472 rgd
->rd_free
+= blen
;
2473 rgd
->rd_flags
&= ~GFS2_RGF_TRIMMED
;
2474 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2475 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2477 /* Directories keep their data in the metadata address space */
2478 if (meta
|| ip
->i_depth
)
2479 gfs2_meta_wipe(ip
, bstart
, blen
);
2483 * gfs2_free_meta - free a contiguous run of data block(s)
2484 * @ip: the inode these blocks are being freed from
2485 * @rgd: the resource group the blocks are in
2486 * @bstart: first block of a run of contiguous blocks
2487 * @blen: the length of the block run
2491 void gfs2_free_meta(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2492 u64 bstart
, u32 blen
)
2494 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2496 __gfs2_free_blocks(ip
, rgd
, bstart
, blen
, 1);
2497 gfs2_statfs_change(sdp
, 0, +blen
, 0);
2498 gfs2_quota_change(ip
, -(s64
)blen
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2501 void gfs2_unlink_di(struct inode
*inode
)
2503 struct gfs2_inode
*ip
= GFS2_I(inode
);
2504 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
2505 struct gfs2_rgrpd
*rgd
;
2506 u64 blkno
= ip
->i_no_addr
;
2508 rgd
= gfs2_blk2rgrpd(sdp
, blkno
, true);
2511 rgblk_free(sdp
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2512 trace_gfs2_block_alloc(ip
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2513 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2514 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2515 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, 1);
2518 void gfs2_free_di(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
)
2520 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2522 rgblk_free(sdp
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2523 if (!rgd
->rd_dinodes
)
2524 gfs2_consist_rgrpd(rgd
);
2528 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2529 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2530 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, -1);
2532 gfs2_statfs_change(sdp
, 0, +1, -1);
2533 trace_gfs2_block_alloc(ip
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2534 gfs2_quota_change(ip
, -1, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2535 gfs2_meta_wipe(ip
, ip
->i_no_addr
, 1);
2539 * gfs2_check_blk_type - Check the type of a block
2540 * @sdp: The superblock
2541 * @no_addr: The block number to check
2542 * @type: The block type we are looking for
2544 * Returns: 0 if the block type matches the expected type
2545 * -ESTALE if it doesn't match
2546 * or -ve errno if something went wrong while checking
2549 int gfs2_check_blk_type(struct gfs2_sbd
*sdp
, u64 no_addr
, unsigned int type
)
2551 struct gfs2_rgrpd
*rgd
;
2552 struct gfs2_holder rgd_gh
;
2553 struct gfs2_rbm rbm
;
2554 int error
= -EINVAL
;
2556 rgd
= gfs2_blk2rgrpd(sdp
, no_addr
, 1);
2560 error
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_SHARED
, 0, &rgd_gh
);
2565 error
= gfs2_rbm_from_block(&rbm
, no_addr
);
2566 if (WARN_ON_ONCE(error
))
2569 if (gfs2_testbit(&rbm
, false) != type
)
2572 gfs2_glock_dq_uninit(&rgd_gh
);
2578 * gfs2_rlist_add - add a RG to a list of RGs
2580 * @rlist: the list of resource groups
2583 * Figure out what RG a block belongs to and add that RG to the list
2585 * FIXME: Don't use NOFAIL
2589 void gfs2_rlist_add(struct gfs2_inode
*ip
, struct gfs2_rgrp_list
*rlist
,
2592 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2593 struct gfs2_rgrpd
*rgd
;
2594 struct gfs2_rgrpd
**tmp
;
2595 unsigned int new_space
;
2598 if (gfs2_assert_warn(sdp
, !rlist
->rl_ghs
))
2602 * The resource group last accessed is kept in the last position.
2605 if (rlist
->rl_rgrps
) {
2606 rgd
= rlist
->rl_rgd
[rlist
->rl_rgrps
- 1];
2607 if (rgrp_contains_block(rgd
, block
))
2609 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2611 rgd
= ip
->i_res
.rs_rbm
.rgd
;
2612 if (!rgd
|| !rgrp_contains_block(rgd
, block
))
2613 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2617 fs_err(sdp
, "rlist_add: no rgrp for block %llu\n",
2618 (unsigned long long)block
);
2622 for (x
= 0; x
< rlist
->rl_rgrps
; x
++) {
2623 if (rlist
->rl_rgd
[x
] == rgd
) {
2624 swap(rlist
->rl_rgd
[x
],
2625 rlist
->rl_rgd
[rlist
->rl_rgrps
- 1]);
2630 if (rlist
->rl_rgrps
== rlist
->rl_space
) {
2631 new_space
= rlist
->rl_space
+ 10;
2633 tmp
= kcalloc(new_space
, sizeof(struct gfs2_rgrpd
*),
2634 GFP_NOFS
| __GFP_NOFAIL
);
2636 if (rlist
->rl_rgd
) {
2637 memcpy(tmp
, rlist
->rl_rgd
,
2638 rlist
->rl_space
* sizeof(struct gfs2_rgrpd
*));
2639 kfree(rlist
->rl_rgd
);
2642 rlist
->rl_space
= new_space
;
2643 rlist
->rl_rgd
= tmp
;
2646 rlist
->rl_rgd
[rlist
->rl_rgrps
++] = rgd
;
2650 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2651 * and initialize an array of glock holders for them
2652 * @rlist: the list of resource groups
2654 * FIXME: Don't use NOFAIL
2658 void gfs2_rlist_alloc(struct gfs2_rgrp_list
*rlist
)
2662 rlist
->rl_ghs
= kmalloc_array(rlist
->rl_rgrps
,
2663 sizeof(struct gfs2_holder
),
2664 GFP_NOFS
| __GFP_NOFAIL
);
2665 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2666 gfs2_holder_init(rlist
->rl_rgd
[x
]->rd_gl
,
2672 * gfs2_rlist_free - free a resource group list
2673 * @rlist: the list of resource groups
2677 void gfs2_rlist_free(struct gfs2_rgrp_list
*rlist
)
2681 kfree(rlist
->rl_rgd
);
2683 if (rlist
->rl_ghs
) {
2684 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2685 gfs2_holder_uninit(&rlist
->rl_ghs
[x
]);
2686 kfree(rlist
->rl_ghs
);
2687 rlist
->rl_ghs
= NULL
;