1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
31 int sysctl_unprivileged_userfaultfd __read_mostly
= 1;
33 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
35 enum userfaultfd_state
{
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx
{
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh
;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh
;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh
;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh
;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq
;
55 /* pseudo fd refcounting */
57 /* userfaultfd syscall flags */
59 /* features requested from the userspace */
60 unsigned int features
;
62 enum userfaultfd_state state
;
65 /* memory mappings are changing because of non-cooperative event */
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
71 struct userfaultfd_fork_ctx
{
72 struct userfaultfd_ctx
*orig
;
73 struct userfaultfd_ctx
*new;
74 struct list_head list
;
77 struct userfaultfd_unmap_ctx
{
78 struct userfaultfd_ctx
*ctx
;
81 struct list_head list
;
84 struct userfaultfd_wait_queue
{
86 wait_queue_entry_t wq
;
87 struct userfaultfd_ctx
*ctx
;
91 struct userfaultfd_wake_range
{
96 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
97 int wake_flags
, void *key
)
99 struct userfaultfd_wake_range
*range
= key
;
101 struct userfaultfd_wait_queue
*uwq
;
102 unsigned long start
, len
;
104 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
106 /* len == 0 means wake all */
107 start
= range
->start
;
109 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
110 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
112 WRITE_ONCE(uwq
->waken
, true);
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
117 ret
= wake_up_state(wq
->private, mode
);
120 * Wake only once, autoremove behavior.
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
130 list_del_init(&wq
->entry
);
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * @ctx: [in] Pointer to the userfaultfd context.
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
143 refcount_inc(&ctx
->refcount
);
147 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
149 * @ctx: [in] Pointer to userfaultfd context.
151 * The userfaultfd context reference must have been previously acquired either
152 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
154 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
156 if (refcount_dec_and_test(&ctx
->refcount
)) {
157 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
158 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
159 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
160 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
161 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
162 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
163 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
164 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
166 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
170 static inline void msg_init(struct uffd_msg
*msg
)
172 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
174 * Must use memset to zero out the paddings or kernel data is
175 * leaked to userland.
177 memset(msg
, 0, sizeof(struct uffd_msg
));
180 static inline struct uffd_msg
userfault_msg(unsigned long address
,
182 unsigned long reason
,
183 unsigned int features
)
187 msg
.event
= UFFD_EVENT_PAGEFAULT
;
188 msg
.arg
.pagefault
.address
= address
;
189 if (flags
& FAULT_FLAG_WRITE
)
191 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
192 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
193 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
194 * was a read fault, otherwise if set it means it's
197 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
198 if (reason
& VM_UFFD_WP
)
200 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
201 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
202 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
203 * a missing fault, otherwise if set it means it's a
204 * write protect fault.
206 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
207 if (features
& UFFD_FEATURE_THREAD_ID
)
208 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
212 #ifdef CONFIG_HUGETLB_PAGE
214 * Same functionality as userfaultfd_must_wait below with modifications for
217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
218 struct vm_area_struct
*vma
,
219 unsigned long address
,
221 unsigned long reason
)
223 struct mm_struct
*mm
= ctx
->mm
;
227 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
229 ptep
= huge_pte_offset(mm
, address
, vma_mmu_pagesize(vma
));
235 pte
= huge_ptep_get(ptep
);
238 * Lockless access: we're in a wait_event so it's ok if it
241 if (huge_pte_none(pte
))
243 if (!huge_pte_write(pte
) && (reason
& VM_UFFD_WP
))
249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
250 struct vm_area_struct
*vma
,
251 unsigned long address
,
253 unsigned long reason
)
255 return false; /* should never get here */
257 #endif /* CONFIG_HUGETLB_PAGE */
260 * Verify the pagetables are still not ok after having reigstered into
261 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
262 * userfault that has already been resolved, if userfaultfd_read and
263 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
266 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
267 unsigned long address
,
269 unsigned long reason
)
271 struct mm_struct
*mm
= ctx
->mm
;
279 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
281 pgd
= pgd_offset(mm
, address
);
282 if (!pgd_present(*pgd
))
284 p4d
= p4d_offset(pgd
, address
);
285 if (!p4d_present(*p4d
))
287 pud
= pud_offset(p4d
, address
);
288 if (!pud_present(*pud
))
290 pmd
= pmd_offset(pud
, address
);
292 * READ_ONCE must function as a barrier with narrower scope
293 * and it must be equivalent to:
294 * _pmd = *pmd; barrier();
296 * This is to deal with the instability (as in
297 * pmd_trans_unstable) of the pmd.
299 _pmd
= READ_ONCE(*pmd
);
304 if (!pmd_present(_pmd
))
307 if (pmd_trans_huge(_pmd
))
311 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
312 * and use the standard pte_offset_map() instead of parsing _pmd.
314 pte
= pte_offset_map(pmd
, address
);
316 * Lockless access: we're in a wait_event so it's ok if it
328 * The locking rules involved in returning VM_FAULT_RETRY depending on
329 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
330 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
331 * recommendation in __lock_page_or_retry is not an understatement.
333 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
334 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
337 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
338 * set, VM_FAULT_RETRY can still be returned if and only if there are
339 * fatal_signal_pending()s, and the mmap_sem must be released before
342 vm_fault_t
handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
344 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
345 struct userfaultfd_ctx
*ctx
;
346 struct userfaultfd_wait_queue uwq
;
347 vm_fault_t ret
= VM_FAULT_SIGBUS
;
348 bool must_wait
, return_to_userland
;
352 * We don't do userfault handling for the final child pid update.
354 * We also don't do userfault handling during
355 * coredumping. hugetlbfs has the special
356 * follow_hugetlb_page() to skip missing pages in the
357 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
358 * the no_page_table() helper in follow_page_mask(), but the
359 * shmem_vm_ops->fault method is invoked even during
360 * coredumping without mmap_sem and it ends up here.
362 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
366 * Coredumping runs without mmap_sem so we can only check that
367 * the mmap_sem is held, if PF_DUMPCORE was not set.
369 WARN_ON_ONCE(!rwsem_is_locked(&mm
->mmap_sem
));
371 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
375 BUG_ON(ctx
->mm
!= mm
);
377 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
378 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
380 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
384 * If it's already released don't get it. This avoids to loop
385 * in __get_user_pages if userfaultfd_release waits on the
386 * caller of handle_userfault to release the mmap_sem.
388 if (unlikely(READ_ONCE(ctx
->released
))) {
390 * Don't return VM_FAULT_SIGBUS in this case, so a non
391 * cooperative manager can close the uffd after the
392 * last UFFDIO_COPY, without risking to trigger an
393 * involuntary SIGBUS if the process was starting the
394 * userfaultfd while the userfaultfd was still armed
395 * (but after the last UFFDIO_COPY). If the uffd
396 * wasn't already closed when the userfault reached
397 * this point, that would normally be solved by
398 * userfaultfd_must_wait returning 'false'.
400 * If we were to return VM_FAULT_SIGBUS here, the non
401 * cooperative manager would be instead forced to
402 * always call UFFDIO_UNREGISTER before it can safely
405 ret
= VM_FAULT_NOPAGE
;
410 * Check that we can return VM_FAULT_RETRY.
412 * NOTE: it should become possible to return VM_FAULT_RETRY
413 * even if FAULT_FLAG_TRIED is set without leading to gup()
414 * -EBUSY failures, if the userfaultfd is to be extended for
415 * VM_UFFD_WP tracking and we intend to arm the userfault
416 * without first stopping userland access to the memory. For
417 * VM_UFFD_MISSING userfaults this is enough for now.
419 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
421 * Validate the invariant that nowait must allow retry
422 * to be sure not to return SIGBUS erroneously on
423 * nowait invocations.
425 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
426 #ifdef CONFIG_DEBUG_VM
427 if (printk_ratelimit()) {
429 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
438 * Handle nowait, not much to do other than tell it to retry
441 ret
= VM_FAULT_RETRY
;
442 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
445 /* take the reference before dropping the mmap_sem */
446 userfaultfd_ctx_get(ctx
);
448 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
449 uwq
.wq
.private = current
;
450 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
,
456 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
457 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
458 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
461 spin_lock(&ctx
->fault_pending_wqh
.lock
);
463 * After the __add_wait_queue the uwq is visible to userland
464 * through poll/read().
466 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
468 * The smp_mb() after __set_current_state prevents the reads
469 * following the spin_unlock to happen before the list_add in
472 set_current_state(blocking_state
);
473 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
475 if (!is_vm_hugetlb_page(vmf
->vma
))
476 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
479 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->vma
,
482 up_read(&mm
->mmap_sem
);
484 if (likely(must_wait
&& !READ_ONCE(ctx
->released
) &&
485 (return_to_userland
? !signal_pending(current
) :
486 !fatal_signal_pending(current
)))) {
487 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
489 ret
|= VM_FAULT_MAJOR
;
492 * False wakeups can orginate even from rwsem before
493 * up_read() however userfaults will wait either for a
494 * targeted wakeup on the specific uwq waitqueue from
495 * wake_userfault() or for signals or for uffd
498 while (!READ_ONCE(uwq
.waken
)) {
500 * This needs the full smp_store_mb()
501 * guarantee as the state write must be
502 * visible to other CPUs before reading
503 * uwq.waken from other CPUs.
505 set_current_state(blocking_state
);
506 if (READ_ONCE(uwq
.waken
) ||
507 READ_ONCE(ctx
->released
) ||
508 (return_to_userland
? signal_pending(current
) :
509 fatal_signal_pending(current
)))
515 __set_current_state(TASK_RUNNING
);
517 if (return_to_userland
) {
518 if (signal_pending(current
) &&
519 !fatal_signal_pending(current
)) {
521 * If we got a SIGSTOP or SIGCONT and this is
522 * a normal userland page fault, just let
523 * userland return so the signal will be
524 * handled and gdb debugging works. The page
525 * fault code immediately after we return from
526 * this function is going to release the
527 * mmap_sem and it's not depending on it
528 * (unlike gup would if we were not to return
531 * If a fatal signal is pending we still take
532 * the streamlined VM_FAULT_RETRY failure path
533 * and there's no need to retake the mmap_sem
536 down_read(&mm
->mmap_sem
);
537 ret
= VM_FAULT_NOPAGE
;
542 * Here we race with the list_del; list_add in
543 * userfaultfd_ctx_read(), however because we don't ever run
544 * list_del_init() to refile across the two lists, the prev
545 * and next pointers will never point to self. list_add also
546 * would never let any of the two pointers to point to
547 * self. So list_empty_careful won't risk to see both pointers
548 * pointing to self at any time during the list refile. The
549 * only case where list_del_init() is called is the full
550 * removal in the wake function and there we don't re-list_add
551 * and it's fine not to block on the spinlock. The uwq on this
552 * kernel stack can be released after the list_del_init.
554 if (!list_empty_careful(&uwq
.wq
.entry
)) {
555 spin_lock(&ctx
->fault_pending_wqh
.lock
);
557 * No need of list_del_init(), the uwq on the stack
558 * will be freed shortly anyway.
560 list_del(&uwq
.wq
.entry
);
561 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
565 * ctx may go away after this if the userfault pseudo fd is
568 userfaultfd_ctx_put(ctx
);
574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
575 struct userfaultfd_wait_queue
*ewq
)
577 struct userfaultfd_ctx
*release_new_ctx
;
579 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
583 init_waitqueue_entry(&ewq
->wq
, current
);
584 release_new_ctx
= NULL
;
586 spin_lock(&ctx
->event_wqh
.lock
);
588 * After the __add_wait_queue the uwq is visible to userland
589 * through poll/read().
591 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
593 set_current_state(TASK_KILLABLE
);
594 if (ewq
->msg
.event
== 0)
596 if (READ_ONCE(ctx
->released
) ||
597 fatal_signal_pending(current
)) {
599 * &ewq->wq may be queued in fork_event, but
600 * __remove_wait_queue ignores the head
601 * parameter. It would be a problem if it
604 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
605 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
606 struct userfaultfd_ctx
*new;
608 new = (struct userfaultfd_ctx
*)
610 ewq
->msg
.arg
.reserved
.reserved1
;
611 release_new_ctx
= new;
616 spin_unlock(&ctx
->event_wqh
.lock
);
618 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
621 spin_lock(&ctx
->event_wqh
.lock
);
623 __set_current_state(TASK_RUNNING
);
624 spin_unlock(&ctx
->event_wqh
.lock
);
626 if (release_new_ctx
) {
627 struct vm_area_struct
*vma
;
628 struct mm_struct
*mm
= release_new_ctx
->mm
;
630 /* the various vma->vm_userfaultfd_ctx still points to it */
631 down_write(&mm
->mmap_sem
);
632 /* no task can run (and in turn coredump) yet */
633 VM_WARN_ON(!mmget_still_valid(mm
));
634 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
635 if (vma
->vm_userfaultfd_ctx
.ctx
== release_new_ctx
) {
636 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
637 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
639 up_write(&mm
->mmap_sem
);
641 userfaultfd_ctx_put(release_new_ctx
);
645 * ctx may go away after this if the userfault pseudo fd is
649 WRITE_ONCE(ctx
->mmap_changing
, false);
650 userfaultfd_ctx_put(ctx
);
653 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
654 struct userfaultfd_wait_queue
*ewq
)
657 wake_up_locked(&ctx
->event_wqh
);
658 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
661 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
663 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
664 struct userfaultfd_fork_ctx
*fctx
;
666 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
667 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
668 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
669 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
673 list_for_each_entry(fctx
, fcs
, list
)
674 if (fctx
->orig
== octx
) {
680 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
684 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
690 refcount_set(&ctx
->refcount
, 1);
691 ctx
->flags
= octx
->flags
;
692 ctx
->state
= UFFD_STATE_RUNNING
;
693 ctx
->features
= octx
->features
;
694 ctx
->released
= false;
695 ctx
->mmap_changing
= false;
696 ctx
->mm
= vma
->vm_mm
;
699 userfaultfd_ctx_get(octx
);
700 WRITE_ONCE(octx
->mmap_changing
, true);
703 list_add_tail(&fctx
->list
, fcs
);
706 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
710 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
712 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
713 struct userfaultfd_wait_queue ewq
;
717 ewq
.msg
.event
= UFFD_EVENT_FORK
;
718 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
720 userfaultfd_event_wait_completion(ctx
, &ewq
);
723 void dup_userfaultfd_complete(struct list_head
*fcs
)
725 struct userfaultfd_fork_ctx
*fctx
, *n
;
727 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
729 list_del(&fctx
->list
);
734 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
735 struct vm_userfaultfd_ctx
*vm_ctx
)
737 struct userfaultfd_ctx
*ctx
;
739 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
744 if (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
) {
746 userfaultfd_ctx_get(ctx
);
747 WRITE_ONCE(ctx
->mmap_changing
, true);
749 /* Drop uffd context if remap feature not enabled */
750 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
751 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
755 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
756 unsigned long from
, unsigned long to
,
759 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
760 struct userfaultfd_wait_queue ewq
;
765 if (to
& ~PAGE_MASK
) {
766 userfaultfd_ctx_put(ctx
);
772 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
773 ewq
.msg
.arg
.remap
.from
= from
;
774 ewq
.msg
.arg
.remap
.to
= to
;
775 ewq
.msg
.arg
.remap
.len
= len
;
777 userfaultfd_event_wait_completion(ctx
, &ewq
);
780 bool userfaultfd_remove(struct vm_area_struct
*vma
,
781 unsigned long start
, unsigned long end
)
783 struct mm_struct
*mm
= vma
->vm_mm
;
784 struct userfaultfd_ctx
*ctx
;
785 struct userfaultfd_wait_queue ewq
;
787 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
788 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
791 userfaultfd_ctx_get(ctx
);
792 WRITE_ONCE(ctx
->mmap_changing
, true);
793 up_read(&mm
->mmap_sem
);
797 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
798 ewq
.msg
.arg
.remove
.start
= start
;
799 ewq
.msg
.arg
.remove
.end
= end
;
801 userfaultfd_event_wait_completion(ctx
, &ewq
);
806 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
807 unsigned long start
, unsigned long end
)
809 struct userfaultfd_unmap_ctx
*unmap_ctx
;
811 list_for_each_entry(unmap_ctx
, unmaps
, list
)
812 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
813 unmap_ctx
->end
== end
)
819 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
820 unsigned long start
, unsigned long end
,
821 struct list_head
*unmaps
)
823 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
824 struct userfaultfd_unmap_ctx
*unmap_ctx
;
825 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
827 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
828 has_unmap_ctx(ctx
, unmaps
, start
, end
))
831 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
835 userfaultfd_ctx_get(ctx
);
836 WRITE_ONCE(ctx
->mmap_changing
, true);
837 unmap_ctx
->ctx
= ctx
;
838 unmap_ctx
->start
= start
;
839 unmap_ctx
->end
= end
;
840 list_add_tail(&unmap_ctx
->list
, unmaps
);
846 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
848 struct userfaultfd_unmap_ctx
*ctx
, *n
;
849 struct userfaultfd_wait_queue ewq
;
851 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
854 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
855 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
856 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
858 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
860 list_del(&ctx
->list
);
865 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
867 struct userfaultfd_ctx
*ctx
= file
->private_data
;
868 struct mm_struct
*mm
= ctx
->mm
;
869 struct vm_area_struct
*vma
, *prev
;
870 /* len == 0 means wake all */
871 struct userfaultfd_wake_range range
= { .len
= 0, };
872 unsigned long new_flags
;
874 WRITE_ONCE(ctx
->released
, true);
876 if (!mmget_not_zero(mm
))
880 * Flush page faults out of all CPUs. NOTE: all page faults
881 * must be retried without returning VM_FAULT_SIGBUS if
882 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
883 * changes while handle_userfault released the mmap_sem. So
884 * it's critical that released is set to true (above), before
885 * taking the mmap_sem for writing.
887 down_write(&mm
->mmap_sem
);
888 if (!mmget_still_valid(mm
))
891 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
893 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
894 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
895 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
899 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
900 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
901 new_flags
, vma
->anon_vma
,
902 vma
->vm_file
, vma
->vm_pgoff
,
909 vma
->vm_flags
= new_flags
;
910 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
913 up_write(&mm
->mmap_sem
);
917 * After no new page faults can wait on this fault_*wqh, flush
918 * the last page faults that may have been already waiting on
921 spin_lock(&ctx
->fault_pending_wqh
.lock
);
922 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
923 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, &range
);
924 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
926 /* Flush pending events that may still wait on event_wqh */
927 wake_up_all(&ctx
->event_wqh
);
929 wake_up_poll(&ctx
->fd_wqh
, EPOLLHUP
);
930 userfaultfd_ctx_put(ctx
);
934 /* fault_pending_wqh.lock must be hold by the caller */
935 static inline struct userfaultfd_wait_queue
*find_userfault_in(
936 wait_queue_head_t
*wqh
)
938 wait_queue_entry_t
*wq
;
939 struct userfaultfd_wait_queue
*uwq
;
941 lockdep_assert_held(&wqh
->lock
);
944 if (!waitqueue_active(wqh
))
946 /* walk in reverse to provide FIFO behavior to read userfaults */
947 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
948 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
953 static inline struct userfaultfd_wait_queue
*find_userfault(
954 struct userfaultfd_ctx
*ctx
)
956 return find_userfault_in(&ctx
->fault_pending_wqh
);
959 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
960 struct userfaultfd_ctx
*ctx
)
962 return find_userfault_in(&ctx
->event_wqh
);
965 static __poll_t
userfaultfd_poll(struct file
*file
, poll_table
*wait
)
967 struct userfaultfd_ctx
*ctx
= file
->private_data
;
970 poll_wait(file
, &ctx
->fd_wqh
, wait
);
972 switch (ctx
->state
) {
973 case UFFD_STATE_WAIT_API
:
975 case UFFD_STATE_RUNNING
:
977 * poll() never guarantees that read won't block.
978 * userfaults can be waken before they're read().
980 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
983 * lockless access to see if there are pending faults
984 * __pollwait last action is the add_wait_queue but
985 * the spin_unlock would allow the waitqueue_active to
986 * pass above the actual list_add inside
987 * add_wait_queue critical section. So use a full
988 * memory barrier to serialize the list_add write of
989 * add_wait_queue() with the waitqueue_active read
994 if (waitqueue_active(&ctx
->fault_pending_wqh
))
996 else if (waitqueue_active(&ctx
->event_wqh
))
1006 static const struct file_operations userfaultfd_fops
;
1008 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
1009 struct userfaultfd_ctx
*new,
1010 struct uffd_msg
*msg
)
1014 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, new,
1015 O_RDWR
| (new->flags
& UFFD_SHARED_FCNTL_FLAGS
));
1019 msg
->arg
.reserved
.reserved1
= 0;
1020 msg
->arg
.fork
.ufd
= fd
;
1024 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
1025 struct uffd_msg
*msg
)
1028 DECLARE_WAITQUEUE(wait
, current
);
1029 struct userfaultfd_wait_queue
*uwq
;
1031 * Handling fork event requires sleeping operations, so
1032 * we drop the event_wqh lock, then do these ops, then
1033 * lock it back and wake up the waiter. While the lock is
1034 * dropped the ewq may go away so we keep track of it
1037 LIST_HEAD(fork_event
);
1038 struct userfaultfd_ctx
*fork_nctx
= NULL
;
1040 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1041 spin_lock_irq(&ctx
->fd_wqh
.lock
);
1042 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
1044 set_current_state(TASK_INTERRUPTIBLE
);
1045 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1046 uwq
= find_userfault(ctx
);
1049 * Use a seqcount to repeat the lockless check
1050 * in wake_userfault() to avoid missing
1051 * wakeups because during the refile both
1052 * waitqueue could become empty if this is the
1055 write_seqcount_begin(&ctx
->refile_seq
);
1058 * The fault_pending_wqh.lock prevents the uwq
1059 * to disappear from under us.
1061 * Refile this userfault from
1062 * fault_pending_wqh to fault_wqh, it's not
1063 * pending anymore after we read it.
1065 * Use list_del() by hand (as
1066 * userfaultfd_wake_function also uses
1067 * list_del_init() by hand) to be sure nobody
1068 * changes __remove_wait_queue() to use
1069 * list_del_init() in turn breaking the
1070 * !list_empty_careful() check in
1071 * handle_userfault(). The uwq->wq.head list
1072 * must never be empty at any time during the
1073 * refile, or the waitqueue could disappear
1074 * from under us. The "wait_queue_head_t"
1075 * parameter of __remove_wait_queue() is unused
1078 list_del(&uwq
->wq
.entry
);
1079 add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1081 write_seqcount_end(&ctx
->refile_seq
);
1083 /* careful to always initialize msg if ret == 0 */
1085 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1089 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1091 spin_lock(&ctx
->event_wqh
.lock
);
1092 uwq
= find_userfault_evt(ctx
);
1096 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1097 fork_nctx
= (struct userfaultfd_ctx
*)
1099 uwq
->msg
.arg
.reserved
.reserved1
;
1100 list_move(&uwq
->wq
.entry
, &fork_event
);
1102 * fork_nctx can be freed as soon as
1103 * we drop the lock, unless we take a
1106 userfaultfd_ctx_get(fork_nctx
);
1107 spin_unlock(&ctx
->event_wqh
.lock
);
1112 userfaultfd_event_complete(ctx
, uwq
);
1113 spin_unlock(&ctx
->event_wqh
.lock
);
1117 spin_unlock(&ctx
->event_wqh
.lock
);
1119 if (signal_pending(current
)) {
1127 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1129 spin_lock_irq(&ctx
->fd_wqh
.lock
);
1131 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1132 __set_current_state(TASK_RUNNING
);
1133 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1135 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1136 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1137 spin_lock(&ctx
->event_wqh
.lock
);
1138 if (!list_empty(&fork_event
)) {
1140 * The fork thread didn't abort, so we can
1141 * drop the temporary refcount.
1143 userfaultfd_ctx_put(fork_nctx
);
1145 uwq
= list_first_entry(&fork_event
,
1149 * If fork_event list wasn't empty and in turn
1150 * the event wasn't already released by fork
1151 * (the event is allocated on fork kernel
1152 * stack), put the event back to its place in
1153 * the event_wq. fork_event head will be freed
1154 * as soon as we return so the event cannot
1155 * stay queued there no matter the current
1158 list_del(&uwq
->wq
.entry
);
1159 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1162 * Leave the event in the waitqueue and report
1163 * error to userland if we failed to resolve
1164 * the userfault fork.
1167 userfaultfd_event_complete(ctx
, uwq
);
1170 * Here the fork thread aborted and the
1171 * refcount from the fork thread on fork_nctx
1172 * has already been released. We still hold
1173 * the reference we took before releasing the
1174 * lock above. If resolve_userfault_fork
1175 * failed we've to drop it because the
1176 * fork_nctx has to be freed in such case. If
1177 * it succeeded we'll hold it because the new
1178 * uffd references it.
1181 userfaultfd_ctx_put(fork_nctx
);
1183 spin_unlock(&ctx
->event_wqh
.lock
);
1189 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1190 size_t count
, loff_t
*ppos
)
1192 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1193 ssize_t _ret
, ret
= 0;
1194 struct uffd_msg msg
;
1195 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1197 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1201 if (count
< sizeof(msg
))
1202 return ret
? ret
: -EINVAL
;
1203 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1205 return ret
? ret
: _ret
;
1206 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1207 return ret
? ret
: -EFAULT
;
1210 count
-= sizeof(msg
);
1212 * Allow to read more than one fault at time but only
1213 * block if waiting for the very first one.
1215 no_wait
= O_NONBLOCK
;
1219 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1220 struct userfaultfd_wake_range
*range
)
1222 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1223 /* wake all in the range and autoremove */
1224 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1225 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1227 if (waitqueue_active(&ctx
->fault_wqh
))
1228 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, range
);
1229 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1232 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1233 struct userfaultfd_wake_range
*range
)
1239 * To be sure waitqueue_active() is not reordered by the CPU
1240 * before the pagetable update, use an explicit SMP memory
1241 * barrier here. PT lock release or up_read(mmap_sem) still
1242 * have release semantics that can allow the
1243 * waitqueue_active() to be reordered before the pte update.
1248 * Use waitqueue_active because it's very frequent to
1249 * change the address space atomically even if there are no
1250 * userfaults yet. So we take the spinlock only when we're
1251 * sure we've userfaults to wake.
1254 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1255 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1256 waitqueue_active(&ctx
->fault_wqh
);
1258 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1260 __wake_userfault(ctx
, range
);
1263 static __always_inline
int validate_range(struct mm_struct
*mm
,
1264 __u64 start
, __u64 len
)
1266 __u64 task_size
= mm
->task_size
;
1268 if (start
& ~PAGE_MASK
)
1270 if (len
& ~PAGE_MASK
)
1274 if (start
< mmap_min_addr
)
1276 if (start
>= task_size
)
1278 if (len
> task_size
- start
)
1283 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1285 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1289 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1292 struct mm_struct
*mm
= ctx
->mm
;
1293 struct vm_area_struct
*vma
, *prev
, *cur
;
1295 struct uffdio_register uffdio_register
;
1296 struct uffdio_register __user
*user_uffdio_register
;
1297 unsigned long vm_flags
, new_flags
;
1300 unsigned long start
, end
, vma_end
;
1302 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1305 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1306 sizeof(uffdio_register
)-sizeof(__u64
)))
1310 if (!uffdio_register
.mode
)
1312 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1313 UFFDIO_REGISTER_MODE_WP
))
1316 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1317 vm_flags
|= VM_UFFD_MISSING
;
1318 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1319 vm_flags
|= VM_UFFD_WP
;
1321 * FIXME: remove the below error constraint by
1322 * implementing the wprotect tracking mode.
1328 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1329 uffdio_register
.range
.len
);
1333 start
= uffdio_register
.range
.start
;
1334 end
= start
+ uffdio_register
.range
.len
;
1337 if (!mmget_not_zero(mm
))
1340 down_write(&mm
->mmap_sem
);
1341 if (!mmget_still_valid(mm
))
1343 vma
= find_vma_prev(mm
, start
, &prev
);
1347 /* check that there's at least one vma in the range */
1349 if (vma
->vm_start
>= end
)
1353 * If the first vma contains huge pages, make sure start address
1354 * is aligned to huge page size.
1356 if (is_vm_hugetlb_page(vma
)) {
1357 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1359 if (start
& (vma_hpagesize
- 1))
1364 * Search for not compatible vmas.
1367 basic_ioctls
= false;
1368 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1371 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1372 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1374 /* check not compatible vmas */
1376 if (!vma_can_userfault(cur
))
1380 * UFFDIO_COPY will fill file holes even without
1381 * PROT_WRITE. This check enforces that if this is a
1382 * MAP_SHARED, the process has write permission to the backing
1383 * file. If VM_MAYWRITE is set it also enforces that on a
1384 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1385 * F_WRITE_SEAL can be taken until the vma is destroyed.
1388 if (unlikely(!(cur
->vm_flags
& VM_MAYWRITE
)))
1392 * If this vma contains ending address, and huge pages
1395 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1396 end
> cur
->vm_start
) {
1397 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1401 if (end
& (vma_hpagesize
- 1))
1406 * Check that this vma isn't already owned by a
1407 * different userfaultfd. We can't allow more than one
1408 * userfaultfd to own a single vma simultaneously or we
1409 * wouldn't know which one to deliver the userfaults to.
1412 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1413 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1417 * Note vmas containing huge pages
1419 if (is_vm_hugetlb_page(cur
))
1420 basic_ioctls
= true;
1426 if (vma
->vm_start
< start
)
1433 BUG_ON(!vma_can_userfault(vma
));
1434 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1435 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1436 WARN_ON(!(vma
->vm_flags
& VM_MAYWRITE
));
1439 * Nothing to do: this vma is already registered into this
1440 * userfaultfd and with the right tracking mode too.
1442 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1443 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1446 if (vma
->vm_start
> start
)
1447 start
= vma
->vm_start
;
1448 vma_end
= min(end
, vma
->vm_end
);
1450 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
1451 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1452 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1454 ((struct vm_userfaultfd_ctx
){ ctx
}));
1459 if (vma
->vm_start
< start
) {
1460 ret
= split_vma(mm
, vma
, start
, 1);
1464 if (vma
->vm_end
> end
) {
1465 ret
= split_vma(mm
, vma
, end
, 0);
1471 * In the vma_merge() successful mprotect-like case 8:
1472 * the next vma was merged into the current one and
1473 * the current one has not been updated yet.
1475 vma
->vm_flags
= new_flags
;
1476 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1480 start
= vma
->vm_end
;
1482 } while (vma
&& vma
->vm_start
< end
);
1484 up_write(&mm
->mmap_sem
);
1488 * Now that we scanned all vmas we can already tell
1489 * userland which ioctls methods are guaranteed to
1490 * succeed on this range.
1492 if (put_user(basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1493 UFFD_API_RANGE_IOCTLS
,
1494 &user_uffdio_register
->ioctls
))
1501 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1504 struct mm_struct
*mm
= ctx
->mm
;
1505 struct vm_area_struct
*vma
, *prev
, *cur
;
1507 struct uffdio_range uffdio_unregister
;
1508 unsigned long new_flags
;
1510 unsigned long start
, end
, vma_end
;
1511 const void __user
*buf
= (void __user
*)arg
;
1514 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1517 ret
= validate_range(mm
, uffdio_unregister
.start
,
1518 uffdio_unregister
.len
);
1522 start
= uffdio_unregister
.start
;
1523 end
= start
+ uffdio_unregister
.len
;
1526 if (!mmget_not_zero(mm
))
1529 down_write(&mm
->mmap_sem
);
1530 if (!mmget_still_valid(mm
))
1532 vma
= find_vma_prev(mm
, start
, &prev
);
1536 /* check that there's at least one vma in the range */
1538 if (vma
->vm_start
>= end
)
1542 * If the first vma contains huge pages, make sure start address
1543 * is aligned to huge page size.
1545 if (is_vm_hugetlb_page(vma
)) {
1546 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1548 if (start
& (vma_hpagesize
- 1))
1553 * Search for not compatible vmas.
1557 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1560 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1561 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1564 * Check not compatible vmas, not strictly required
1565 * here as not compatible vmas cannot have an
1566 * userfaultfd_ctx registered on them, but this
1567 * provides for more strict behavior to notice
1568 * unregistration errors.
1570 if (!vma_can_userfault(cur
))
1577 if (vma
->vm_start
< start
)
1584 BUG_ON(!vma_can_userfault(vma
));
1587 * Nothing to do: this vma is already registered into this
1588 * userfaultfd and with the right tracking mode too.
1590 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1593 WARN_ON(!(vma
->vm_flags
& VM_MAYWRITE
));
1595 if (vma
->vm_start
> start
)
1596 start
= vma
->vm_start
;
1597 vma_end
= min(end
, vma
->vm_end
);
1599 if (userfaultfd_missing(vma
)) {
1601 * Wake any concurrent pending userfault while
1602 * we unregister, so they will not hang
1603 * permanently and it avoids userland to call
1604 * UFFDIO_WAKE explicitly.
1606 struct userfaultfd_wake_range range
;
1607 range
.start
= start
;
1608 range
.len
= vma_end
- start
;
1609 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1612 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1613 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1614 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1621 if (vma
->vm_start
< start
) {
1622 ret
= split_vma(mm
, vma
, start
, 1);
1626 if (vma
->vm_end
> end
) {
1627 ret
= split_vma(mm
, vma
, end
, 0);
1633 * In the vma_merge() successful mprotect-like case 8:
1634 * the next vma was merged into the current one and
1635 * the current one has not been updated yet.
1637 vma
->vm_flags
= new_flags
;
1638 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1642 start
= vma
->vm_end
;
1644 } while (vma
&& vma
->vm_start
< end
);
1646 up_write(&mm
->mmap_sem
);
1653 * userfaultfd_wake may be used in combination with the
1654 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1656 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1660 struct uffdio_range uffdio_wake
;
1661 struct userfaultfd_wake_range range
;
1662 const void __user
*buf
= (void __user
*)arg
;
1665 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1668 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1672 range
.start
= uffdio_wake
.start
;
1673 range
.len
= uffdio_wake
.len
;
1676 * len == 0 means wake all and we don't want to wake all here,
1677 * so check it again to be sure.
1679 VM_BUG_ON(!range
.len
);
1681 wake_userfault(ctx
, &range
);
1688 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1692 struct uffdio_copy uffdio_copy
;
1693 struct uffdio_copy __user
*user_uffdio_copy
;
1694 struct userfaultfd_wake_range range
;
1696 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1699 if (READ_ONCE(ctx
->mmap_changing
))
1703 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1704 /* don't copy "copy" last field */
1705 sizeof(uffdio_copy
)-sizeof(__s64
)))
1708 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1712 * double check for wraparound just in case. copy_from_user()
1713 * will later check uffdio_copy.src + uffdio_copy.len to fit
1714 * in the userland range.
1717 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1719 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1721 if (mmget_not_zero(ctx
->mm
)) {
1722 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1723 uffdio_copy
.len
, &ctx
->mmap_changing
);
1728 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1733 /* len == 0 would wake all */
1735 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1736 range
.start
= uffdio_copy
.dst
;
1737 wake_userfault(ctx
, &range
);
1739 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1744 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1748 struct uffdio_zeropage uffdio_zeropage
;
1749 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1750 struct userfaultfd_wake_range range
;
1752 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1755 if (READ_ONCE(ctx
->mmap_changing
))
1759 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1760 /* don't copy "zeropage" last field */
1761 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1764 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1765 uffdio_zeropage
.range
.len
);
1769 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1772 if (mmget_not_zero(ctx
->mm
)) {
1773 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1774 uffdio_zeropage
.range
.len
,
1775 &ctx
->mmap_changing
);
1780 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1784 /* len == 0 would wake all */
1787 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1788 range
.start
= uffdio_zeropage
.range
.start
;
1789 wake_userfault(ctx
, &range
);
1791 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1796 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1799 * For the current set of features the bits just coincide
1801 return (unsigned int)user_features
;
1805 * userland asks for a certain API version and we return which bits
1806 * and ioctl commands are implemented in this kernel for such API
1807 * version or -EINVAL if unknown.
1809 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1812 struct uffdio_api uffdio_api
;
1813 void __user
*buf
= (void __user
*)arg
;
1818 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1821 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1823 features
= uffdio_api
.features
;
1824 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
)) {
1825 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1826 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1831 /* report all available features and ioctls to userland */
1832 uffdio_api
.features
= UFFD_API_FEATURES
;
1833 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1835 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1837 ctx
->state
= UFFD_STATE_RUNNING
;
1838 /* only enable the requested features for this uffd context */
1839 ctx
->features
= uffd_ctx_features(features
);
1845 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1849 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1851 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1856 ret
= userfaultfd_api(ctx
, arg
);
1858 case UFFDIO_REGISTER
:
1859 ret
= userfaultfd_register(ctx
, arg
);
1861 case UFFDIO_UNREGISTER
:
1862 ret
= userfaultfd_unregister(ctx
, arg
);
1865 ret
= userfaultfd_wake(ctx
, arg
);
1868 ret
= userfaultfd_copy(ctx
, arg
);
1870 case UFFDIO_ZEROPAGE
:
1871 ret
= userfaultfd_zeropage(ctx
, arg
);
1877 #ifdef CONFIG_PROC_FS
1878 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1880 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1881 wait_queue_entry_t
*wq
;
1882 unsigned long pending
= 0, total
= 0;
1884 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1885 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
1889 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
1892 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1895 * If more protocols will be added, there will be all shown
1896 * separated by a space. Like this:
1897 * protocols: aa:... bb:...
1899 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1900 pending
, total
, UFFD_API
, ctx
->features
,
1901 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1905 static const struct file_operations userfaultfd_fops
= {
1906 #ifdef CONFIG_PROC_FS
1907 .show_fdinfo
= userfaultfd_show_fdinfo
,
1909 .release
= userfaultfd_release
,
1910 .poll
= userfaultfd_poll
,
1911 .read
= userfaultfd_read
,
1912 .unlocked_ioctl
= userfaultfd_ioctl
,
1913 .compat_ioctl
= userfaultfd_ioctl
,
1914 .llseek
= noop_llseek
,
1917 static void init_once_userfaultfd_ctx(void *mem
)
1919 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1921 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1922 init_waitqueue_head(&ctx
->fault_wqh
);
1923 init_waitqueue_head(&ctx
->event_wqh
);
1924 init_waitqueue_head(&ctx
->fd_wqh
);
1925 seqcount_init(&ctx
->refile_seq
);
1928 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1930 struct userfaultfd_ctx
*ctx
;
1933 if (!sysctl_unprivileged_userfaultfd
&& !capable(CAP_SYS_PTRACE
))
1936 BUG_ON(!current
->mm
);
1938 /* Check the UFFD_* constants for consistency. */
1939 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1940 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1942 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1945 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1949 refcount_set(&ctx
->refcount
, 1);
1952 ctx
->state
= UFFD_STATE_WAIT_API
;
1953 ctx
->released
= false;
1954 ctx
->mmap_changing
= false;
1955 ctx
->mm
= current
->mm
;
1956 /* prevent the mm struct to be freed */
1959 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, ctx
,
1960 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1963 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1968 static int __init
userfaultfd_init(void)
1970 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1971 sizeof(struct userfaultfd_ctx
),
1973 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1974 init_once_userfaultfd_ctx
);
1977 __initcall(userfaultfd_init
);