Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[linux-2.6/linux-2.6-stable.git] / drivers / cpufreq / cpufreq_ondemand.c
blob891360edecdd218fcd200e5c1e47f28f3ff07d52
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
76 struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_iowait;
79 cputime64_t prev_cpu_wall;
80 cputime64_t prev_cpu_nice;
81 struct cpufreq_policy *cur_policy;
82 struct delayed_work work;
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
87 unsigned int rate_mult;
88 int cpu;
89 unsigned int sample_type:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
99 static unsigned int dbs_enable; /* number of CPUs using this policy */
102 * dbs_mutex protects dbs_enable in governor start/stop.
104 static DEFINE_MUTEX(dbs_mutex);
106 static struct dbs_tuners {
107 unsigned int sampling_rate;
108 unsigned int up_threshold;
109 unsigned int down_differential;
110 unsigned int ignore_nice;
111 unsigned int sampling_down_factor;
112 unsigned int powersave_bias;
113 unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 .ignore_nice = 0,
119 .powersave_bias = 0,
122 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123 cputime64_t *wall)
125 cputime64_t idle_time;
126 cputime64_t cur_wall_time;
127 cputime64_t busy_time;
129 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 kstat_cpu(cpu).cpustat.system);
133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
138 idle_time = cputime64_sub(cur_wall_time, busy_time);
139 if (wall)
140 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
142 return (cputime64_t)jiffies_to_usecs(idle_time);
145 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
147 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
149 if (idle_time == -1ULL)
150 return get_cpu_idle_time_jiffy(cpu, wall);
152 return idle_time;
155 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159 if (iowait_time == -1ULL)
160 return 0;
162 return iowait_time;
166 * Find right freq to be set now with powersave_bias on.
167 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
168 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
171 unsigned int freq_next,
172 unsigned int relation)
174 unsigned int freq_req, freq_reduc, freq_avg;
175 unsigned int freq_hi, freq_lo;
176 unsigned int index = 0;
177 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
178 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
179 policy->cpu);
181 if (!dbs_info->freq_table) {
182 dbs_info->freq_lo = 0;
183 dbs_info->freq_lo_jiffies = 0;
184 return freq_next;
187 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
188 relation, &index);
189 freq_req = dbs_info->freq_table[index].frequency;
190 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
191 freq_avg = freq_req - freq_reduc;
193 /* Find freq bounds for freq_avg in freq_table */
194 index = 0;
195 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
196 CPUFREQ_RELATION_H, &index);
197 freq_lo = dbs_info->freq_table[index].frequency;
198 index = 0;
199 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
200 CPUFREQ_RELATION_L, &index);
201 freq_hi = dbs_info->freq_table[index].frequency;
203 /* Find out how long we have to be in hi and lo freqs */
204 if (freq_hi == freq_lo) {
205 dbs_info->freq_lo = 0;
206 dbs_info->freq_lo_jiffies = 0;
207 return freq_lo;
209 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
210 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
211 jiffies_hi += ((freq_hi - freq_lo) / 2);
212 jiffies_hi /= (freq_hi - freq_lo);
213 jiffies_lo = jiffies_total - jiffies_hi;
214 dbs_info->freq_lo = freq_lo;
215 dbs_info->freq_lo_jiffies = jiffies_lo;
216 dbs_info->freq_hi_jiffies = jiffies_hi;
217 return freq_hi;
220 static void ondemand_powersave_bias_init_cpu(int cpu)
222 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
223 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
224 dbs_info->freq_lo = 0;
227 static void ondemand_powersave_bias_init(void)
229 int i;
230 for_each_online_cpu(i) {
231 ondemand_powersave_bias_init_cpu(i);
235 /************************** sysfs interface ************************/
237 static ssize_t show_sampling_rate_min(struct kobject *kobj,
238 struct attribute *attr, char *buf)
240 return sprintf(buf, "%u\n", min_sampling_rate);
243 define_one_global_ro(sampling_rate_min);
245 /* cpufreq_ondemand Governor Tunables */
246 #define show_one(file_name, object) \
247 static ssize_t show_##file_name \
248 (struct kobject *kobj, struct attribute *attr, char *buf) \
250 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
252 show_one(sampling_rate, sampling_rate);
253 show_one(io_is_busy, io_is_busy);
254 show_one(up_threshold, up_threshold);
255 show_one(sampling_down_factor, sampling_down_factor);
256 show_one(ignore_nice_load, ignore_nice);
257 show_one(powersave_bias, powersave_bias);
259 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
260 const char *buf, size_t count)
262 unsigned int input;
263 int ret;
264 ret = sscanf(buf, "%u", &input);
265 if (ret != 1)
266 return -EINVAL;
267 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
268 return count;
271 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
272 const char *buf, size_t count)
274 unsigned int input;
275 int ret;
277 ret = sscanf(buf, "%u", &input);
278 if (ret != 1)
279 return -EINVAL;
280 dbs_tuners_ins.io_is_busy = !!input;
281 return count;
284 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
285 const char *buf, size_t count)
287 unsigned int input;
288 int ret;
289 ret = sscanf(buf, "%u", &input);
291 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
292 input < MIN_FREQUENCY_UP_THRESHOLD) {
293 return -EINVAL;
295 dbs_tuners_ins.up_threshold = input;
296 return count;
299 static ssize_t store_sampling_down_factor(struct kobject *a,
300 struct attribute *b, const char *buf, size_t count)
302 unsigned int input, j;
303 int ret;
304 ret = sscanf(buf, "%u", &input);
306 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
307 return -EINVAL;
308 dbs_tuners_ins.sampling_down_factor = input;
310 /* Reset down sampling multiplier in case it was active */
311 for_each_online_cpu(j) {
312 struct cpu_dbs_info_s *dbs_info;
313 dbs_info = &per_cpu(od_cpu_dbs_info, j);
314 dbs_info->rate_mult = 1;
316 return count;
319 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
320 const char *buf, size_t count)
322 unsigned int input;
323 int ret;
325 unsigned int j;
327 ret = sscanf(buf, "%u", &input);
328 if (ret != 1)
329 return -EINVAL;
331 if (input > 1)
332 input = 1;
334 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
335 return count;
337 dbs_tuners_ins.ignore_nice = input;
339 /* we need to re-evaluate prev_cpu_idle */
340 for_each_online_cpu(j) {
341 struct cpu_dbs_info_s *dbs_info;
342 dbs_info = &per_cpu(od_cpu_dbs_info, j);
343 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
344 &dbs_info->prev_cpu_wall);
345 if (dbs_tuners_ins.ignore_nice)
346 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
349 return count;
352 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
353 const char *buf, size_t count)
355 unsigned int input;
356 int ret;
357 ret = sscanf(buf, "%u", &input);
359 if (ret != 1)
360 return -EINVAL;
362 if (input > 1000)
363 input = 1000;
365 dbs_tuners_ins.powersave_bias = input;
366 ondemand_powersave_bias_init();
367 return count;
370 define_one_global_rw(sampling_rate);
371 define_one_global_rw(io_is_busy);
372 define_one_global_rw(up_threshold);
373 define_one_global_rw(sampling_down_factor);
374 define_one_global_rw(ignore_nice_load);
375 define_one_global_rw(powersave_bias);
377 static struct attribute *dbs_attributes[] = {
378 &sampling_rate_min.attr,
379 &sampling_rate.attr,
380 &up_threshold.attr,
381 &sampling_down_factor.attr,
382 &ignore_nice_load.attr,
383 &powersave_bias.attr,
384 &io_is_busy.attr,
385 NULL
388 static struct attribute_group dbs_attr_group = {
389 .attrs = dbs_attributes,
390 .name = "ondemand",
393 /************************** sysfs end ************************/
395 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
397 if (dbs_tuners_ins.powersave_bias)
398 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
399 else if (p->cur == p->max)
400 return;
402 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
403 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
406 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
408 unsigned int max_load_freq;
410 struct cpufreq_policy *policy;
411 unsigned int j;
413 this_dbs_info->freq_lo = 0;
414 policy = this_dbs_info->cur_policy;
417 * Every sampling_rate, we check, if current idle time is less
418 * than 20% (default), then we try to increase frequency
419 * Every sampling_rate, we look for a the lowest
420 * frequency which can sustain the load while keeping idle time over
421 * 30%. If such a frequency exist, we try to decrease to this frequency.
423 * Any frequency increase takes it to the maximum frequency.
424 * Frequency reduction happens at minimum steps of
425 * 5% (default) of current frequency
428 /* Get Absolute Load - in terms of freq */
429 max_load_freq = 0;
431 for_each_cpu(j, policy->cpus) {
432 struct cpu_dbs_info_s *j_dbs_info;
433 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
434 unsigned int idle_time, wall_time, iowait_time;
435 unsigned int load, load_freq;
436 int freq_avg;
438 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
440 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
441 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
443 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
444 j_dbs_info->prev_cpu_wall);
445 j_dbs_info->prev_cpu_wall = cur_wall_time;
447 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
448 j_dbs_info->prev_cpu_idle);
449 j_dbs_info->prev_cpu_idle = cur_idle_time;
451 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
452 j_dbs_info->prev_cpu_iowait);
453 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
455 if (dbs_tuners_ins.ignore_nice) {
456 cputime64_t cur_nice;
457 unsigned long cur_nice_jiffies;
459 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
460 j_dbs_info->prev_cpu_nice);
462 * Assumption: nice time between sampling periods will
463 * be less than 2^32 jiffies for 32 bit sys
465 cur_nice_jiffies = (unsigned long)
466 cputime64_to_jiffies64(cur_nice);
468 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
469 idle_time += jiffies_to_usecs(cur_nice_jiffies);
473 * For the purpose of ondemand, waiting for disk IO is an
474 * indication that you're performance critical, and not that
475 * the system is actually idle. So subtract the iowait time
476 * from the cpu idle time.
479 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
480 idle_time -= iowait_time;
482 if (unlikely(!wall_time || wall_time < idle_time))
483 continue;
485 load = 100 * (wall_time - idle_time) / wall_time;
487 freq_avg = __cpufreq_driver_getavg(policy, j);
488 if (freq_avg <= 0)
489 freq_avg = policy->cur;
491 load_freq = load * freq_avg;
492 if (load_freq > max_load_freq)
493 max_load_freq = load_freq;
496 /* Check for frequency increase */
497 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
498 /* If switching to max speed, apply sampling_down_factor */
499 if (policy->cur < policy->max)
500 this_dbs_info->rate_mult =
501 dbs_tuners_ins.sampling_down_factor;
502 dbs_freq_increase(policy, policy->max);
503 return;
506 /* Check for frequency decrease */
507 /* if we cannot reduce the frequency anymore, break out early */
508 if (policy->cur == policy->min)
509 return;
512 * The optimal frequency is the frequency that is the lowest that
513 * can support the current CPU usage without triggering the up
514 * policy. To be safe, we focus 10 points under the threshold.
516 if (max_load_freq <
517 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
518 policy->cur) {
519 unsigned int freq_next;
520 freq_next = max_load_freq /
521 (dbs_tuners_ins.up_threshold -
522 dbs_tuners_ins.down_differential);
524 /* No longer fully busy, reset rate_mult */
525 this_dbs_info->rate_mult = 1;
527 if (freq_next < policy->min)
528 freq_next = policy->min;
530 if (!dbs_tuners_ins.powersave_bias) {
531 __cpufreq_driver_target(policy, freq_next,
532 CPUFREQ_RELATION_L);
533 } else {
534 int freq = powersave_bias_target(policy, freq_next,
535 CPUFREQ_RELATION_L);
536 __cpufreq_driver_target(policy, freq,
537 CPUFREQ_RELATION_L);
542 static void do_dbs_timer(struct work_struct *work)
544 struct cpu_dbs_info_s *dbs_info =
545 container_of(work, struct cpu_dbs_info_s, work.work);
546 unsigned int cpu = dbs_info->cpu;
547 int sample_type = dbs_info->sample_type;
549 int delay;
551 mutex_lock(&dbs_info->timer_mutex);
553 /* Common NORMAL_SAMPLE setup */
554 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
555 if (!dbs_tuners_ins.powersave_bias ||
556 sample_type == DBS_NORMAL_SAMPLE) {
557 dbs_check_cpu(dbs_info);
558 if (dbs_info->freq_lo) {
559 /* Setup timer for SUB_SAMPLE */
560 dbs_info->sample_type = DBS_SUB_SAMPLE;
561 delay = dbs_info->freq_hi_jiffies;
562 } else {
563 /* We want all CPUs to do sampling nearly on
564 * same jiffy
566 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
567 * dbs_info->rate_mult);
569 if (num_online_cpus() > 1)
570 delay -= jiffies % delay;
572 } else {
573 __cpufreq_driver_target(dbs_info->cur_policy,
574 dbs_info->freq_lo, CPUFREQ_RELATION_H);
575 delay = dbs_info->freq_lo_jiffies;
577 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
578 mutex_unlock(&dbs_info->timer_mutex);
581 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
583 /* We want all CPUs to do sampling nearly on same jiffy */
584 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
586 if (num_online_cpus() > 1)
587 delay -= jiffies % delay;
589 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
590 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
591 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
594 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
596 cancel_delayed_work_sync(&dbs_info->work);
600 * Not all CPUs want IO time to be accounted as busy; this dependson how
601 * efficient idling at a higher frequency/voltage is.
602 * Pavel Machek says this is not so for various generations of AMD and old
603 * Intel systems.
604 * Mike Chan (androidlcom) calis this is also not true for ARM.
605 * Because of this, whitelist specific known (series) of CPUs by default, and
606 * leave all others up to the user.
608 static int should_io_be_busy(void)
610 #if defined(CONFIG_X86)
612 * For Intel, Core 2 (model 15) andl later have an efficient idle.
614 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
615 boot_cpu_data.x86 == 6 &&
616 boot_cpu_data.x86_model >= 15)
617 return 1;
618 #endif
619 return 0;
622 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
623 unsigned int event)
625 unsigned int cpu = policy->cpu;
626 struct cpu_dbs_info_s *this_dbs_info;
627 unsigned int j;
628 int rc;
630 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
632 switch (event) {
633 case CPUFREQ_GOV_START:
634 if ((!cpu_online(cpu)) || (!policy->cur))
635 return -EINVAL;
637 mutex_lock(&dbs_mutex);
639 dbs_enable++;
640 for_each_cpu(j, policy->cpus) {
641 struct cpu_dbs_info_s *j_dbs_info;
642 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
643 j_dbs_info->cur_policy = policy;
645 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
646 &j_dbs_info->prev_cpu_wall);
647 if (dbs_tuners_ins.ignore_nice) {
648 j_dbs_info->prev_cpu_nice =
649 kstat_cpu(j).cpustat.nice;
652 this_dbs_info->cpu = cpu;
653 this_dbs_info->rate_mult = 1;
654 ondemand_powersave_bias_init_cpu(cpu);
656 * Start the timerschedule work, when this governor
657 * is used for first time
659 if (dbs_enable == 1) {
660 unsigned int latency;
662 rc = sysfs_create_group(cpufreq_global_kobject,
663 &dbs_attr_group);
664 if (rc) {
665 mutex_unlock(&dbs_mutex);
666 return rc;
669 /* policy latency is in nS. Convert it to uS first */
670 latency = policy->cpuinfo.transition_latency / 1000;
671 if (latency == 0)
672 latency = 1;
673 /* Bring kernel and HW constraints together */
674 min_sampling_rate = max(min_sampling_rate,
675 MIN_LATENCY_MULTIPLIER * latency);
676 dbs_tuners_ins.sampling_rate =
677 max(min_sampling_rate,
678 latency * LATENCY_MULTIPLIER);
679 dbs_tuners_ins.io_is_busy = should_io_be_busy();
681 mutex_unlock(&dbs_mutex);
683 mutex_init(&this_dbs_info->timer_mutex);
684 dbs_timer_init(this_dbs_info);
685 break;
687 case CPUFREQ_GOV_STOP:
688 dbs_timer_exit(this_dbs_info);
690 mutex_lock(&dbs_mutex);
691 mutex_destroy(&this_dbs_info->timer_mutex);
692 dbs_enable--;
693 mutex_unlock(&dbs_mutex);
694 if (!dbs_enable)
695 sysfs_remove_group(cpufreq_global_kobject,
696 &dbs_attr_group);
698 break;
700 case CPUFREQ_GOV_LIMITS:
701 mutex_lock(&this_dbs_info->timer_mutex);
702 if (policy->max < this_dbs_info->cur_policy->cur)
703 __cpufreq_driver_target(this_dbs_info->cur_policy,
704 policy->max, CPUFREQ_RELATION_H);
705 else if (policy->min > this_dbs_info->cur_policy->cur)
706 __cpufreq_driver_target(this_dbs_info->cur_policy,
707 policy->min, CPUFREQ_RELATION_L);
708 mutex_unlock(&this_dbs_info->timer_mutex);
709 break;
711 return 0;
714 static int __init cpufreq_gov_dbs_init(void)
716 cputime64_t wall;
717 u64 idle_time;
718 int cpu = get_cpu();
720 idle_time = get_cpu_idle_time_us(cpu, &wall);
721 put_cpu();
722 if (idle_time != -1ULL) {
723 /* Idle micro accounting is supported. Use finer thresholds */
724 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
725 dbs_tuners_ins.down_differential =
726 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
728 * In no_hz/micro accounting case we set the minimum frequency
729 * not depending on HZ, but fixed (very low). The deferred
730 * timer might skip some samples if idle/sleeping as needed.
732 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
733 } else {
734 /* For correct statistics, we need 10 ticks for each measure */
735 min_sampling_rate =
736 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
739 return cpufreq_register_governor(&cpufreq_gov_ondemand);
742 static void __exit cpufreq_gov_dbs_exit(void)
744 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
748 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
749 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
750 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
751 "Low Latency Frequency Transition capable processors");
752 MODULE_LICENSE("GPL");
754 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
755 fs_initcall(cpufreq_gov_dbs_init);
756 #else
757 module_init(cpufreq_gov_dbs_init);
758 #endif
759 module_exit(cpufreq_gov_dbs_exit);