eeepc-laptop: Register as a pci-hotplug device
[linux-2.6/linux-acpi-2.6.git] / arch / powerpc / include / asm / pgtable-ppc64.h
blob8cd083c6150384eeca4c28a38d5a49e643efab1a
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
8 #ifndef __ASSEMBLY__
9 #include <linux/stddef.h>
10 #include <asm/tlbflush.h>
11 #endif /* __ASSEMBLY__ */
13 #ifdef CONFIG_PPC_64K_PAGES
14 #include <asm/pgtable-ppc64-64k.h>
15 #else
16 #include <asm/pgtable-ppc64-4k.h>
17 #endif
19 #define FIRST_USER_ADDRESS 0
22 * Size of EA range mapped by our pagetables.
24 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
25 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
26 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
29 /* Some sanity checking */
30 #if TASK_SIZE_USER64 > PGTABLE_RANGE
31 #error TASK_SIZE_USER64 exceeds pagetable range
32 #endif
34 #ifdef CONFIG_PPC_STD_MMU_64
35 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
36 #error TASK_SIZE_USER64 exceeds user VSID range
37 #endif
38 #endif
41 * Define the address range of the vmalloc VM area.
43 #define VMALLOC_START ASM_CONST(0xD000000000000000)
44 #define VMALLOC_SIZE (PGTABLE_RANGE >> 1)
45 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
48 * Define the address ranges for MMIO and IO space :
50 * ISA_IO_BASE = VMALLOC_END, 64K reserved area
51 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
52 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
54 #define FULL_IO_SIZE 0x80000000ul
55 #define ISA_IO_BASE (VMALLOC_END)
56 #define ISA_IO_END (VMALLOC_END + 0x10000ul)
57 #define PHB_IO_BASE (ISA_IO_END)
58 #define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE)
59 #define IOREMAP_BASE (PHB_IO_END)
60 #define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE)
63 * Region IDs
65 #define REGION_SHIFT 60UL
66 #define REGION_MASK (0xfUL << REGION_SHIFT)
67 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
69 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
70 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
71 #define VMEMMAP_REGION_ID (0xfUL)
72 #define USER_REGION_ID (0UL)
75 * Defines the address of the vmemap area, in its own region
77 #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
78 #define vmemmap ((struct page *)VMEMMAP_BASE)
82 * Include the PTE bits definitions
84 #include <asm/pte-hash64.h>
85 #include <asm/pte-common.h>
88 #ifdef CONFIG_PPC_MM_SLICES
89 #define HAVE_ARCH_UNMAPPED_AREA
90 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
91 #endif /* CONFIG_PPC_MM_SLICES */
93 #ifndef __ASSEMBLY__
96 * This is the default implementation of various PTE accessors, it's
97 * used in all cases except Book3S with 64K pages where we have a
98 * concept of sub-pages
100 #ifndef __real_pte
102 #ifdef STRICT_MM_TYPECHECKS
103 #define __real_pte(e,p) ((real_pte_t){(e)})
104 #define __rpte_to_pte(r) ((r).pte)
105 #else
106 #define __real_pte(e,p) (e)
107 #define __rpte_to_pte(r) (__pte(r))
108 #endif
109 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
111 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
112 do { \
113 index = 0; \
114 shift = mmu_psize_defs[psize].shift; \
116 #define pte_iterate_hashed_end() } while(0)
118 #ifdef CONFIG_PPC_HAS_HASH_64K
119 #define pte_pagesize_index(mm, addr, pte) get_slice_psize(mm, addr)
120 #else
121 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
122 #endif
124 #endif /* __real_pte */
127 /* pte_clear moved to later in this file */
129 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
130 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
132 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
133 #define pmd_none(pmd) (!pmd_val(pmd))
134 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
135 || (pmd_val(pmd) & PMD_BAD_BITS))
136 #define pmd_present(pmd) (pmd_val(pmd) != 0)
137 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
138 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
139 #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
141 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
142 #define pud_none(pud) (!pud_val(pud))
143 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
144 || (pud_val(pud) & PUD_BAD_BITS))
145 #define pud_present(pud) (pud_val(pud) != 0)
146 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
147 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
148 #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
150 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
153 * Find an entry in a page-table-directory. We combine the address region
154 * (the high order N bits) and the pgd portion of the address.
156 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
157 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
159 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
161 #define pmd_offset(pudp,addr) \
162 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
164 #define pte_offset_kernel(dir,addr) \
165 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
167 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
168 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
169 #define pte_unmap(pte) do { } while(0)
170 #define pte_unmap_nested(pte) do { } while(0)
172 /* to find an entry in a kernel page-table-directory */
173 /* This now only contains the vmalloc pages */
174 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
177 /* Atomic PTE updates */
178 static inline unsigned long pte_update(struct mm_struct *mm,
179 unsigned long addr,
180 pte_t *ptep, unsigned long clr,
181 int huge)
183 #ifdef PTE_ATOMIC_UPDATES
184 unsigned long old, tmp;
186 __asm__ __volatile__(
187 "1: ldarx %0,0,%3 # pte_update\n\
188 andi. %1,%0,%6\n\
189 bne- 1b \n\
190 andc %1,%0,%4 \n\
191 stdcx. %1,0,%3 \n\
192 bne- 1b"
193 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
194 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
195 : "cc" );
196 #else
197 unsigned long old = pte_val(*ptep);
198 *ptep = __pte(old & ~clr);
199 #endif
200 /* huge pages use the old page table lock */
201 if (!huge)
202 assert_pte_locked(mm, addr);
204 #ifdef CONFIG_PPC_STD_MMU_64
205 if (old & _PAGE_HASHPTE)
206 hpte_need_flush(mm, addr, ptep, old, huge);
207 #endif
209 return old;
212 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
213 unsigned long addr, pte_t *ptep)
215 unsigned long old;
217 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
218 return 0;
219 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
220 return (old & _PAGE_ACCESSED) != 0;
222 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
223 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
224 ({ \
225 int __r; \
226 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
227 __r; \
230 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
231 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
232 pte_t *ptep)
234 unsigned long old;
236 if ((pte_val(*ptep) & _PAGE_RW) == 0)
237 return;
238 old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
241 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
242 unsigned long addr, pte_t *ptep)
244 unsigned long old;
246 if ((pte_val(*ptep) & _PAGE_RW) == 0)
247 return;
248 old = pte_update(mm, addr, ptep, _PAGE_RW, 1);
252 * We currently remove entries from the hashtable regardless of whether
253 * the entry was young or dirty. The generic routines only flush if the
254 * entry was young or dirty which is not good enough.
256 * We should be more intelligent about this but for the moment we override
257 * these functions and force a tlb flush unconditionally
259 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
260 #define ptep_clear_flush_young(__vma, __address, __ptep) \
261 ({ \
262 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
263 __ptep); \
264 __young; \
267 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
268 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
269 unsigned long addr, pte_t *ptep)
271 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
272 return __pte(old);
275 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
276 pte_t * ptep)
278 pte_update(mm, addr, ptep, ~0UL, 0);
282 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
283 * function doesn't need to flush the hash entry
285 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
287 unsigned long bits = pte_val(entry) &
288 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
289 _PAGE_EXEC | _PAGE_HWEXEC);
291 #ifdef PTE_ATOMIC_UPDATES
292 unsigned long old, tmp;
294 __asm__ __volatile__(
295 "1: ldarx %0,0,%4\n\
296 andi. %1,%0,%6\n\
297 bne- 1b \n\
298 or %0,%3,%0\n\
299 stdcx. %0,0,%4\n\
300 bne- 1b"
301 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
302 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
303 :"cc");
304 #else
305 unsigned long old = pte_val(*ptep);
306 *ptep = __pte(old | bits);
307 #endif
310 #define __HAVE_ARCH_PTE_SAME
311 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
313 #define pte_ERROR(e) \
314 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
315 #define pmd_ERROR(e) \
316 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
317 #define pgd_ERROR(e) \
318 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
320 /* Encode and de-code a swap entry */
321 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
322 #define __swp_offset(entry) ((entry).val >> 8)
323 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
324 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
325 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
326 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
327 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
328 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
330 void pgtable_cache_init(void);
333 * find_linux_pte returns the address of a linux pte for a given
334 * effective address and directory. If not found, it returns zero.
335 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
337 pgd_t *pg;
338 pud_t *pu;
339 pmd_t *pm;
340 pte_t *pt = NULL;
342 pg = pgdir + pgd_index(ea);
343 if (!pgd_none(*pg)) {
344 pu = pud_offset(pg, ea);
345 if (!pud_none(*pu)) {
346 pm = pmd_offset(pu, ea);
347 if (pmd_present(*pm))
348 pt = pte_offset_kernel(pm, ea);
351 return pt;
354 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long address);
356 #endif /* __ASSEMBLY__ */
358 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */