2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
41 #include <asm/unaligned.h>
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 * controller, although some of them do have hardware support for
48 * SPI protocol. The main reason for such configs would be mmc-ish
49 * cards like DataFlash, which don't support that "native" protocol.
51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 * switch between driver stacks, and in any case if "native" mode
53 * is available, it will be faster and hence preferable.
55 * - MMC depends on a different chipselect management policy than the
56 * SPI interface currently supports for shared bus segments: it needs
57 * to issue multiple spi_message requests with the chipselect active,
58 * using the results of one message to decide the next one to issue.
60 * Pending updates to the programming interface, this driver expects
61 * that it not share the bus with other drivers (precluding conflicts).
63 * - We tell the controller to keep the chipselect active from the
64 * beginning of an mmc_host_ops.request until the end. So beware
65 * of SPI controller drivers that mis-handle the cs_change flag!
67 * However, many cards seem OK with chipselect flapping up/down
68 * during that time ... at least on unshared bus segments.
73 * Local protocol constants, internal to data block protocols.
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
82 /* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
89 #define MMC_SPI_BLOCKSIZE 512
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long. Older cards may be able to use
96 * shorter timeouts ... but why bother?
98 #define r1b_timeout (HZ * 3)
101 /****************************************************************************/
104 * Local Data Structures
107 /* "scratch" is per-{command,block} data exchanged with the card */
114 struct mmc_spi_host
{
115 struct mmc_host
*mmc
;
116 struct spi_device
*spi
;
118 unsigned char power_mode
;
121 struct mmc_spi_platform_data
*pdata
;
123 /* for bulk data transfers */
124 struct spi_transfer token
, t
, crc
, early_status
;
125 struct spi_message m
;
127 /* for status readback */
128 struct spi_transfer status
;
129 struct spi_message readback
;
131 /* underlying DMA-aware controller, or null */
132 struct device
*dma_dev
;
134 /* buffer used for commands and for message "overhead" */
135 struct scratch
*data
;
138 /* Specs say to write ones most of the time, even when the card
139 * has no need to read its input data; and many cards won't care.
140 * This is our source of those ones.
147 /****************************************************************************/
150 * MMC-over-SPI protocol glue, used by the MMC stack interface
153 static inline int mmc_cs_off(struct mmc_spi_host
*host
)
155 /* chipselect will always be inactive after setup() */
156 return spi_setup(host
->spi
);
160 mmc_spi_readbytes(struct mmc_spi_host
*host
, unsigned len
)
164 if (len
> sizeof(*host
->data
)) {
169 host
->status
.len
= len
;
172 dma_sync_single_for_device(host
->dma_dev
,
173 host
->data_dma
, sizeof(*host
->data
),
176 status
= spi_sync(host
->spi
, &host
->readback
);
179 dma_sync_single_for_cpu(host
->dma_dev
,
180 host
->data_dma
, sizeof(*host
->data
),
186 static int mmc_spi_skip(struct mmc_spi_host
*host
, unsigned long timeout
,
189 u8
*cp
= host
->data
->status
;
190 unsigned long start
= jiffies
;
196 status
= mmc_spi_readbytes(host
, n
);
200 for (i
= 0; i
< n
; i
++) {
205 if (time_is_before_jiffies(start
+ timeout
))
208 /* If we need long timeouts, we may release the CPU.
209 * We use jiffies here because we want to have a relation
210 * between elapsed time and the blocking of the scheduler.
212 if (time_is_before_jiffies(start
+1))
219 mmc_spi_wait_unbusy(struct mmc_spi_host
*host
, unsigned long timeout
)
221 return mmc_spi_skip(host
, timeout
, sizeof(host
->data
->status
), 0);
224 static int mmc_spi_readtoken(struct mmc_spi_host
*host
, unsigned long timeout
)
226 return mmc_spi_skip(host
, timeout
, 1, 0xff);
231 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
232 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
233 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
235 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
236 * newer cards R7 (IF_COND).
239 static char *maptype(struct mmc_command
*cmd
)
241 switch (mmc_spi_resp_type(cmd
)) {
242 case MMC_RSP_SPI_R1
: return "R1";
243 case MMC_RSP_SPI_R1B
: return "R1B";
244 case MMC_RSP_SPI_R2
: return "R2/R5";
245 case MMC_RSP_SPI_R3
: return "R3/R4/R7";
250 /* return zero, else negative errno after setting cmd->error */
251 static int mmc_spi_response_get(struct mmc_spi_host
*host
,
252 struct mmc_command
*cmd
, int cs_on
)
254 u8
*cp
= host
->data
->status
;
255 u8
*end
= cp
+ host
->t
.len
;
259 unsigned short rotator
;
263 snprintf(tag
, sizeof(tag
), " ... CMD%d response SPI_%s",
264 cmd
->opcode
, maptype(cmd
));
266 /* Except for data block reads, the whole response will already
267 * be stored in the scratch buffer. It's somewhere after the
268 * command and the first byte we read after it. We ignore that
269 * first byte. After STOP_TRANSMISSION command it may include
270 * two data bits, but otherwise it's all ones.
273 while (cp
< end
&& *cp
== 0xff)
276 /* Data block reads (R1 response types) may need more data... */
278 cp
= host
->data
->status
;
281 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
282 * status byte ... and we already scanned 2 bytes.
284 * REVISIT block read paths use nasty byte-at-a-time I/O
285 * so it can always DMA directly into the target buffer.
286 * It'd probably be better to memcpy() the first chunk and
287 * avoid extra i/o calls...
289 * Note we check for more than 8 bytes, because in practice,
290 * some SD cards are slow...
292 for (i
= 2; i
< 16; i
++) {
293 value
= mmc_spi_readbytes(host
, 1);
306 /* Houston, we have an ugly card with a bit-shifted response */
307 rotator
= *cp
++ << 8;
308 /* read the next byte */
310 value
= mmc_spi_readbytes(host
, 1);
313 cp
= host
->data
->status
;
317 while (rotator
& 0x8000) {
321 cmd
->resp
[0] = rotator
>> 8;
324 cmd
->resp
[0] = *cp
++;
328 /* Status byte: the entire seven-bit R1 response. */
329 if (cmd
->resp
[0] != 0) {
330 if ((R1_SPI_PARAMETER
| R1_SPI_ADDRESS
331 | R1_SPI_ILLEGAL_COMMAND
)
334 else if (R1_SPI_COM_CRC
& cmd
->resp
[0])
336 else if ((R1_SPI_ERASE_SEQ
| R1_SPI_ERASE_RESET
)
339 /* else R1_SPI_IDLE, "it's resetting" */
342 switch (mmc_spi_resp_type(cmd
)) {
344 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
345 * and less-common stuff like various erase operations.
347 case MMC_RSP_SPI_R1B
:
348 /* maybe we read all the busy tokens already */
349 while (cp
< end
&& *cp
== 0)
352 mmc_spi_wait_unbusy(host
, r1b_timeout
);
355 /* SPI R2 == R1 + second status byte; SEND_STATUS
356 * SPI R5 == R1 + data byte; IO_RW_DIRECT
359 /* read the next byte */
361 value
= mmc_spi_readbytes(host
, 1);
364 cp
= host
->data
->status
;
368 rotator
= leftover
<< 8;
369 rotator
|= *cp
<< bitshift
;
370 cmd
->resp
[0] |= (rotator
& 0xFF00);
372 cmd
->resp
[0] |= *cp
<< 8;
376 /* SPI R3, R4, or R7 == R1 + 4 bytes */
378 rotator
= leftover
<< 8;
380 for (i
= 0; i
< 4; i
++) {
382 /* read the next byte */
384 value
= mmc_spi_readbytes(host
, 1);
387 cp
= host
->data
->status
;
391 rotator
|= *cp
++ << bitshift
;
392 cmd
->resp
[1] |= (rotator
>> 8);
395 cmd
->resp
[1] |= *cp
++;
400 /* SPI R1 == just one status byte */
405 dev_dbg(&host
->spi
->dev
, "bad response type %04x\n",
406 mmc_spi_resp_type(cmd
));
413 dev_dbg(&host
->spi
->dev
, "%s: resp %04x %08x\n",
414 tag
, cmd
->resp
[0], cmd
->resp
[1]);
416 /* disable chipselect on errors and some success cases */
417 if (value
>= 0 && cs_on
)
426 /* Issue command and read its response.
427 * Returns zero on success, negative for error.
429 * On error, caller must cope with mmc core retry mechanism. That
430 * means immediate low-level resubmit, which affects the bus lock...
433 mmc_spi_command_send(struct mmc_spi_host
*host
,
434 struct mmc_request
*mrq
,
435 struct mmc_command
*cmd
, int cs_on
)
437 struct scratch
*data
= host
->data
;
438 u8
*cp
= data
->status
;
441 struct spi_transfer
*t
;
443 /* We can handle most commands (except block reads) in one full
444 * duplex I/O operation before either starting the next transfer
445 * (data block or command) or else deselecting the card.
447 * First, write 7 bytes:
448 * - an all-ones byte to ensure the card is ready
449 * - opcode byte (plus start and transmission bits)
450 * - four bytes of big-endian argument
451 * - crc7 (plus end bit) ... always computed, it's cheap
453 * We init the whole buffer to all-ones, which is what we need
454 * to write while we're reading (later) response data.
456 memset(cp
++, 0xff, sizeof(data
->status
));
458 *cp
++ = 0x40 | cmd
->opcode
;
459 *cp
++ = (u8
)(arg
>> 24);
460 *cp
++ = (u8
)(arg
>> 16);
461 *cp
++ = (u8
)(arg
>> 8);
463 *cp
++ = (crc7(0, &data
->status
[1], 5) << 1) | 0x01;
465 /* Then, read up to 13 bytes (while writing all-ones):
466 * - N(CR) (== 1..8) bytes of all-ones
467 * - status byte (for all response types)
468 * - the rest of the response, either:
469 * + nothing, for R1 or R1B responses
470 * + second status byte, for R2 responses
471 * + four data bytes, for R3 and R7 responses
473 * Finally, read some more bytes ... in the nice cases we know in
474 * advance how many, and reading 1 more is always OK:
475 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
476 * - N(RC) (== 1..N) bytes of all-ones, before next command
477 * - N(WR) (== 1..N) bytes of all-ones, before data write
479 * So in those cases one full duplex I/O of at most 21 bytes will
480 * handle the whole command, leaving the card ready to receive a
481 * data block or new command. We do that whenever we can, shaving
482 * CPU and IRQ costs (especially when using DMA or FIFOs).
484 * There are two other cases, where it's not generally practical
485 * to rely on a single I/O:
487 * - R1B responses need at least N(EC) bytes of all-zeroes.
489 * In this case we can *try* to fit it into one I/O, then
490 * maybe read more data later.
492 * - Data block reads are more troublesome, since a variable
493 * number of padding bytes precede the token and data.
494 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
495 * + N(AC) (== 1..many) bytes of all-ones
497 * In this case we currently only have minimal speedups here:
498 * when N(CR) == 1 we can avoid I/O in response_get().
500 if (cs_on
&& (mrq
->data
->flags
& MMC_DATA_READ
)) {
501 cp
+= 2; /* min(N(CR)) + status */
504 cp
+= 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
505 if (cmd
->flags
& MMC_RSP_SPI_S2
) /* R2/R5 */
507 else if (cmd
->flags
& MMC_RSP_SPI_B4
) /* R3/R4/R7 */
509 else if (cmd
->flags
& MMC_RSP_BUSY
) /* R1B */
510 cp
= data
->status
+ sizeof(data
->status
);
511 /* else: R1 (most commands) */
514 dev_dbg(&host
->spi
->dev
, " mmc_spi: CMD%d, resp %s\n",
515 cmd
->opcode
, maptype(cmd
));
517 /* send command, leaving chipselect active */
518 spi_message_init(&host
->m
);
521 memset(t
, 0, sizeof(*t
));
522 t
->tx_buf
= t
->rx_buf
= data
->status
;
523 t
->tx_dma
= t
->rx_dma
= host
->data_dma
;
524 t
->len
= cp
- data
->status
;
526 spi_message_add_tail(t
, &host
->m
);
529 host
->m
.is_dma_mapped
= 1;
530 dma_sync_single_for_device(host
->dma_dev
,
531 host
->data_dma
, sizeof(*host
->data
),
534 status
= spi_sync(host
->spi
, &host
->m
);
537 dma_sync_single_for_cpu(host
->dma_dev
,
538 host
->data_dma
, sizeof(*host
->data
),
541 dev_dbg(&host
->spi
->dev
, " ... write returned %d\n", status
);
546 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
547 return mmc_spi_response_get(host
, cmd
, cs_on
);
550 /* Build data message with up to four separate transfers. For TX, we
551 * start by writing the data token. And in most cases, we finish with
554 * We always provide TX data for data and CRC. The MMC/SD protocol
555 * requires us to write ones; but Linux defaults to writing zeroes;
556 * so we explicitly initialize it to all ones on RX paths.
558 * We also handle DMA mapping, so the underlying SPI controller does
559 * not need to (re)do it for each message.
562 mmc_spi_setup_data_message(
563 struct mmc_spi_host
*host
,
565 enum dma_data_direction direction
)
567 struct spi_transfer
*t
;
568 struct scratch
*scratch
= host
->data
;
569 dma_addr_t dma
= host
->data_dma
;
571 spi_message_init(&host
->m
);
573 host
->m
.is_dma_mapped
= 1;
575 /* for reads, readblock() skips 0xff bytes before finding
576 * the token; for writes, this transfer issues that token.
578 if (direction
== DMA_TO_DEVICE
) {
580 memset(t
, 0, sizeof(*t
));
583 scratch
->data_token
= SPI_TOKEN_MULTI_WRITE
;
585 scratch
->data_token
= SPI_TOKEN_SINGLE
;
586 t
->tx_buf
= &scratch
->data_token
;
588 t
->tx_dma
= dma
+ offsetof(struct scratch
, data_token
);
589 spi_message_add_tail(t
, &host
->m
);
592 /* Body of transfer is buffer, then CRC ...
593 * either TX-only, or RX with TX-ones.
596 memset(t
, 0, sizeof(*t
));
597 t
->tx_buf
= host
->ones
;
598 t
->tx_dma
= host
->ones_dma
;
599 /* length and actual buffer info are written later */
600 spi_message_add_tail(t
, &host
->m
);
603 memset(t
, 0, sizeof(*t
));
605 if (direction
== DMA_TO_DEVICE
) {
606 /* the actual CRC may get written later */
607 t
->tx_buf
= &scratch
->crc_val
;
609 t
->tx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
611 t
->tx_buf
= host
->ones
;
612 t
->tx_dma
= host
->ones_dma
;
613 t
->rx_buf
= &scratch
->crc_val
;
615 t
->rx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
617 spi_message_add_tail(t
, &host
->m
);
620 * A single block read is followed by N(EC) [0+] all-ones bytes
621 * before deselect ... don't bother.
623 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
624 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
625 * collect that single byte, so readblock() doesn't need to.
627 * For a write, the one-byte data response follows immediately, then
628 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
629 * Then single block reads may deselect, and multiblock ones issue
630 * the next token (next data block, or STOP_TRAN). We can try to
631 * minimize I/O ops by using a single read to collect end-of-busy.
633 if (multiple
|| direction
== DMA_TO_DEVICE
) {
634 t
= &host
->early_status
;
635 memset(t
, 0, sizeof(*t
));
636 t
->len
= (direction
== DMA_TO_DEVICE
)
637 ? sizeof(scratch
->status
)
639 t
->tx_buf
= host
->ones
;
640 t
->tx_dma
= host
->ones_dma
;
641 t
->rx_buf
= scratch
->status
;
643 t
->rx_dma
= dma
+ offsetof(struct scratch
, status
);
645 spi_message_add_tail(t
, &host
->m
);
651 * - caller handled preceding N(WR) [1+] all-ones bytes
656 * - an all-ones byte ... card writes a data-response byte
657 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
659 * Return negative errno, else success.
662 mmc_spi_writeblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
663 unsigned long timeout
)
665 struct spi_device
*spi
= host
->spi
;
667 struct scratch
*scratch
= host
->data
;
670 if (host
->mmc
->use_spi_crc
)
671 scratch
->crc_val
= cpu_to_be16(
672 crc_itu_t(0, t
->tx_buf
, t
->len
));
674 dma_sync_single_for_device(host
->dma_dev
,
675 host
->data_dma
, sizeof(*scratch
),
678 status
= spi_sync(spi
, &host
->m
);
681 dev_dbg(&spi
->dev
, "write error (%d)\n", status
);
686 dma_sync_single_for_cpu(host
->dma_dev
,
687 host
->data_dma
, sizeof(*scratch
),
691 * Get the transmission data-response reply. It must follow
692 * immediately after the data block we transferred. This reply
693 * doesn't necessarily tell whether the write operation succeeded;
694 * it just says if the transmission was ok and whether *earlier*
695 * writes succeeded; see the standard.
697 * In practice, there are (even modern SDHC-)cards which are late
698 * in sending the response, and miss the time frame by a few bits,
699 * so we have to cope with this situation and check the response
700 * bit-by-bit. Arggh!!!
702 pattern
= scratch
->status
[0] << 24;
703 pattern
|= scratch
->status
[1] << 16;
704 pattern
|= scratch
->status
[2] << 8;
705 pattern
|= scratch
->status
[3];
707 /* First 3 bit of pattern are undefined */
708 pattern
|= 0xE0000000;
710 /* left-adjust to leading 0 bit */
711 while (pattern
& 0x80000000)
713 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
717 case SPI_RESPONSE_ACCEPTED
:
720 case SPI_RESPONSE_CRC_ERR
:
721 /* host shall then issue MMC_STOP_TRANSMISSION */
724 case SPI_RESPONSE_WRITE_ERR
:
725 /* host shall then issue MMC_STOP_TRANSMISSION,
726 * and should MMC_SEND_STATUS to sort it out
735 dev_dbg(&spi
->dev
, "write error %02x (%d)\n",
736 scratch
->status
[0], status
);
744 /* Return when not busy. If we didn't collect that status yet,
745 * we'll need some more I/O.
747 for (i
= 4; i
< sizeof(scratch
->status
); i
++) {
748 /* card is non-busy if the most recent bit is 1 */
749 if (scratch
->status
[i
] & 0x01)
752 return mmc_spi_wait_unbusy(host
, timeout
);
757 * - skip leading all-ones bytes ... either
758 * + N(AC) [1..f(clock,CSD)] usually, else
759 * + N(CX) [0..8] when reading CSD or CID
761 * + token ... if error token, no data or crc
765 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
766 * before dropping chipselect.
768 * For multiblock reads, caller either reads the next block or issues a
769 * STOP_TRANSMISSION command.
772 mmc_spi_readblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
773 unsigned long timeout
)
775 struct spi_device
*spi
= host
->spi
;
777 struct scratch
*scratch
= host
->data
;
778 unsigned int bitshift
;
781 /* At least one SD card sends an all-zeroes byte when N(CX)
782 * applies, before the all-ones bytes ... just cope with that.
784 status
= mmc_spi_readbytes(host
, 1);
787 status
= scratch
->status
[0];
788 if (status
== 0xff || status
== 0)
789 status
= mmc_spi_readtoken(host
, timeout
);
792 dev_dbg(&spi
->dev
, "read error %02x (%d)\n", status
, status
);
796 /* The token may be bit-shifted...
797 * the first 0-bit precedes the data stream.
800 while (status
& 0x80) {
804 leftover
= status
<< 1;
807 dma_sync_single_for_device(host
->dma_dev
,
808 host
->data_dma
, sizeof(*scratch
),
810 dma_sync_single_for_device(host
->dma_dev
,
815 status
= spi_sync(spi
, &host
->m
);
818 dma_sync_single_for_cpu(host
->dma_dev
,
819 host
->data_dma
, sizeof(*scratch
),
821 dma_sync_single_for_cpu(host
->dma_dev
,
827 /* Walk through the data and the crc and do
828 * all the magic to get byte-aligned data.
832 unsigned int bitright
= 8 - bitshift
;
834 for (len
= t
->len
; len
; len
--) {
836 *cp
++ = leftover
| (temp
>> bitshift
);
837 leftover
= temp
<< bitright
;
839 cp
= (u8
*) &scratch
->crc_val
;
841 *cp
++ = leftover
| (temp
>> bitshift
);
842 leftover
= temp
<< bitright
;
844 *cp
= leftover
| (temp
>> bitshift
);
847 if (host
->mmc
->use_spi_crc
) {
848 u16 crc
= crc_itu_t(0, t
->rx_buf
, t
->len
);
850 be16_to_cpus(&scratch
->crc_val
);
851 if (scratch
->crc_val
!= crc
) {
852 dev_dbg(&spi
->dev
, "read - crc error: crc_val=0x%04x, "
853 "computed=0x%04x len=%d\n",
854 scratch
->crc_val
, crc
, t
->len
);
867 * An MMC/SD data stage includes one or more blocks, optional CRCs,
868 * and inline handshaking. That handhaking makes it unlike most
869 * other SPI protocol stacks.
872 mmc_spi_data_do(struct mmc_spi_host
*host
, struct mmc_command
*cmd
,
873 struct mmc_data
*data
, u32 blk_size
)
875 struct spi_device
*spi
= host
->spi
;
876 struct device
*dma_dev
= host
->dma_dev
;
877 struct spi_transfer
*t
;
878 enum dma_data_direction direction
;
879 struct scatterlist
*sg
;
881 int multiple
= (data
->blocks
> 1);
883 unsigned long timeout
;
885 if (data
->flags
& MMC_DATA_READ
)
886 direction
= DMA_FROM_DEVICE
;
888 direction
= DMA_TO_DEVICE
;
889 mmc_spi_setup_data_message(host
, multiple
, direction
);
893 clock_rate
= t
->speed_hz
;
895 clock_rate
= spi
->max_speed_hz
;
897 timeout
= data
->timeout_ns
+
898 data
->timeout_clks
* 1000000 / clock_rate
;
899 timeout
= usecs_to_jiffies((unsigned int)(timeout
/ 1000)) + 1;
901 /* Handle scatterlist segments one at a time, with synch for
902 * each 512-byte block
904 for (sg
= data
->sg
, n_sg
= data
->sg_len
; n_sg
; n_sg
--, sg
++) {
906 dma_addr_t dma_addr
= 0;
908 unsigned length
= sg
->length
;
909 enum dma_data_direction dir
= direction
;
911 /* set up dma mapping for controller drivers that might
912 * use DMA ... though they may fall back to PIO
915 /* never invalidate whole *shared* pages ... */
916 if ((sg
->offset
!= 0 || length
!= PAGE_SIZE
)
917 && dir
== DMA_FROM_DEVICE
)
918 dir
= DMA_BIDIRECTIONAL
;
920 dma_addr
= dma_map_page(dma_dev
, sg_page(sg
), 0,
922 if (direction
== DMA_TO_DEVICE
)
923 t
->tx_dma
= dma_addr
+ sg
->offset
;
925 t
->rx_dma
= dma_addr
+ sg
->offset
;
928 /* allow pio too; we don't allow highmem */
929 kmap_addr
= kmap(sg_page(sg
));
930 if (direction
== DMA_TO_DEVICE
)
931 t
->tx_buf
= kmap_addr
+ sg
->offset
;
933 t
->rx_buf
= kmap_addr
+ sg
->offset
;
935 /* transfer each block, and update request status */
937 t
->len
= min(length
, blk_size
);
939 dev_dbg(&host
->spi
->dev
,
940 " mmc_spi: %s block, %d bytes\n",
941 (direction
== DMA_TO_DEVICE
)
946 if (direction
== DMA_TO_DEVICE
)
947 status
= mmc_spi_writeblock(host
, t
, timeout
);
949 status
= mmc_spi_readblock(host
, t
, timeout
);
953 data
->bytes_xfered
+= t
->len
;
960 /* discard mappings */
961 if (direction
== DMA_FROM_DEVICE
)
962 flush_kernel_dcache_page(sg_page(sg
));
965 dma_unmap_page(dma_dev
, dma_addr
, PAGE_SIZE
, dir
);
968 data
->error
= status
;
969 dev_dbg(&spi
->dev
, "%s status %d\n",
970 (direction
== DMA_TO_DEVICE
)
977 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
978 * can be issued before multiblock writes. Unlike its more widely
979 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
980 * that can affect the STOP_TRAN logic. Complete (and current)
981 * MMC specs should sort that out before Linux starts using CMD23.
983 if (direction
== DMA_TO_DEVICE
&& multiple
) {
984 struct scratch
*scratch
= host
->data
;
986 const unsigned statlen
= sizeof(scratch
->status
);
988 dev_dbg(&spi
->dev
, " mmc_spi: STOP_TRAN\n");
990 /* Tweak the per-block message we set up earlier by morphing
991 * it to hold single buffer with the token followed by some
992 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
993 * "not busy any longer" status, and leave chip selected.
995 INIT_LIST_HEAD(&host
->m
.transfers
);
996 list_add(&host
->early_status
.transfer_list
,
999 memset(scratch
->status
, 0xff, statlen
);
1000 scratch
->status
[0] = SPI_TOKEN_STOP_TRAN
;
1002 host
->early_status
.tx_buf
= host
->early_status
.rx_buf
;
1003 host
->early_status
.tx_dma
= host
->early_status
.rx_dma
;
1004 host
->early_status
.len
= statlen
;
1007 dma_sync_single_for_device(host
->dma_dev
,
1008 host
->data_dma
, sizeof(*scratch
),
1011 tmp
= spi_sync(spi
, &host
->m
);
1014 dma_sync_single_for_cpu(host
->dma_dev
,
1015 host
->data_dma
, sizeof(*scratch
),
1024 /* Ideally we collected "not busy" status with one I/O,
1025 * avoiding wasteful byte-at-a-time scanning... but more
1026 * I/O is often needed.
1028 for (tmp
= 2; tmp
< statlen
; tmp
++) {
1029 if (scratch
->status
[tmp
] != 0)
1032 tmp
= mmc_spi_wait_unbusy(host
, timeout
);
1033 if (tmp
< 0 && !data
->error
)
1038 /****************************************************************************/
1041 * MMC driver implementation -- the interface to the MMC stack
1044 static void mmc_spi_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1046 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1047 int status
= -EINVAL
;
1050 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1052 struct mmc_command
*cmd
;
1056 if (!mmc_spi_resp_type(cmd
)) {
1057 dev_dbg(&host
->spi
->dev
, "bogus command\n");
1058 cmd
->error
= -EINVAL
;
1063 if (cmd
&& !mmc_spi_resp_type(cmd
)) {
1064 dev_dbg(&host
->spi
->dev
, "bogus STOP command\n");
1065 cmd
->error
= -EINVAL
;
1071 mmc_request_done(host
->mmc
, mrq
);
1077 /* issue command; then optionally data and stop */
1078 status
= mmc_spi_command_send(host
, mrq
, mrq
->cmd
, mrq
->data
!= NULL
);
1079 if (status
== 0 && mrq
->data
) {
1080 mmc_spi_data_do(host
, mrq
->cmd
, mrq
->data
, mrq
->data
->blksz
);
1082 status
= mmc_spi_command_send(host
, mrq
, mrq
->stop
, 0);
1087 mmc_request_done(host
->mmc
, mrq
);
1090 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1092 * NOTE that here we can't know that the card has just been powered up;
1093 * not all MMC/SD sockets support power switching.
1095 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1096 * this doesn't seem to do the right thing at all...
1098 static void mmc_spi_initsequence(struct mmc_spi_host
*host
)
1100 /* Try to be very sure any previous command has completed;
1101 * wait till not-busy, skip debris from any old commands.
1103 mmc_spi_wait_unbusy(host
, r1b_timeout
);
1104 mmc_spi_readbytes(host
, 10);
1107 * Do a burst with chipselect active-high. We need to do this to
1108 * meet the requirement of 74 clock cycles with both chipselect
1109 * and CMD (MOSI) high before CMD0 ... after the card has been
1110 * powered up to Vdd(min), and so is ready to take commands.
1112 * Some cards are particularly needy of this (e.g. Viking "SD256")
1113 * while most others don't seem to care.
1115 * Note that this is one of the places MMC/SD plays games with the
1116 * SPI protocol. Another is that when chipselect is released while
1117 * the card returns BUSY status, the clock must issue several cycles
1118 * with chipselect high before the card will stop driving its output.
1120 host
->spi
->mode
|= SPI_CS_HIGH
;
1121 if (spi_setup(host
->spi
) != 0) {
1122 /* Just warn; most cards work without it. */
1123 dev_warn(&host
->spi
->dev
,
1124 "can't change chip-select polarity\n");
1125 host
->spi
->mode
&= ~SPI_CS_HIGH
;
1127 mmc_spi_readbytes(host
, 18);
1129 host
->spi
->mode
&= ~SPI_CS_HIGH
;
1130 if (spi_setup(host
->spi
) != 0) {
1131 /* Wot, we can't get the same setup we had before? */
1132 dev_err(&host
->spi
->dev
,
1133 "can't restore chip-select polarity\n");
1138 static char *mmc_powerstring(u8 power_mode
)
1140 switch (power_mode
) {
1141 case MMC_POWER_OFF
: return "off";
1142 case MMC_POWER_UP
: return "up";
1143 case MMC_POWER_ON
: return "on";
1148 static void mmc_spi_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1150 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1152 if (host
->power_mode
!= ios
->power_mode
) {
1155 canpower
= host
->pdata
&& host
->pdata
->setpower
;
1157 dev_dbg(&host
->spi
->dev
, "mmc_spi: power %s (%d)%s\n",
1158 mmc_powerstring(ios
->power_mode
),
1160 canpower
? ", can switch" : "");
1162 /* switch power on/off if possible, accounting for
1163 * max 250msec powerup time if needed.
1166 switch (ios
->power_mode
) {
1169 host
->pdata
->setpower(&host
->spi
->dev
,
1171 if (ios
->power_mode
== MMC_POWER_UP
)
1172 msleep(host
->powerup_msecs
);
1176 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1177 if (ios
->power_mode
== MMC_POWER_ON
)
1178 mmc_spi_initsequence(host
);
1180 /* If powering down, ground all card inputs to avoid power
1181 * delivery from data lines! On a shared SPI bus, this
1182 * will probably be temporary; 6.4.2 of the simplified SD
1183 * spec says this must last at least 1msec.
1185 * - Clock low means CPOL 0, e.g. mode 0
1186 * - MOSI low comes from writing zero
1187 * - Chipselect is usually active low...
1189 if (canpower
&& ios
->power_mode
== MMC_POWER_OFF
) {
1193 host
->spi
->mode
&= ~(SPI_CPOL
|SPI_CPHA
);
1194 mres
= spi_setup(host
->spi
);
1196 dev_dbg(&host
->spi
->dev
,
1197 "switch to SPI mode 0 failed\n");
1199 if (spi_write(host
->spi
, &nullbyte
, 1) < 0)
1200 dev_dbg(&host
->spi
->dev
,
1201 "put spi signals to low failed\n");
1204 * Now clock should be low due to spi mode 0;
1205 * MOSI should be low because of written 0x00;
1206 * chipselect should be low (it is active low)
1207 * power supply is off, so now MMC is off too!
1209 * FIXME no, chipselect can be high since the
1210 * device is inactive and SPI_CS_HIGH is clear...
1214 host
->spi
->mode
|= (SPI_CPOL
|SPI_CPHA
);
1215 mres
= spi_setup(host
->spi
);
1217 dev_dbg(&host
->spi
->dev
,
1218 "switch back to SPI mode 3"
1223 host
->power_mode
= ios
->power_mode
;
1226 if (host
->spi
->max_speed_hz
!= ios
->clock
&& ios
->clock
!= 0) {
1229 host
->spi
->max_speed_hz
= ios
->clock
;
1230 status
= spi_setup(host
->spi
);
1231 dev_dbg(&host
->spi
->dev
,
1232 "mmc_spi: clock to %d Hz, %d\n",
1233 host
->spi
->max_speed_hz
, status
);
1237 static int mmc_spi_get_ro(struct mmc_host
*mmc
)
1239 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1241 if (host
->pdata
&& host
->pdata
->get_ro
)
1242 return !!host
->pdata
->get_ro(mmc
->parent
);
1244 * Board doesn't support read only detection; let the mmc core
1245 * decide what to do.
1250 static int mmc_spi_get_cd(struct mmc_host
*mmc
)
1252 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1254 if (host
->pdata
&& host
->pdata
->get_cd
)
1255 return !!host
->pdata
->get_cd(mmc
->parent
);
1259 static const struct mmc_host_ops mmc_spi_ops
= {
1260 .request
= mmc_spi_request
,
1261 .set_ios
= mmc_spi_set_ios
,
1262 .get_ro
= mmc_spi_get_ro
,
1263 .get_cd
= mmc_spi_get_cd
,
1267 /****************************************************************************/
1270 * SPI driver implementation
1274 mmc_spi_detect_irq(int irq
, void *mmc
)
1276 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1277 u16 delay_msec
= max(host
->pdata
->detect_delay
, (u16
)100);
1279 mmc_detect_change(mmc
, msecs_to_jiffies(delay_msec
));
1283 struct count_children
{
1285 struct bus_type
*bus
;
1288 static int maybe_count_child(struct device
*dev
, void *c
)
1290 struct count_children
*ccp
= c
;
1292 if (dev
->bus
== ccp
->bus
) {
1300 static int mmc_spi_probe(struct spi_device
*spi
)
1303 struct mmc_host
*mmc
;
1304 struct mmc_spi_host
*host
;
1307 /* MMC and SD specs only seem to care that sampling is on the
1308 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1309 * should be legit. We'll use mode 0 since the steady state is 0,
1310 * which is appropriate for hotplugging, unless the platform data
1311 * specify mode 3 (if hardware is not compatible to mode 0).
1313 if (spi
->mode
!= SPI_MODE_3
)
1314 spi
->mode
= SPI_MODE_0
;
1315 spi
->bits_per_word
= 8;
1317 status
= spi_setup(spi
);
1319 dev_dbg(&spi
->dev
, "needs SPI mode %02x, %d KHz; %d\n",
1320 spi
->mode
, spi
->max_speed_hz
/ 1000,
1325 /* We can use the bus safely iff nobody else will interfere with us.
1326 * Most commands consist of one SPI message to issue a command, then
1327 * several more to collect its response, then possibly more for data
1328 * transfer. Clocking access to other devices during that period will
1329 * corrupt the command execution.
1331 * Until we have software primitives which guarantee non-interference,
1332 * we'll aim for a hardware-level guarantee.
1334 * REVISIT we can't guarantee another device won't be added later...
1336 if (spi
->master
->num_chipselect
> 1) {
1337 struct count_children cc
;
1340 cc
.bus
= spi
->dev
.bus
;
1341 status
= device_for_each_child(spi
->dev
.parent
, &cc
,
1344 dev_err(&spi
->dev
, "can't share SPI bus\n");
1348 dev_warn(&spi
->dev
, "ASSUMING SPI bus stays unshared!\n");
1351 /* We need a supply of ones to transmit. This is the only time
1352 * the CPU touches these, so cache coherency isn't a concern.
1354 * NOTE if many systems use more than one MMC-over-SPI connector
1355 * it'd save some memory to share this. That's evidently rare.
1358 ones
= kmalloc(MMC_SPI_BLOCKSIZE
, GFP_KERNEL
);
1361 memset(ones
, 0xff, MMC_SPI_BLOCKSIZE
);
1363 mmc
= mmc_alloc_host(sizeof(*host
), &spi
->dev
);
1367 mmc
->ops
= &mmc_spi_ops
;
1368 mmc
->max_blk_size
= MMC_SPI_BLOCKSIZE
;
1370 mmc
->caps
= MMC_CAP_SPI
;
1372 /* SPI doesn't need the lowspeed device identification thing for
1373 * MMC or SD cards, since it never comes up in open drain mode.
1374 * That's good; some SPI masters can't handle very low speeds!
1376 * However, low speed SDIO cards need not handle over 400 KHz;
1377 * that's the only reason not to use a few MHz for f_min (until
1378 * the upper layer reads the target frequency from the CSD).
1380 mmc
->f_min
= 400000;
1381 mmc
->f_max
= spi
->max_speed_hz
;
1383 host
= mmc_priv(mmc
);
1389 /* Platform data is used to hook up things like card sensing
1390 * and power switching gpios.
1392 host
->pdata
= mmc_spi_get_pdata(spi
);
1394 mmc
->ocr_avail
= host
->pdata
->ocr_mask
;
1395 if (!mmc
->ocr_avail
) {
1396 dev_warn(&spi
->dev
, "ASSUMING 3.2-3.4 V slot power\n");
1397 mmc
->ocr_avail
= MMC_VDD_32_33
|MMC_VDD_33_34
;
1399 if (host
->pdata
&& host
->pdata
->setpower
) {
1400 host
->powerup_msecs
= host
->pdata
->powerup_msecs
;
1401 if (!host
->powerup_msecs
|| host
->powerup_msecs
> 250)
1402 host
->powerup_msecs
= 250;
1405 dev_set_drvdata(&spi
->dev
, mmc
);
1407 /* preallocate dma buffers */
1408 host
->data
= kmalloc(sizeof(*host
->data
), GFP_KERNEL
);
1412 if (spi
->master
->dev
.parent
->dma_mask
) {
1413 struct device
*dev
= spi
->master
->dev
.parent
;
1415 host
->dma_dev
= dev
;
1416 host
->ones_dma
= dma_map_single(dev
, ones
,
1417 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1418 host
->data_dma
= dma_map_single(dev
, host
->data
,
1419 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1421 /* REVISIT in theory those map operations can fail... */
1423 dma_sync_single_for_cpu(host
->dma_dev
,
1424 host
->data_dma
, sizeof(*host
->data
),
1428 /* setup message for status/busy readback */
1429 spi_message_init(&host
->readback
);
1430 host
->readback
.is_dma_mapped
= (host
->dma_dev
!= NULL
);
1432 spi_message_add_tail(&host
->status
, &host
->readback
);
1433 host
->status
.tx_buf
= host
->ones
;
1434 host
->status
.tx_dma
= host
->ones_dma
;
1435 host
->status
.rx_buf
= &host
->data
->status
;
1436 host
->status
.rx_dma
= host
->data_dma
+ offsetof(struct scratch
, status
);
1437 host
->status
.cs_change
= 1;
1439 /* register card detect irq */
1440 if (host
->pdata
&& host
->pdata
->init
) {
1441 status
= host
->pdata
->init(&spi
->dev
, mmc_spi_detect_irq
, mmc
);
1443 goto fail_glue_init
;
1446 /* pass platform capabilities, if any */
1448 mmc
->caps
|= host
->pdata
->caps
;
1450 status
= mmc_add_host(mmc
);
1454 dev_info(&spi
->dev
, "SD/MMC host %s%s%s%s%s\n",
1455 dev_name(&mmc
->class_dev
),
1456 host
->dma_dev
? "" : ", no DMA",
1457 (host
->pdata
&& host
->pdata
->get_ro
)
1459 (host
->pdata
&& host
->pdata
->setpower
)
1460 ? "" : ", no poweroff",
1461 (mmc
->caps
& MMC_CAP_NEEDS_POLL
)
1462 ? ", cd polling" : "");
1466 mmc_remove_host (mmc
);
1469 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1470 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1475 mmc_spi_put_pdata(spi
);
1476 dev_set_drvdata(&spi
->dev
, NULL
);
1484 static int __devexit
mmc_spi_remove(struct spi_device
*spi
)
1486 struct mmc_host
*mmc
= dev_get_drvdata(&spi
->dev
);
1487 struct mmc_spi_host
*host
;
1490 host
= mmc_priv(mmc
);
1492 /* prevent new mmc_detect_change() calls */
1493 if (host
->pdata
&& host
->pdata
->exit
)
1494 host
->pdata
->exit(&spi
->dev
, mmc
);
1496 mmc_remove_host(mmc
);
1498 if (host
->dma_dev
) {
1499 dma_unmap_single(host
->dma_dev
, host
->ones_dma
,
1500 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1501 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1502 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1508 spi
->max_speed_hz
= mmc
->f_max
;
1510 mmc_spi_put_pdata(spi
);
1511 dev_set_drvdata(&spi
->dev
, NULL
);
1517 static struct spi_driver mmc_spi_driver
= {
1520 .bus
= &spi_bus_type
,
1521 .owner
= THIS_MODULE
,
1523 .probe
= mmc_spi_probe
,
1524 .remove
= __devexit_p(mmc_spi_remove
),
1528 static int __init
mmc_spi_init(void)
1530 return spi_register_driver(&mmc_spi_driver
);
1532 module_init(mmc_spi_init
);
1535 static void __exit
mmc_spi_exit(void)
1537 spi_unregister_driver(&mmc_spi_driver
);
1539 module_exit(mmc_spi_exit
);
1542 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1543 "Hans-Peter Nilsson, Jan Nikitenko");
1544 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1545 MODULE_LICENSE("GPL");