2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
27 #include <net/af_unix.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
35 static const struct av_perm_to_string av_perm_to_string
[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
41 static const char *class_to_string
[] = {
43 #include "class_to_string.h"
47 #define TB_(s) static const char *s[] = {
50 #include "common_perm_to_string.h"
55 static const struct av_inherit av_inherit
[] = {
56 #define S_(c, i, b) { .tclass = c,\
57 .common_pts = common_##i##_perm_to_string,\
59 #include "av_inherit.h"
63 const struct selinux_class_perm selinux_class_perm
= {
64 .av_perm_to_string
= av_perm_to_string
,
65 .av_pts_len
= ARRAY_SIZE(av_perm_to_string
),
66 .class_to_string
= class_to_string
,
67 .cts_len
= ARRAY_SIZE(class_to_string
),
68 .av_inherit
= av_inherit
,
69 .av_inherit_len
= ARRAY_SIZE(av_inherit
)
72 #define AVC_CACHE_SLOTS 512
73 #define AVC_DEF_CACHE_THRESHOLD 512
74 #define AVC_CACHE_RECLAIM 16
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 #define avc_cache_stats_incr(field) \
79 per_cpu(avc_cache_stats, get_cpu()).field++; \
83 #define avc_cache_stats_incr(field) do {} while (0)
90 struct av_decision avd
;
95 struct hlist_node list
; /* anchored in avc_cache->slots[i] */
96 struct rcu_head rhead
;
100 struct hlist_head slots
[AVC_CACHE_SLOTS
]; /* head for avc_node->list */
101 spinlock_t slots_lock
[AVC_CACHE_SLOTS
]; /* lock for writes */
102 atomic_t lru_hint
; /* LRU hint for reclaim scan */
103 atomic_t active_nodes
;
104 u32 latest_notif
; /* latest revocation notification */
107 struct avc_callback_node
{
108 int (*callback
) (u32 event
, u32 ssid
, u32 tsid
,
109 u16 tclass
, u32 perms
,
116 struct avc_callback_node
*next
;
119 /* Exported via selinufs */
120 unsigned int avc_cache_threshold
= AVC_DEF_CACHE_THRESHOLD
;
122 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
123 DEFINE_PER_CPU(struct avc_cache_stats
, avc_cache_stats
) = { 0 };
126 static struct avc_cache avc_cache
;
127 static struct avc_callback_node
*avc_callbacks
;
128 static struct kmem_cache
*avc_node_cachep
;
130 static inline int avc_hash(u32 ssid
, u32 tsid
, u16 tclass
)
132 return (ssid
^ (tsid
<<2) ^ (tclass
<<4)) & (AVC_CACHE_SLOTS
- 1);
136 * avc_dump_av - Display an access vector in human-readable form.
137 * @tclass: target security class
140 void avc_dump_av(struct audit_buffer
*ab
, u16 tclass
, u32 av
)
142 const char **common_pts
= NULL
;
147 audit_log_format(ab
, " null");
151 for (i
= 0; i
< ARRAY_SIZE(av_inherit
); i
++) {
152 if (av_inherit
[i
].tclass
== tclass
) {
153 common_pts
= av_inherit
[i
].common_pts
;
154 common_base
= av_inherit
[i
].common_base
;
159 audit_log_format(ab
, " {");
162 while (perm
< common_base
) {
164 audit_log_format(ab
, " %s", common_pts
[i
]);
171 while (i
< sizeof(av
) * 8) {
173 for (i2
= 0; i2
< ARRAY_SIZE(av_perm_to_string
); i2
++) {
174 if ((av_perm_to_string
[i2
].tclass
== tclass
) &&
175 (av_perm_to_string
[i2
].value
== perm
))
178 if (i2
< ARRAY_SIZE(av_perm_to_string
)) {
179 audit_log_format(ab
, " %s",
180 av_perm_to_string
[i2
].name
);
189 audit_log_format(ab
, " 0x%x", av
);
191 audit_log_format(ab
, " }");
195 * avc_dump_query - Display a SID pair and a class in human-readable form.
196 * @ssid: source security identifier
197 * @tsid: target security identifier
198 * @tclass: target security class
200 static void avc_dump_query(struct audit_buffer
*ab
, u32 ssid
, u32 tsid
, u16 tclass
)
206 rc
= security_sid_to_context(ssid
, &scontext
, &scontext_len
);
208 audit_log_format(ab
, "ssid=%d", ssid
);
210 audit_log_format(ab
, "scontext=%s", scontext
);
214 rc
= security_sid_to_context(tsid
, &scontext
, &scontext_len
);
216 audit_log_format(ab
, " tsid=%d", tsid
);
218 audit_log_format(ab
, " tcontext=%s", scontext
);
222 BUG_ON(tclass
>= ARRAY_SIZE(class_to_string
) || !class_to_string
[tclass
]);
223 audit_log_format(ab
, " tclass=%s", class_to_string
[tclass
]);
227 * avc_init - Initialize the AVC.
229 * Initialize the access vector cache.
231 void __init
avc_init(void)
235 for (i
= 0; i
< AVC_CACHE_SLOTS
; i
++) {
236 INIT_HLIST_HEAD(&avc_cache
.slots
[i
]);
237 spin_lock_init(&avc_cache
.slots_lock
[i
]);
239 atomic_set(&avc_cache
.active_nodes
, 0);
240 atomic_set(&avc_cache
.lru_hint
, 0);
242 avc_node_cachep
= kmem_cache_create("avc_node", sizeof(struct avc_node
),
243 0, SLAB_PANIC
, NULL
);
245 audit_log(current
->audit_context
, GFP_KERNEL
, AUDIT_KERNEL
, "AVC INITIALIZED\n");
248 int avc_get_hash_stats(char *page
)
250 int i
, chain_len
, max_chain_len
, slots_used
;
251 struct avc_node
*node
;
252 struct hlist_head
*head
;
258 for (i
= 0; i
< AVC_CACHE_SLOTS
; i
++) {
259 head
= &avc_cache
.slots
[i
];
260 if (!hlist_empty(head
)) {
261 struct hlist_node
*next
;
265 hlist_for_each_entry_rcu(node
, next
, head
, list
)
267 if (chain_len
> max_chain_len
)
268 max_chain_len
= chain_len
;
274 return scnprintf(page
, PAGE_SIZE
, "entries: %d\nbuckets used: %d/%d\n"
275 "longest chain: %d\n",
276 atomic_read(&avc_cache
.active_nodes
),
277 slots_used
, AVC_CACHE_SLOTS
, max_chain_len
);
280 static void avc_node_free(struct rcu_head
*rhead
)
282 struct avc_node
*node
= container_of(rhead
, struct avc_node
, rhead
);
283 kmem_cache_free(avc_node_cachep
, node
);
284 avc_cache_stats_incr(frees
);
287 static void avc_node_delete(struct avc_node
*node
)
289 hlist_del_rcu(&node
->list
);
290 call_rcu(&node
->rhead
, avc_node_free
);
291 atomic_dec(&avc_cache
.active_nodes
);
294 static void avc_node_kill(struct avc_node
*node
)
296 kmem_cache_free(avc_node_cachep
, node
);
297 avc_cache_stats_incr(frees
);
298 atomic_dec(&avc_cache
.active_nodes
);
301 static void avc_node_replace(struct avc_node
*new, struct avc_node
*old
)
303 hlist_replace_rcu(&old
->list
, &new->list
);
304 call_rcu(&old
->rhead
, avc_node_free
);
305 atomic_dec(&avc_cache
.active_nodes
);
308 static inline int avc_reclaim_node(void)
310 struct avc_node
*node
;
311 int hvalue
, try, ecx
;
313 struct hlist_head
*head
;
314 struct hlist_node
*next
;
317 for (try = 0, ecx
= 0; try < AVC_CACHE_SLOTS
; try++) {
318 hvalue
= atomic_inc_return(&avc_cache
.lru_hint
) & (AVC_CACHE_SLOTS
- 1);
319 head
= &avc_cache
.slots
[hvalue
];
320 lock
= &avc_cache
.slots_lock
[hvalue
];
322 if (!spin_trylock_irqsave(lock
, flags
))
326 hlist_for_each_entry(node
, next
, head
, list
) {
327 avc_node_delete(node
);
328 avc_cache_stats_incr(reclaims
);
330 if (ecx
>= AVC_CACHE_RECLAIM
) {
332 spin_unlock_irqrestore(lock
, flags
);
337 spin_unlock_irqrestore(lock
, flags
);
343 static struct avc_node
*avc_alloc_node(void)
345 struct avc_node
*node
;
347 node
= kmem_cache_zalloc(avc_node_cachep
, GFP_ATOMIC
);
351 INIT_RCU_HEAD(&node
->rhead
);
352 INIT_HLIST_NODE(&node
->list
);
353 avc_cache_stats_incr(allocations
);
355 if (atomic_inc_return(&avc_cache
.active_nodes
) > avc_cache_threshold
)
362 static void avc_node_populate(struct avc_node
*node
, u32 ssid
, u32 tsid
, u16 tclass
, struct av_decision
*avd
)
364 node
->ae
.ssid
= ssid
;
365 node
->ae
.tsid
= tsid
;
366 node
->ae
.tclass
= tclass
;
367 memcpy(&node
->ae
.avd
, avd
, sizeof(node
->ae
.avd
));
370 static inline struct avc_node
*avc_search_node(u32 ssid
, u32 tsid
, u16 tclass
)
372 struct avc_node
*node
, *ret
= NULL
;
374 struct hlist_head
*head
;
375 struct hlist_node
*next
;
377 hvalue
= avc_hash(ssid
, tsid
, tclass
);
378 head
= &avc_cache
.slots
[hvalue
];
379 hlist_for_each_entry_rcu(node
, next
, head
, list
) {
380 if (ssid
== node
->ae
.ssid
&&
381 tclass
== node
->ae
.tclass
&&
382 tsid
== node
->ae
.tsid
) {
392 * avc_lookup - Look up an AVC entry.
393 * @ssid: source security identifier
394 * @tsid: target security identifier
395 * @tclass: target security class
397 * Look up an AVC entry that is valid for the
398 * (@ssid, @tsid), interpreting the permissions
399 * based on @tclass. If a valid AVC entry exists,
400 * then this function return the avc_node.
401 * Otherwise, this function returns NULL.
403 static struct avc_node
*avc_lookup(u32 ssid
, u32 tsid
, u16 tclass
)
405 struct avc_node
*node
;
407 avc_cache_stats_incr(lookups
);
408 node
= avc_search_node(ssid
, tsid
, tclass
);
411 avc_cache_stats_incr(hits
);
413 avc_cache_stats_incr(misses
);
418 static int avc_latest_notif_update(int seqno
, int is_insert
)
421 static DEFINE_SPINLOCK(notif_lock
);
424 spin_lock_irqsave(¬if_lock
, flag
);
426 if (seqno
< avc_cache
.latest_notif
) {
427 printk(KERN_WARNING
"SELinux: avc: seqno %d < latest_notif %d\n",
428 seqno
, avc_cache
.latest_notif
);
432 if (seqno
> avc_cache
.latest_notif
)
433 avc_cache
.latest_notif
= seqno
;
435 spin_unlock_irqrestore(¬if_lock
, flag
);
441 * avc_insert - Insert an AVC entry.
442 * @ssid: source security identifier
443 * @tsid: target security identifier
444 * @tclass: target security class
445 * @avd: resulting av decision
447 * Insert an AVC entry for the SID pair
448 * (@ssid, @tsid) and class @tclass.
449 * The access vectors and the sequence number are
450 * normally provided by the security server in
451 * response to a security_compute_av() call. If the
452 * sequence number @avd->seqno is not less than the latest
453 * revocation notification, then the function copies
454 * the access vectors into a cache entry, returns
455 * avc_node inserted. Otherwise, this function returns NULL.
457 static struct avc_node
*avc_insert(u32 ssid
, u32 tsid
, u16 tclass
, struct av_decision
*avd
)
459 struct avc_node
*pos
, *node
= NULL
;
463 if (avc_latest_notif_update(avd
->seqno
, 1))
466 node
= avc_alloc_node();
468 struct hlist_head
*head
;
469 struct hlist_node
*next
;
472 hvalue
= avc_hash(ssid
, tsid
, tclass
);
473 avc_node_populate(node
, ssid
, tsid
, tclass
, avd
);
475 head
= &avc_cache
.slots
[hvalue
];
476 lock
= &avc_cache
.slots_lock
[hvalue
];
478 spin_lock_irqsave(lock
, flag
);
479 hlist_for_each_entry(pos
, next
, head
, list
) {
480 if (pos
->ae
.ssid
== ssid
&&
481 pos
->ae
.tsid
== tsid
&&
482 pos
->ae
.tclass
== tclass
) {
483 avc_node_replace(node
, pos
);
487 hlist_add_head_rcu(&node
->list
, head
);
489 spin_unlock_irqrestore(lock
, flag
);
495 static inline void avc_print_ipv6_addr(struct audit_buffer
*ab
,
496 struct in6_addr
*addr
, __be16 port
,
497 char *name1
, char *name2
)
499 if (!ipv6_addr_any(addr
))
500 audit_log_format(ab
, " %s=%pI6", name1
, addr
);
502 audit_log_format(ab
, " %s=%d", name2
, ntohs(port
));
505 static inline void avc_print_ipv4_addr(struct audit_buffer
*ab
, __be32 addr
,
506 __be16 port
, char *name1
, char *name2
)
509 audit_log_format(ab
, " %s=%pI4", name1
, &addr
);
511 audit_log_format(ab
, " %s=%d", name2
, ntohs(port
));
515 * avc_audit - Audit the granting or denial of permissions.
516 * @ssid: source security identifier
517 * @tsid: target security identifier
518 * @tclass: target security class
519 * @requested: requested permissions
520 * @avd: access vector decisions
521 * @result: result from avc_has_perm_noaudit
522 * @a: auxiliary audit data
524 * Audit the granting or denial of permissions in accordance
525 * with the policy. This function is typically called by
526 * avc_has_perm() after a permission check, but can also be
527 * called directly by callers who use avc_has_perm_noaudit()
528 * in order to separate the permission check from the auditing.
529 * For example, this separation is useful when the permission check must
530 * be performed under a lock, to allow the lock to be released
531 * before calling the auditing code.
533 void avc_audit(u32 ssid
, u32 tsid
,
534 u16 tclass
, u32 requested
,
535 struct av_decision
*avd
, int result
, struct avc_audit_data
*a
)
537 struct task_struct
*tsk
= current
;
538 struct inode
*inode
= NULL
;
540 struct audit_buffer
*ab
;
542 denied
= requested
& ~avd
->allowed
;
545 if (!(audited
& avd
->auditdeny
))
548 audited
= denied
= requested
;
551 if (!(audited
& avd
->auditallow
))
555 ab
= audit_log_start(current
->audit_context
, GFP_ATOMIC
, AUDIT_AVC
);
557 return; /* audit_panic has been called */
558 audit_log_format(ab
, "avc: %s ", denied
? "denied" : "granted");
559 avc_dump_av(ab
, tclass
, audited
);
560 audit_log_format(ab
, " for ");
563 if (tsk
&& tsk
->pid
) {
564 audit_log_format(ab
, " pid=%d comm=", tsk
->pid
);
565 audit_log_untrustedstring(ab
, tsk
->comm
);
569 case AVC_AUDIT_DATA_IPC
:
570 audit_log_format(ab
, " key=%d", a
->u
.ipc_id
);
572 case AVC_AUDIT_DATA_CAP
:
573 audit_log_format(ab
, " capability=%d", a
->u
.cap
);
575 case AVC_AUDIT_DATA_FS
:
576 if (a
->u
.fs
.path
.dentry
) {
577 struct dentry
*dentry
= a
->u
.fs
.path
.dentry
;
578 if (a
->u
.fs
.path
.mnt
) {
579 audit_log_d_path(ab
, "path=",
582 audit_log_format(ab
, " name=");
583 audit_log_untrustedstring(ab
, dentry
->d_name
.name
);
585 inode
= dentry
->d_inode
;
586 } else if (a
->u
.fs
.inode
) {
587 struct dentry
*dentry
;
588 inode
= a
->u
.fs
.inode
;
589 dentry
= d_find_alias(inode
);
591 audit_log_format(ab
, " name=");
592 audit_log_untrustedstring(ab
, dentry
->d_name
.name
);
597 audit_log_format(ab
, " dev=%s ino=%lu",
601 case AVC_AUDIT_DATA_NET
:
603 struct sock
*sk
= a
->u
.net
.sk
;
608 switch (sk
->sk_family
) {
610 struct inet_sock
*inet
= inet_sk(sk
);
612 avc_print_ipv4_addr(ab
, inet
->rcv_saddr
,
615 avc_print_ipv4_addr(ab
, inet
->daddr
,
621 struct inet_sock
*inet
= inet_sk(sk
);
622 struct ipv6_pinfo
*inet6
= inet6_sk(sk
);
624 avc_print_ipv6_addr(ab
, &inet6
->rcv_saddr
,
627 avc_print_ipv6_addr(ab
, &inet6
->daddr
,
639 audit_log_d_path(ab
, "path=",
645 len
= u
->addr
->len
-sizeof(short);
646 p
= &u
->addr
->name
->sun_path
[0];
647 audit_log_format(ab
, " path=");
649 audit_log_untrustedstring(ab
, p
);
651 audit_log_n_hex(ab
, p
, len
);
656 switch (a
->u
.net
.family
) {
658 avc_print_ipv4_addr(ab
, a
->u
.net
.v4info
.saddr
,
661 avc_print_ipv4_addr(ab
, a
->u
.net
.v4info
.daddr
,
666 avc_print_ipv6_addr(ab
, &a
->u
.net
.v6info
.saddr
,
669 avc_print_ipv6_addr(ab
, &a
->u
.net
.v6info
.daddr
,
674 if (a
->u
.net
.netif
> 0) {
675 struct net_device
*dev
;
677 /* NOTE: we always use init's namespace */
678 dev
= dev_get_by_index(&init_net
,
681 audit_log_format(ab
, " netif=%s",
689 audit_log_format(ab
, " ");
690 avc_dump_query(ab
, ssid
, tsid
, tclass
);
695 * avc_add_callback - Register a callback for security events.
696 * @callback: callback function
697 * @events: security events
698 * @ssid: source security identifier or %SECSID_WILD
699 * @tsid: target security identifier or %SECSID_WILD
700 * @tclass: target security class
701 * @perms: permissions
703 * Register a callback function for events in the set @events
704 * related to the SID pair (@ssid, @tsid) and
705 * and the permissions @perms, interpreting
706 * @perms based on @tclass. Returns %0 on success or
707 * -%ENOMEM if insufficient memory exists to add the callback.
709 int avc_add_callback(int (*callback
)(u32 event
, u32 ssid
, u32 tsid
,
710 u16 tclass
, u32 perms
,
712 u32 events
, u32 ssid
, u32 tsid
,
713 u16 tclass
, u32 perms
)
715 struct avc_callback_node
*c
;
718 c
= kmalloc(sizeof(*c
), GFP_ATOMIC
);
724 c
->callback
= callback
;
729 c
->next
= avc_callbacks
;
735 static inline int avc_sidcmp(u32 x
, u32 y
)
737 return (x
== y
|| x
== SECSID_WILD
|| y
== SECSID_WILD
);
741 * avc_update_node Update an AVC entry
742 * @event : Updating event
743 * @perms : Permission mask bits
744 * @ssid,@tsid,@tclass : identifier of an AVC entry
745 * @seqno : sequence number when decision was made
747 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
748 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
749 * otherwise, this function update the AVC entry. The original AVC-entry object
750 * will release later by RCU.
752 static int avc_update_node(u32 event
, u32 perms
, u32 ssid
, u32 tsid
, u16 tclass
,
757 struct avc_node
*pos
, *node
, *orig
= NULL
;
758 struct hlist_head
*head
;
759 struct hlist_node
*next
;
762 node
= avc_alloc_node();
768 /* Lock the target slot */
769 hvalue
= avc_hash(ssid
, tsid
, tclass
);
771 head
= &avc_cache
.slots
[hvalue
];
772 lock
= &avc_cache
.slots_lock
[hvalue
];
774 spin_lock_irqsave(lock
, flag
);
776 hlist_for_each_entry(pos
, next
, head
, list
) {
777 if (ssid
== pos
->ae
.ssid
&&
778 tsid
== pos
->ae
.tsid
&&
779 tclass
== pos
->ae
.tclass
&&
780 seqno
== pos
->ae
.avd
.seqno
){
793 * Copy and replace original node.
796 avc_node_populate(node
, ssid
, tsid
, tclass
, &orig
->ae
.avd
);
799 case AVC_CALLBACK_GRANT
:
800 node
->ae
.avd
.allowed
|= perms
;
802 case AVC_CALLBACK_TRY_REVOKE
:
803 case AVC_CALLBACK_REVOKE
:
804 node
->ae
.avd
.allowed
&= ~perms
;
806 case AVC_CALLBACK_AUDITALLOW_ENABLE
:
807 node
->ae
.avd
.auditallow
|= perms
;
809 case AVC_CALLBACK_AUDITALLOW_DISABLE
:
810 node
->ae
.avd
.auditallow
&= ~perms
;
812 case AVC_CALLBACK_AUDITDENY_ENABLE
:
813 node
->ae
.avd
.auditdeny
|= perms
;
815 case AVC_CALLBACK_AUDITDENY_DISABLE
:
816 node
->ae
.avd
.auditdeny
&= ~perms
;
819 avc_node_replace(node
, orig
);
821 spin_unlock_irqrestore(lock
, flag
);
827 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
828 * @seqno: policy sequence number
830 int avc_ss_reset(u32 seqno
)
832 struct avc_callback_node
*c
;
833 int i
, rc
= 0, tmprc
;
835 struct avc_node
*node
;
836 struct hlist_head
*head
;
837 struct hlist_node
*next
;
840 for (i
= 0; i
< AVC_CACHE_SLOTS
; i
++) {
841 head
= &avc_cache
.slots
[i
];
842 lock
= &avc_cache
.slots_lock
[i
];
844 spin_lock_irqsave(lock
, flag
);
846 * With preemptable RCU, the outer spinlock does not
847 * prevent RCU grace periods from ending.
850 hlist_for_each_entry(node
, next
, head
, list
)
851 avc_node_delete(node
);
853 spin_unlock_irqrestore(lock
, flag
);
856 for (c
= avc_callbacks
; c
; c
= c
->next
) {
857 if (c
->events
& AVC_CALLBACK_RESET
) {
858 tmprc
= c
->callback(AVC_CALLBACK_RESET
,
860 /* save the first error encountered for the return
861 value and continue processing the callbacks */
867 avc_latest_notif_update(seqno
, 0);
872 * avc_has_perm_noaudit - Check permissions but perform no auditing.
873 * @ssid: source security identifier
874 * @tsid: target security identifier
875 * @tclass: target security class
876 * @requested: requested permissions, interpreted based on @tclass
877 * @flags: AVC_STRICT or 0
878 * @avd: access vector decisions
880 * Check the AVC to determine whether the @requested permissions are granted
881 * for the SID pair (@ssid, @tsid), interpreting the permissions
882 * based on @tclass, and call the security server on a cache miss to obtain
883 * a new decision and add it to the cache. Return a copy of the decisions
884 * in @avd. Return %0 if all @requested permissions are granted,
885 * -%EACCES if any permissions are denied, or another -errno upon
886 * other errors. This function is typically called by avc_has_perm(),
887 * but may also be called directly to separate permission checking from
888 * auditing, e.g. in cases where a lock must be held for the check but
889 * should be released for the auditing.
891 int avc_has_perm_noaudit(u32 ssid
, u32 tsid
,
892 u16 tclass
, u32 requested
,
894 struct av_decision
*in_avd
)
896 struct avc_node
*node
;
897 struct av_decision avd_entry
, *avd
;
905 node
= avc_lookup(ssid
, tsid
, tclass
);
914 rc
= security_compute_av(ssid
, tsid
, tclass
, requested
, avd
);
918 node
= avc_insert(ssid
, tsid
, tclass
, avd
);
921 memcpy(in_avd
, &node
->ae
.avd
, sizeof(*in_avd
));
925 denied
= requested
& ~(avd
->allowed
);
928 if (flags
& AVC_STRICT
)
930 else if (!selinux_enforcing
|| security_permissive_sid(ssid
))
931 avc_update_node(AVC_CALLBACK_GRANT
, requested
, ssid
,
932 tsid
, tclass
, avd
->seqno
);
943 * avc_has_perm - Check permissions and perform any appropriate auditing.
944 * @ssid: source security identifier
945 * @tsid: target security identifier
946 * @tclass: target security class
947 * @requested: requested permissions, interpreted based on @tclass
948 * @auditdata: auxiliary audit data
950 * Check the AVC to determine whether the @requested permissions are granted
951 * for the SID pair (@ssid, @tsid), interpreting the permissions
952 * based on @tclass, and call the security server on a cache miss to obtain
953 * a new decision and add it to the cache. Audit the granting or denial of
954 * permissions in accordance with the policy. Return %0 if all @requested
955 * permissions are granted, -%EACCES if any permissions are denied, or
956 * another -errno upon other errors.
958 int avc_has_perm(u32 ssid
, u32 tsid
, u16 tclass
,
959 u32 requested
, struct avc_audit_data
*auditdata
)
961 struct av_decision avd
;
964 rc
= avc_has_perm_noaudit(ssid
, tsid
, tclass
, requested
, 0, &avd
);
965 avc_audit(ssid
, tsid
, tclass
, requested
, &avd
, rc
, auditdata
);
969 u32
avc_policy_seqno(void)
971 return avc_cache
.latest_notif
;