Merge branches 'bugzilla-13121+', 'bugzilla-13233', 'redhat-bugzilla-500311', 'pci...
[linux-2.6/linux-acpi-2.6.git] / Documentation / scheduler / sched-rt-group.txt
blob5ba4d3fc625a424b341bfa5b5853473eaf80fe6a
1                                 Real-Time group scheduling
2                                 --------------------------
4 CONTENTS
5 ========
7 1. Overview
8   1.1 The problem
9   1.2 The solution
10 2. The interface
11   2.1 System-wide settings
12   2.2 Default behaviour
13   2.3 Basis for grouping tasks
14 3. Future plans
17 1. Overview
18 ===========
21 1.1 The problem
22 ---------------
24 Realtime scheduling is all about determinism, a group has to be able to rely on
25 the amount of bandwidth (eg. CPU time) being constant. In order to schedule
26 multiple groups of realtime tasks, each group must be assigned a fixed portion
27 of the CPU time available.  Without a minimum guarantee a realtime group can
28 obviously fall short. A fuzzy upper limit is of no use since it cannot be
29 relied upon. Which leaves us with just the single fixed portion.
31 1.2 The solution
32 ----------------
34 CPU time is divided by means of specifying how much time can be spent running
35 in a given period. We allocate this "run time" for each realtime group which
36 the other realtime groups will not be permitted to use.
38 Any time not allocated to a realtime group will be used to run normal priority
39 tasks (SCHED_OTHER). Any allocated run time not used will also be picked up by
40 SCHED_OTHER.
42 Let's consider an example: a frame fixed realtime renderer must deliver 25
43 frames a second, which yields a period of 0.04s per frame. Now say it will also
44 have to play some music and respond to input, leaving it with around 80% CPU
45 time dedicated for the graphics. We can then give this group a run time of 0.8
46 * 0.04s = 0.032s.
48 This way the graphics group will have a 0.04s period with a 0.032s run time
49 limit. Now if the audio thread needs to refill the DMA buffer every 0.005s, but
50 needs only about 3% CPU time to do so, it can do with a 0.03 * 0.005s =
51 0.00015s. So this group can be scheduled with a period of 0.005s and a run time
52 of 0.00015s.
54 The remaining CPU time will be used for user input and other tasks. Because
55 realtime tasks have explicitly allocated the CPU time they need to perform
56 their tasks, buffer underruns in the graphics or audio can be eliminated.
58 NOTE: the above example is not fully implemented as of yet (2.6.25). We still
59 lack an EDF scheduler to make non-uniform periods usable.
62 2. The Interface
63 ================
66 2.1 System wide settings
67 ------------------------
69 The system wide settings are configured under the /proc virtual file system:
71 /proc/sys/kernel/sched_rt_period_us:
72   The scheduling period that is equivalent to 100% CPU bandwidth
74 /proc/sys/kernel/sched_rt_runtime_us:
75   A global limit on how much time realtime scheduling may use.  Even without
76   CONFIG_RT_GROUP_SCHED enabled, this will limit time reserved to realtime
77   processes. With CONFIG_RT_GROUP_SCHED it signifies the total bandwidth
78   available to all realtime groups.
80   * Time is specified in us because the interface is s32. This gives an
81     operating range from 1us to about 35 minutes.
82   * sched_rt_period_us takes values from 1 to INT_MAX.
83   * sched_rt_runtime_us takes values from -1 to (INT_MAX - 1).
84   * A run time of -1 specifies runtime == period, ie. no limit.
87 2.2 Default behaviour
88 ---------------------
90 The default values for sched_rt_period_us (1000000 or 1s) and
91 sched_rt_runtime_us (950000 or 0.95s).  This gives 0.05s to be used by
92 SCHED_OTHER (non-RT tasks). These defaults were chosen so that a run-away
93 realtime tasks will not lock up the machine but leave a little time to recover
94 it.  By setting runtime to -1 you'd get the old behaviour back.
96 By default all bandwidth is assigned to the root group and new groups get the
97 period from /proc/sys/kernel/sched_rt_period_us and a run time of 0. If you
98 want to assign bandwidth to another group, reduce the root group's bandwidth
99 and assign some or all of the difference to another group.
101 Realtime group scheduling means you have to assign a portion of total CPU
102 bandwidth to the group before it will accept realtime tasks. Therefore you will
103 not be able to run realtime tasks as any user other than root until you have
104 done that, even if the user has the rights to run processes with realtime
105 priority!
108 2.3 Basis for grouping tasks
109 ----------------------------
111 There are two compile-time settings for allocating CPU bandwidth. These are
112 configured using the "Basis for grouping tasks" multiple choice menu under
113 General setup > Group CPU Scheduler:
115 a. CONFIG_USER_SCHED (aka "Basis for grouping tasks" =  "user id")
117 This lets you use the virtual files under
118 "/sys/kernel/uids/<uid>/cpu_rt_runtime_us" to control he CPU time reserved for
119 each user .
121 The other option is:
123 .o CONFIG_CGROUP_SCHED (aka "Basis for grouping tasks" = "Control groups")
125 This uses the /cgroup virtual file system and "/cgroup/<cgroup>/cpu.rt_runtime_us"
126 to control the CPU time reserved for each control group instead.
128 For more information on working with control groups, you should read
129 Documentation/cgroups/cgroups.txt as well.
131 Group settings are checked against the following limits in order to keep the configuration
132 schedulable:
134    \Sum_{i} runtime_{i} / global_period <= global_runtime / global_period
136 For now, this can be simplified to just the following (but see Future plans):
138    \Sum_{i} runtime_{i} <= global_runtime
141 3. Future plans
142 ===============
144 There is work in progress to make the scheduling period for each group
145 ("/sys/kernel/uids/<uid>/cpu_rt_period_us" or
146 "/cgroup/<cgroup>/cpu.rt_period_us" respectively) configurable as well.
148 The constraint on the period is that a subgroup must have a smaller or
149 equal period to its parent. But realistically its not very useful _yet_
150 as its prone to starvation without deadline scheduling.
152 Consider two sibling groups A and B; both have 50% bandwidth, but A's
153 period is twice the length of B's.
155 * group A: period=100000us, runtime=10000us
156         - this runs for 0.01s once every 0.1s
158 * group B: period= 50000us, runtime=10000us
159         - this runs for 0.01s twice every 0.1s (or once every 0.05 sec).
161 This means that currently a while (1) loop in A will run for the full period of
162 B and can starve B's tasks (assuming they are of lower priority) for a whole
163 period.
165 The next project will be SCHED_EDF (Earliest Deadline First scheduling) to bring
166 full deadline scheduling to the linux kernel. Deadline scheduling the above
167 groups and treating end of the period as a deadline will ensure that they both
168 get their allocated time.
170 Implementing SCHED_EDF might take a while to complete. Priority Inheritance is
171 the biggest challenge as the current linux PI infrastructure is geared towards
172 the limited static priority levels 0-139. With deadline scheduling you need to
173 do deadline inheritance (since priority is inversely proportional to the
174 deadline delta (deadline - now).
176 This means the whole PI machinery will have to be reworked - and that is one of
177 the most complex pieces of code we have.