ACPI: kill acpi_get_pci_id
[linux-2.6/linux-acpi-2.6.git] / block / cfq-iosched.c
bloba55a9bd75bd1baf616a3a1b7118acaeee328759f
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per block device queue structure
76 struct cfq_data {
77 struct request_queue *queue;
80 * rr list of queues with requests and the count of them
82 struct cfq_rb_root service_tree;
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
89 struct rb_root prio_trees[CFQ_PRIO_LISTS];
91 unsigned int busy_queues;
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
96 unsigned int busy_rt_queues;
98 int rq_in_driver;
99 int sync_flight;
102 * queue-depth detection
104 int rq_queued;
105 int hw_tag;
106 int hw_tag_samples;
107 int rq_in_driver_peak;
110 * idle window management
112 struct timer_list idle_slice_timer;
113 struct work_struct unplug_work;
115 struct cfq_queue *active_queue;
116 struct cfq_io_context *active_cic;
119 * async queue for each priority case
121 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122 struct cfq_queue *async_idle_cfqq;
124 sector_t last_position;
125 unsigned long last_end_request;
128 * tunables, see top of file
130 unsigned int cfq_quantum;
131 unsigned int cfq_fifo_expire[2];
132 unsigned int cfq_back_penalty;
133 unsigned int cfq_back_max;
134 unsigned int cfq_slice[2];
135 unsigned int cfq_slice_async_rq;
136 unsigned int cfq_slice_idle;
138 struct list_head cic_list;
142 * Per process-grouping structure
144 struct cfq_queue {
145 /* reference count */
146 atomic_t ref;
147 /* various state flags, see below */
148 unsigned int flags;
149 /* parent cfq_data */
150 struct cfq_data *cfqd;
151 /* service_tree member */
152 struct rb_node rb_node;
153 /* service_tree key */
154 unsigned long rb_key;
155 /* prio tree member */
156 struct rb_node p_node;
157 /* prio tree root we belong to, if any */
158 struct rb_root *p_root;
159 /* sorted list of pending requests */
160 struct rb_root sort_list;
161 /* if fifo isn't expired, next request to serve */
162 struct request *next_rq;
163 /* requests queued in sort_list */
164 int queued[2];
165 /* currently allocated requests */
166 int allocated[2];
167 /* fifo list of requests in sort_list */
168 struct list_head fifo;
170 unsigned long slice_end;
171 long slice_resid;
172 unsigned int slice_dispatch;
174 /* pending metadata requests */
175 int meta_pending;
176 /* number of requests that are on the dispatch list or inside driver */
177 int dispatched;
179 /* io prio of this group */
180 unsigned short ioprio, org_ioprio;
181 unsigned short ioprio_class, org_ioprio_class;
183 pid_t pid;
186 enum cfqq_state_flags {
187 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
188 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
189 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
190 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
191 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
192 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
193 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
194 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
195 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
196 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
197 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
200 #define CFQ_CFQQ_FNS(name) \
201 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
205 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
209 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
214 CFQ_CFQQ_FNS(on_rr);
215 CFQ_CFQQ_FNS(wait_request);
216 CFQ_CFQQ_FNS(must_dispatch);
217 CFQ_CFQQ_FNS(must_alloc);
218 CFQ_CFQQ_FNS(must_alloc_slice);
219 CFQ_CFQQ_FNS(fifo_expire);
220 CFQ_CFQQ_FNS(idle_window);
221 CFQ_CFQQ_FNS(prio_changed);
222 CFQ_CFQQ_FNS(slice_new);
223 CFQ_CFQQ_FNS(sync);
224 CFQ_CFQQ_FNS(coop);
225 #undef CFQ_CFQQ_FNS
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
232 static void cfq_dispatch_insert(struct request_queue *, struct request *);
233 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
234 struct io_context *, gfp_t);
235 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
236 struct io_context *);
238 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
239 int is_sync)
241 return cic->cfqq[!!is_sync];
244 static inline void cic_set_cfqq(struct cfq_io_context *cic,
245 struct cfq_queue *cfqq, int is_sync)
247 cic->cfqq[!!is_sync] = cfqq;
251 * We regard a request as SYNC, if it's either a read or has the SYNC bit
252 * set (in which case it could also be direct WRITE).
254 static inline int cfq_bio_sync(struct bio *bio)
256 if (bio_data_dir(bio) == READ || bio_sync(bio))
257 return 1;
259 return 0;
263 * scheduler run of queue, if there are requests pending and no one in the
264 * driver that will restart queueing
266 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
268 if (cfqd->busy_queues) {
269 cfq_log(cfqd, "schedule dispatch");
270 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
274 static int cfq_queue_empty(struct request_queue *q)
276 struct cfq_data *cfqd = q->elevator->elevator_data;
278 return !cfqd->busy_queues;
282 * Scale schedule slice based on io priority. Use the sync time slice only
283 * if a queue is marked sync and has sync io queued. A sync queue with async
284 * io only, should not get full sync slice length.
286 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
287 unsigned short prio)
289 const int base_slice = cfqd->cfq_slice[sync];
291 WARN_ON(prio >= IOPRIO_BE_NR);
293 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
296 static inline int
297 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
299 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
302 static inline void
303 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
305 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
306 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
310 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
311 * isn't valid until the first request from the dispatch is activated
312 * and the slice time set.
314 static inline int cfq_slice_used(struct cfq_queue *cfqq)
316 if (cfq_cfqq_slice_new(cfqq))
317 return 0;
318 if (time_before(jiffies, cfqq->slice_end))
319 return 0;
321 return 1;
325 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
326 * We choose the request that is closest to the head right now. Distance
327 * behind the head is penalized and only allowed to a certain extent.
329 static struct request *
330 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
332 sector_t last, s1, s2, d1 = 0, d2 = 0;
333 unsigned long back_max;
334 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
335 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
336 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
338 if (rq1 == NULL || rq1 == rq2)
339 return rq2;
340 if (rq2 == NULL)
341 return rq1;
343 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
344 return rq1;
345 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
346 return rq2;
347 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
348 return rq1;
349 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
350 return rq2;
352 s1 = rq1->sector;
353 s2 = rq2->sector;
355 last = cfqd->last_position;
358 * by definition, 1KiB is 2 sectors
360 back_max = cfqd->cfq_back_max * 2;
363 * Strict one way elevator _except_ in the case where we allow
364 * short backward seeks which are biased as twice the cost of a
365 * similar forward seek.
367 if (s1 >= last)
368 d1 = s1 - last;
369 else if (s1 + back_max >= last)
370 d1 = (last - s1) * cfqd->cfq_back_penalty;
371 else
372 wrap |= CFQ_RQ1_WRAP;
374 if (s2 >= last)
375 d2 = s2 - last;
376 else if (s2 + back_max >= last)
377 d2 = (last - s2) * cfqd->cfq_back_penalty;
378 else
379 wrap |= CFQ_RQ2_WRAP;
381 /* Found required data */
384 * By doing switch() on the bit mask "wrap" we avoid having to
385 * check two variables for all permutations: --> faster!
387 switch (wrap) {
388 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
389 if (d1 < d2)
390 return rq1;
391 else if (d2 < d1)
392 return rq2;
393 else {
394 if (s1 >= s2)
395 return rq1;
396 else
397 return rq2;
400 case CFQ_RQ2_WRAP:
401 return rq1;
402 case CFQ_RQ1_WRAP:
403 return rq2;
404 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
405 default:
407 * Since both rqs are wrapped,
408 * start with the one that's further behind head
409 * (--> only *one* back seek required),
410 * since back seek takes more time than forward.
412 if (s1 <= s2)
413 return rq1;
414 else
415 return rq2;
420 * The below is leftmost cache rbtree addon
422 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
424 if (!root->left)
425 root->left = rb_first(&root->rb);
427 if (root->left)
428 return rb_entry(root->left, struct cfq_queue, rb_node);
430 return NULL;
433 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
435 rb_erase(n, root);
436 RB_CLEAR_NODE(n);
439 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
441 if (root->left == n)
442 root->left = NULL;
443 rb_erase_init(n, &root->rb);
447 * would be nice to take fifo expire time into account as well
449 static struct request *
450 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
451 struct request *last)
453 struct rb_node *rbnext = rb_next(&last->rb_node);
454 struct rb_node *rbprev = rb_prev(&last->rb_node);
455 struct request *next = NULL, *prev = NULL;
457 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
459 if (rbprev)
460 prev = rb_entry_rq(rbprev);
462 if (rbnext)
463 next = rb_entry_rq(rbnext);
464 else {
465 rbnext = rb_first(&cfqq->sort_list);
466 if (rbnext && rbnext != &last->rb_node)
467 next = rb_entry_rq(rbnext);
470 return cfq_choose_req(cfqd, next, prev);
473 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
474 struct cfq_queue *cfqq)
477 * just an approximation, should be ok.
479 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
480 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
484 * The cfqd->service_tree holds all pending cfq_queue's that have
485 * requests waiting to be processed. It is sorted in the order that
486 * we will service the queues.
488 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
489 int add_front)
491 struct rb_node **p, *parent;
492 struct cfq_queue *__cfqq;
493 unsigned long rb_key;
494 int left;
496 if (cfq_class_idle(cfqq)) {
497 rb_key = CFQ_IDLE_DELAY;
498 parent = rb_last(&cfqd->service_tree.rb);
499 if (parent && parent != &cfqq->rb_node) {
500 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
501 rb_key += __cfqq->rb_key;
502 } else
503 rb_key += jiffies;
504 } else if (!add_front) {
505 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
506 rb_key += cfqq->slice_resid;
507 cfqq->slice_resid = 0;
508 } else
509 rb_key = 0;
511 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
513 * same position, nothing more to do
515 if (rb_key == cfqq->rb_key)
516 return;
518 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
521 left = 1;
522 parent = NULL;
523 p = &cfqd->service_tree.rb.rb_node;
524 while (*p) {
525 struct rb_node **n;
527 parent = *p;
528 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
531 * sort RT queues first, we always want to give
532 * preference to them. IDLE queues goes to the back.
533 * after that, sort on the next service time.
535 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
536 n = &(*p)->rb_left;
537 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
538 n = &(*p)->rb_right;
539 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
540 n = &(*p)->rb_left;
541 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
542 n = &(*p)->rb_right;
543 else if (rb_key < __cfqq->rb_key)
544 n = &(*p)->rb_left;
545 else
546 n = &(*p)->rb_right;
548 if (n == &(*p)->rb_right)
549 left = 0;
551 p = n;
554 if (left)
555 cfqd->service_tree.left = &cfqq->rb_node;
557 cfqq->rb_key = rb_key;
558 rb_link_node(&cfqq->rb_node, parent, p);
559 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
562 static struct cfq_queue *
563 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
564 sector_t sector, struct rb_node **ret_parent,
565 struct rb_node ***rb_link)
567 struct rb_node **p, *parent;
568 struct cfq_queue *cfqq = NULL;
570 parent = NULL;
571 p = &root->rb_node;
572 while (*p) {
573 struct rb_node **n;
575 parent = *p;
576 cfqq = rb_entry(parent, struct cfq_queue, p_node);
579 * Sort strictly based on sector. Smallest to the left,
580 * largest to the right.
582 if (sector > cfqq->next_rq->sector)
583 n = &(*p)->rb_right;
584 else if (sector < cfqq->next_rq->sector)
585 n = &(*p)->rb_left;
586 else
587 break;
588 p = n;
589 cfqq = NULL;
592 *ret_parent = parent;
593 if (rb_link)
594 *rb_link = p;
595 return cfqq;
598 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
600 struct rb_node **p, *parent;
601 struct cfq_queue *__cfqq;
603 if (cfqq->p_root) {
604 rb_erase(&cfqq->p_node, cfqq->p_root);
605 cfqq->p_root = NULL;
608 if (cfq_class_idle(cfqq))
609 return;
610 if (!cfqq->next_rq)
611 return;
613 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
614 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, cfqq->next_rq->sector,
615 &parent, &p);
616 if (!__cfqq) {
617 rb_link_node(&cfqq->p_node, parent, p);
618 rb_insert_color(&cfqq->p_node, cfqq->p_root);
619 } else
620 cfqq->p_root = NULL;
624 * Update cfqq's position in the service tree.
626 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
629 * Resorting requires the cfqq to be on the RR list already.
631 if (cfq_cfqq_on_rr(cfqq)) {
632 cfq_service_tree_add(cfqd, cfqq, 0);
633 cfq_prio_tree_add(cfqd, cfqq);
638 * add to busy list of queues for service, trying to be fair in ordering
639 * the pending list according to last request service
641 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
643 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
644 BUG_ON(cfq_cfqq_on_rr(cfqq));
645 cfq_mark_cfqq_on_rr(cfqq);
646 cfqd->busy_queues++;
647 if (cfq_class_rt(cfqq))
648 cfqd->busy_rt_queues++;
650 cfq_resort_rr_list(cfqd, cfqq);
654 * Called when the cfqq no longer has requests pending, remove it from
655 * the service tree.
657 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
659 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
660 BUG_ON(!cfq_cfqq_on_rr(cfqq));
661 cfq_clear_cfqq_on_rr(cfqq);
663 if (!RB_EMPTY_NODE(&cfqq->rb_node))
664 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
665 if (cfqq->p_root) {
666 rb_erase(&cfqq->p_node, cfqq->p_root);
667 cfqq->p_root = NULL;
670 BUG_ON(!cfqd->busy_queues);
671 cfqd->busy_queues--;
672 if (cfq_class_rt(cfqq))
673 cfqd->busy_rt_queues--;
677 * rb tree support functions
679 static void cfq_del_rq_rb(struct request *rq)
681 struct cfq_queue *cfqq = RQ_CFQQ(rq);
682 struct cfq_data *cfqd = cfqq->cfqd;
683 const int sync = rq_is_sync(rq);
685 BUG_ON(!cfqq->queued[sync]);
686 cfqq->queued[sync]--;
688 elv_rb_del(&cfqq->sort_list, rq);
690 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
691 cfq_del_cfqq_rr(cfqd, cfqq);
694 static void cfq_add_rq_rb(struct request *rq)
696 struct cfq_queue *cfqq = RQ_CFQQ(rq);
697 struct cfq_data *cfqd = cfqq->cfqd;
698 struct request *__alias, *prev;
700 cfqq->queued[rq_is_sync(rq)]++;
703 * looks a little odd, but the first insert might return an alias.
704 * if that happens, put the alias on the dispatch list
706 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
707 cfq_dispatch_insert(cfqd->queue, __alias);
709 if (!cfq_cfqq_on_rr(cfqq))
710 cfq_add_cfqq_rr(cfqd, cfqq);
713 * check if this request is a better next-serve candidate
715 prev = cfqq->next_rq;
716 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
719 * adjust priority tree position, if ->next_rq changes
721 if (prev != cfqq->next_rq)
722 cfq_prio_tree_add(cfqd, cfqq);
724 BUG_ON(!cfqq->next_rq);
727 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
729 elv_rb_del(&cfqq->sort_list, rq);
730 cfqq->queued[rq_is_sync(rq)]--;
731 cfq_add_rq_rb(rq);
734 static struct request *
735 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
737 struct task_struct *tsk = current;
738 struct cfq_io_context *cic;
739 struct cfq_queue *cfqq;
741 cic = cfq_cic_lookup(cfqd, tsk->io_context);
742 if (!cic)
743 return NULL;
745 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
746 if (cfqq) {
747 sector_t sector = bio->bi_sector + bio_sectors(bio);
749 return elv_rb_find(&cfqq->sort_list, sector);
752 return NULL;
755 static void cfq_activate_request(struct request_queue *q, struct request *rq)
757 struct cfq_data *cfqd = q->elevator->elevator_data;
759 cfqd->rq_in_driver++;
760 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
761 cfqd->rq_in_driver);
763 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
766 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
768 struct cfq_data *cfqd = q->elevator->elevator_data;
770 WARN_ON(!cfqd->rq_in_driver);
771 cfqd->rq_in_driver--;
772 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
773 cfqd->rq_in_driver);
776 static void cfq_remove_request(struct request *rq)
778 struct cfq_queue *cfqq = RQ_CFQQ(rq);
780 if (cfqq->next_rq == rq)
781 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
783 list_del_init(&rq->queuelist);
784 cfq_del_rq_rb(rq);
786 cfqq->cfqd->rq_queued--;
787 if (rq_is_meta(rq)) {
788 WARN_ON(!cfqq->meta_pending);
789 cfqq->meta_pending--;
793 static int cfq_merge(struct request_queue *q, struct request **req,
794 struct bio *bio)
796 struct cfq_data *cfqd = q->elevator->elevator_data;
797 struct request *__rq;
799 __rq = cfq_find_rq_fmerge(cfqd, bio);
800 if (__rq && elv_rq_merge_ok(__rq, bio)) {
801 *req = __rq;
802 return ELEVATOR_FRONT_MERGE;
805 return ELEVATOR_NO_MERGE;
808 static void cfq_merged_request(struct request_queue *q, struct request *req,
809 int type)
811 if (type == ELEVATOR_FRONT_MERGE) {
812 struct cfq_queue *cfqq = RQ_CFQQ(req);
814 cfq_reposition_rq_rb(cfqq, req);
818 static void
819 cfq_merged_requests(struct request_queue *q, struct request *rq,
820 struct request *next)
823 * reposition in fifo if next is older than rq
825 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
826 time_before(next->start_time, rq->start_time))
827 list_move(&rq->queuelist, &next->queuelist);
829 cfq_remove_request(next);
832 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
833 struct bio *bio)
835 struct cfq_data *cfqd = q->elevator->elevator_data;
836 struct cfq_io_context *cic;
837 struct cfq_queue *cfqq;
840 * Disallow merge of a sync bio into an async request.
842 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
843 return 0;
846 * Lookup the cfqq that this bio will be queued with. Allow
847 * merge only if rq is queued there.
849 cic = cfq_cic_lookup(cfqd, current->io_context);
850 if (!cic)
851 return 0;
853 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
854 if (cfqq == RQ_CFQQ(rq))
855 return 1;
857 return 0;
860 static void __cfq_set_active_queue(struct cfq_data *cfqd,
861 struct cfq_queue *cfqq)
863 if (cfqq) {
864 cfq_log_cfqq(cfqd, cfqq, "set_active");
865 cfqq->slice_end = 0;
866 cfqq->slice_dispatch = 0;
868 cfq_clear_cfqq_wait_request(cfqq);
869 cfq_clear_cfqq_must_dispatch(cfqq);
870 cfq_clear_cfqq_must_alloc_slice(cfqq);
871 cfq_clear_cfqq_fifo_expire(cfqq);
872 cfq_mark_cfqq_slice_new(cfqq);
874 del_timer(&cfqd->idle_slice_timer);
877 cfqd->active_queue = cfqq;
881 * current cfqq expired its slice (or was too idle), select new one
883 static void
884 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
885 int timed_out)
887 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
889 if (cfq_cfqq_wait_request(cfqq))
890 del_timer(&cfqd->idle_slice_timer);
892 cfq_clear_cfqq_wait_request(cfqq);
895 * store what was left of this slice, if the queue idled/timed out
897 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
898 cfqq->slice_resid = cfqq->slice_end - jiffies;
899 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
902 cfq_resort_rr_list(cfqd, cfqq);
904 if (cfqq == cfqd->active_queue)
905 cfqd->active_queue = NULL;
907 if (cfqd->active_cic) {
908 put_io_context(cfqd->active_cic->ioc);
909 cfqd->active_cic = NULL;
913 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
915 struct cfq_queue *cfqq = cfqd->active_queue;
917 if (cfqq)
918 __cfq_slice_expired(cfqd, cfqq, timed_out);
922 * Get next queue for service. Unless we have a queue preemption,
923 * we'll simply select the first cfqq in the service tree.
925 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
927 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
928 return NULL;
930 return cfq_rb_first(&cfqd->service_tree);
934 * Get and set a new active queue for service.
936 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
937 struct cfq_queue *cfqq)
939 if (!cfqq) {
940 cfqq = cfq_get_next_queue(cfqd);
941 if (cfqq)
942 cfq_clear_cfqq_coop(cfqq);
945 __cfq_set_active_queue(cfqd, cfqq);
946 return cfqq;
949 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
950 struct request *rq)
952 if (rq->sector >= cfqd->last_position)
953 return rq->sector - cfqd->last_position;
954 else
955 return cfqd->last_position - rq->sector;
958 #define CIC_SEEK_THR 8 * 1024
959 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
961 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
963 struct cfq_io_context *cic = cfqd->active_cic;
964 sector_t sdist = cic->seek_mean;
966 if (!sample_valid(cic->seek_samples))
967 sdist = CIC_SEEK_THR;
969 return cfq_dist_from_last(cfqd, rq) <= sdist;
972 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
973 struct cfq_queue *cur_cfqq)
975 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
976 struct rb_node *parent, *node;
977 struct cfq_queue *__cfqq;
978 sector_t sector = cfqd->last_position;
980 if (RB_EMPTY_ROOT(root))
981 return NULL;
984 * First, if we find a request starting at the end of the last
985 * request, choose it.
987 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
988 if (__cfqq)
989 return __cfqq;
992 * If the exact sector wasn't found, the parent of the NULL leaf
993 * will contain the closest sector.
995 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
996 if (cfq_rq_close(cfqd, __cfqq->next_rq))
997 return __cfqq;
999 if (__cfqq->next_rq->sector < sector)
1000 node = rb_next(&__cfqq->p_node);
1001 else
1002 node = rb_prev(&__cfqq->p_node);
1003 if (!node)
1004 return NULL;
1006 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1007 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1008 return __cfqq;
1010 return NULL;
1014 * cfqd - obvious
1015 * cur_cfqq - passed in so that we don't decide that the current queue is
1016 * closely cooperating with itself.
1018 * So, basically we're assuming that that cur_cfqq has dispatched at least
1019 * one request, and that cfqd->last_position reflects a position on the disk
1020 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1021 * assumption.
1023 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1024 struct cfq_queue *cur_cfqq,
1025 int probe)
1027 struct cfq_queue *cfqq;
1030 * A valid cfq_io_context is necessary to compare requests against
1031 * the seek_mean of the current cfqq.
1033 if (!cfqd->active_cic)
1034 return NULL;
1037 * We should notice if some of the queues are cooperating, eg
1038 * working closely on the same area of the disk. In that case,
1039 * we can group them together and don't waste time idling.
1041 cfqq = cfqq_close(cfqd, cur_cfqq);
1042 if (!cfqq)
1043 return NULL;
1045 if (cfq_cfqq_coop(cfqq))
1046 return NULL;
1048 if (!probe)
1049 cfq_mark_cfqq_coop(cfqq);
1050 return cfqq;
1053 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1055 struct cfq_queue *cfqq = cfqd->active_queue;
1056 struct cfq_io_context *cic;
1057 unsigned long sl;
1060 * SSD device without seek penalty, disable idling. But only do so
1061 * for devices that support queuing, otherwise we still have a problem
1062 * with sync vs async workloads.
1064 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1065 return;
1067 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1068 WARN_ON(cfq_cfqq_slice_new(cfqq));
1071 * idle is disabled, either manually or by past process history
1073 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1074 return;
1077 * still requests with the driver, don't idle
1079 if (cfqd->rq_in_driver)
1080 return;
1083 * task has exited, don't wait
1085 cic = cfqd->active_cic;
1086 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1087 return;
1089 cfq_mark_cfqq_wait_request(cfqq);
1092 * we don't want to idle for seeks, but we do want to allow
1093 * fair distribution of slice time for a process doing back-to-back
1094 * seeks. so allow a little bit of time for him to submit a new rq
1096 sl = cfqd->cfq_slice_idle;
1097 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1098 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1100 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1101 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1105 * Move request from internal lists to the request queue dispatch list.
1107 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1109 struct cfq_data *cfqd = q->elevator->elevator_data;
1110 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1112 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1114 cfq_remove_request(rq);
1115 cfqq->dispatched++;
1116 elv_dispatch_sort(q, rq);
1118 if (cfq_cfqq_sync(cfqq))
1119 cfqd->sync_flight++;
1123 * return expired entry, or NULL to just start from scratch in rbtree
1125 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1127 struct cfq_data *cfqd = cfqq->cfqd;
1128 struct request *rq;
1129 int fifo;
1131 if (cfq_cfqq_fifo_expire(cfqq))
1132 return NULL;
1134 cfq_mark_cfqq_fifo_expire(cfqq);
1136 if (list_empty(&cfqq->fifo))
1137 return NULL;
1139 fifo = cfq_cfqq_sync(cfqq);
1140 rq = rq_entry_fifo(cfqq->fifo.next);
1142 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1143 rq = NULL;
1145 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1146 return rq;
1149 static inline int
1150 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1152 const int base_rq = cfqd->cfq_slice_async_rq;
1154 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1156 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1160 * Select a queue for service. If we have a current active queue,
1161 * check whether to continue servicing it, or retrieve and set a new one.
1163 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1165 struct cfq_queue *cfqq, *new_cfqq = NULL;
1167 cfqq = cfqd->active_queue;
1168 if (!cfqq)
1169 goto new_queue;
1172 * The active queue has run out of time, expire it and select new.
1174 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1175 goto expire;
1178 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1179 * cfqq.
1181 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1183 * We simulate this as cfqq timed out so that it gets to bank
1184 * the remaining of its time slice.
1186 cfq_log_cfqq(cfqd, cfqq, "preempt");
1187 cfq_slice_expired(cfqd, 1);
1188 goto new_queue;
1192 * The active queue has requests and isn't expired, allow it to
1193 * dispatch.
1195 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1196 goto keep_queue;
1199 * If another queue has a request waiting within our mean seek
1200 * distance, let it run. The expire code will check for close
1201 * cooperators and put the close queue at the front of the service
1202 * tree.
1204 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1205 if (new_cfqq)
1206 goto expire;
1209 * No requests pending. If the active queue still has requests in
1210 * flight or is idling for a new request, allow either of these
1211 * conditions to happen (or time out) before selecting a new queue.
1213 if (timer_pending(&cfqd->idle_slice_timer) ||
1214 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1215 cfqq = NULL;
1216 goto keep_queue;
1219 expire:
1220 cfq_slice_expired(cfqd, 0);
1221 new_queue:
1222 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1223 keep_queue:
1224 return cfqq;
1227 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1229 int dispatched = 0;
1231 while (cfqq->next_rq) {
1232 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1233 dispatched++;
1236 BUG_ON(!list_empty(&cfqq->fifo));
1237 return dispatched;
1241 * Drain our current requests. Used for barriers and when switching
1242 * io schedulers on-the-fly.
1244 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1246 struct cfq_queue *cfqq;
1247 int dispatched = 0;
1249 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1250 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1252 cfq_slice_expired(cfqd, 0);
1254 BUG_ON(cfqd->busy_queues);
1256 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1257 return dispatched;
1261 * Dispatch a request from cfqq, moving them to the request queue
1262 * dispatch list.
1264 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1266 struct request *rq;
1268 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1271 * follow expired path, else get first next available
1273 rq = cfq_check_fifo(cfqq);
1274 if (!rq)
1275 rq = cfqq->next_rq;
1278 * insert request into driver dispatch list
1280 cfq_dispatch_insert(cfqd->queue, rq);
1282 if (!cfqd->active_cic) {
1283 struct cfq_io_context *cic = RQ_CIC(rq);
1285 atomic_inc(&cic->ioc->refcount);
1286 cfqd->active_cic = cic;
1291 * Find the cfqq that we need to service and move a request from that to the
1292 * dispatch list
1294 static int cfq_dispatch_requests(struct request_queue *q, int force)
1296 struct cfq_data *cfqd = q->elevator->elevator_data;
1297 struct cfq_queue *cfqq;
1298 unsigned int max_dispatch;
1300 if (!cfqd->busy_queues)
1301 return 0;
1303 if (unlikely(force))
1304 return cfq_forced_dispatch(cfqd);
1306 cfqq = cfq_select_queue(cfqd);
1307 if (!cfqq)
1308 return 0;
1311 * If this is an async queue and we have sync IO in flight, let it wait
1313 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1314 return 0;
1316 max_dispatch = cfqd->cfq_quantum;
1317 if (cfq_class_idle(cfqq))
1318 max_dispatch = 1;
1321 * Does this cfqq already have too much IO in flight?
1323 if (cfqq->dispatched >= max_dispatch) {
1325 * idle queue must always only have a single IO in flight
1327 if (cfq_class_idle(cfqq))
1328 return 0;
1331 * We have other queues, don't allow more IO from this one
1333 if (cfqd->busy_queues > 1)
1334 return 0;
1337 * we are the only queue, allow up to 4 times of 'quantum'
1339 if (cfqq->dispatched >= 4 * max_dispatch)
1340 return 0;
1344 * Dispatch a request from this cfqq
1346 cfq_dispatch_request(cfqd, cfqq);
1347 cfqq->slice_dispatch++;
1348 cfq_clear_cfqq_must_dispatch(cfqq);
1351 * expire an async queue immediately if it has used up its slice. idle
1352 * queue always expire after 1 dispatch round.
1354 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1355 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1356 cfq_class_idle(cfqq))) {
1357 cfqq->slice_end = jiffies + 1;
1358 cfq_slice_expired(cfqd, 0);
1361 cfq_log(cfqd, "dispatched a request");
1362 return 1;
1366 * task holds one reference to the queue, dropped when task exits. each rq
1367 * in-flight on this queue also holds a reference, dropped when rq is freed.
1369 * queue lock must be held here.
1371 static void cfq_put_queue(struct cfq_queue *cfqq)
1373 struct cfq_data *cfqd = cfqq->cfqd;
1375 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1377 if (!atomic_dec_and_test(&cfqq->ref))
1378 return;
1380 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1381 BUG_ON(rb_first(&cfqq->sort_list));
1382 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1383 BUG_ON(cfq_cfqq_on_rr(cfqq));
1385 if (unlikely(cfqd->active_queue == cfqq)) {
1386 __cfq_slice_expired(cfqd, cfqq, 0);
1387 cfq_schedule_dispatch(cfqd);
1390 kmem_cache_free(cfq_pool, cfqq);
1394 * Must always be called with the rcu_read_lock() held
1396 static void
1397 __call_for_each_cic(struct io_context *ioc,
1398 void (*func)(struct io_context *, struct cfq_io_context *))
1400 struct cfq_io_context *cic;
1401 struct hlist_node *n;
1403 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1404 func(ioc, cic);
1408 * Call func for each cic attached to this ioc.
1410 static void
1411 call_for_each_cic(struct io_context *ioc,
1412 void (*func)(struct io_context *, struct cfq_io_context *))
1414 rcu_read_lock();
1415 __call_for_each_cic(ioc, func);
1416 rcu_read_unlock();
1419 static void cfq_cic_free_rcu(struct rcu_head *head)
1421 struct cfq_io_context *cic;
1423 cic = container_of(head, struct cfq_io_context, rcu_head);
1425 kmem_cache_free(cfq_ioc_pool, cic);
1426 elv_ioc_count_dec(ioc_count);
1428 if (ioc_gone) {
1430 * CFQ scheduler is exiting, grab exit lock and check
1431 * the pending io context count. If it hits zero,
1432 * complete ioc_gone and set it back to NULL
1434 spin_lock(&ioc_gone_lock);
1435 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1436 complete(ioc_gone);
1437 ioc_gone = NULL;
1439 spin_unlock(&ioc_gone_lock);
1443 static void cfq_cic_free(struct cfq_io_context *cic)
1445 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1448 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1450 unsigned long flags;
1452 BUG_ON(!cic->dead_key);
1454 spin_lock_irqsave(&ioc->lock, flags);
1455 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1456 hlist_del_rcu(&cic->cic_list);
1457 spin_unlock_irqrestore(&ioc->lock, flags);
1459 cfq_cic_free(cic);
1463 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1464 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1465 * and ->trim() which is called with the task lock held
1467 static void cfq_free_io_context(struct io_context *ioc)
1470 * ioc->refcount is zero here, or we are called from elv_unregister(),
1471 * so no more cic's are allowed to be linked into this ioc. So it
1472 * should be ok to iterate over the known list, we will see all cic's
1473 * since no new ones are added.
1475 __call_for_each_cic(ioc, cic_free_func);
1478 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1480 if (unlikely(cfqq == cfqd->active_queue)) {
1481 __cfq_slice_expired(cfqd, cfqq, 0);
1482 cfq_schedule_dispatch(cfqd);
1485 cfq_put_queue(cfqq);
1488 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1489 struct cfq_io_context *cic)
1491 struct io_context *ioc = cic->ioc;
1493 list_del_init(&cic->queue_list);
1496 * Make sure key == NULL is seen for dead queues
1498 smp_wmb();
1499 cic->dead_key = (unsigned long) cic->key;
1500 cic->key = NULL;
1502 if (ioc->ioc_data == cic)
1503 rcu_assign_pointer(ioc->ioc_data, NULL);
1505 if (cic->cfqq[BLK_RW_ASYNC]) {
1506 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1507 cic->cfqq[BLK_RW_ASYNC] = NULL;
1510 if (cic->cfqq[BLK_RW_SYNC]) {
1511 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1512 cic->cfqq[BLK_RW_SYNC] = NULL;
1516 static void cfq_exit_single_io_context(struct io_context *ioc,
1517 struct cfq_io_context *cic)
1519 struct cfq_data *cfqd = cic->key;
1521 if (cfqd) {
1522 struct request_queue *q = cfqd->queue;
1523 unsigned long flags;
1525 spin_lock_irqsave(q->queue_lock, flags);
1528 * Ensure we get a fresh copy of the ->key to prevent
1529 * race between exiting task and queue
1531 smp_read_barrier_depends();
1532 if (cic->key)
1533 __cfq_exit_single_io_context(cfqd, cic);
1535 spin_unlock_irqrestore(q->queue_lock, flags);
1540 * The process that ioc belongs to has exited, we need to clean up
1541 * and put the internal structures we have that belongs to that process.
1543 static void cfq_exit_io_context(struct io_context *ioc)
1545 call_for_each_cic(ioc, cfq_exit_single_io_context);
1548 static struct cfq_io_context *
1549 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1551 struct cfq_io_context *cic;
1553 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1554 cfqd->queue->node);
1555 if (cic) {
1556 cic->last_end_request = jiffies;
1557 INIT_LIST_HEAD(&cic->queue_list);
1558 INIT_HLIST_NODE(&cic->cic_list);
1559 cic->dtor = cfq_free_io_context;
1560 cic->exit = cfq_exit_io_context;
1561 elv_ioc_count_inc(ioc_count);
1564 return cic;
1567 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1569 struct task_struct *tsk = current;
1570 int ioprio_class;
1572 if (!cfq_cfqq_prio_changed(cfqq))
1573 return;
1575 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1576 switch (ioprio_class) {
1577 default:
1578 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1579 case IOPRIO_CLASS_NONE:
1581 * no prio set, inherit CPU scheduling settings
1583 cfqq->ioprio = task_nice_ioprio(tsk);
1584 cfqq->ioprio_class = task_nice_ioclass(tsk);
1585 break;
1586 case IOPRIO_CLASS_RT:
1587 cfqq->ioprio = task_ioprio(ioc);
1588 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1589 break;
1590 case IOPRIO_CLASS_BE:
1591 cfqq->ioprio = task_ioprio(ioc);
1592 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1593 break;
1594 case IOPRIO_CLASS_IDLE:
1595 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1596 cfqq->ioprio = 7;
1597 cfq_clear_cfqq_idle_window(cfqq);
1598 break;
1602 * keep track of original prio settings in case we have to temporarily
1603 * elevate the priority of this queue
1605 cfqq->org_ioprio = cfqq->ioprio;
1606 cfqq->org_ioprio_class = cfqq->ioprio_class;
1607 cfq_clear_cfqq_prio_changed(cfqq);
1610 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1612 struct cfq_data *cfqd = cic->key;
1613 struct cfq_queue *cfqq;
1614 unsigned long flags;
1616 if (unlikely(!cfqd))
1617 return;
1619 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1621 cfqq = cic->cfqq[BLK_RW_ASYNC];
1622 if (cfqq) {
1623 struct cfq_queue *new_cfqq;
1624 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1625 GFP_ATOMIC);
1626 if (new_cfqq) {
1627 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1628 cfq_put_queue(cfqq);
1632 cfqq = cic->cfqq[BLK_RW_SYNC];
1633 if (cfqq)
1634 cfq_mark_cfqq_prio_changed(cfqq);
1636 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1639 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1641 call_for_each_cic(ioc, changed_ioprio);
1642 ioc->ioprio_changed = 0;
1645 static struct cfq_queue *
1646 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1647 struct io_context *ioc, gfp_t gfp_mask)
1649 struct cfq_queue *cfqq, *new_cfqq = NULL;
1650 struct cfq_io_context *cic;
1652 retry:
1653 cic = cfq_cic_lookup(cfqd, ioc);
1654 /* cic always exists here */
1655 cfqq = cic_to_cfqq(cic, is_sync);
1657 if (!cfqq) {
1658 if (new_cfqq) {
1659 cfqq = new_cfqq;
1660 new_cfqq = NULL;
1661 } else if (gfp_mask & __GFP_WAIT) {
1663 * Inform the allocator of the fact that we will
1664 * just repeat this allocation if it fails, to allow
1665 * the allocator to do whatever it needs to attempt to
1666 * free memory.
1668 spin_unlock_irq(cfqd->queue->queue_lock);
1669 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1670 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1671 cfqd->queue->node);
1672 spin_lock_irq(cfqd->queue->queue_lock);
1673 goto retry;
1674 } else {
1675 cfqq = kmem_cache_alloc_node(cfq_pool,
1676 gfp_mask | __GFP_ZERO,
1677 cfqd->queue->node);
1678 if (!cfqq)
1679 goto out;
1682 RB_CLEAR_NODE(&cfqq->rb_node);
1683 RB_CLEAR_NODE(&cfqq->p_node);
1684 INIT_LIST_HEAD(&cfqq->fifo);
1686 atomic_set(&cfqq->ref, 0);
1687 cfqq->cfqd = cfqd;
1689 cfq_mark_cfqq_prio_changed(cfqq);
1691 cfq_init_prio_data(cfqq, ioc);
1693 if (is_sync) {
1694 if (!cfq_class_idle(cfqq))
1695 cfq_mark_cfqq_idle_window(cfqq);
1696 cfq_mark_cfqq_sync(cfqq);
1698 cfqq->pid = current->pid;
1699 cfq_log_cfqq(cfqd, cfqq, "alloced");
1702 if (new_cfqq)
1703 kmem_cache_free(cfq_pool, new_cfqq);
1705 out:
1706 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1707 return cfqq;
1710 static struct cfq_queue **
1711 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1713 switch (ioprio_class) {
1714 case IOPRIO_CLASS_RT:
1715 return &cfqd->async_cfqq[0][ioprio];
1716 case IOPRIO_CLASS_BE:
1717 return &cfqd->async_cfqq[1][ioprio];
1718 case IOPRIO_CLASS_IDLE:
1719 return &cfqd->async_idle_cfqq;
1720 default:
1721 BUG();
1725 static struct cfq_queue *
1726 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1727 gfp_t gfp_mask)
1729 const int ioprio = task_ioprio(ioc);
1730 const int ioprio_class = task_ioprio_class(ioc);
1731 struct cfq_queue **async_cfqq = NULL;
1732 struct cfq_queue *cfqq = NULL;
1734 if (!is_sync) {
1735 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1736 cfqq = *async_cfqq;
1739 if (!cfqq) {
1740 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1741 if (!cfqq)
1742 return NULL;
1746 * pin the queue now that it's allocated, scheduler exit will prune it
1748 if (!is_sync && !(*async_cfqq)) {
1749 atomic_inc(&cfqq->ref);
1750 *async_cfqq = cfqq;
1753 atomic_inc(&cfqq->ref);
1754 return cfqq;
1758 * We drop cfq io contexts lazily, so we may find a dead one.
1760 static void
1761 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1762 struct cfq_io_context *cic)
1764 unsigned long flags;
1766 WARN_ON(!list_empty(&cic->queue_list));
1768 spin_lock_irqsave(&ioc->lock, flags);
1770 BUG_ON(ioc->ioc_data == cic);
1772 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1773 hlist_del_rcu(&cic->cic_list);
1774 spin_unlock_irqrestore(&ioc->lock, flags);
1776 cfq_cic_free(cic);
1779 static struct cfq_io_context *
1780 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1782 struct cfq_io_context *cic;
1783 unsigned long flags;
1784 void *k;
1786 if (unlikely(!ioc))
1787 return NULL;
1789 rcu_read_lock();
1792 * we maintain a last-hit cache, to avoid browsing over the tree
1794 cic = rcu_dereference(ioc->ioc_data);
1795 if (cic && cic->key == cfqd) {
1796 rcu_read_unlock();
1797 return cic;
1800 do {
1801 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1802 rcu_read_unlock();
1803 if (!cic)
1804 break;
1805 /* ->key must be copied to avoid race with cfq_exit_queue() */
1806 k = cic->key;
1807 if (unlikely(!k)) {
1808 cfq_drop_dead_cic(cfqd, ioc, cic);
1809 rcu_read_lock();
1810 continue;
1813 spin_lock_irqsave(&ioc->lock, flags);
1814 rcu_assign_pointer(ioc->ioc_data, cic);
1815 spin_unlock_irqrestore(&ioc->lock, flags);
1816 break;
1817 } while (1);
1819 return cic;
1823 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1824 * the process specific cfq io context when entered from the block layer.
1825 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1827 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1828 struct cfq_io_context *cic, gfp_t gfp_mask)
1830 unsigned long flags;
1831 int ret;
1833 ret = radix_tree_preload(gfp_mask);
1834 if (!ret) {
1835 cic->ioc = ioc;
1836 cic->key = cfqd;
1838 spin_lock_irqsave(&ioc->lock, flags);
1839 ret = radix_tree_insert(&ioc->radix_root,
1840 (unsigned long) cfqd, cic);
1841 if (!ret)
1842 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1843 spin_unlock_irqrestore(&ioc->lock, flags);
1845 radix_tree_preload_end();
1847 if (!ret) {
1848 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1849 list_add(&cic->queue_list, &cfqd->cic_list);
1850 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1854 if (ret)
1855 printk(KERN_ERR "cfq: cic link failed!\n");
1857 return ret;
1861 * Setup general io context and cfq io context. There can be several cfq
1862 * io contexts per general io context, if this process is doing io to more
1863 * than one device managed by cfq.
1865 static struct cfq_io_context *
1866 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1868 struct io_context *ioc = NULL;
1869 struct cfq_io_context *cic;
1871 might_sleep_if(gfp_mask & __GFP_WAIT);
1873 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1874 if (!ioc)
1875 return NULL;
1877 cic = cfq_cic_lookup(cfqd, ioc);
1878 if (cic)
1879 goto out;
1881 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1882 if (cic == NULL)
1883 goto err;
1885 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1886 goto err_free;
1888 out:
1889 smp_read_barrier_depends();
1890 if (unlikely(ioc->ioprio_changed))
1891 cfq_ioc_set_ioprio(ioc);
1893 return cic;
1894 err_free:
1895 cfq_cic_free(cic);
1896 err:
1897 put_io_context(ioc);
1898 return NULL;
1901 static void
1902 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1904 unsigned long elapsed = jiffies - cic->last_end_request;
1905 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1907 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1908 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1909 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1912 static void
1913 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1914 struct request *rq)
1916 sector_t sdist;
1917 u64 total;
1919 if (!cic->last_request_pos)
1920 sdist = 0;
1921 else if (cic->last_request_pos < rq->sector)
1922 sdist = rq->sector - cic->last_request_pos;
1923 else
1924 sdist = cic->last_request_pos - rq->sector;
1927 * Don't allow the seek distance to get too large from the
1928 * odd fragment, pagein, etc
1930 if (cic->seek_samples <= 60) /* second&third seek */
1931 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1932 else
1933 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1935 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1936 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1937 total = cic->seek_total + (cic->seek_samples/2);
1938 do_div(total, cic->seek_samples);
1939 cic->seek_mean = (sector_t)total;
1943 * Disable idle window if the process thinks too long or seeks so much that
1944 * it doesn't matter
1946 static void
1947 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1948 struct cfq_io_context *cic)
1950 int old_idle, enable_idle;
1953 * Don't idle for async or idle io prio class
1955 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1956 return;
1958 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1960 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1961 (cfqd->hw_tag && CIC_SEEKY(cic)))
1962 enable_idle = 0;
1963 else if (sample_valid(cic->ttime_samples)) {
1964 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1965 enable_idle = 0;
1966 else
1967 enable_idle = 1;
1970 if (old_idle != enable_idle) {
1971 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1972 if (enable_idle)
1973 cfq_mark_cfqq_idle_window(cfqq);
1974 else
1975 cfq_clear_cfqq_idle_window(cfqq);
1980 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1981 * no or if we aren't sure, a 1 will cause a preempt.
1983 static int
1984 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1985 struct request *rq)
1987 struct cfq_queue *cfqq;
1989 cfqq = cfqd->active_queue;
1990 if (!cfqq)
1991 return 0;
1993 if (cfq_slice_used(cfqq))
1994 return 1;
1996 if (cfq_class_idle(new_cfqq))
1997 return 0;
1999 if (cfq_class_idle(cfqq))
2000 return 1;
2003 * if the new request is sync, but the currently running queue is
2004 * not, let the sync request have priority.
2006 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2007 return 1;
2010 * So both queues are sync. Let the new request get disk time if
2011 * it's a metadata request and the current queue is doing regular IO.
2013 if (rq_is_meta(rq) && !cfqq->meta_pending)
2014 return 1;
2017 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2019 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2020 return 1;
2022 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2023 return 0;
2026 * if this request is as-good as one we would expect from the
2027 * current cfqq, let it preempt
2029 if (cfq_rq_close(cfqd, rq))
2030 return 1;
2032 return 0;
2036 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2037 * let it have half of its nominal slice.
2039 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2041 cfq_log_cfqq(cfqd, cfqq, "preempt");
2042 cfq_slice_expired(cfqd, 1);
2045 * Put the new queue at the front of the of the current list,
2046 * so we know that it will be selected next.
2048 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2050 cfq_service_tree_add(cfqd, cfqq, 1);
2052 cfqq->slice_end = 0;
2053 cfq_mark_cfqq_slice_new(cfqq);
2057 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2058 * something we should do about it
2060 static void
2061 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2062 struct request *rq)
2064 struct cfq_io_context *cic = RQ_CIC(rq);
2066 cfqd->rq_queued++;
2067 if (rq_is_meta(rq))
2068 cfqq->meta_pending++;
2070 cfq_update_io_thinktime(cfqd, cic);
2071 cfq_update_io_seektime(cfqd, cic, rq);
2072 cfq_update_idle_window(cfqd, cfqq, cic);
2074 cic->last_request_pos = rq->sector + rq->nr_sectors;
2076 if (cfqq == cfqd->active_queue) {
2078 * Remember that we saw a request from this process, but
2079 * don't start queuing just yet. Otherwise we risk seeing lots
2080 * of tiny requests, because we disrupt the normal plugging
2081 * and merging. If the request is already larger than a single
2082 * page, let it rip immediately. For that case we assume that
2083 * merging is already done. Ditto for a busy system that
2084 * has other work pending, don't risk delaying until the
2085 * idle timer unplug to continue working.
2087 if (cfq_cfqq_wait_request(cfqq)) {
2088 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2089 cfqd->busy_queues > 1) {
2090 del_timer(&cfqd->idle_slice_timer);
2091 blk_start_queueing(cfqd->queue);
2093 cfq_mark_cfqq_must_dispatch(cfqq);
2095 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2097 * not the active queue - expire current slice if it is
2098 * idle and has expired it's mean thinktime or this new queue
2099 * has some old slice time left and is of higher priority or
2100 * this new queue is RT and the current one is BE
2102 cfq_preempt_queue(cfqd, cfqq);
2103 blk_start_queueing(cfqd->queue);
2107 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2109 struct cfq_data *cfqd = q->elevator->elevator_data;
2110 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2112 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2113 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2115 cfq_add_rq_rb(rq);
2117 list_add_tail(&rq->queuelist, &cfqq->fifo);
2119 cfq_rq_enqueued(cfqd, cfqq, rq);
2123 * Update hw_tag based on peak queue depth over 50 samples under
2124 * sufficient load.
2126 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2128 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2129 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2131 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2132 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2133 return;
2135 if (cfqd->hw_tag_samples++ < 50)
2136 return;
2138 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2139 cfqd->hw_tag = 1;
2140 else
2141 cfqd->hw_tag = 0;
2143 cfqd->hw_tag_samples = 0;
2144 cfqd->rq_in_driver_peak = 0;
2147 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2149 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2150 struct cfq_data *cfqd = cfqq->cfqd;
2151 const int sync = rq_is_sync(rq);
2152 unsigned long now;
2154 now = jiffies;
2155 cfq_log_cfqq(cfqd, cfqq, "complete");
2157 cfq_update_hw_tag(cfqd);
2159 WARN_ON(!cfqd->rq_in_driver);
2160 WARN_ON(!cfqq->dispatched);
2161 cfqd->rq_in_driver--;
2162 cfqq->dispatched--;
2164 if (cfq_cfqq_sync(cfqq))
2165 cfqd->sync_flight--;
2167 if (!cfq_class_idle(cfqq))
2168 cfqd->last_end_request = now;
2170 if (sync)
2171 RQ_CIC(rq)->last_end_request = now;
2174 * If this is the active queue, check if it needs to be expired,
2175 * or if we want to idle in case it has no pending requests.
2177 if (cfqd->active_queue == cfqq) {
2178 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2180 if (cfq_cfqq_slice_new(cfqq)) {
2181 cfq_set_prio_slice(cfqd, cfqq);
2182 cfq_clear_cfqq_slice_new(cfqq);
2185 * If there are no requests waiting in this queue, and
2186 * there are other queues ready to issue requests, AND
2187 * those other queues are issuing requests within our
2188 * mean seek distance, give them a chance to run instead
2189 * of idling.
2191 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2192 cfq_slice_expired(cfqd, 1);
2193 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2194 sync && !rq_noidle(rq))
2195 cfq_arm_slice_timer(cfqd);
2198 if (!cfqd->rq_in_driver)
2199 cfq_schedule_dispatch(cfqd);
2203 * we temporarily boost lower priority queues if they are holding fs exclusive
2204 * resources. they are boosted to normal prio (CLASS_BE/4)
2206 static void cfq_prio_boost(struct cfq_queue *cfqq)
2208 if (has_fs_excl()) {
2210 * boost idle prio on transactions that would lock out other
2211 * users of the filesystem
2213 if (cfq_class_idle(cfqq))
2214 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2215 if (cfqq->ioprio > IOPRIO_NORM)
2216 cfqq->ioprio = IOPRIO_NORM;
2217 } else {
2219 * check if we need to unboost the queue
2221 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2222 cfqq->ioprio_class = cfqq->org_ioprio_class;
2223 if (cfqq->ioprio != cfqq->org_ioprio)
2224 cfqq->ioprio = cfqq->org_ioprio;
2228 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2230 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2231 !cfq_cfqq_must_alloc_slice(cfqq)) {
2232 cfq_mark_cfqq_must_alloc_slice(cfqq);
2233 return ELV_MQUEUE_MUST;
2236 return ELV_MQUEUE_MAY;
2239 static int cfq_may_queue(struct request_queue *q, int rw)
2241 struct cfq_data *cfqd = q->elevator->elevator_data;
2242 struct task_struct *tsk = current;
2243 struct cfq_io_context *cic;
2244 struct cfq_queue *cfqq;
2247 * don't force setup of a queue from here, as a call to may_queue
2248 * does not necessarily imply that a request actually will be queued.
2249 * so just lookup a possibly existing queue, or return 'may queue'
2250 * if that fails
2252 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2253 if (!cic)
2254 return ELV_MQUEUE_MAY;
2256 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2257 if (cfqq) {
2258 cfq_init_prio_data(cfqq, cic->ioc);
2259 cfq_prio_boost(cfqq);
2261 return __cfq_may_queue(cfqq);
2264 return ELV_MQUEUE_MAY;
2268 * queue lock held here
2270 static void cfq_put_request(struct request *rq)
2272 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2274 if (cfqq) {
2275 const int rw = rq_data_dir(rq);
2277 BUG_ON(!cfqq->allocated[rw]);
2278 cfqq->allocated[rw]--;
2280 put_io_context(RQ_CIC(rq)->ioc);
2282 rq->elevator_private = NULL;
2283 rq->elevator_private2 = NULL;
2285 cfq_put_queue(cfqq);
2290 * Allocate cfq data structures associated with this request.
2292 static int
2293 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2295 struct cfq_data *cfqd = q->elevator->elevator_data;
2296 struct cfq_io_context *cic;
2297 const int rw = rq_data_dir(rq);
2298 const int is_sync = rq_is_sync(rq);
2299 struct cfq_queue *cfqq;
2300 unsigned long flags;
2302 might_sleep_if(gfp_mask & __GFP_WAIT);
2304 cic = cfq_get_io_context(cfqd, gfp_mask);
2306 spin_lock_irqsave(q->queue_lock, flags);
2308 if (!cic)
2309 goto queue_fail;
2311 cfqq = cic_to_cfqq(cic, is_sync);
2312 if (!cfqq) {
2313 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2315 if (!cfqq)
2316 goto queue_fail;
2318 cic_set_cfqq(cic, cfqq, is_sync);
2321 cfqq->allocated[rw]++;
2322 cfq_clear_cfqq_must_alloc(cfqq);
2323 atomic_inc(&cfqq->ref);
2325 spin_unlock_irqrestore(q->queue_lock, flags);
2327 rq->elevator_private = cic;
2328 rq->elevator_private2 = cfqq;
2329 return 0;
2331 queue_fail:
2332 if (cic)
2333 put_io_context(cic->ioc);
2335 cfq_schedule_dispatch(cfqd);
2336 spin_unlock_irqrestore(q->queue_lock, flags);
2337 cfq_log(cfqd, "set_request fail");
2338 return 1;
2341 static void cfq_kick_queue(struct work_struct *work)
2343 struct cfq_data *cfqd =
2344 container_of(work, struct cfq_data, unplug_work);
2345 struct request_queue *q = cfqd->queue;
2347 spin_lock_irq(q->queue_lock);
2348 blk_start_queueing(q);
2349 spin_unlock_irq(q->queue_lock);
2353 * Timer running if the active_queue is currently idling inside its time slice
2355 static void cfq_idle_slice_timer(unsigned long data)
2357 struct cfq_data *cfqd = (struct cfq_data *) data;
2358 struct cfq_queue *cfqq;
2359 unsigned long flags;
2360 int timed_out = 1;
2362 cfq_log(cfqd, "idle timer fired");
2364 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2366 cfqq = cfqd->active_queue;
2367 if (cfqq) {
2368 timed_out = 0;
2371 * We saw a request before the queue expired, let it through
2373 if (cfq_cfqq_must_dispatch(cfqq))
2374 goto out_kick;
2377 * expired
2379 if (cfq_slice_used(cfqq))
2380 goto expire;
2383 * only expire and reinvoke request handler, if there are
2384 * other queues with pending requests
2386 if (!cfqd->busy_queues)
2387 goto out_cont;
2390 * not expired and it has a request pending, let it dispatch
2392 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2393 goto out_kick;
2395 expire:
2396 cfq_slice_expired(cfqd, timed_out);
2397 out_kick:
2398 cfq_schedule_dispatch(cfqd);
2399 out_cont:
2400 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2403 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2405 del_timer_sync(&cfqd->idle_slice_timer);
2406 cancel_work_sync(&cfqd->unplug_work);
2409 static void cfq_put_async_queues(struct cfq_data *cfqd)
2411 int i;
2413 for (i = 0; i < IOPRIO_BE_NR; i++) {
2414 if (cfqd->async_cfqq[0][i])
2415 cfq_put_queue(cfqd->async_cfqq[0][i]);
2416 if (cfqd->async_cfqq[1][i])
2417 cfq_put_queue(cfqd->async_cfqq[1][i]);
2420 if (cfqd->async_idle_cfqq)
2421 cfq_put_queue(cfqd->async_idle_cfqq);
2424 static void cfq_exit_queue(struct elevator_queue *e)
2426 struct cfq_data *cfqd = e->elevator_data;
2427 struct request_queue *q = cfqd->queue;
2429 cfq_shutdown_timer_wq(cfqd);
2431 spin_lock_irq(q->queue_lock);
2433 if (cfqd->active_queue)
2434 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2436 while (!list_empty(&cfqd->cic_list)) {
2437 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2438 struct cfq_io_context,
2439 queue_list);
2441 __cfq_exit_single_io_context(cfqd, cic);
2444 cfq_put_async_queues(cfqd);
2446 spin_unlock_irq(q->queue_lock);
2448 cfq_shutdown_timer_wq(cfqd);
2450 kfree(cfqd);
2453 static void *cfq_init_queue(struct request_queue *q)
2455 struct cfq_data *cfqd;
2456 int i;
2458 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2459 if (!cfqd)
2460 return NULL;
2462 cfqd->service_tree = CFQ_RB_ROOT;
2465 * Not strictly needed (since RB_ROOT just clears the node and we
2466 * zeroed cfqd on alloc), but better be safe in case someone decides
2467 * to add magic to the rb code
2469 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2470 cfqd->prio_trees[i] = RB_ROOT;
2472 INIT_LIST_HEAD(&cfqd->cic_list);
2474 cfqd->queue = q;
2476 init_timer(&cfqd->idle_slice_timer);
2477 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2478 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2480 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2482 cfqd->last_end_request = jiffies;
2483 cfqd->cfq_quantum = cfq_quantum;
2484 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2485 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2486 cfqd->cfq_back_max = cfq_back_max;
2487 cfqd->cfq_back_penalty = cfq_back_penalty;
2488 cfqd->cfq_slice[0] = cfq_slice_async;
2489 cfqd->cfq_slice[1] = cfq_slice_sync;
2490 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2491 cfqd->cfq_slice_idle = cfq_slice_idle;
2492 cfqd->hw_tag = 1;
2494 return cfqd;
2497 static void cfq_slab_kill(void)
2500 * Caller already ensured that pending RCU callbacks are completed,
2501 * so we should have no busy allocations at this point.
2503 if (cfq_pool)
2504 kmem_cache_destroy(cfq_pool);
2505 if (cfq_ioc_pool)
2506 kmem_cache_destroy(cfq_ioc_pool);
2509 static int __init cfq_slab_setup(void)
2511 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2512 if (!cfq_pool)
2513 goto fail;
2515 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2516 if (!cfq_ioc_pool)
2517 goto fail;
2519 return 0;
2520 fail:
2521 cfq_slab_kill();
2522 return -ENOMEM;
2526 * sysfs parts below -->
2528 static ssize_t
2529 cfq_var_show(unsigned int var, char *page)
2531 return sprintf(page, "%d\n", var);
2534 static ssize_t
2535 cfq_var_store(unsigned int *var, const char *page, size_t count)
2537 char *p = (char *) page;
2539 *var = simple_strtoul(p, &p, 10);
2540 return count;
2543 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2544 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2546 struct cfq_data *cfqd = e->elevator_data; \
2547 unsigned int __data = __VAR; \
2548 if (__CONV) \
2549 __data = jiffies_to_msecs(__data); \
2550 return cfq_var_show(__data, (page)); \
2552 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2553 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2554 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2555 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2556 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2557 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2558 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2559 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2560 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2561 #undef SHOW_FUNCTION
2563 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2564 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2566 struct cfq_data *cfqd = e->elevator_data; \
2567 unsigned int __data; \
2568 int ret = cfq_var_store(&__data, (page), count); \
2569 if (__data < (MIN)) \
2570 __data = (MIN); \
2571 else if (__data > (MAX)) \
2572 __data = (MAX); \
2573 if (__CONV) \
2574 *(__PTR) = msecs_to_jiffies(__data); \
2575 else \
2576 *(__PTR) = __data; \
2577 return ret; \
2579 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2580 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2581 UINT_MAX, 1);
2582 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2583 UINT_MAX, 1);
2584 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2585 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2586 UINT_MAX, 0);
2587 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2588 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2589 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2590 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2591 UINT_MAX, 0);
2592 #undef STORE_FUNCTION
2594 #define CFQ_ATTR(name) \
2595 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2597 static struct elv_fs_entry cfq_attrs[] = {
2598 CFQ_ATTR(quantum),
2599 CFQ_ATTR(fifo_expire_sync),
2600 CFQ_ATTR(fifo_expire_async),
2601 CFQ_ATTR(back_seek_max),
2602 CFQ_ATTR(back_seek_penalty),
2603 CFQ_ATTR(slice_sync),
2604 CFQ_ATTR(slice_async),
2605 CFQ_ATTR(slice_async_rq),
2606 CFQ_ATTR(slice_idle),
2607 __ATTR_NULL
2610 static struct elevator_type iosched_cfq = {
2611 .ops = {
2612 .elevator_merge_fn = cfq_merge,
2613 .elevator_merged_fn = cfq_merged_request,
2614 .elevator_merge_req_fn = cfq_merged_requests,
2615 .elevator_allow_merge_fn = cfq_allow_merge,
2616 .elevator_dispatch_fn = cfq_dispatch_requests,
2617 .elevator_add_req_fn = cfq_insert_request,
2618 .elevator_activate_req_fn = cfq_activate_request,
2619 .elevator_deactivate_req_fn = cfq_deactivate_request,
2620 .elevator_queue_empty_fn = cfq_queue_empty,
2621 .elevator_completed_req_fn = cfq_completed_request,
2622 .elevator_former_req_fn = elv_rb_former_request,
2623 .elevator_latter_req_fn = elv_rb_latter_request,
2624 .elevator_set_req_fn = cfq_set_request,
2625 .elevator_put_req_fn = cfq_put_request,
2626 .elevator_may_queue_fn = cfq_may_queue,
2627 .elevator_init_fn = cfq_init_queue,
2628 .elevator_exit_fn = cfq_exit_queue,
2629 .trim = cfq_free_io_context,
2631 .elevator_attrs = cfq_attrs,
2632 .elevator_name = "cfq",
2633 .elevator_owner = THIS_MODULE,
2636 static int __init cfq_init(void)
2639 * could be 0 on HZ < 1000 setups
2641 if (!cfq_slice_async)
2642 cfq_slice_async = 1;
2643 if (!cfq_slice_idle)
2644 cfq_slice_idle = 1;
2646 if (cfq_slab_setup())
2647 return -ENOMEM;
2649 elv_register(&iosched_cfq);
2651 return 0;
2654 static void __exit cfq_exit(void)
2656 DECLARE_COMPLETION_ONSTACK(all_gone);
2657 elv_unregister(&iosched_cfq);
2658 ioc_gone = &all_gone;
2659 /* ioc_gone's update must be visible before reading ioc_count */
2660 smp_wmb();
2663 * this also protects us from entering cfq_slab_kill() with
2664 * pending RCU callbacks
2666 if (elv_ioc_count_read(ioc_count))
2667 wait_for_completion(&all_gone);
2668 cfq_slab_kill();
2671 module_init(cfq_init);
2672 module_exit(cfq_exit);
2674 MODULE_AUTHOR("Jens Axboe");
2675 MODULE_LICENSE("GPL");
2676 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");