1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pm_qos_params.h>
47 #define DRV_VERSION "1.0.0-k0"
48 char igbvf_driver_name
[] = "igbvf";
49 const char igbvf_driver_version
[] = DRV_VERSION
;
50 static const char igbvf_driver_string
[] =
51 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright
[] = "Copyright (c) 2009 Intel Corporation.";
54 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
55 static void igbvf_reset(struct igbvf_adapter
*);
56 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
57 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
59 static struct igbvf_info igbvf_vf_info
= {
63 .init_ops
= e1000_init_function_pointers_vf
,
66 static const struct igbvf_info
*igbvf_info_tbl
[] = {
67 [board_vf
] = &igbvf_vf_info
,
71 * igbvf_desc_unused - calculate if we have unused descriptors
73 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
75 if (ring
->next_to_clean
> ring
->next_to_use
)
76 return ring
->next_to_clean
- ring
->next_to_use
- 1;
78 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
88 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
89 struct net_device
*netdev
,
93 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
94 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
96 E1000_RXD_SPC_VLAN_MASK
);
98 netif_receive_skb(skb
);
100 netdev
->last_rx
= jiffies
;
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
104 u32 status_err
, struct sk_buff
*skb
)
106 skb
->ip_summed
= CHECKSUM_NONE
;
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
110 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
113 /* TCP/UDP checksum error bit is set */
115 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
116 /* let the stack verify checksum errors */
117 adapter
->hw_csum_err
++;
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
123 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
125 adapter
->hw_csum_good
++;
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
136 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
137 struct net_device
*netdev
= adapter
->netdev
;
138 struct pci_dev
*pdev
= adapter
->pdev
;
139 union e1000_adv_rx_desc
*rx_desc
;
140 struct igbvf_buffer
*buffer_info
;
145 i
= rx_ring
->next_to_use
;
146 buffer_info
= &rx_ring
->buffer_info
[i
];
148 if (adapter
->rx_ps_hdr_size
)
149 bufsz
= adapter
->rx_ps_hdr_size
;
151 bufsz
= adapter
->rx_buffer_len
;
152 bufsz
+= NET_IP_ALIGN
;
154 while (cleaned_count
--) {
155 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
157 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
158 if (!buffer_info
->page
) {
159 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
160 if (!buffer_info
->page
) {
161 adapter
->alloc_rx_buff_failed
++;
164 buffer_info
->page_offset
= 0;
166 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
168 buffer_info
->page_dma
=
169 pci_map_page(pdev
, buffer_info
->page
,
170 buffer_info
->page_offset
,
175 if (!buffer_info
->skb
) {
176 skb
= netdev_alloc_skb(netdev
, bufsz
);
178 adapter
->alloc_rx_buff_failed
++;
182 /* Make buffer alignment 2 beyond a 16 byte boundary
183 * this will result in a 16 byte aligned IP header after
184 * the 14 byte MAC header is removed
186 skb_reserve(skb
, NET_IP_ALIGN
);
188 buffer_info
->skb
= skb
;
189 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
193 /* Refresh the desc even if buffer_addrs didn't change because
194 * each write-back erases this info. */
195 if (adapter
->rx_ps_hdr_size
) {
196 rx_desc
->read
.pkt_addr
=
197 cpu_to_le64(buffer_info
->page_dma
);
198 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
200 rx_desc
->read
.pkt_addr
=
201 cpu_to_le64(buffer_info
->dma
);
202 rx_desc
->read
.hdr_addr
= 0;
206 if (i
== rx_ring
->count
)
208 buffer_info
= &rx_ring
->buffer_info
[i
];
212 if (rx_ring
->next_to_use
!= i
) {
213 rx_ring
->next_to_use
= i
;
215 i
= (rx_ring
->count
- 1);
219 /* Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
224 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
229 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
230 * @adapter: board private structure
232 * the return value indicates whether actual cleaning was done, there
233 * is no guarantee that everything was cleaned
235 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
236 int *work_done
, int work_to_do
)
238 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
239 struct net_device
*netdev
= adapter
->netdev
;
240 struct pci_dev
*pdev
= adapter
->pdev
;
241 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
242 struct igbvf_buffer
*buffer_info
, *next_buffer
;
244 bool cleaned
= false;
245 int cleaned_count
= 0;
246 unsigned int total_bytes
= 0, total_packets
= 0;
248 u32 length
, hlen
, staterr
;
250 i
= rx_ring
->next_to_clean
;
251 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
252 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
254 while (staterr
& E1000_RXD_STAT_DD
) {
255 if (*work_done
>= work_to_do
)
259 buffer_info
= &rx_ring
->buffer_info
[i
];
261 /* HW will not DMA in data larger than the given buffer, even
262 * if it parses the (NFS, of course) header to be larger. In
263 * that case, it fills the header buffer and spills the rest
266 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
267 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
268 if (hlen
> adapter
->rx_ps_hdr_size
)
269 hlen
= adapter
->rx_ps_hdr_size
;
271 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
275 skb
= buffer_info
->skb
;
276 prefetch(skb
->data
- NET_IP_ALIGN
);
277 buffer_info
->skb
= NULL
;
278 if (!adapter
->rx_ps_hdr_size
) {
279 pci_unmap_single(pdev
, buffer_info
->dma
,
280 adapter
->rx_buffer_len
,
282 buffer_info
->dma
= 0;
283 skb_put(skb
, length
);
287 if (!skb_shinfo(skb
)->nr_frags
) {
288 pci_unmap_single(pdev
, buffer_info
->dma
,
289 adapter
->rx_ps_hdr_size
+ NET_IP_ALIGN
,
295 pci_unmap_page(pdev
, buffer_info
->page_dma
,
298 buffer_info
->page_dma
= 0;
300 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
302 buffer_info
->page_offset
,
305 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
306 (page_count(buffer_info
->page
) != 1))
307 buffer_info
->page
= NULL
;
309 get_page(buffer_info
->page
);
312 skb
->data_len
+= length
;
313 skb
->truesize
+= length
;
317 if (i
== rx_ring
->count
)
319 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
321 next_buffer
= &rx_ring
->buffer_info
[i
];
323 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
324 buffer_info
->skb
= next_buffer
->skb
;
325 buffer_info
->dma
= next_buffer
->dma
;
326 next_buffer
->skb
= skb
;
327 next_buffer
->dma
= 0;
331 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
332 dev_kfree_skb_irq(skb
);
336 total_bytes
+= skb
->len
;
339 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
341 skb
->protocol
= eth_type_trans(skb
, netdev
);
343 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
344 rx_desc
->wb
.upper
.vlan
);
346 netdev
->last_rx
= jiffies
;
349 rx_desc
->wb
.upper
.status_error
= 0;
351 /* return some buffers to hardware, one at a time is too slow */
352 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
353 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
357 /* use prefetched values */
359 buffer_info
= next_buffer
;
361 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
364 rx_ring
->next_to_clean
= i
;
365 cleaned_count
= igbvf_desc_unused(rx_ring
);
368 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
370 adapter
->total_rx_packets
+= total_packets
;
371 adapter
->total_rx_bytes
+= total_bytes
;
372 adapter
->net_stats
.rx_bytes
+= total_bytes
;
373 adapter
->net_stats
.rx_packets
+= total_packets
;
377 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
378 struct igbvf_buffer
*buffer_info
)
380 buffer_info
->dma
= 0;
381 if (buffer_info
->skb
) {
382 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
384 dev_kfree_skb_any(buffer_info
->skb
);
385 buffer_info
->skb
= NULL
;
387 buffer_info
->time_stamp
= 0;
390 static void igbvf_print_tx_hang(struct igbvf_adapter
*adapter
)
392 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
393 unsigned int i
= tx_ring
->next_to_clean
;
394 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
395 union e1000_adv_tx_desc
*eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
397 /* detected Tx unit hang */
398 dev_err(&adapter
->pdev
->dev
,
399 "Detected Tx Unit Hang:\n"
402 " next_to_use <%x>\n"
403 " next_to_clean <%x>\n"
404 "buffer_info[next_to_clean]:\n"
405 " time_stamp <%lx>\n"
406 " next_to_watch <%x>\n"
408 " next_to_watch.status <%x>\n",
409 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
410 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
411 tx_ring
->next_to_use
,
412 tx_ring
->next_to_clean
,
413 tx_ring
->buffer_info
[eop
].time_stamp
,
416 eop_desc
->wb
.status
);
420 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
421 * @adapter: board private structure
423 * Return 0 on success, negative on failure
425 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
426 struct igbvf_ring
*tx_ring
)
428 struct pci_dev
*pdev
= adapter
->pdev
;
431 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
432 tx_ring
->buffer_info
= vmalloc(size
);
433 if (!tx_ring
->buffer_info
)
435 memset(tx_ring
->buffer_info
, 0, size
);
437 /* round up to nearest 4K */
438 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
439 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
441 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
447 tx_ring
->adapter
= adapter
;
448 tx_ring
->next_to_use
= 0;
449 tx_ring
->next_to_clean
= 0;
453 vfree(tx_ring
->buffer_info
);
454 dev_err(&adapter
->pdev
->dev
,
455 "Unable to allocate memory for the transmit descriptor ring\n");
460 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
461 * @adapter: board private structure
463 * Returns 0 on success, negative on failure
465 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
466 struct igbvf_ring
*rx_ring
)
468 struct pci_dev
*pdev
= adapter
->pdev
;
471 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
472 rx_ring
->buffer_info
= vmalloc(size
);
473 if (!rx_ring
->buffer_info
)
475 memset(rx_ring
->buffer_info
, 0, size
);
477 desc_len
= sizeof(union e1000_adv_rx_desc
);
479 /* Round up to nearest 4K */
480 rx_ring
->size
= rx_ring
->count
* desc_len
;
481 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
483 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
489 rx_ring
->next_to_clean
= 0;
490 rx_ring
->next_to_use
= 0;
492 rx_ring
->adapter
= adapter
;
497 vfree(rx_ring
->buffer_info
);
498 rx_ring
->buffer_info
= NULL
;
499 dev_err(&adapter
->pdev
->dev
,
500 "Unable to allocate memory for the receive descriptor ring\n");
505 * igbvf_clean_tx_ring - Free Tx Buffers
506 * @tx_ring: ring to be cleaned
508 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
510 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
511 struct igbvf_buffer
*buffer_info
;
515 if (!tx_ring
->buffer_info
)
518 /* Free all the Tx ring sk_buffs */
519 for (i
= 0; i
< tx_ring
->count
; i
++) {
520 buffer_info
= &tx_ring
->buffer_info
[i
];
521 igbvf_put_txbuf(adapter
, buffer_info
);
524 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
525 memset(tx_ring
->buffer_info
, 0, size
);
527 /* Zero out the descriptor ring */
528 memset(tx_ring
->desc
, 0, tx_ring
->size
);
530 tx_ring
->next_to_use
= 0;
531 tx_ring
->next_to_clean
= 0;
533 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
534 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
538 * igbvf_free_tx_resources - Free Tx Resources per Queue
539 * @tx_ring: ring to free resources from
541 * Free all transmit software resources
543 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
545 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
547 igbvf_clean_tx_ring(tx_ring
);
549 vfree(tx_ring
->buffer_info
);
550 tx_ring
->buffer_info
= NULL
;
552 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
554 tx_ring
->desc
= NULL
;
558 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
559 * @adapter: board private structure
561 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
563 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
564 struct igbvf_buffer
*buffer_info
;
565 struct pci_dev
*pdev
= adapter
->pdev
;
569 if (!rx_ring
->buffer_info
)
572 /* Free all the Rx ring sk_buffs */
573 for (i
= 0; i
< rx_ring
->count
; i
++) {
574 buffer_info
= &rx_ring
->buffer_info
[i
];
575 if (buffer_info
->dma
) {
576 if (adapter
->rx_ps_hdr_size
){
577 pci_unmap_single(pdev
, buffer_info
->dma
,
578 adapter
->rx_ps_hdr_size
,
581 pci_unmap_single(pdev
, buffer_info
->dma
,
582 adapter
->rx_buffer_len
,
585 buffer_info
->dma
= 0;
588 if (buffer_info
->skb
) {
589 dev_kfree_skb(buffer_info
->skb
);
590 buffer_info
->skb
= NULL
;
593 if (buffer_info
->page
) {
594 if (buffer_info
->page_dma
)
595 pci_unmap_page(pdev
, buffer_info
->page_dma
,
598 put_page(buffer_info
->page
);
599 buffer_info
->page
= NULL
;
600 buffer_info
->page_dma
= 0;
601 buffer_info
->page_offset
= 0;
605 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
606 memset(rx_ring
->buffer_info
, 0, size
);
608 /* Zero out the descriptor ring */
609 memset(rx_ring
->desc
, 0, rx_ring
->size
);
611 rx_ring
->next_to_clean
= 0;
612 rx_ring
->next_to_use
= 0;
614 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
615 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
619 * igbvf_free_rx_resources - Free Rx Resources
620 * @rx_ring: ring to clean the resources from
622 * Free all receive software resources
625 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
627 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
629 igbvf_clean_rx_ring(rx_ring
);
631 vfree(rx_ring
->buffer_info
);
632 rx_ring
->buffer_info
= NULL
;
634 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
636 rx_ring
->desc
= NULL
;
640 * igbvf_update_itr - update the dynamic ITR value based on statistics
641 * @adapter: pointer to adapter
642 * @itr_setting: current adapter->itr
643 * @packets: the number of packets during this measurement interval
644 * @bytes: the number of bytes during this measurement interval
646 * Stores a new ITR value based on packets and byte
647 * counts during the last interrupt. The advantage of per interrupt
648 * computation is faster updates and more accurate ITR for the current
649 * traffic pattern. Constants in this function were computed
650 * based on theoretical maximum wire speed and thresholds were set based
651 * on testing data as well as attempting to minimize response time
652 * while increasing bulk throughput. This functionality is controlled
653 * by the InterruptThrottleRate module parameter.
655 static unsigned int igbvf_update_itr(struct igbvf_adapter
*adapter
,
656 u16 itr_setting
, int packets
,
659 unsigned int retval
= itr_setting
;
662 goto update_itr_done
;
664 switch (itr_setting
) {
666 /* handle TSO and jumbo frames */
667 if (bytes
/packets
> 8000)
668 retval
= bulk_latency
;
669 else if ((packets
< 5) && (bytes
> 512))
670 retval
= low_latency
;
672 case low_latency
: /* 50 usec aka 20000 ints/s */
674 /* this if handles the TSO accounting */
675 if (bytes
/packets
> 8000)
676 retval
= bulk_latency
;
677 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
678 retval
= bulk_latency
;
679 else if ((packets
> 35))
680 retval
= lowest_latency
;
681 } else if (bytes
/packets
> 2000) {
682 retval
= bulk_latency
;
683 } else if (packets
<= 2 && bytes
< 512) {
684 retval
= lowest_latency
;
687 case bulk_latency
: /* 250 usec aka 4000 ints/s */
690 retval
= low_latency
;
691 } else if (bytes
< 6000) {
692 retval
= low_latency
;
701 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
703 struct e1000_hw
*hw
= &adapter
->hw
;
705 u32 new_itr
= adapter
->itr
;
707 adapter
->tx_itr
= igbvf_update_itr(adapter
, adapter
->tx_itr
,
708 adapter
->total_tx_packets
,
709 adapter
->total_tx_bytes
);
710 /* conservative mode (itr 3) eliminates the lowest_latency setting */
711 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
712 adapter
->tx_itr
= low_latency
;
714 adapter
->rx_itr
= igbvf_update_itr(adapter
, adapter
->rx_itr
,
715 adapter
->total_rx_packets
,
716 adapter
->total_rx_bytes
);
717 /* conservative mode (itr 3) eliminates the lowest_latency setting */
718 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
719 adapter
->rx_itr
= low_latency
;
721 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
723 switch (current_itr
) {
724 /* counts and packets in update_itr are dependent on these numbers */
729 new_itr
= 20000; /* aka hwitr = ~200 */
738 if (new_itr
!= adapter
->itr
) {
740 * this attempts to bias the interrupt rate towards Bulk
741 * by adding intermediate steps when interrupt rate is
744 new_itr
= new_itr
> adapter
->itr
?
745 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
747 adapter
->itr
= new_itr
;
748 adapter
->rx_ring
->itr_val
= 1952;
750 if (adapter
->msix_entries
)
751 adapter
->rx_ring
->set_itr
= 1;
758 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
759 * @adapter: board private structure
760 * returns true if ring is completely cleaned
762 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
764 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
765 struct e1000_hw
*hw
= &adapter
->hw
;
766 struct net_device
*netdev
= adapter
->netdev
;
767 struct igbvf_buffer
*buffer_info
;
769 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
770 unsigned int total_bytes
= 0, total_packets
= 0;
771 unsigned int i
, eop
, count
= 0;
772 bool cleaned
= false;
774 i
= tx_ring
->next_to_clean
;
775 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
776 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
778 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
779 (count
< tx_ring
->count
)) {
780 for (cleaned
= false; !cleaned
; count
++) {
781 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
782 buffer_info
= &tx_ring
->buffer_info
[i
];
783 cleaned
= (i
== eop
);
784 skb
= buffer_info
->skb
;
787 unsigned int segs
, bytecount
;
789 /* gso_segs is currently only valid for tcp */
790 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
791 /* multiply data chunks by size of headers */
792 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
794 total_packets
+= segs
;
795 total_bytes
+= bytecount
;
798 igbvf_put_txbuf(adapter
, buffer_info
);
799 tx_desc
->wb
.status
= 0;
802 if (i
== tx_ring
->count
)
805 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
806 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
809 tx_ring
->next_to_clean
= i
;
811 if (unlikely(count
&&
812 netif_carrier_ok(netdev
) &&
813 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
814 /* Make sure that anybody stopping the queue after this
815 * sees the new next_to_clean.
818 if (netif_queue_stopped(netdev
) &&
819 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
820 netif_wake_queue(netdev
);
821 ++adapter
->restart_queue
;
825 if (adapter
->detect_tx_hung
) {
826 /* Detect a transmit hang in hardware, this serializes the
827 * check with the clearing of time_stamp and movement of i */
828 adapter
->detect_tx_hung
= false;
829 if (tx_ring
->buffer_info
[i
].time_stamp
&&
830 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
831 (adapter
->tx_timeout_factor
* HZ
))
832 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
834 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
835 /* detected Tx unit hang */
836 igbvf_print_tx_hang(adapter
);
838 netif_stop_queue(netdev
);
841 adapter
->net_stats
.tx_bytes
+= total_bytes
;
842 adapter
->net_stats
.tx_packets
+= total_packets
;
843 return (count
< tx_ring
->count
);
846 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
848 struct net_device
*netdev
= data
;
849 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
850 struct e1000_hw
*hw
= &adapter
->hw
;
852 adapter
->int_counter1
++;
854 netif_carrier_off(netdev
);
855 hw
->mac
.get_link_status
= 1;
856 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
857 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
859 ew32(EIMS
, adapter
->eims_other
);
864 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
866 struct net_device
*netdev
= data
;
867 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
868 struct e1000_hw
*hw
= &adapter
->hw
;
869 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
872 adapter
->total_tx_bytes
= 0;
873 adapter
->total_tx_packets
= 0;
875 /* auto mask will automatically reenable the interrupt when we write
877 if (!igbvf_clean_tx_irq(tx_ring
))
878 /* Ring was not completely cleaned, so fire another interrupt */
879 ew32(EICS
, tx_ring
->eims_value
);
881 ew32(EIMS
, tx_ring
->eims_value
);
886 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
888 struct net_device
*netdev
= data
;
889 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
891 adapter
->int_counter0
++;
893 /* Write the ITR value calculated at the end of the
894 * previous interrupt.
896 if (adapter
->rx_ring
->set_itr
) {
897 writel(adapter
->rx_ring
->itr_val
,
898 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
899 adapter
->rx_ring
->set_itr
= 0;
902 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
903 adapter
->total_rx_bytes
= 0;
904 adapter
->total_rx_packets
= 0;
905 __napi_schedule(&adapter
->rx_ring
->napi
);
911 #define IGBVF_NO_QUEUE -1
913 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
914 int tx_queue
, int msix_vector
)
916 struct e1000_hw
*hw
= &adapter
->hw
;
919 /* 82576 uses a table-based method for assigning vectors.
920 Each queue has a single entry in the table to which we write
921 a vector number along with a "valid" bit. Sadly, the layout
922 of the table is somewhat counterintuitive. */
923 if (rx_queue
> IGBVF_NO_QUEUE
) {
924 index
= (rx_queue
>> 1);
925 ivar
= array_er32(IVAR0
, index
);
926 if (rx_queue
& 0x1) {
927 /* vector goes into third byte of register */
928 ivar
= ivar
& 0xFF00FFFF;
929 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
931 /* vector goes into low byte of register */
932 ivar
= ivar
& 0xFFFFFF00;
933 ivar
|= msix_vector
| E1000_IVAR_VALID
;
935 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
936 array_ew32(IVAR0
, index
, ivar
);
938 if (tx_queue
> IGBVF_NO_QUEUE
) {
939 index
= (tx_queue
>> 1);
940 ivar
= array_er32(IVAR0
, index
);
941 if (tx_queue
& 0x1) {
942 /* vector goes into high byte of register */
943 ivar
= ivar
& 0x00FFFFFF;
944 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
946 /* vector goes into second byte of register */
947 ivar
= ivar
& 0xFFFF00FF;
948 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
950 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
951 array_ew32(IVAR0
, index
, ivar
);
956 * igbvf_configure_msix - Configure MSI-X hardware
958 * igbvf_configure_msix sets up the hardware to properly
959 * generate MSI-X interrupts.
961 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
964 struct e1000_hw
*hw
= &adapter
->hw
;
965 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
966 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
969 adapter
->eims_enable_mask
= 0;
971 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
972 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
973 if (tx_ring
->itr_val
)
974 writel(tx_ring
->itr_val
,
975 hw
->hw_addr
+ tx_ring
->itr_register
);
977 writel(1952, hw
->hw_addr
+ tx_ring
->itr_register
);
979 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
980 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
981 if (rx_ring
->itr_val
)
982 writel(rx_ring
->itr_val
,
983 hw
->hw_addr
+ rx_ring
->itr_register
);
985 writel(1952, hw
->hw_addr
+ rx_ring
->itr_register
);
987 /* set vector for other causes, i.e. link changes */
989 tmp
= (vector
++ | E1000_IVAR_VALID
);
991 ew32(IVAR_MISC
, tmp
);
993 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
994 adapter
->eims_other
= 1 << (vector
- 1);
998 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
1000 if (adapter
->msix_entries
) {
1001 pci_disable_msix(adapter
->pdev
);
1002 kfree(adapter
->msix_entries
);
1003 adapter
->msix_entries
= NULL
;
1008 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1010 * Attempt to configure interrupts using the best available
1011 * capabilities of the hardware and kernel.
1013 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
1018 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1019 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
1021 if (adapter
->msix_entries
) {
1022 for (i
= 0; i
< 3; i
++)
1023 adapter
->msix_entries
[i
].entry
= i
;
1025 err
= pci_enable_msix(adapter
->pdev
,
1026 adapter
->msix_entries
, 3);
1031 dev_err(&adapter
->pdev
->dev
,
1032 "Failed to initialize MSI-X interrupts.\n");
1033 igbvf_reset_interrupt_capability(adapter
);
1038 * igbvf_request_msix - Initialize MSI-X interrupts
1040 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1043 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1045 struct net_device
*netdev
= adapter
->netdev
;
1046 int err
= 0, vector
= 0;
1048 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1049 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1050 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1052 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1053 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1056 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1057 &igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1062 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1063 adapter
->tx_ring
->itr_val
= 1952;
1066 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1067 &igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1072 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1073 adapter
->rx_ring
->itr_val
= 1952;
1076 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1077 &igbvf_msix_other
, 0, netdev
->name
, netdev
);
1081 igbvf_configure_msix(adapter
);
1088 * igbvf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1091 static int __devinit
igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1093 struct net_device
*netdev
= adapter
->netdev
;
1095 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1096 if (!adapter
->tx_ring
)
1099 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1100 if (!adapter
->rx_ring
) {
1101 kfree(adapter
->tx_ring
);
1105 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1111 * igbvf_request_irq - initialize interrupts
1113 * Attempts to configure interrupts using the best available
1114 * capabilities of the hardware and kernel.
1116 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1120 /* igbvf supports msi-x only */
1121 if (adapter
->msix_entries
)
1122 err
= igbvf_request_msix(adapter
);
1127 dev_err(&adapter
->pdev
->dev
,
1128 "Unable to allocate interrupt, Error: %d\n", err
);
1133 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1135 struct net_device
*netdev
= adapter
->netdev
;
1138 if (adapter
->msix_entries
) {
1139 for (vector
= 0; vector
< 3; vector
++)
1140 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1145 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1147 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1149 struct e1000_hw
*hw
= &adapter
->hw
;
1153 if (adapter
->msix_entries
)
1158 * igbvf_irq_enable - Enable default interrupt generation settings
1160 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1162 struct e1000_hw
*hw
= &adapter
->hw
;
1164 ew32(EIAC
, adapter
->eims_enable_mask
);
1165 ew32(EIAM
, adapter
->eims_enable_mask
);
1166 ew32(EIMS
, adapter
->eims_enable_mask
);
1170 * igbvf_poll - NAPI Rx polling callback
1171 * @napi: struct associated with this polling callback
1172 * @budget: amount of packets driver is allowed to process this poll
1174 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1176 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1177 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1178 struct e1000_hw
*hw
= &adapter
->hw
;
1181 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1183 /* If not enough Rx work done, exit the polling mode */
1184 if (work_done
< budget
) {
1185 napi_complete(napi
);
1187 if (adapter
->itr_setting
& 3)
1188 igbvf_set_itr(adapter
);
1190 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1191 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1198 * igbvf_set_rlpml - set receive large packet maximum length
1199 * @adapter: board private structure
1201 * Configure the maximum size of packets that will be received
1203 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1205 int max_frame_size
= adapter
->max_frame_size
;
1206 struct e1000_hw
*hw
= &adapter
->hw
;
1209 max_frame_size
+= VLAN_TAG_SIZE
;
1211 e1000_rlpml_set_vf(hw
, max_frame_size
);
1214 static void igbvf_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1216 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1217 struct e1000_hw
*hw
= &adapter
->hw
;
1219 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true))
1220 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1223 static void igbvf_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1225 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1226 struct e1000_hw
*hw
= &adapter
->hw
;
1228 igbvf_irq_disable(adapter
);
1229 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1231 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1232 igbvf_irq_enable(adapter
);
1234 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false))
1235 dev_err(&adapter
->pdev
->dev
,
1236 "Failed to remove vlan id %d\n", vid
);
1239 static void igbvf_vlan_rx_register(struct net_device
*netdev
,
1240 struct vlan_group
*grp
)
1242 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1244 adapter
->vlgrp
= grp
;
1247 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1251 if (!adapter
->vlgrp
)
1254 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1255 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1257 igbvf_vlan_rx_add_vid(adapter
->netdev
, vid
);
1260 igbvf_set_rlpml(adapter
);
1264 * igbvf_configure_tx - Configure Transmit Unit after Reset
1265 * @adapter: board private structure
1267 * Configure the Tx unit of the MAC after a reset.
1269 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1271 struct e1000_hw
*hw
= &adapter
->hw
;
1272 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1274 u32 txdctl
, dca_txctrl
;
1276 /* disable transmits */
1277 txdctl
= er32(TXDCTL(0));
1278 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1281 /* Setup the HW Tx Head and Tail descriptor pointers */
1282 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1283 tdba
= tx_ring
->dma
;
1284 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1285 ew32(TDBAH(0), (tdba
>> 32));
1288 tx_ring
->head
= E1000_TDH(0);
1289 tx_ring
->tail
= E1000_TDT(0);
1291 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1292 * MUST be delivered in order or it will completely screw up
1295 dca_txctrl
= er32(DCA_TXCTRL(0));
1296 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1297 ew32(DCA_TXCTRL(0), dca_txctrl
);
1299 /* enable transmits */
1300 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1301 ew32(TXDCTL(0), txdctl
);
1303 /* Setup Transmit Descriptor Settings for eop descriptor */
1304 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1306 /* enable Report Status bit */
1307 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1309 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1313 * igbvf_setup_srrctl - configure the receive control registers
1314 * @adapter: Board private structure
1316 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1318 struct e1000_hw
*hw
= &adapter
->hw
;
1321 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1322 E1000_SRRCTL_BSIZEHDR_MASK
|
1323 E1000_SRRCTL_BSIZEPKT_MASK
);
1325 /* Enable queue drop to avoid head of line blocking */
1326 srrctl
|= E1000_SRRCTL_DROP_EN
;
1328 /* Setup buffer sizes */
1329 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1330 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1332 if (adapter
->rx_buffer_len
< 2048) {
1333 adapter
->rx_ps_hdr_size
= 0;
1334 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1336 adapter
->rx_ps_hdr_size
= 128;
1337 srrctl
|= adapter
->rx_ps_hdr_size
<<
1338 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1339 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1342 ew32(SRRCTL(0), srrctl
);
1346 * igbvf_configure_rx - Configure Receive Unit after Reset
1347 * @adapter: board private structure
1349 * Configure the Rx unit of the MAC after a reset.
1351 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1353 struct e1000_hw
*hw
= &adapter
->hw
;
1354 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1358 /* disable receives */
1359 rxdctl
= er32(RXDCTL(0));
1360 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1363 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1366 * Setup the HW Rx Head and Tail Descriptor Pointers and
1367 * the Base and Length of the Rx Descriptor Ring
1369 rdba
= rx_ring
->dma
;
1370 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1371 ew32(RDBAH(0), (rdba
>> 32));
1372 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1373 rx_ring
->head
= E1000_RDH(0);
1374 rx_ring
->tail
= E1000_RDT(0);
1378 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1379 rxdctl
&= 0xFFF00000;
1380 rxdctl
|= IGBVF_RX_PTHRESH
;
1381 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1382 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1384 igbvf_set_rlpml(adapter
);
1386 /* enable receives */
1387 ew32(RXDCTL(0), rxdctl
);
1391 * igbvf_set_multi - Multicast and Promiscuous mode set
1392 * @netdev: network interface device structure
1394 * The set_multi entry point is called whenever the multicast address
1395 * list or the network interface flags are updated. This routine is
1396 * responsible for configuring the hardware for proper multicast,
1397 * promiscuous mode, and all-multi behavior.
1399 static void igbvf_set_multi(struct net_device
*netdev
)
1401 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1402 struct e1000_hw
*hw
= &adapter
->hw
;
1403 struct dev_mc_list
*mc_ptr
;
1404 u8
*mta_list
= NULL
;
1407 if (netdev
->mc_count
) {
1408 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
1410 dev_err(&adapter
->pdev
->dev
,
1411 "failed to allocate multicast filter list\n");
1416 /* prepare a packed array of only addresses. */
1417 mc_ptr
= netdev
->mc_list
;
1419 for (i
= 0; i
< netdev
->mc_count
; i
++) {
1422 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
1424 mc_ptr
= mc_ptr
->next
;
1427 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1432 * igbvf_configure - configure the hardware for Rx and Tx
1433 * @adapter: private board structure
1435 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1437 igbvf_set_multi(adapter
->netdev
);
1439 igbvf_restore_vlan(adapter
);
1441 igbvf_configure_tx(adapter
);
1442 igbvf_setup_srrctl(adapter
);
1443 igbvf_configure_rx(adapter
);
1444 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1445 igbvf_desc_unused(adapter
->rx_ring
));
1448 /* igbvf_reset - bring the hardware into a known good state
1450 * This function boots the hardware and enables some settings that
1451 * require a configuration cycle of the hardware - those cannot be
1452 * set/changed during runtime. After reset the device needs to be
1453 * properly configured for Rx, Tx etc.
1455 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1457 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1458 struct net_device
*netdev
= adapter
->netdev
;
1459 struct e1000_hw
*hw
= &adapter
->hw
;
1461 /* Allow time for pending master requests to run */
1462 if (mac
->ops
.reset_hw(hw
))
1463 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1465 mac
->ops
.init_hw(hw
);
1467 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1468 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1470 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1475 int igbvf_up(struct igbvf_adapter
*adapter
)
1477 struct e1000_hw
*hw
= &adapter
->hw
;
1479 /* hardware has been reset, we need to reload some things */
1480 igbvf_configure(adapter
);
1482 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1484 napi_enable(&adapter
->rx_ring
->napi
);
1485 if (adapter
->msix_entries
)
1486 igbvf_configure_msix(adapter
);
1488 /* Clear any pending interrupts. */
1490 igbvf_irq_enable(adapter
);
1492 /* start the watchdog */
1493 hw
->mac
.get_link_status
= 1;
1494 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1500 void igbvf_down(struct igbvf_adapter
*adapter
)
1502 struct net_device
*netdev
= adapter
->netdev
;
1503 struct e1000_hw
*hw
= &adapter
->hw
;
1507 * signal that we're down so the interrupt handler does not
1508 * reschedule our watchdog timer
1510 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1512 /* disable receives in the hardware */
1513 rxdctl
= er32(RXDCTL(0));
1514 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1516 netif_stop_queue(netdev
);
1518 /* disable transmits in the hardware */
1519 txdctl
= er32(TXDCTL(0));
1520 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1522 /* flush both disables and wait for them to finish */
1526 napi_disable(&adapter
->rx_ring
->napi
);
1528 igbvf_irq_disable(adapter
);
1530 del_timer_sync(&adapter
->watchdog_timer
);
1532 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1533 netif_carrier_off(netdev
);
1535 /* record the stats before reset*/
1536 igbvf_update_stats(adapter
);
1538 adapter
->link_speed
= 0;
1539 adapter
->link_duplex
= 0;
1541 igbvf_reset(adapter
);
1542 igbvf_clean_tx_ring(adapter
->tx_ring
);
1543 igbvf_clean_rx_ring(adapter
->rx_ring
);
1546 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1549 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1551 igbvf_down(adapter
);
1553 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1564 static int __devinit
igbvf_sw_init(struct igbvf_adapter
*adapter
)
1566 struct net_device
*netdev
= adapter
->netdev
;
1569 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1570 adapter
->rx_ps_hdr_size
= 0;
1571 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1572 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1574 adapter
->tx_int_delay
= 8;
1575 adapter
->tx_abs_int_delay
= 32;
1576 adapter
->rx_int_delay
= 0;
1577 adapter
->rx_abs_int_delay
= 8;
1578 adapter
->itr_setting
= 3;
1579 adapter
->itr
= 20000;
1581 /* Set various function pointers */
1582 adapter
->ei
->init_ops(&adapter
->hw
);
1584 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1588 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1592 igbvf_set_interrupt_capability(adapter
);
1594 if (igbvf_alloc_queues(adapter
))
1597 spin_lock_init(&adapter
->tx_queue_lock
);
1599 /* Explicitly disable IRQ since the NIC can be in any state. */
1600 igbvf_irq_disable(adapter
);
1602 spin_lock_init(&adapter
->stats_lock
);
1604 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1608 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1610 struct e1000_hw
*hw
= &adapter
->hw
;
1612 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1613 adapter
->stats
.last_gorc
= er32(VFGORC
);
1614 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1615 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1616 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1617 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1618 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1619 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1620 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1622 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1623 adapter
->stats
.base_gorc
= er32(VFGORC
);
1624 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1625 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1626 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1627 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1628 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1629 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1630 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1637 * Returns 0 on success, negative value on failure
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP). At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1645 static int igbvf_open(struct net_device
*netdev
)
1647 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1648 struct e1000_hw
*hw
= &adapter
->hw
;
1651 /* disallow open during test */
1652 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1655 /* allocate transmit descriptors */
1656 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1660 /* allocate receive descriptors */
1661 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1666 * before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so.
1671 igbvf_configure(adapter
);
1673 err
= igbvf_request_irq(adapter
);
1677 /* From here on the code is the same as igbvf_up() */
1678 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1680 napi_enable(&adapter
->rx_ring
->napi
);
1682 /* clear any pending interrupts */
1685 igbvf_irq_enable(adapter
);
1687 /* start the watchdog */
1688 hw
->mac
.get_link_status
= 1;
1689 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1694 igbvf_free_rx_resources(adapter
->rx_ring
);
1696 igbvf_free_tx_resources(adapter
->tx_ring
);
1698 igbvf_reset(adapter
);
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1707 * Returns 0, this is not allowed to fail
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS. The hardware is still under the drivers control, but
1711 * needs to be disabled. A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1714 static int igbvf_close(struct net_device
*netdev
)
1716 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1718 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1719 igbvf_down(adapter
);
1721 igbvf_free_irq(adapter
);
1723 igbvf_free_tx_resources(adapter
->tx_ring
);
1724 igbvf_free_rx_resources(adapter
->rx_ring
);
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1733 * Returns 0 on success, negative on failure
1735 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1737 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1738 struct e1000_hw
*hw
= &adapter
->hw
;
1739 struct sockaddr
*addr
= p
;
1741 if (!is_valid_ether_addr(addr
->sa_data
))
1742 return -EADDRNOTAVAIL
;
1744 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1746 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1748 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1749 return -EADDRNOTAVAIL
;
1751 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1756 #define UPDATE_VF_COUNTER(reg, name) \
1758 u32 current_counter = er32(reg); \
1759 if (current_counter < adapter->stats.last_##name) \
1760 adapter->stats.name += 0x100000000LL; \
1761 adapter->stats.last_##name = current_counter; \
1762 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1763 adapter->stats.name |= current_counter; \
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1770 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1772 struct e1000_hw
*hw
= &adapter
->hw
;
1773 struct pci_dev
*pdev
= adapter
->pdev
;
1776 * Prevent stats update while adapter is being reset, link is down
1777 * or if the pci connection is down.
1779 if (adapter
->link_speed
== 0)
1782 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1785 if (pci_channel_offline(pdev
))
1788 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1789 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1790 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1791 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1792 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1793 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1794 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1795 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1796 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1798 /* Fill out the OS statistics structure */
1799 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1802 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1804 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s\n",
1805 adapter
->link_speed
,
1806 ((adapter
->link_duplex
== FULL_DUPLEX
) ?
1807 "Full Duplex" : "Half Duplex"));
1810 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1812 struct e1000_hw
*hw
= &adapter
->hw
;
1813 s32 ret_val
= E1000_SUCCESS
;
1816 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1817 link_active
= !hw
->mac
.get_link_status
;
1819 /* if check for link returns error we will need to reset */
1821 schedule_work(&adapter
->reset_task
);
1827 * igbvf_watchdog - Timer Call-back
1828 * @data: pointer to adapter cast into an unsigned long
1830 static void igbvf_watchdog(unsigned long data
)
1832 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1834 /* Do the rest outside of interrupt context */
1835 schedule_work(&adapter
->watchdog_task
);
1838 static void igbvf_watchdog_task(struct work_struct
*work
)
1840 struct igbvf_adapter
*adapter
= container_of(work
,
1841 struct igbvf_adapter
,
1843 struct net_device
*netdev
= adapter
->netdev
;
1844 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1845 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1846 struct e1000_hw
*hw
= &adapter
->hw
;
1850 link
= igbvf_has_link(adapter
);
1853 if (!netif_carrier_ok(netdev
)) {
1856 mac
->ops
.get_link_up_info(&adapter
->hw
,
1857 &adapter
->link_speed
,
1858 &adapter
->link_duplex
);
1859 igbvf_print_link_info(adapter
);
1862 * tweak tx_queue_len according to speed/duplex
1863 * and adjust the timeout factor
1865 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1866 adapter
->tx_timeout_factor
= 1;
1867 switch (adapter
->link_speed
) {
1870 netdev
->tx_queue_len
= 10;
1871 adapter
->tx_timeout_factor
= 16;
1875 netdev
->tx_queue_len
= 100;
1876 /* maybe add some timeout factor ? */
1880 netif_carrier_on(netdev
);
1881 netif_wake_queue(netdev
);
1884 if (netif_carrier_ok(netdev
)) {
1885 adapter
->link_speed
= 0;
1886 adapter
->link_duplex
= 0;
1887 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1888 netif_carrier_off(netdev
);
1889 netif_stop_queue(netdev
);
1893 if (netif_carrier_ok(netdev
)) {
1894 igbvf_update_stats(adapter
);
1896 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1900 * We've lost link, so the controller stops DMA,
1901 * but we've got queued Tx work that's never going
1902 * to get done, so reset controller to flush Tx.
1903 * (Do the reset outside of interrupt context).
1905 adapter
->tx_timeout_count
++;
1906 schedule_work(&adapter
->reset_task
);
1910 /* Cause software interrupt to ensure Rx ring is cleaned */
1911 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1913 /* Force detection of hung controller every watchdog period */
1914 adapter
->detect_tx_hung
= 1;
1916 /* Reset the timer */
1917 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1918 mod_timer(&adapter
->watchdog_timer
,
1919 round_jiffies(jiffies
+ (2 * HZ
)));
1922 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1923 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1924 #define IGBVF_TX_FLAGS_TSO 0x00000004
1925 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1926 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1927 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1929 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1930 struct igbvf_ring
*tx_ring
,
1931 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1933 struct e1000_adv_tx_context_desc
*context_desc
;
1936 struct igbvf_buffer
*buffer_info
;
1937 u32 info
= 0, tu_cmd
= 0;
1938 u32 mss_l4len_idx
, l4len
;
1941 if (skb_header_cloned(skb
)) {
1942 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1944 dev_err(&adapter
->pdev
->dev
,
1945 "igbvf_tso returning an error\n");
1950 l4len
= tcp_hdrlen(skb
);
1953 if (skb
->protocol
== htons(ETH_P_IP
)) {
1954 struct iphdr
*iph
= ip_hdr(skb
);
1957 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1961 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
1962 ipv6_hdr(skb
)->payload_len
= 0;
1963 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1964 &ipv6_hdr(skb
)->daddr
,
1968 i
= tx_ring
->next_to_use
;
1970 buffer_info
= &tx_ring
->buffer_info
[i
];
1971 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1972 /* VLAN MACLEN IPLEN */
1973 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1974 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1975 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1976 *hdr_len
+= skb_network_offset(skb
);
1977 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1978 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1979 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1981 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1982 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1984 if (skb
->protocol
== htons(ETH_P_IP
))
1985 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1986 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1988 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1991 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1992 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1994 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1995 context_desc
->seqnum_seed
= 0;
1997 buffer_info
->time_stamp
= jiffies
;
1998 buffer_info
->next_to_watch
= i
;
1999 buffer_info
->dma
= 0;
2001 if (i
== tx_ring
->count
)
2004 tx_ring
->next_to_use
= i
;
2009 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
2010 struct igbvf_ring
*tx_ring
,
2011 struct sk_buff
*skb
, u32 tx_flags
)
2013 struct e1000_adv_tx_context_desc
*context_desc
;
2015 struct igbvf_buffer
*buffer_info
;
2016 u32 info
= 0, tu_cmd
= 0;
2018 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2019 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
2020 i
= tx_ring
->next_to_use
;
2021 buffer_info
= &tx_ring
->buffer_info
[i
];
2022 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
2024 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2025 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
2027 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2028 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2029 info
|= (skb_transport_header(skb
) -
2030 skb_network_header(skb
));
2033 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2035 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2037 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2038 switch (skb
->protocol
) {
2039 case __constant_htons(ETH_P_IP
):
2040 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2041 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2042 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2044 case __constant_htons(ETH_P_IPV6
):
2045 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2046 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2053 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2054 context_desc
->seqnum_seed
= 0;
2055 context_desc
->mss_l4len_idx
= 0;
2057 buffer_info
->time_stamp
= jiffies
;
2058 buffer_info
->next_to_watch
= i
;
2059 buffer_info
->dma
= 0;
2061 if (i
== tx_ring
->count
)
2063 tx_ring
->next_to_use
= i
;
2071 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2073 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2075 /* there is enough descriptors then we don't need to worry */
2076 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2079 netif_stop_queue(netdev
);
2083 /* We need to check again just in case room has been made available */
2084 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2087 netif_wake_queue(netdev
);
2089 ++adapter
->restart_queue
;
2093 #define IGBVF_MAX_TXD_PWR 16
2094 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2096 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2097 struct igbvf_ring
*tx_ring
,
2098 struct sk_buff
*skb
,
2101 struct igbvf_buffer
*buffer_info
;
2102 unsigned int len
= skb_headlen(skb
);
2103 unsigned int count
= 0, i
;
2107 i
= tx_ring
->next_to_use
;
2109 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
2110 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2114 map
= skb_shinfo(skb
)->dma_maps
;
2116 buffer_info
= &tx_ring
->buffer_info
[i
];
2117 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2118 buffer_info
->length
= len
;
2119 /* set time_stamp *before* dma to help avoid a possible race */
2120 buffer_info
->time_stamp
= jiffies
;
2121 buffer_info
->next_to_watch
= i
;
2122 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
;
2124 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2125 struct skb_frag_struct
*frag
;
2128 if (i
== tx_ring
->count
)
2131 frag
= &skb_shinfo(skb
)->frags
[f
];
2134 buffer_info
= &tx_ring
->buffer_info
[i
];
2135 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2136 buffer_info
->length
= len
;
2137 buffer_info
->time_stamp
= jiffies
;
2138 buffer_info
->next_to_watch
= i
;
2139 buffer_info
->dma
= map
[count
];
2143 tx_ring
->buffer_info
[i
].skb
= skb
;
2144 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2149 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2150 struct igbvf_ring
*tx_ring
,
2151 int tx_flags
, int count
, u32 paylen
,
2154 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2155 struct igbvf_buffer
*buffer_info
;
2156 u32 olinfo_status
= 0, cmd_type_len
;
2159 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2160 E1000_ADVTXD_DCMD_DEXT
);
2162 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2163 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2165 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2166 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2168 /* insert tcp checksum */
2169 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2171 /* insert ip checksum */
2172 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2173 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2175 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2176 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2179 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2181 i
= tx_ring
->next_to_use
;
2183 buffer_info
= &tx_ring
->buffer_info
[i
];
2184 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2185 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2186 tx_desc
->read
.cmd_type_len
=
2187 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2188 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2190 if (i
== tx_ring
->count
)
2194 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2195 /* Force memory writes to complete before letting h/w
2196 * know there are new descriptors to fetch. (Only
2197 * applicable for weak-ordered memory model archs,
2198 * such as IA-64). */
2201 tx_ring
->next_to_use
= i
;
2202 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2203 /* we need this if more than one processor can write to our tail
2204 * at a time, it syncronizes IO on IA64/Altix systems */
2208 static int igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2209 struct net_device
*netdev
,
2210 struct igbvf_ring
*tx_ring
)
2212 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2213 unsigned int first
, tx_flags
= 0;
2218 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2219 dev_kfree_skb_any(skb
);
2220 return NETDEV_TX_OK
;
2223 if (skb
->len
<= 0) {
2224 dev_kfree_skb_any(skb
);
2225 return NETDEV_TX_OK
;
2229 * need: count + 4 desc gap to keep tail from touching
2230 * + 2 desc gap to keep tail from touching head,
2231 * + 1 desc for skb->data,
2232 * + 1 desc for context descriptor,
2233 * head, otherwise try next time
2235 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2236 /* this is a hard error */
2237 return NETDEV_TX_BUSY
;
2240 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2241 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2242 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2245 if (skb
->protocol
== htons(ETH_P_IP
))
2246 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2248 first
= tx_ring
->next_to_use
;
2250 tso
= skb_is_gso(skb
) ?
2251 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2252 if (unlikely(tso
< 0)) {
2253 dev_kfree_skb_any(skb
);
2254 return NETDEV_TX_OK
;
2258 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2259 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2260 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2261 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2264 * count reflects descriptors mapped, if 0 then mapping error
2265 * has occured and we need to rewind the descriptor queue
2267 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
, first
);
2270 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2272 /* Make sure there is space in the ring for the next send. */
2273 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2275 dev_kfree_skb_any(skb
);
2276 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2277 tx_ring
->next_to_use
= first
;
2280 return NETDEV_TX_OK
;
2283 static int igbvf_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2285 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2286 struct igbvf_ring
*tx_ring
;
2289 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2290 dev_kfree_skb_any(skb
);
2291 return NETDEV_TX_OK
;
2294 tx_ring
= &adapter
->tx_ring
[0];
2296 retval
= igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2302 * igbvf_tx_timeout - Respond to a Tx Hang
2303 * @netdev: network interface device structure
2305 static void igbvf_tx_timeout(struct net_device
*netdev
)
2307 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2309 /* Do the reset outside of interrupt context */
2310 adapter
->tx_timeout_count
++;
2311 schedule_work(&adapter
->reset_task
);
2314 static void igbvf_reset_task(struct work_struct
*work
)
2316 struct igbvf_adapter
*adapter
;
2317 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2319 igbvf_reinit_locked(adapter
);
2323 * igbvf_get_stats - Get System Network Statistics
2324 * @netdev: network interface device structure
2326 * Returns the address of the device statistics structure.
2327 * The statistics are actually updated from the timer callback.
2329 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2331 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2333 /* only return the current stats */
2334 return &adapter
->net_stats
;
2338 * igbvf_change_mtu - Change the Maximum Transfer Unit
2339 * @netdev: network interface device structure
2340 * @new_mtu: new value for maximum frame size
2342 * Returns 0 on success, negative on failure
2344 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2346 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2347 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2349 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2350 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2354 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2355 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2356 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2360 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2362 /* igbvf_down has a dependency on max_frame_size */
2363 adapter
->max_frame_size
= max_frame
;
2364 if (netif_running(netdev
))
2365 igbvf_down(adapter
);
2368 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2369 * means we reserve 2 more, this pushes us to allocate from the next
2371 * i.e. RXBUFFER_2048 --> size-4096 slab
2372 * However with the new *_jumbo_rx* routines, jumbo receives will use
2376 if (max_frame
<= 1024)
2377 adapter
->rx_buffer_len
= 1024;
2378 else if (max_frame
<= 2048)
2379 adapter
->rx_buffer_len
= 2048;
2381 #if (PAGE_SIZE / 2) > 16384
2382 adapter
->rx_buffer_len
= 16384;
2384 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2388 /* adjust allocation if LPE protects us, and we aren't using SBP */
2389 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2390 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2391 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2394 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2395 netdev
->mtu
, new_mtu
);
2396 netdev
->mtu
= new_mtu
;
2398 if (netif_running(netdev
))
2401 igbvf_reset(adapter
);
2403 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2408 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2416 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2418 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2419 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2424 netif_device_detach(netdev
);
2426 if (netif_running(netdev
)) {
2427 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2428 igbvf_down(adapter
);
2429 igbvf_free_irq(adapter
);
2433 retval
= pci_save_state(pdev
);
2438 pci_disable_device(pdev
);
2444 static int igbvf_resume(struct pci_dev
*pdev
)
2446 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2447 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2450 pci_restore_state(pdev
);
2451 err
= pci_enable_device_mem(pdev
);
2453 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2457 pci_set_master(pdev
);
2459 if (netif_running(netdev
)) {
2460 err
= igbvf_request_irq(adapter
);
2465 igbvf_reset(adapter
);
2467 if (netif_running(netdev
))
2470 netif_device_attach(netdev
);
2476 static void igbvf_shutdown(struct pci_dev
*pdev
)
2478 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2481 #ifdef CONFIG_NET_POLL_CONTROLLER
2483 * Polling 'interrupt' - used by things like netconsole to send skbs
2484 * without having to re-enable interrupts. It's not called while
2485 * the interrupt routine is executing.
2487 static void igbvf_netpoll(struct net_device
*netdev
)
2489 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2491 disable_irq(adapter
->pdev
->irq
);
2493 igbvf_clean_tx_irq(adapter
->tx_ring
);
2495 enable_irq(adapter
->pdev
->irq
);
2500 * igbvf_io_error_detected - called when PCI error is detected
2501 * @pdev: Pointer to PCI device
2502 * @state: The current pci connection state
2504 * This function is called after a PCI bus error affecting
2505 * this device has been detected.
2507 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2508 pci_channel_state_t state
)
2510 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2511 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2513 netif_device_detach(netdev
);
2515 if (netif_running(netdev
))
2516 igbvf_down(adapter
);
2517 pci_disable_device(pdev
);
2519 /* Request a slot slot reset. */
2520 return PCI_ERS_RESULT_NEED_RESET
;
2524 * igbvf_io_slot_reset - called after the pci bus has been reset.
2525 * @pdev: Pointer to PCI device
2527 * Restart the card from scratch, as if from a cold-boot. Implementation
2528 * resembles the first-half of the igbvf_resume routine.
2530 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2532 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2533 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2535 if (pci_enable_device_mem(pdev
)) {
2537 "Cannot re-enable PCI device after reset.\n");
2538 return PCI_ERS_RESULT_DISCONNECT
;
2540 pci_set_master(pdev
);
2542 igbvf_reset(adapter
);
2544 return PCI_ERS_RESULT_RECOVERED
;
2548 * igbvf_io_resume - called when traffic can start flowing again.
2549 * @pdev: Pointer to PCI device
2551 * This callback is called when the error recovery driver tells us that
2552 * its OK to resume normal operation. Implementation resembles the
2553 * second-half of the igbvf_resume routine.
2555 static void igbvf_io_resume(struct pci_dev
*pdev
)
2557 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2558 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2560 if (netif_running(netdev
)) {
2561 if (igbvf_up(adapter
)) {
2563 "can't bring device back up after reset\n");
2568 netif_device_attach(netdev
);
2571 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2573 struct e1000_hw
*hw
= &adapter
->hw
;
2574 struct net_device
*netdev
= adapter
->netdev
;
2575 struct pci_dev
*pdev
= adapter
->pdev
;
2577 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2578 dev_info(&pdev
->dev
, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2580 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
2581 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
2582 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2583 dev_info(&pdev
->dev
, "MAC: %d\n", hw
->mac
.type
);
2586 static const struct net_device_ops igbvf_netdev_ops
= {
2587 .ndo_open
= igbvf_open
,
2588 .ndo_stop
= igbvf_close
,
2589 .ndo_start_xmit
= igbvf_xmit_frame
,
2590 .ndo_get_stats
= igbvf_get_stats
,
2591 .ndo_set_multicast_list
= igbvf_set_multi
,
2592 .ndo_set_mac_address
= igbvf_set_mac
,
2593 .ndo_change_mtu
= igbvf_change_mtu
,
2594 .ndo_do_ioctl
= igbvf_ioctl
,
2595 .ndo_tx_timeout
= igbvf_tx_timeout
,
2596 .ndo_vlan_rx_register
= igbvf_vlan_rx_register
,
2597 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2598 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2599 #ifdef CONFIG_NET_POLL_CONTROLLER
2600 .ndo_poll_controller
= igbvf_netpoll
,
2605 * igbvf_probe - Device Initialization Routine
2606 * @pdev: PCI device information struct
2607 * @ent: entry in igbvf_pci_tbl
2609 * Returns 0 on success, negative on failure
2611 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2612 * The OS initialization, configuring of the adapter private structure,
2613 * and a hardware reset occur.
2615 static int __devinit
igbvf_probe(struct pci_dev
*pdev
,
2616 const struct pci_device_id
*ent
)
2618 struct net_device
*netdev
;
2619 struct igbvf_adapter
*adapter
;
2620 struct e1000_hw
*hw
;
2621 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2623 static int cards_found
;
2624 int err
, pci_using_dac
;
2626 err
= pci_enable_device_mem(pdev
);
2631 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
2633 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
2637 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2639 err
= pci_set_consistent_dma_mask(pdev
,
2642 dev_err(&pdev
->dev
, "No usable DMA "
2643 "configuration, aborting\n");
2649 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2653 pci_set_master(pdev
);
2656 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2658 goto err_alloc_etherdev
;
2660 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2662 pci_set_drvdata(pdev
, netdev
);
2663 adapter
= netdev_priv(netdev
);
2665 adapter
->netdev
= netdev
;
2666 adapter
->pdev
= pdev
;
2668 adapter
->pba
= ei
->pba
;
2669 adapter
->flags
= ei
->flags
;
2670 adapter
->hw
.back
= adapter
;
2671 adapter
->hw
.mac
.type
= ei
->mac
;
2672 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
2674 /* PCI config space info */
2676 hw
->vendor_id
= pdev
->vendor
;
2677 hw
->device_id
= pdev
->device
;
2678 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2679 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2681 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
2684 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2685 pci_resource_len(pdev
, 0));
2687 if (!adapter
->hw
.hw_addr
)
2690 if (ei
->get_variants
) {
2691 err
= ei
->get_variants(adapter
);
2696 /* setup adapter struct */
2697 err
= igbvf_sw_init(adapter
);
2701 /* construct the net_device struct */
2702 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2704 igbvf_set_ethtool_ops(netdev
);
2705 netdev
->watchdog_timeo
= 5 * HZ
;
2706 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2708 adapter
->bd_number
= cards_found
++;
2710 netdev
->features
= NETIF_F_SG
|
2712 NETIF_F_HW_VLAN_TX
|
2713 NETIF_F_HW_VLAN_RX
|
2714 NETIF_F_HW_VLAN_FILTER
;
2716 netdev
->features
|= NETIF_F_IPV6_CSUM
;
2717 netdev
->features
|= NETIF_F_TSO
;
2718 netdev
->features
|= NETIF_F_TSO6
;
2721 netdev
->features
|= NETIF_F_HIGHDMA
;
2723 netdev
->vlan_features
|= NETIF_F_TSO
;
2724 netdev
->vlan_features
|= NETIF_F_TSO6
;
2725 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2726 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2727 netdev
->vlan_features
|= NETIF_F_SG
;
2729 /*reset the controller to put the device in a known good state */
2730 err
= hw
->mac
.ops
.reset_hw(hw
);
2732 dev_info(&pdev
->dev
,
2733 "PF still in reset state, assigning new address\n");
2734 random_ether_addr(hw
->mac
.addr
);
2736 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2738 dev_err(&pdev
->dev
, "Error reading MAC address\n");
2743 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2744 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2746 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2747 dev_err(&pdev
->dev
, "Invalid MAC Address: "
2748 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2749 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
2750 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
2751 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2756 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2757 (unsigned long) adapter
);
2759 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2760 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2762 /* ring size defaults */
2763 adapter
->rx_ring
->count
= 1024;
2764 adapter
->tx_ring
->count
= 1024;
2766 /* reset the hardware with the new settings */
2767 igbvf_reset(adapter
);
2769 /* tell the stack to leave us alone until igbvf_open() is called */
2770 netif_carrier_off(netdev
);
2771 netif_stop_queue(netdev
);
2773 strcpy(netdev
->name
, "eth%d");
2774 err
= register_netdev(netdev
);
2778 igbvf_print_device_info(adapter
);
2780 igbvf_initialize_last_counter_stats(adapter
);
2785 kfree(adapter
->tx_ring
);
2786 kfree(adapter
->rx_ring
);
2788 igbvf_reset_interrupt_capability(adapter
);
2789 iounmap(adapter
->hw
.hw_addr
);
2791 free_netdev(netdev
);
2793 pci_release_regions(pdev
);
2796 pci_disable_device(pdev
);
2801 * igbvf_remove - Device Removal Routine
2802 * @pdev: PCI device information struct
2804 * igbvf_remove is called by the PCI subsystem to alert the driver
2805 * that it should release a PCI device. The could be caused by a
2806 * Hot-Plug event, or because the driver is going to be removed from
2809 static void __devexit
igbvf_remove(struct pci_dev
*pdev
)
2811 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2812 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2813 struct e1000_hw
*hw
= &adapter
->hw
;
2816 * flush_scheduled work may reschedule our watchdog task, so
2817 * explicitly disable watchdog tasks from being rescheduled
2819 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2820 del_timer_sync(&adapter
->watchdog_timer
);
2822 flush_scheduled_work();
2824 unregister_netdev(netdev
);
2826 igbvf_reset_interrupt_capability(adapter
);
2829 * it is important to delete the napi struct prior to freeing the
2830 * rx ring so that you do not end up with null pointer refs
2832 netif_napi_del(&adapter
->rx_ring
->napi
);
2833 kfree(adapter
->tx_ring
);
2834 kfree(adapter
->rx_ring
);
2836 iounmap(hw
->hw_addr
);
2837 if (hw
->flash_address
)
2838 iounmap(hw
->flash_address
);
2839 pci_release_regions(pdev
);
2841 free_netdev(netdev
);
2843 pci_disable_device(pdev
);
2846 /* PCI Error Recovery (ERS) */
2847 static struct pci_error_handlers igbvf_err_handler
= {
2848 .error_detected
= igbvf_io_error_detected
,
2849 .slot_reset
= igbvf_io_slot_reset
,
2850 .resume
= igbvf_io_resume
,
2853 static struct pci_device_id igbvf_pci_tbl
[] = {
2854 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2855 { } /* terminate list */
2857 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2859 /* PCI Device API Driver */
2860 static struct pci_driver igbvf_driver
= {
2861 .name
= igbvf_driver_name
,
2862 .id_table
= igbvf_pci_tbl
,
2863 .probe
= igbvf_probe
,
2864 .remove
= __devexit_p(igbvf_remove
),
2866 /* Power Management Hooks */
2867 .suspend
= igbvf_suspend
,
2868 .resume
= igbvf_resume
,
2870 .shutdown
= igbvf_shutdown
,
2871 .err_handler
= &igbvf_err_handler
2875 * igbvf_init_module - Driver Registration Routine
2877 * igbvf_init_module is the first routine called when the driver is
2878 * loaded. All it does is register with the PCI subsystem.
2880 static int __init
igbvf_init_module(void)
2883 printk(KERN_INFO
"%s - version %s\n",
2884 igbvf_driver_string
, igbvf_driver_version
);
2885 printk(KERN_INFO
"%s\n", igbvf_copyright
);
2887 ret
= pci_register_driver(&igbvf_driver
);
2888 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
, igbvf_driver_name
,
2889 PM_QOS_DEFAULT_VALUE
);
2893 module_init(igbvf_init_module
);
2896 * igbvf_exit_module - Driver Exit Cleanup Routine
2898 * igbvf_exit_module is called just before the driver is removed
2901 static void __exit
igbvf_exit_module(void)
2903 pci_unregister_driver(&igbvf_driver
);
2904 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
, igbvf_driver_name
);
2906 module_exit(igbvf_exit_module
);
2909 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2911 MODULE_LICENSE("GPL");
2912 MODULE_VERSION(DRV_VERSION
);