2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
65 * - Move a bunch of definitions to .h file
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
73 * - Fix typo when reading back fan speed on 2 CPU machines
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <linux/kthread.h>
125 #include <linux/mutex.h>
126 #include <linux/of_device.h>
127 #include <linux/of_platform.h>
128 #include <asm/prom.h>
129 #include <asm/machdep.h>
131 #include <asm/system.h>
132 #include <asm/sections.h>
133 #include <asm/macio.h>
135 #include "therm_pm72.h"
137 #define VERSION "1.3"
142 #define DBG(args...) printk(args)
144 #define DBG(args...) do { } while(0)
152 static struct of_device
* of_dev
;
153 static struct i2c_adapter
* u3_0
;
154 static struct i2c_adapter
* u3_1
;
155 static struct i2c_adapter
* k2
;
156 static struct i2c_client
* fcu
;
157 static struct cpu_pid_state cpu_state
[2];
158 static struct basckside_pid_params backside_params
;
159 static struct backside_pid_state backside_state
;
160 static struct drives_pid_state drives_state
;
161 static struct dimm_pid_state dimms_state
;
162 static struct slots_pid_state slots_state
;
164 static int cpu_count
;
165 static int cpu_pid_type
;
166 static struct task_struct
*ctrl_task
;
167 static struct completion ctrl_complete
;
168 static int critical_state
;
170 static s32 dimm_output_clamp
;
171 static int fcu_rpm_shift
;
172 static int fcu_tickle_ticks
;
173 static DEFINE_MUTEX(driver_lock
);
176 * We have 3 types of CPU PID control. One is "split" old style control
177 * for intake & exhaust fans, the other is "combined" control for both
178 * CPUs that also deals with the pumps when present. To be "compatible"
179 * with OS X at this point, we only use "COMBINED" on the machines that
180 * are identified as having the pumps (though that identification is at
181 * least dodgy). Ultimately, we could probably switch completely to this
182 * algorithm provided we hack it to deal with the UP case
184 #define CPU_PID_TYPE_SPLIT 0
185 #define CPU_PID_TYPE_COMBINED 1
186 #define CPU_PID_TYPE_RACKMAC 2
189 * This table describes all fans in the FCU. The "id" and "type" values
190 * are defaults valid for all earlier machines. Newer machines will
191 * eventually override the table content based on the device-tree
195 char* loc
; /* location code */
196 int type
; /* 0 = rpm, 1 = pwm, 2 = pump */
197 int id
; /* id or -1 */
200 #define FCU_FAN_RPM 0
201 #define FCU_FAN_PWM 1
203 #define FCU_FAN_ABSENT_ID -1
205 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
207 struct fcu_fan_table fcu_fans
[] = {
208 [BACKSIDE_FAN_PWM_INDEX
] = {
209 .loc
= "BACKSIDE,SYS CTRLR FAN",
211 .id
= BACKSIDE_FAN_PWM_DEFAULT_ID
,
213 [DRIVES_FAN_RPM_INDEX
] = {
216 .id
= DRIVES_FAN_RPM_DEFAULT_ID
,
218 [SLOTS_FAN_PWM_INDEX
] = {
219 .loc
= "SLOT,PCI FAN",
221 .id
= SLOTS_FAN_PWM_DEFAULT_ID
,
223 [CPUA_INTAKE_FAN_RPM_INDEX
] = {
224 .loc
= "CPU A INTAKE",
226 .id
= CPUA_INTAKE_FAN_RPM_DEFAULT_ID
,
228 [CPUA_EXHAUST_FAN_RPM_INDEX
] = {
229 .loc
= "CPU A EXHAUST",
231 .id
= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID
,
233 [CPUB_INTAKE_FAN_RPM_INDEX
] = {
234 .loc
= "CPU B INTAKE",
236 .id
= CPUB_INTAKE_FAN_RPM_DEFAULT_ID
,
238 [CPUB_EXHAUST_FAN_RPM_INDEX
] = {
239 .loc
= "CPU B EXHAUST",
241 .id
= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID
,
243 /* pumps aren't present by default, have to be looked up in the
246 [CPUA_PUMP_RPM_INDEX
] = {
249 .id
= FCU_FAN_ABSENT_ID
,
251 [CPUB_PUMP_RPM_INDEX
] = {
254 .id
= FCU_FAN_ABSENT_ID
,
257 [CPU_A1_FAN_RPM_INDEX
] = {
260 .id
= FCU_FAN_ABSENT_ID
,
262 [CPU_A2_FAN_RPM_INDEX
] = {
265 .id
= FCU_FAN_ABSENT_ID
,
267 [CPU_A3_FAN_RPM_INDEX
] = {
270 .id
= FCU_FAN_ABSENT_ID
,
272 [CPU_B1_FAN_RPM_INDEX
] = {
275 .id
= FCU_FAN_ABSENT_ID
,
277 [CPU_B2_FAN_RPM_INDEX
] = {
280 .id
= FCU_FAN_ABSENT_ID
,
282 [CPU_B3_FAN_RPM_INDEX
] = {
285 .id
= FCU_FAN_ABSENT_ID
,
290 * Utility function to create an i2c_client structure and
291 * attach it to one of u3 adapters
293 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
295 struct i2c_client
*clt
;
296 struct i2c_adapter
*adap
;
297 struct i2c_board_info info
;
308 memset(&info
, 0, sizeof(struct i2c_board_info
));
309 info
.addr
= (id
>> 1) & 0x7f;
310 strlcpy(info
.type
, "therm_pm72", I2C_NAME_SIZE
);
311 clt
= i2c_new_device(adap
, &info
);
313 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
318 * Let i2c-core delete that device on driver removal.
319 * This is safe because i2c-core holds the core_lock mutex for us.
321 list_add_tail(&clt
->detected
, &clt
->driver
->clients
);
326 * Here are the i2c chip access wrappers
329 static void initialize_adc(struct cpu_pid_state
*state
)
334 /* Read ADC the configuration register and cache it. We
335 * also make sure Config2 contains proper values, I've seen
336 * cases where we got stale grabage in there, thus preventing
337 * proper reading of conv. values
343 i2c_master_send(state
->monitor
, buf
, 2);
345 /* Read & cache Config1 */
347 rc
= i2c_master_send(state
->monitor
, buf
, 1);
349 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
351 state
->adc_config
= buf
[0];
352 DBG("ADC config reg: %02x\n", state
->adc_config
);
353 /* Disable shutdown mode */
354 state
->adc_config
&= 0xfe;
356 buf
[1] = state
->adc_config
;
357 rc
= i2c_master_send(state
->monitor
, buf
, 2);
361 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
365 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
367 int rc
, data
, tries
= 0;
373 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
374 rc
= i2c_master_send(state
->monitor
, buf
, 2);
377 /* Wait for convertion */
379 /* Switch to data register */
381 rc
= i2c_master_send(state
->monitor
, buf
, 1);
385 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
388 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
391 DBG("Error reading ADC, retrying...\n");
393 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
400 static int read_lm87_reg(struct i2c_client
* chip
, int reg
)
408 rc
= i2c_master_send(chip
, &buf
, 1);
411 rc
= i2c_master_recv(chip
, &buf
, 1);
416 DBG("Error reading LM87, retrying...\n");
418 printk(KERN_ERR
"therm_pm72: Error reading LM87 !\n");
425 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
432 nw
= i2c_master_send(fcu
, buf
, 1);
433 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
439 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
444 nr
= i2c_master_recv(fcu
, buf
, nb
);
445 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
451 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
455 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
458 unsigned char buf
[16];
461 memcpy(buf
+1, ptr
, nb
);
465 nw
= i2c_master_send(fcu
, buf
, nb
);
466 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
472 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
476 static int start_fcu(void)
478 unsigned char buf
= 0xff;
481 rc
= fan_write_reg(0xe, &buf
, 1);
484 rc
= fan_write_reg(0x2e, &buf
, 1);
487 rc
= fan_read_reg(0, &buf
, 1);
490 fcu_rpm_shift
= (buf
== 1) ? 2 : 3;
491 printk(KERN_DEBUG
"FCU Initialized, RPM fan shift is %d\n",
497 static int set_rpm_fan(int fan_index
, int rpm
)
499 unsigned char buf
[2];
500 int rc
, id
, min
, max
;
502 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
504 id
= fcu_fans
[fan_index
].id
;
505 if (id
== FCU_FAN_ABSENT_ID
)
508 min
= 2400 >> fcu_rpm_shift
;
509 max
= 56000 >> fcu_rpm_shift
;
515 buf
[0] = rpm
>> (8 - fcu_rpm_shift
);
516 buf
[1] = rpm
<< fcu_rpm_shift
;
517 rc
= fan_write_reg(0x10 + (id
* 2), buf
, 2);
523 static int get_rpm_fan(int fan_index
, int programmed
)
525 unsigned char failure
;
526 unsigned char active
;
527 unsigned char buf
[2];
528 int rc
, id
, reg_base
;
530 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
532 id
= fcu_fans
[fan_index
].id
;
533 if (id
== FCU_FAN_ABSENT_ID
)
536 rc
= fan_read_reg(0xb, &failure
, 1);
539 if ((failure
& (1 << id
)) != 0)
541 rc
= fan_read_reg(0xd, &active
, 1);
544 if ((active
& (1 << id
)) == 0)
547 /* Programmed value or real current speed */
548 reg_base
= programmed
? 0x10 : 0x11;
549 rc
= fan_read_reg(reg_base
+ (id
* 2), buf
, 2);
553 return (buf
[0] << (8 - fcu_rpm_shift
)) | buf
[1] >> fcu_rpm_shift
;
556 static int set_pwm_fan(int fan_index
, int pwm
)
558 unsigned char buf
[2];
561 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
563 id
= fcu_fans
[fan_index
].id
;
564 if (id
== FCU_FAN_ABSENT_ID
)
571 pwm
= (pwm
* 2559) / 1000;
573 rc
= fan_write_reg(0x30 + (id
* 2), buf
, 1);
579 static int get_pwm_fan(int fan_index
)
581 unsigned char failure
;
582 unsigned char active
;
583 unsigned char buf
[2];
586 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
588 id
= fcu_fans
[fan_index
].id
;
589 if (id
== FCU_FAN_ABSENT_ID
)
592 rc
= fan_read_reg(0x2b, &failure
, 1);
595 if ((failure
& (1 << id
)) != 0)
597 rc
= fan_read_reg(0x2d, &active
, 1);
600 if ((active
& (1 << id
)) == 0)
603 /* Programmed value or real current speed */
604 rc
= fan_read_reg(0x30 + (id
* 2), buf
, 1);
608 return (buf
[0] * 1000) / 2559;
611 static void tickle_fcu(void)
615 pwm
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
617 DBG("FCU Tickle, slots fan is: %d\n", pwm
);
622 pwm
= SLOTS_FAN_DEFAULT_PWM
;
623 } else if (pwm
< SLOTS_PID_OUTPUT_MIN
)
624 pwm
= SLOTS_PID_OUTPUT_MIN
;
626 /* That is hopefully enough to make the FCU happy */
627 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, pwm
);
632 * Utility routine to read the CPU calibration EEPROM data
633 * from the device-tree
635 static int read_eeprom(int cpu
, struct mpu_data
*out
)
637 struct device_node
*np
;
642 /* prom.c routine for finding a node by path is a bit brain dead
643 * and requires exact @xxx unit numbers. This is a bit ugly but
644 * will work for these machines
646 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
647 np
= of_find_node_by_path(nodename
);
649 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid node from device-tree\n");
652 data
= of_get_property(np
, "cpuid", &len
);
654 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid property from device-tree\n");
658 memcpy(out
, data
, sizeof(struct mpu_data
));
664 static void fetch_cpu_pumps_minmax(void)
666 struct cpu_pid_state
*state0
= &cpu_state
[0];
667 struct cpu_pid_state
*state1
= &cpu_state
[1];
668 u16 pump_min
= 0, pump_max
= 0xffff;
671 /* Try to fetch pumps min/max infos from eeprom */
673 memcpy(&tmp
, &state0
->mpu
.processor_part_num
, 8);
674 if (tmp
[0] != 0xffff && tmp
[1] != 0xffff) {
675 pump_min
= max(pump_min
, tmp
[0]);
676 pump_max
= min(pump_max
, tmp
[1]);
678 if (tmp
[2] != 0xffff && tmp
[3] != 0xffff) {
679 pump_min
= max(pump_min
, tmp
[2]);
680 pump_max
= min(pump_max
, tmp
[3]);
683 /* Double check the values, this _IS_ needed as the EEPROM on
684 * some dual 2.5Ghz G5s seem, at least, to have both min & max
685 * same to the same value ... (grrrr)
687 if (pump_min
== pump_max
|| pump_min
== 0 || pump_max
== 0xffff) {
688 pump_min
= CPU_PUMP_OUTPUT_MIN
;
689 pump_max
= CPU_PUMP_OUTPUT_MAX
;
692 state0
->pump_min
= state1
->pump_min
= pump_min
;
693 state0
->pump_max
= state1
->pump_max
= pump_max
;
697 * Now, unfortunately, sysfs doesn't give us a nice void * we could
698 * pass around to the attribute functions, so we don't really have
699 * choice but implement a bunch of them...
701 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
702 * the input twice... I accept patches :)
704 #define BUILD_SHOW_FUNC_FIX(name, data) \
705 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
708 mutex_lock(&driver_lock); \
709 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
710 mutex_unlock(&driver_lock); \
713 #define BUILD_SHOW_FUNC_INT(name, data) \
714 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
716 return sprintf(buf, "%d", data); \
719 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
720 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
721 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
722 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
723 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
725 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
726 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
727 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
728 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
729 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
731 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
732 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
734 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
735 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
737 BUILD_SHOW_FUNC_FIX(slots_temperature
, slots_state
.last_temp
)
738 BUILD_SHOW_FUNC_INT(slots_fan_pwm
, slots_state
.pwm
)
740 BUILD_SHOW_FUNC_FIX(dimms_temperature
, dimms_state
.last_temp
)
742 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
743 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
744 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
745 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
746 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
748 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
749 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
750 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
751 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
752 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
754 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
755 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
757 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
758 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
760 static DEVICE_ATTR(slots_temperature
,S_IRUGO
,show_slots_temperature
,NULL
);
761 static DEVICE_ATTR(slots_fan_pwm
,S_IRUGO
,show_slots_fan_pwm
,NULL
);
763 static DEVICE_ATTR(dimms_temperature
,S_IRUGO
,show_dimms_temperature
,NULL
);
766 * CPUs fans control loop
769 static int do_read_one_cpu_values(struct cpu_pid_state
*state
, s32
*temp
, s32
*power
)
771 s32 ltemp
, volts
, amps
;
774 /* Default (in case of error) */
775 *temp
= state
->cur_temp
;
776 *power
= state
->cur_power
;
778 if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
)
779 index
= (state
->index
== 0) ?
780 CPU_A1_FAN_RPM_INDEX
: CPU_B1_FAN_RPM_INDEX
;
782 index
= (state
->index
== 0) ?
783 CPUA_EXHAUST_FAN_RPM_INDEX
: CPUB_EXHAUST_FAN_RPM_INDEX
;
785 /* Read current fan status */
786 rc
= get_rpm_fan(index
, !RPM_PID_USE_ACTUAL_SPEED
);
788 /* XXX What do we do now ? Nothing for now, keep old value, but
789 * return error upstream
791 DBG(" cpu %d, fan reading error !\n", state
->index
);
794 DBG(" cpu %d, exhaust RPM: %d\n", state
->index
, state
->rpm
);
797 /* Get some sensor readings and scale it */
798 ltemp
= read_smon_adc(state
, 1);
800 /* XXX What do we do now ? */
804 DBG(" cpu %d, temp reading error !\n", state
->index
);
806 /* Fixup temperature according to diode calibration
808 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
810 ltemp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
811 *temp
= ((s32
)ltemp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
812 state
->last_temp
= *temp
;
813 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp
)));
817 * Read voltage & current and calculate power
819 volts
= read_smon_adc(state
, 3);
820 amps
= read_smon_adc(state
, 4);
822 /* Scale voltage and current raw sensor values according to fixed scales
823 * obtained in Darwin and calculate power from I and V
825 volts
*= ADC_CPU_VOLTAGE_SCALE
;
826 amps
*= ADC_CPU_CURRENT_SCALE
;
827 *power
= (((u64
)volts
) * ((u64
)amps
)) >> 16;
828 state
->voltage
= volts
;
829 state
->current_a
= amps
;
830 state
->last_power
= *power
;
832 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
833 state
->index
, FIX32TOPRINT(state
->current_a
),
834 FIX32TOPRINT(state
->voltage
), FIX32TOPRINT(*power
));
839 static void do_cpu_pid(struct cpu_pid_state
*state
, s32 temp
, s32 power
)
841 s32 power_target
, integral
, derivative
, proportional
, adj_in_target
, sval
;
842 s64 integ_p
, deriv_p
, prop_p
, sum
;
845 /* Calculate power target value (could be done once for all)
846 * and convert to a 16.16 fp number
848 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
849 DBG(" power target: %d.%03d, error: %d.%03d\n",
850 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
852 /* Store temperature and power in history array */
853 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
854 state
->temp_history
[state
->cur_temp
] = temp
;
855 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
856 state
->power_history
[state
->cur_power
] = power
;
857 state
->error_history
[state
->cur_power
] = power_target
- power
;
859 /* If first loop, fill the history table */
861 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
862 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
863 state
->power_history
[state
->cur_power
] = power
;
864 state
->error_history
[state
->cur_power
] = power_target
- power
;
866 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
867 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
868 state
->temp_history
[state
->cur_temp
] = temp
;
873 /* Calculate the integral term normally based on the "power" values */
876 for (i
= 0; i
< state
->count_power
; i
++)
877 integral
+= state
->error_history
[i
];
878 integral
*= CPU_PID_INTERVAL
;
879 DBG(" integral: %08x\n", integral
);
881 /* Calculate the adjusted input (sense value).
884 * so the result is 28.36
886 * input target is mpu.ttarget, input max is mpu.tmax
888 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
889 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
890 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
891 adj_in_target
= (state
->mpu
.ttarget
<< 16);
892 if (adj_in_target
> sval
)
893 adj_in_target
= sval
;
894 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
897 /* Calculate the derivative term */
898 derivative
= state
->temp_history
[state
->cur_temp
] -
899 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
900 % CPU_TEMP_HISTORY_SIZE
];
901 derivative
/= CPU_PID_INTERVAL
;
902 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
903 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
906 /* Calculate the proportional term */
907 proportional
= temp
- adj_in_target
;
908 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
909 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
915 DBG(" sum: %d\n", (int)sum
);
916 state
->rpm
+= (s32
)sum
;
919 static void do_monitor_cpu_combined(void)
921 struct cpu_pid_state
*state0
= &cpu_state
[0];
922 struct cpu_pid_state
*state1
= &cpu_state
[1];
923 s32 temp0
, power0
, temp1
, power1
;
924 s32 temp_combi
, power_combi
;
925 int rc
, intake
, pump
;
927 rc
= do_read_one_cpu_values(state0
, &temp0
, &power0
);
929 /* XXX What do we do now ? */
931 state1
->overtemp
= 0;
932 rc
= do_read_one_cpu_values(state1
, &temp1
, &power1
);
934 /* XXX What do we do now ? */
936 if (state1
->overtemp
)
939 temp_combi
= max(temp0
, temp1
);
940 power_combi
= max(power0
, power1
);
942 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
943 * full blown immediately and try to trigger a shutdown
945 if (temp_combi
>= ((state0
->mpu
.tmax
+ 8) << 16)) {
946 printk(KERN_WARNING
"Warning ! Temperature way above maximum (%d) !\n",
948 state0
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
949 } else if (temp_combi
> (state0
->mpu
.tmax
<< 16))
952 state0
->overtemp
= 0;
953 if (state0
->overtemp
>= CPU_MAX_OVERTEMP
)
955 if (state0
->overtemp
> 0) {
956 state0
->rpm
= state0
->mpu
.rmaxn_exhaust_fan
;
957 state0
->intake_rpm
= intake
= state0
->mpu
.rmaxn_intake_fan
;
958 pump
= state0
->pump_max
;
963 do_cpu_pid(state0
, temp_combi
, power_combi
);
966 state0
->rpm
= max(state0
->rpm
, (int)state0
->mpu
.rminn_exhaust_fan
);
967 state0
->rpm
= min(state0
->rpm
, (int)state0
->mpu
.rmaxn_exhaust_fan
);
969 /* Calculate intake fan speed */
970 intake
= (state0
->rpm
* CPU_INTAKE_SCALE
) >> 16;
971 intake
= max(intake
, (int)state0
->mpu
.rminn_intake_fan
);
972 intake
= min(intake
, (int)state0
->mpu
.rmaxn_intake_fan
);
973 state0
->intake_rpm
= intake
;
975 /* Calculate pump speed */
976 pump
= (state0
->rpm
* state0
->pump_max
) /
977 state0
->mpu
.rmaxn_exhaust_fan
;
978 pump
= min(pump
, state0
->pump_max
);
979 pump
= max(pump
, state0
->pump_min
);
982 /* We copy values from state 0 to state 1 for /sysfs */
983 state1
->rpm
= state0
->rpm
;
984 state1
->intake_rpm
= state0
->intake_rpm
;
986 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
987 state1
->index
, (int)state1
->rpm
, intake
, pump
, state1
->overtemp
);
989 /* We should check for errors, shouldn't we ? But then, what
990 * do we do once the error occurs ? For FCU notified fan
991 * failures (-EFAULT) we probably want to notify userland
994 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
995 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
996 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
997 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
999 if (fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1000 set_rpm_fan(CPUA_PUMP_RPM_INDEX
, pump
);
1001 if (fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1002 set_rpm_fan(CPUB_PUMP_RPM_INDEX
, pump
);
1005 static void do_monitor_cpu_split(struct cpu_pid_state
*state
)
1010 /* Read current fan status */
1011 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1013 /* XXX What do we do now ? */
1016 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1017 * full blown immediately and try to trigger a shutdown
1019 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1020 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1022 state
->index
, temp
>> 16);
1023 state
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
1024 } else if (temp
> (state
->mpu
.tmax
<< 16))
1027 state
->overtemp
= 0;
1028 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1030 if (state
->overtemp
> 0) {
1031 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
1032 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
1037 do_cpu_pid(state
, temp
, power
);
1040 state
->rpm
= max(state
->rpm
, (int)state
->mpu
.rminn_exhaust_fan
);
1041 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_exhaust_fan
);
1043 /* Calculate intake fan */
1044 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
1045 intake
= max(intake
, (int)state
->mpu
.rminn_intake_fan
);
1046 intake
= min(intake
, (int)state
->mpu
.rmaxn_intake_fan
);
1047 state
->intake_rpm
= intake
;
1050 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1051 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
1053 /* We should check for errors, shouldn't we ? But then, what
1054 * do we do once the error occurs ? For FCU notified fan
1055 * failures (-EFAULT) we probably want to notify userland
1058 if (state
->index
== 0) {
1059 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1060 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1062 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1063 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1067 static void do_monitor_cpu_rack(struct cpu_pid_state
*state
)
1069 s32 temp
, power
, fan_min
;
1072 /* Read current fan status */
1073 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1075 /* XXX What do we do now ? */
1078 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1079 * full blown immediately and try to trigger a shutdown
1081 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1082 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1084 state
->index
, temp
>> 16);
1085 state
->overtemp
= CPU_MAX_OVERTEMP
/ 4;
1086 } else if (temp
> (state
->mpu
.tmax
<< 16))
1089 state
->overtemp
= 0;
1090 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1092 if (state
->overtemp
> 0) {
1093 state
->rpm
= state
->intake_rpm
= state
->mpu
.rmaxn_intake_fan
;
1098 do_cpu_pid(state
, temp
, power
);
1100 /* Check clamp from dimms */
1101 fan_min
= dimm_output_clamp
;
1102 fan_min
= max(fan_min
, (int)state
->mpu
.rminn_intake_fan
);
1104 DBG(" CPU min mpu = %d, min dimm = %d\n",
1105 state
->mpu
.rminn_intake_fan
, dimm_output_clamp
);
1107 state
->rpm
= max(state
->rpm
, (int)fan_min
);
1108 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_intake_fan
);
1109 state
->intake_rpm
= state
->rpm
;
1112 DBG("** CPU %d RPM: %d overtemp: %d\n",
1113 state
->index
, (int)state
->rpm
, state
->overtemp
);
1115 /* We should check for errors, shouldn't we ? But then, what
1116 * do we do once the error occurs ? For FCU notified fan
1117 * failures (-EFAULT) we probably want to notify userland
1120 if (state
->index
== 0) {
1121 set_rpm_fan(CPU_A1_FAN_RPM_INDEX
, state
->rpm
);
1122 set_rpm_fan(CPU_A2_FAN_RPM_INDEX
, state
->rpm
);
1123 set_rpm_fan(CPU_A3_FAN_RPM_INDEX
, state
->rpm
);
1125 set_rpm_fan(CPU_B1_FAN_RPM_INDEX
, state
->rpm
);
1126 set_rpm_fan(CPU_B2_FAN_RPM_INDEX
, state
->rpm
);
1127 set_rpm_fan(CPU_B3_FAN_RPM_INDEX
, state
->rpm
);
1132 * Initialize the state structure for one CPU control loop
1134 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
1138 state
->index
= index
;
1140 state
->rpm
= (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) ? 4000 : 1000;
1141 state
->overtemp
= 0;
1142 state
->adc_config
= 0x00;
1146 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
1147 else if (index
== 1)
1148 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
1149 if (state
->monitor
== NULL
)
1152 if (read_eeprom(index
, &state
->mpu
))
1155 state
->count_power
= state
->mpu
.tguardband
;
1156 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
1157 printk(KERN_WARNING
"Warning ! too many power history slots\n");
1158 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
1160 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
1163 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1164 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1165 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1166 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1167 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1169 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1170 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1171 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1172 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1173 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1176 printk(KERN_WARNING
"Failed to create some of the atribute"
1177 "files for CPU %d\n", index
);
1181 state
->monitor
= NULL
;
1187 * Dispose of the state data for one CPU control loop
1189 static void dispose_cpu_state(struct cpu_pid_state
*state
)
1191 if (state
->monitor
== NULL
)
1194 if (state
->index
== 0) {
1195 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1196 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1197 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1198 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1199 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1201 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1202 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1203 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1204 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1205 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1208 state
->monitor
= NULL
;
1212 * Motherboard backside & U3 heatsink fan control loop
1214 static void do_monitor_backside(struct backside_pid_state
*state
)
1216 s32 temp
, integral
, derivative
, fan_min
;
1217 s64 integ_p
, deriv_p
, prop_p
, sum
;
1220 if (--state
->ticks
!= 0)
1222 state
->ticks
= backside_params
.interval
;
1226 /* Check fan status */
1227 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_INDEX
);
1229 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
1230 /* XXX What do we do now ? */
1233 DBG(" current pwm: %d\n", state
->pwm
);
1235 /* Get some sensor readings */
1236 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
1237 state
->last_temp
= temp
;
1238 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1239 FIX32TOPRINT(backside_params
.input_target
));
1241 /* Store temperature and error in history array */
1242 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
1243 state
->sample_history
[state
->cur_sample
] = temp
;
1244 state
->error_history
[state
->cur_sample
] = temp
- backside_params
.input_target
;
1246 /* If first loop, fill the history table */
1248 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
1249 state
->cur_sample
= (state
->cur_sample
+ 1) %
1250 BACKSIDE_PID_HISTORY_SIZE
;
1251 state
->sample_history
[state
->cur_sample
] = temp
;
1252 state
->error_history
[state
->cur_sample
] =
1253 temp
- backside_params
.input_target
;
1258 /* Calculate the integral term */
1261 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
1262 integral
+= state
->error_history
[i
];
1263 integral
*= backside_params
.interval
;
1264 DBG(" integral: %08x\n", integral
);
1265 integ_p
= ((s64
)backside_params
.G_r
) * (s64
)integral
;
1266 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1269 /* Calculate the derivative term */
1270 derivative
= state
->error_history
[state
->cur_sample
] -
1271 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
1272 % BACKSIDE_PID_HISTORY_SIZE
];
1273 derivative
/= backside_params
.interval
;
1274 deriv_p
= ((s64
)backside_params
.G_d
) * (s64
)derivative
;
1275 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1278 /* Calculate the proportional term */
1279 prop_p
= ((s64
)backside_params
.G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1280 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1286 DBG(" sum: %d\n", (int)sum
);
1287 if (backside_params
.additive
)
1288 state
->pwm
+= (s32
)sum
;
1292 /* Check for clamp */
1293 fan_min
= (dimm_output_clamp
* 100) / 14000;
1294 fan_min
= max(fan_min
, backside_params
.output_min
);
1296 state
->pwm
= max(state
->pwm
, fan_min
);
1297 state
->pwm
= min(state
->pwm
, backside_params
.output_max
);
1299 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
1300 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, state
->pwm
);
1304 * Initialize the state structure for the backside fan control loop
1306 static int init_backside_state(struct backside_pid_state
*state
)
1308 struct device_node
*u3
;
1309 int u3h
= 1; /* conservative by default */
1313 * There are different PID params for machines with U3 and machines
1314 * with U3H, pick the right ones now
1316 u3
= of_find_node_by_path("/u3@0,f8000000");
1318 const u32
*vers
= of_get_property(u3
, "device-rev", NULL
);
1320 if (((*vers
) & 0x3f) < 0x34)
1326 backside_params
.G_d
= BACKSIDE_PID_RACK_G_d
;
1327 backside_params
.input_target
= BACKSIDE_PID_RACK_INPUT_TARGET
;
1328 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1329 backside_params
.interval
= BACKSIDE_PID_RACK_INTERVAL
;
1330 backside_params
.G_p
= BACKSIDE_PID_RACK_G_p
;
1331 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1332 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1333 backside_params
.additive
= 0;
1335 backside_params
.G_d
= BACKSIDE_PID_U3H_G_d
;
1336 backside_params
.input_target
= BACKSIDE_PID_U3H_INPUT_TARGET
;
1337 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1338 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1339 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1340 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1341 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1342 backside_params
.additive
= 1;
1344 backside_params
.G_d
= BACKSIDE_PID_U3_G_d
;
1345 backside_params
.input_target
= BACKSIDE_PID_U3_INPUT_TARGET
;
1346 backside_params
.output_min
= BACKSIDE_PID_U3_OUTPUT_MIN
;
1347 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1348 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1349 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1350 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1351 backside_params
.additive
= 1;
1358 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
1359 if (state
->monitor
== NULL
)
1362 err
= device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1363 err
|= device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1365 printk(KERN_WARNING
"Failed to create attribute file(s)"
1366 " for backside fan\n");
1372 * Dispose of the state data for the backside control loop
1374 static void dispose_backside_state(struct backside_pid_state
*state
)
1376 if (state
->monitor
== NULL
)
1379 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1380 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1382 state
->monitor
= NULL
;
1386 * Drives bay fan control loop
1388 static void do_monitor_drives(struct drives_pid_state
*state
)
1390 s32 temp
, integral
, derivative
;
1391 s64 integ_p
, deriv_p
, prop_p
, sum
;
1394 if (--state
->ticks
!= 0)
1396 state
->ticks
= DRIVES_PID_INTERVAL
;
1400 /* Check fan status */
1401 rc
= get_rpm_fan(DRIVES_FAN_RPM_INDEX
, !RPM_PID_USE_ACTUAL_SPEED
);
1403 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
1404 /* XXX What do we do now ? */
1407 DBG(" current rpm: %d\n", state
->rpm
);
1409 /* Get some sensor readings */
1410 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1412 state
->last_temp
= temp
;
1413 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1414 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
1416 /* Store temperature and error in history array */
1417 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
1418 state
->sample_history
[state
->cur_sample
] = temp
;
1419 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
1421 /* If first loop, fill the history table */
1423 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
1424 state
->cur_sample
= (state
->cur_sample
+ 1) %
1425 DRIVES_PID_HISTORY_SIZE
;
1426 state
->sample_history
[state
->cur_sample
] = temp
;
1427 state
->error_history
[state
->cur_sample
] =
1428 temp
- DRIVES_PID_INPUT_TARGET
;
1433 /* Calculate the integral term */
1436 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
1437 integral
+= state
->error_history
[i
];
1438 integral
*= DRIVES_PID_INTERVAL
;
1439 DBG(" integral: %08x\n", integral
);
1440 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
1441 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1444 /* Calculate the derivative term */
1445 derivative
= state
->error_history
[state
->cur_sample
] -
1446 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
1447 % DRIVES_PID_HISTORY_SIZE
];
1448 derivative
/= DRIVES_PID_INTERVAL
;
1449 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
1450 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1453 /* Calculate the proportional term */
1454 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1455 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1461 DBG(" sum: %d\n", (int)sum
);
1462 state
->rpm
+= (s32
)sum
;
1464 state
->rpm
= max(state
->rpm
, DRIVES_PID_OUTPUT_MIN
);
1465 state
->rpm
= min(state
->rpm
, DRIVES_PID_OUTPUT_MAX
);
1467 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
1468 set_rpm_fan(DRIVES_FAN_RPM_INDEX
, state
->rpm
);
1472 * Initialize the state structure for the drives bay fan control loop
1474 static int init_drives_state(struct drives_pid_state
*state
)
1482 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
1483 if (state
->monitor
== NULL
)
1486 err
= device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1487 err
|= device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1489 printk(KERN_WARNING
"Failed to create attribute file(s)"
1490 " for drives bay fan\n");
1496 * Dispose of the state data for the drives control loop
1498 static void dispose_drives_state(struct drives_pid_state
*state
)
1500 if (state
->monitor
== NULL
)
1503 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1504 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1506 state
->monitor
= NULL
;
1510 * DIMMs temp control loop
1512 static void do_monitor_dimms(struct dimm_pid_state
*state
)
1514 s32 temp
, integral
, derivative
, fan_min
;
1515 s64 integ_p
, deriv_p
, prop_p
, sum
;
1518 if (--state
->ticks
!= 0)
1520 state
->ticks
= DIMM_PID_INTERVAL
;
1524 DBG(" current value: %d\n", state
->output
);
1526 temp
= read_lm87_reg(state
->monitor
, LM87_INT_TEMP
);
1530 state
->last_temp
= temp
;
1531 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1532 FIX32TOPRINT(DIMM_PID_INPUT_TARGET
));
1534 /* Store temperature and error in history array */
1535 state
->cur_sample
= (state
->cur_sample
+ 1) % DIMM_PID_HISTORY_SIZE
;
1536 state
->sample_history
[state
->cur_sample
] = temp
;
1537 state
->error_history
[state
->cur_sample
] = temp
- DIMM_PID_INPUT_TARGET
;
1539 /* If first loop, fill the history table */
1541 for (i
= 0; i
< (DIMM_PID_HISTORY_SIZE
- 1); i
++) {
1542 state
->cur_sample
= (state
->cur_sample
+ 1) %
1543 DIMM_PID_HISTORY_SIZE
;
1544 state
->sample_history
[state
->cur_sample
] = temp
;
1545 state
->error_history
[state
->cur_sample
] =
1546 temp
- DIMM_PID_INPUT_TARGET
;
1551 /* Calculate the integral term */
1554 for (i
= 0; i
< DIMM_PID_HISTORY_SIZE
; i
++)
1555 integral
+= state
->error_history
[i
];
1556 integral
*= DIMM_PID_INTERVAL
;
1557 DBG(" integral: %08x\n", integral
);
1558 integ_p
= ((s64
)DIMM_PID_G_r
) * (s64
)integral
;
1559 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1562 /* Calculate the derivative term */
1563 derivative
= state
->error_history
[state
->cur_sample
] -
1564 state
->error_history
[(state
->cur_sample
+ DIMM_PID_HISTORY_SIZE
- 1)
1565 % DIMM_PID_HISTORY_SIZE
];
1566 derivative
/= DIMM_PID_INTERVAL
;
1567 deriv_p
= ((s64
)DIMM_PID_G_d
) * (s64
)derivative
;
1568 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1571 /* Calculate the proportional term */
1572 prop_p
= ((s64
)DIMM_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1573 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1579 DBG(" sum: %d\n", (int)sum
);
1580 state
->output
= (s32
)sum
;
1581 state
->output
= max(state
->output
, DIMM_PID_OUTPUT_MIN
);
1582 state
->output
= min(state
->output
, DIMM_PID_OUTPUT_MAX
);
1583 dimm_output_clamp
= state
->output
;
1585 DBG("** DIMM clamp value: %d\n", (int)state
->output
);
1587 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1588 fan_min
= (dimm_output_clamp
* 100) / 14000;
1589 fan_min
= max(fan_min
, backside_params
.output_min
);
1590 if (backside_state
.pwm
< fan_min
) {
1591 backside_state
.pwm
= fan_min
;
1592 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min
);
1593 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, fan_min
);
1598 * Initialize the state structure for the DIMM temp control loop
1600 static int init_dimms_state(struct dimm_pid_state
*state
)
1604 state
->output
= 4000;
1606 state
->monitor
= attach_i2c_chip(XSERVE_DIMMS_LM87
, "dimms_temp");
1607 if (state
->monitor
== NULL
)
1610 if (device_create_file(&of_dev
->dev
, &dev_attr_dimms_temperature
))
1611 printk(KERN_WARNING
"Failed to create attribute file"
1612 " for DIMM temperature\n");
1618 * Dispose of the state data for the DIMM control loop
1620 static void dispose_dimms_state(struct dimm_pid_state
*state
)
1622 if (state
->monitor
== NULL
)
1625 device_remove_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1627 state
->monitor
= NULL
;
1631 * Slots fan control loop
1633 static void do_monitor_slots(struct slots_pid_state
*state
)
1635 s32 temp
, integral
, derivative
;
1636 s64 integ_p
, deriv_p
, prop_p
, sum
;
1639 if (--state
->ticks
!= 0)
1641 state
->ticks
= SLOTS_PID_INTERVAL
;
1645 /* Check fan status */
1646 rc
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
1648 printk(KERN_WARNING
"Error %d reading slots fan !\n", rc
);
1649 /* XXX What do we do now ? */
1652 DBG(" current pwm: %d\n", state
->pwm
);
1654 /* Get some sensor readings */
1655 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1657 state
->last_temp
= temp
;
1658 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1659 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET
));
1661 /* Store temperature and error in history array */
1662 state
->cur_sample
= (state
->cur_sample
+ 1) % SLOTS_PID_HISTORY_SIZE
;
1663 state
->sample_history
[state
->cur_sample
] = temp
;
1664 state
->error_history
[state
->cur_sample
] = temp
- SLOTS_PID_INPUT_TARGET
;
1666 /* If first loop, fill the history table */
1668 for (i
= 0; i
< (SLOTS_PID_HISTORY_SIZE
- 1); i
++) {
1669 state
->cur_sample
= (state
->cur_sample
+ 1) %
1670 SLOTS_PID_HISTORY_SIZE
;
1671 state
->sample_history
[state
->cur_sample
] = temp
;
1672 state
->error_history
[state
->cur_sample
] =
1673 temp
- SLOTS_PID_INPUT_TARGET
;
1678 /* Calculate the integral term */
1681 for (i
= 0; i
< SLOTS_PID_HISTORY_SIZE
; i
++)
1682 integral
+= state
->error_history
[i
];
1683 integral
*= SLOTS_PID_INTERVAL
;
1684 DBG(" integral: %08x\n", integral
);
1685 integ_p
= ((s64
)SLOTS_PID_G_r
) * (s64
)integral
;
1686 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1689 /* Calculate the derivative term */
1690 derivative
= state
->error_history
[state
->cur_sample
] -
1691 state
->error_history
[(state
->cur_sample
+ SLOTS_PID_HISTORY_SIZE
- 1)
1692 % SLOTS_PID_HISTORY_SIZE
];
1693 derivative
/= SLOTS_PID_INTERVAL
;
1694 deriv_p
= ((s64
)SLOTS_PID_G_d
) * (s64
)derivative
;
1695 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1698 /* Calculate the proportional term */
1699 prop_p
= ((s64
)SLOTS_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1700 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1706 DBG(" sum: %d\n", (int)sum
);
1707 state
->pwm
= (s32
)sum
;
1709 state
->pwm
= max(state
->pwm
, SLOTS_PID_OUTPUT_MIN
);
1710 state
->pwm
= min(state
->pwm
, SLOTS_PID_OUTPUT_MAX
);
1712 DBG("** DRIVES PWM: %d\n", (int)state
->pwm
);
1713 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, state
->pwm
);
1717 * Initialize the state structure for the slots bay fan control loop
1719 static int init_slots_state(struct slots_pid_state
*state
)
1727 state
->monitor
= attach_i2c_chip(XSERVE_SLOTS_LM75
, "slots_temp");
1728 if (state
->monitor
== NULL
)
1731 err
= device_create_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1732 err
|= device_create_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1734 printk(KERN_WARNING
"Failed to create attribute file(s)"
1735 " for slots bay fan\n");
1741 * Dispose of the state data for the slots control loop
1743 static void dispose_slots_state(struct slots_pid_state
*state
)
1745 if (state
->monitor
== NULL
)
1748 device_remove_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1749 device_remove_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1751 state
->monitor
= NULL
;
1755 static int call_critical_overtemp(void)
1757 char *argv
[] = { critical_overtemp_path
, NULL
};
1758 static char *envp
[] = { "HOME=/",
1760 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1763 return call_usermodehelper(critical_overtemp_path
,
1764 argv
, envp
, UMH_WAIT_EXEC
);
1769 * Here's the kernel thread that calls the various control loops
1771 static int main_control_loop(void *x
)
1773 DBG("main_control_loop started\n");
1775 mutex_lock(&driver_lock
);
1777 if (start_fcu() < 0) {
1778 printk(KERN_ERR
"kfand: failed to start FCU\n");
1779 mutex_unlock(&driver_lock
);
1783 /* Set the PCI fan once for now on non-RackMac */
1785 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, SLOTS_FAN_DEFAULT_PWM
);
1787 /* Initialize ADCs */
1788 initialize_adc(&cpu_state
[0]);
1789 if (cpu_state
[1].monitor
!= NULL
)
1790 initialize_adc(&cpu_state
[1]);
1792 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1794 mutex_unlock(&driver_lock
);
1796 while (state
== state_attached
) {
1797 unsigned long elapsed
, start
;
1801 mutex_lock(&driver_lock
);
1803 /* Tickle the FCU just in case */
1804 if (--fcu_tickle_ticks
< 0) {
1805 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1809 /* First, we always calculate the new DIMMs state on an Xserve */
1811 do_monitor_dimms(&dimms_state
);
1813 /* Then, the CPUs */
1814 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1815 do_monitor_cpu_combined();
1816 else if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) {
1817 do_monitor_cpu_rack(&cpu_state
[0]);
1818 if (cpu_state
[1].monitor
!= NULL
)
1819 do_monitor_cpu_rack(&cpu_state
[1]);
1820 // better deal with UP
1822 do_monitor_cpu_split(&cpu_state
[0]);
1823 if (cpu_state
[1].monitor
!= NULL
)
1824 do_monitor_cpu_split(&cpu_state
[1]);
1825 // better deal with UP
1827 /* Then, the rest */
1828 do_monitor_backside(&backside_state
);
1830 do_monitor_slots(&slots_state
);
1832 do_monitor_drives(&drives_state
);
1833 mutex_unlock(&driver_lock
);
1835 if (critical_state
== 1) {
1836 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1837 printk(KERN_WARNING
"Attempting to shut down...\n");
1838 if (call_critical_overtemp()) {
1839 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1840 critical_overtemp_path
);
1841 machine_power_off();
1844 if (critical_state
> 0)
1846 if (critical_state
> MAX_CRITICAL_STATE
) {
1847 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1848 machine_power_off();
1851 // FIXME: Deal with signals
1852 elapsed
= jiffies
- start
;
1854 schedule_timeout_interruptible(HZ
- elapsed
);
1858 DBG("main_control_loop ended\n");
1861 complete_and_exit(&ctrl_complete
, 0);
1865 * Dispose the control loops when tearing down
1867 static void dispose_control_loops(void)
1869 dispose_cpu_state(&cpu_state
[0]);
1870 dispose_cpu_state(&cpu_state
[1]);
1871 dispose_backside_state(&backside_state
);
1872 dispose_drives_state(&drives_state
);
1873 dispose_slots_state(&slots_state
);
1874 dispose_dimms_state(&dimms_state
);
1878 * Create the control loops. U3-0 i2c bus is up, so we can now
1879 * get to the various sensors
1881 static int create_control_loops(void)
1883 struct device_node
*np
;
1885 /* Count CPUs from the device-tree, we don't care how many are
1886 * actually used by Linux
1889 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1892 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1894 /* Decide the type of PID algorithm to use based on the presence of
1895 * the pumps, though that may not be the best way, that is good enough
1899 cpu_pid_type
= CPU_PID_TYPE_RACKMAC
;
1900 else if (machine_is_compatible("PowerMac7,3")
1902 && fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
1903 && fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
) {
1904 printk(KERN_INFO
"Liquid cooling pumps detected, using new algorithm !\n");
1905 cpu_pid_type
= CPU_PID_TYPE_COMBINED
;
1907 cpu_pid_type
= CPU_PID_TYPE_SPLIT
;
1909 /* Create control loops for everything. If any fail, everything
1912 if (init_cpu_state(&cpu_state
[0], 0))
1914 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1915 fetch_cpu_pumps_minmax();
1917 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1919 if (init_backside_state(&backside_state
))
1921 if (rackmac
&& init_dimms_state(&dimms_state
))
1923 if (rackmac
&& init_slots_state(&slots_state
))
1925 if (!rackmac
&& init_drives_state(&drives_state
))
1928 DBG("all control loops up !\n");
1933 DBG("failure creating control loops, disposing\n");
1935 dispose_control_loops();
1941 * Start the control loops after everything is up, that is create
1942 * the thread that will make them run
1944 static void start_control_loops(void)
1946 init_completion(&ctrl_complete
);
1948 ctrl_task
= kthread_run(main_control_loop
, NULL
, "kfand");
1952 * Stop the control loops when tearing down
1954 static void stop_control_loops(void)
1957 wait_for_completion(&ctrl_complete
);
1961 * Attach to the i2c FCU after detecting U3-1 bus
1963 static int attach_fcu(void)
1965 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
1969 DBG("FCU attached\n");
1975 * Detach from the i2c FCU when tearing down
1977 static void detach_fcu(void)
1983 * Attach to the i2c controller. We probe the various chips based
1984 * on the device-tree nodes and build everything for the driver to
1985 * run, we then kick the driver monitoring thread
1987 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
1989 mutex_lock(&driver_lock
);
1992 if (state
== state_detached
)
1993 state
= state_attaching
;
1994 if (state
!= state_attaching
) {
1995 mutex_unlock(&driver_lock
);
1999 /* Check if we are looking for one of these */
2000 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2002 DBG("found U3-0\n");
2004 if (create_control_loops())
2006 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2008 DBG("found U3-1, attaching FCU\n");
2011 } else if (k2
== NULL
&& !strcmp(adapter
->name
, "mac-io 0")) {
2014 if (u3_0
&& rackmac
)
2015 if (create_control_loops())
2018 /* We got all we need, start control loops */
2019 if (u3_0
!= NULL
&& u3_1
!= NULL
&& (k2
|| !rackmac
)) {
2020 DBG("everything up, starting control loops\n");
2021 state
= state_attached
;
2022 start_control_loops();
2024 mutex_unlock(&driver_lock
);
2029 static int therm_pm72_probe(struct i2c_client
*client
,
2030 const struct i2c_device_id
*id
)
2032 /* Always succeed, the real work was done in therm_pm72_attach() */
2037 * Called when any of the devices which participates into thermal management
2040 static int therm_pm72_remove(struct i2c_client
*client
)
2042 struct i2c_adapter
*adapter
= client
->adapter
;
2044 mutex_lock(&driver_lock
);
2046 if (state
!= state_detached
)
2047 state
= state_detaching
;
2049 /* Stop control loops if any */
2050 DBG("stopping control loops\n");
2051 mutex_unlock(&driver_lock
);
2052 stop_control_loops();
2053 mutex_lock(&driver_lock
);
2055 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2056 DBG("lost U3-0, disposing control loops\n");
2057 dispose_control_loops();
2061 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2062 DBG("lost U3-1, detaching FCU\n");
2066 if (u3_0
== NULL
&& u3_1
== NULL
)
2067 state
= state_detached
;
2069 mutex_unlock(&driver_lock
);
2075 * i2c_driver structure to attach to the host i2c controller
2078 static const struct i2c_device_id therm_pm72_id
[] = {
2080 * Fake device name, thermal management is done by several
2081 * chips but we don't need to differentiate between them at
2084 { "therm_pm72", 0 },
2088 static struct i2c_driver therm_pm72_driver
= {
2090 .name
= "therm_pm72",
2092 .attach_adapter
= therm_pm72_attach
,
2093 .probe
= therm_pm72_probe
,
2094 .remove
= therm_pm72_remove
,
2095 .id_table
= therm_pm72_id
,
2098 static int fan_check_loc_match(const char *loc
, int fan
)
2103 strlcpy(tmp
, fcu_fans
[fan
].loc
, 64);
2110 if (strcmp(loc
, c
) == 0)
2119 static void fcu_lookup_fans(struct device_node
*fcu_node
)
2121 struct device_node
*np
= NULL
;
2124 /* The table is filled by default with values that are suitable
2125 * for the old machines without device-tree informations. We scan
2126 * the device-tree and override those values with whatever is
2130 DBG("Looking up FCU controls in device-tree...\n");
2132 while ((np
= of_get_next_child(fcu_node
, np
)) != NULL
) {
2137 DBG(" control: %s, type: %s\n", np
->name
, np
->type
);
2139 /* Detect control type */
2140 if (!strcmp(np
->type
, "fan-rpm-control") ||
2141 !strcmp(np
->type
, "fan-rpm"))
2143 if (!strcmp(np
->type
, "fan-pwm-control") ||
2144 !strcmp(np
->type
, "fan-pwm"))
2146 /* Only care about fans for now */
2150 /* Lookup for a matching location */
2151 loc
= of_get_property(np
, "location", NULL
);
2152 reg
= of_get_property(np
, "reg", NULL
);
2153 if (loc
== NULL
|| reg
== NULL
)
2155 DBG(" matching location: %s, reg: 0x%08x\n", loc
, *reg
);
2157 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2160 if (!fan_check_loc_match(loc
, i
))
2162 DBG(" location match, index: %d\n", i
);
2163 fcu_fans
[i
].id
= FCU_FAN_ABSENT_ID
;
2164 if (type
!= fcu_fans
[i
].type
) {
2165 printk(KERN_WARNING
"therm_pm72: Fan type mismatch "
2166 "in device-tree for %s\n", np
->full_name
);
2169 if (type
== FCU_FAN_RPM
)
2170 fan_id
= ((*reg
) - 0x10) / 2;
2172 fan_id
= ((*reg
) - 0x30) / 2;
2174 printk(KERN_WARNING
"therm_pm72: Can't parse "
2175 "fan ID in device-tree for %s\n", np
->full_name
);
2178 DBG(" fan id -> %d, type -> %d\n", fan_id
, type
);
2179 fcu_fans
[i
].id
= fan_id
;
2183 /* Now dump the array */
2184 printk(KERN_INFO
"Detected fan controls:\n");
2185 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2186 if (fcu_fans
[i
].id
== FCU_FAN_ABSENT_ID
)
2188 printk(KERN_INFO
" %d: %s fan, id %d, location: %s\n", i
,
2189 fcu_fans
[i
].type
== FCU_FAN_RPM
? "RPM" : "PWM",
2190 fcu_fans
[i
].id
, fcu_fans
[i
].loc
);
2194 static int fcu_of_probe(struct of_device
* dev
, const struct of_device_id
*match
)
2196 state
= state_detached
;
2198 /* Lookup the fans in the device tree */
2199 fcu_lookup_fans(dev
->node
);
2201 /* Add the driver */
2202 return i2c_add_driver(&therm_pm72_driver
);
2205 static int fcu_of_remove(struct of_device
* dev
)
2207 i2c_del_driver(&therm_pm72_driver
);
2212 static struct of_device_id fcu_match
[] =
2220 static struct of_platform_driver fcu_of_platform_driver
=
2222 .name
= "temperature",
2223 .match_table
= fcu_match
,
2224 .probe
= fcu_of_probe
,
2225 .remove
= fcu_of_remove
2229 * Check machine type, attach to i2c controller
2231 static int __init
therm_pm72_init(void)
2233 struct device_node
*np
;
2235 rackmac
= machine_is_compatible("RackMac3,1");
2237 if (!machine_is_compatible("PowerMac7,2") &&
2238 !machine_is_compatible("PowerMac7,3") &&
2242 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
2244 np
= of_find_node_by_type(NULL
, "fcu");
2246 /* Some machines have strangely broken device-tree */
2247 np
= of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2249 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
2253 of_dev
= of_platform_device_create(np
, "temperature", NULL
);
2254 if (of_dev
== NULL
) {
2255 printk(KERN_ERR
"Can't register FCU platform device !\n");
2259 of_register_platform_driver(&fcu_of_platform_driver
);
2264 static void __exit
therm_pm72_exit(void)
2266 of_unregister_platform_driver(&fcu_of_platform_driver
);
2269 of_device_unregister(of_dev
);
2272 module_init(therm_pm72_init
);
2273 module_exit(therm_pm72_exit
);
2275 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2276 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2277 MODULE_LICENSE("GPL");