acpi_pad: build only on X86
[linux-2.6/linux-acpi-2.6.git] / drivers / md / dm.c
blob9acd54a5cffb3b875c699332c0bfaf597be3d19a
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
34 static const char *_name = DM_NAME;
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
39 static DEFINE_SPINLOCK(_minor_lock);
41 * For bio-based dm.
42 * One of these is allocated per bio.
44 struct dm_io {
45 struct mapped_device *md;
46 int error;
47 atomic_t io_count;
48 struct bio *bio;
49 unsigned long start_time;
53 * For bio-based dm.
54 * One of these is allocated per target within a bio. Hopefully
55 * this will be simplified out one day.
57 struct dm_target_io {
58 struct dm_io *io;
59 struct dm_target *ti;
60 union map_info info;
64 * For request-based dm.
65 * One of these is allocated per request.
67 struct dm_rq_target_io {
68 struct mapped_device *md;
69 struct dm_target *ti;
70 struct request *orig, clone;
71 int error;
72 union map_info info;
76 * For request-based dm.
77 * One of these is allocated per bio.
79 struct dm_rq_clone_bio_info {
80 struct bio *orig;
81 struct dm_rq_target_io *tio;
84 union map_info *dm_get_mapinfo(struct bio *bio)
86 if (bio && bio->bi_private)
87 return &((struct dm_target_io *)bio->bi_private)->info;
88 return NULL;
91 union map_info *dm_get_rq_mapinfo(struct request *rq)
93 if (rq && rq->end_io_data)
94 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
95 return NULL;
97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
99 #define MINOR_ALLOCED ((void *)-1)
102 * Bits for the md->flags field.
104 #define DMF_BLOCK_IO_FOR_SUSPEND 0
105 #define DMF_SUSPENDED 1
106 #define DMF_FROZEN 2
107 #define DMF_FREEING 3
108 #define DMF_DELETING 4
109 #define DMF_NOFLUSH_SUSPENDING 5
110 #define DMF_QUEUE_IO_TO_THREAD 6
113 * Work processed by per-device workqueue.
115 struct mapped_device {
116 struct rw_semaphore io_lock;
117 struct mutex suspend_lock;
118 rwlock_t map_lock;
119 atomic_t holders;
120 atomic_t open_count;
122 unsigned long flags;
124 struct request_queue *queue;
125 struct gendisk *disk;
126 char name[16];
128 void *interface_ptr;
131 * A list of ios that arrived while we were suspended.
133 atomic_t pending;
134 wait_queue_head_t wait;
135 struct work_struct work;
136 struct bio_list deferred;
137 spinlock_t deferred_lock;
140 * An error from the barrier request currently being processed.
142 int barrier_error;
145 * Processing queue (flush/barriers)
147 struct workqueue_struct *wq;
150 * The current mapping.
152 struct dm_table *map;
155 * io objects are allocated from here.
157 mempool_t *io_pool;
158 mempool_t *tio_pool;
160 struct bio_set *bs;
163 * Event handling.
165 atomic_t event_nr;
166 wait_queue_head_t eventq;
167 atomic_t uevent_seq;
168 struct list_head uevent_list;
169 spinlock_t uevent_lock; /* Protect access to uevent_list */
172 * freeze/thaw support require holding onto a super block
174 struct super_block *frozen_sb;
175 struct block_device *bdev;
177 /* forced geometry settings */
178 struct hd_geometry geometry;
180 /* marker of flush suspend for request-based dm */
181 struct request suspend_rq;
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
186 /* sysfs handle */
187 struct kobject kobj;
189 /* zero-length barrier that will be cloned and submitted to targets */
190 struct bio barrier_bio;
194 * For mempools pre-allocation at the table loading time.
196 struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_tio_cache;
205 static struct kmem_cache *_rq_tio_cache;
206 static struct kmem_cache *_rq_bio_info_cache;
208 static int __init local_init(void)
210 int r = -ENOMEM;
212 /* allocate a slab for the dm_ios */
213 _io_cache = KMEM_CACHE(dm_io, 0);
214 if (!_io_cache)
215 return r;
217 /* allocate a slab for the target ios */
218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
219 if (!_tio_cache)
220 goto out_free_io_cache;
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
230 r = dm_uevent_init();
231 if (r)
232 goto out_free_rq_bio_info_cache;
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_uevent_exit;
239 if (!_major)
240 _major = r;
242 return 0;
244 out_uevent_exit:
245 dm_uevent_exit();
246 out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248 out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
250 out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252 out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
255 return r;
258 static void local_exit(void)
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
264 unregister_blkdev(_major, _name);
265 dm_uevent_exit();
267 _major = 0;
269 DMINFO("cleaned up");
272 static int (*_inits[])(void) __initdata = {
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
277 dm_kcopyd_init,
278 dm_interface_init,
281 static void (*_exits[])(void) = {
282 local_exit,
283 dm_target_exit,
284 dm_linear_exit,
285 dm_stripe_exit,
286 dm_kcopyd_exit,
287 dm_interface_exit,
290 static int __init dm_init(void)
292 const int count = ARRAY_SIZE(_inits);
294 int r, i;
296 for (i = 0; i < count; i++) {
297 r = _inits[i]();
298 if (r)
299 goto bad;
302 return 0;
304 bad:
305 while (i--)
306 _exits[i]();
308 return r;
311 static void __exit dm_exit(void)
313 int i = ARRAY_SIZE(_exits);
315 while (i--)
316 _exits[i]();
320 * Block device functions
322 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
324 struct mapped_device *md;
326 spin_lock(&_minor_lock);
328 md = bdev->bd_disk->private_data;
329 if (!md)
330 goto out;
332 if (test_bit(DMF_FREEING, &md->flags) ||
333 test_bit(DMF_DELETING, &md->flags)) {
334 md = NULL;
335 goto out;
338 dm_get(md);
339 atomic_inc(&md->open_count);
341 out:
342 spin_unlock(&_minor_lock);
344 return md ? 0 : -ENXIO;
347 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
349 struct mapped_device *md = disk->private_data;
350 atomic_dec(&md->open_count);
351 dm_put(md);
352 return 0;
355 int dm_open_count(struct mapped_device *md)
357 return atomic_read(&md->open_count);
361 * Guarantees nothing is using the device before it's deleted.
363 int dm_lock_for_deletion(struct mapped_device *md)
365 int r = 0;
367 spin_lock(&_minor_lock);
369 if (dm_open_count(md))
370 r = -EBUSY;
371 else
372 set_bit(DMF_DELETING, &md->flags);
374 spin_unlock(&_minor_lock);
376 return r;
379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
381 struct mapped_device *md = bdev->bd_disk->private_data;
383 return dm_get_geometry(md, geo);
386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
387 unsigned int cmd, unsigned long arg)
389 struct mapped_device *md = bdev->bd_disk->private_data;
390 struct dm_table *map = dm_get_table(md);
391 struct dm_target *tgt;
392 int r = -ENOTTY;
394 if (!map || !dm_table_get_size(map))
395 goto out;
397 /* We only support devices that have a single target */
398 if (dm_table_get_num_targets(map) != 1)
399 goto out;
401 tgt = dm_table_get_target(map, 0);
403 if (dm_suspended(md)) {
404 r = -EAGAIN;
405 goto out;
408 if (tgt->type->ioctl)
409 r = tgt->type->ioctl(tgt, cmd, arg);
411 out:
412 dm_table_put(map);
414 return r;
417 static struct dm_io *alloc_io(struct mapped_device *md)
419 return mempool_alloc(md->io_pool, GFP_NOIO);
422 static void free_io(struct mapped_device *md, struct dm_io *io)
424 mempool_free(io, md->io_pool);
427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
429 mempool_free(tio, md->tio_pool);
432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
434 return mempool_alloc(md->tio_pool, GFP_ATOMIC);
437 static void free_rq_tio(struct dm_rq_target_io *tio)
439 mempool_free(tio, tio->md->tio_pool);
442 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
444 return mempool_alloc(md->io_pool, GFP_ATOMIC);
447 static void free_bio_info(struct dm_rq_clone_bio_info *info)
449 mempool_free(info, info->tio->md->io_pool);
452 static void start_io_acct(struct dm_io *io)
454 struct mapped_device *md = io->md;
455 int cpu;
457 io->start_time = jiffies;
459 cpu = part_stat_lock();
460 part_round_stats(cpu, &dm_disk(md)->part0);
461 part_stat_unlock();
462 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
465 static void end_io_acct(struct dm_io *io)
467 struct mapped_device *md = io->md;
468 struct bio *bio = io->bio;
469 unsigned long duration = jiffies - io->start_time;
470 int pending, cpu;
471 int rw = bio_data_dir(bio);
473 cpu = part_stat_lock();
474 part_round_stats(cpu, &dm_disk(md)->part0);
475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 part_stat_unlock();
479 * After this is decremented the bio must not be touched if it is
480 * a barrier.
482 dm_disk(md)->part0.in_flight = pending =
483 atomic_dec_return(&md->pending);
485 /* nudge anyone waiting on suspend queue */
486 if (!pending)
487 wake_up(&md->wait);
491 * Add the bio to the list of deferred io.
493 static void queue_io(struct mapped_device *md, struct bio *bio)
495 down_write(&md->io_lock);
497 spin_lock_irq(&md->deferred_lock);
498 bio_list_add(&md->deferred, bio);
499 spin_unlock_irq(&md->deferred_lock);
501 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
502 queue_work(md->wq, &md->work);
504 up_write(&md->io_lock);
508 * Everyone (including functions in this file), should use this
509 * function to access the md->map field, and make sure they call
510 * dm_table_put() when finished.
512 struct dm_table *dm_get_table(struct mapped_device *md)
514 struct dm_table *t;
515 unsigned long flags;
517 read_lock_irqsave(&md->map_lock, flags);
518 t = md->map;
519 if (t)
520 dm_table_get(t);
521 read_unlock_irqrestore(&md->map_lock, flags);
523 return t;
527 * Get the geometry associated with a dm device
529 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
531 *geo = md->geometry;
533 return 0;
537 * Set the geometry of a device.
539 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
541 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
543 if (geo->start > sz) {
544 DMWARN("Start sector is beyond the geometry limits.");
545 return -EINVAL;
548 md->geometry = *geo;
550 return 0;
553 /*-----------------------------------------------------------------
554 * CRUD START:
555 * A more elegant soln is in the works that uses the queue
556 * merge fn, unfortunately there are a couple of changes to
557 * the block layer that I want to make for this. So in the
558 * interests of getting something for people to use I give
559 * you this clearly demarcated crap.
560 *---------------------------------------------------------------*/
562 static int __noflush_suspending(struct mapped_device *md)
564 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
568 * Decrements the number of outstanding ios that a bio has been
569 * cloned into, completing the original io if necc.
571 static void dec_pending(struct dm_io *io, int error)
573 unsigned long flags;
574 int io_error;
575 struct bio *bio;
576 struct mapped_device *md = io->md;
578 /* Push-back supersedes any I/O errors */
579 if (error && !(io->error > 0 && __noflush_suspending(md)))
580 io->error = error;
582 if (atomic_dec_and_test(&io->io_count)) {
583 if (io->error == DM_ENDIO_REQUEUE) {
585 * Target requested pushing back the I/O.
587 spin_lock_irqsave(&md->deferred_lock, flags);
588 if (__noflush_suspending(md)) {
589 if (!bio_barrier(io->bio))
590 bio_list_add_head(&md->deferred,
591 io->bio);
592 } else
593 /* noflush suspend was interrupted. */
594 io->error = -EIO;
595 spin_unlock_irqrestore(&md->deferred_lock, flags);
598 io_error = io->error;
599 bio = io->bio;
601 if (bio_barrier(bio)) {
603 * There can be just one barrier request so we use
604 * a per-device variable for error reporting.
605 * Note that you can't touch the bio after end_io_acct
607 if (!md->barrier_error && io_error != -EOPNOTSUPP)
608 md->barrier_error = io_error;
609 end_io_acct(io);
610 } else {
611 end_io_acct(io);
613 if (io_error != DM_ENDIO_REQUEUE) {
614 trace_block_bio_complete(md->queue, bio);
616 bio_endio(bio, io_error);
620 free_io(md, io);
624 static void clone_endio(struct bio *bio, int error)
626 int r = 0;
627 struct dm_target_io *tio = bio->bi_private;
628 struct dm_io *io = tio->io;
629 struct mapped_device *md = tio->io->md;
630 dm_endio_fn endio = tio->ti->type->end_io;
632 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
633 error = -EIO;
635 if (endio) {
636 r = endio(tio->ti, bio, error, &tio->info);
637 if (r < 0 || r == DM_ENDIO_REQUEUE)
639 * error and requeue request are handled
640 * in dec_pending().
642 error = r;
643 else if (r == DM_ENDIO_INCOMPLETE)
644 /* The target will handle the io */
645 return;
646 else if (r) {
647 DMWARN("unimplemented target endio return value: %d", r);
648 BUG();
653 * Store md for cleanup instead of tio which is about to get freed.
655 bio->bi_private = md->bs;
657 free_tio(md, tio);
658 bio_put(bio);
659 dec_pending(io, error);
663 * Partial completion handling for request-based dm
665 static void end_clone_bio(struct bio *clone, int error)
667 struct dm_rq_clone_bio_info *info = clone->bi_private;
668 struct dm_rq_target_io *tio = info->tio;
669 struct bio *bio = info->orig;
670 unsigned int nr_bytes = info->orig->bi_size;
672 bio_put(clone);
674 if (tio->error)
676 * An error has already been detected on the request.
677 * Once error occurred, just let clone->end_io() handle
678 * the remainder.
680 return;
681 else if (error) {
683 * Don't notice the error to the upper layer yet.
684 * The error handling decision is made by the target driver,
685 * when the request is completed.
687 tio->error = error;
688 return;
692 * I/O for the bio successfully completed.
693 * Notice the data completion to the upper layer.
697 * bios are processed from the head of the list.
698 * So the completing bio should always be rq->bio.
699 * If it's not, something wrong is happening.
701 if (tio->orig->bio != bio)
702 DMERR("bio completion is going in the middle of the request");
705 * Update the original request.
706 * Do not use blk_end_request() here, because it may complete
707 * the original request before the clone, and break the ordering.
709 blk_update_request(tio->orig, 0, nr_bytes);
713 * Don't touch any member of the md after calling this function because
714 * the md may be freed in dm_put() at the end of this function.
715 * Or do dm_get() before calling this function and dm_put() later.
717 static void rq_completed(struct mapped_device *md, int run_queue)
719 int wakeup_waiters = 0;
720 struct request_queue *q = md->queue;
721 unsigned long flags;
723 spin_lock_irqsave(q->queue_lock, flags);
724 if (!queue_in_flight(q))
725 wakeup_waiters = 1;
726 spin_unlock_irqrestore(q->queue_lock, flags);
728 /* nudge anyone waiting on suspend queue */
729 if (wakeup_waiters)
730 wake_up(&md->wait);
732 if (run_queue)
733 blk_run_queue(q);
736 * dm_put() must be at the end of this function. See the comment above
738 dm_put(md);
741 static void dm_unprep_request(struct request *rq)
743 struct request *clone = rq->special;
744 struct dm_rq_target_io *tio = clone->end_io_data;
746 rq->special = NULL;
747 rq->cmd_flags &= ~REQ_DONTPREP;
749 blk_rq_unprep_clone(clone);
750 free_rq_tio(tio);
754 * Requeue the original request of a clone.
756 void dm_requeue_unmapped_request(struct request *clone)
758 struct dm_rq_target_io *tio = clone->end_io_data;
759 struct mapped_device *md = tio->md;
760 struct request *rq = tio->orig;
761 struct request_queue *q = rq->q;
762 unsigned long flags;
764 dm_unprep_request(rq);
766 spin_lock_irqsave(q->queue_lock, flags);
767 if (elv_queue_empty(q))
768 blk_plug_device(q);
769 blk_requeue_request(q, rq);
770 spin_unlock_irqrestore(q->queue_lock, flags);
772 rq_completed(md, 0);
774 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
776 static void __stop_queue(struct request_queue *q)
778 blk_stop_queue(q);
781 static void stop_queue(struct request_queue *q)
783 unsigned long flags;
785 spin_lock_irqsave(q->queue_lock, flags);
786 __stop_queue(q);
787 spin_unlock_irqrestore(q->queue_lock, flags);
790 static void __start_queue(struct request_queue *q)
792 if (blk_queue_stopped(q))
793 blk_start_queue(q);
796 static void start_queue(struct request_queue *q)
798 unsigned long flags;
800 spin_lock_irqsave(q->queue_lock, flags);
801 __start_queue(q);
802 spin_unlock_irqrestore(q->queue_lock, flags);
806 * Complete the clone and the original request.
807 * Must be called without queue lock.
809 static void dm_end_request(struct request *clone, int error)
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
815 if (blk_pc_request(rq)) {
816 rq->errors = clone->errors;
817 rq->resid_len = clone->resid_len;
819 if (rq->sense)
821 * We are using the sense buffer of the original
822 * request.
823 * So setting the length of the sense data is enough.
825 rq->sense_len = clone->sense_len;
828 BUG_ON(clone->bio);
829 free_rq_tio(tio);
831 blk_end_request_all(rq, error);
833 rq_completed(md, 1);
837 * Request completion handler for request-based dm
839 static void dm_softirq_done(struct request *rq)
841 struct request *clone = rq->completion_data;
842 struct dm_rq_target_io *tio = clone->end_io_data;
843 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
844 int error = tio->error;
846 if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
847 error = rq_end_io(tio->ti, clone, error, &tio->info);
849 if (error <= 0)
850 /* The target wants to complete the I/O */
851 dm_end_request(clone, error);
852 else if (error == DM_ENDIO_INCOMPLETE)
853 /* The target will handle the I/O */
854 return;
855 else if (error == DM_ENDIO_REQUEUE)
856 /* The target wants to requeue the I/O */
857 dm_requeue_unmapped_request(clone);
858 else {
859 DMWARN("unimplemented target endio return value: %d", error);
860 BUG();
865 * Complete the clone and the original request with the error status
866 * through softirq context.
868 static void dm_complete_request(struct request *clone, int error)
870 struct dm_rq_target_io *tio = clone->end_io_data;
871 struct request *rq = tio->orig;
873 tio->error = error;
874 rq->completion_data = clone;
875 blk_complete_request(rq);
879 * Complete the not-mapped clone and the original request with the error status
880 * through softirq context.
881 * Target's rq_end_io() function isn't called.
882 * This may be used when the target's map_rq() function fails.
884 void dm_kill_unmapped_request(struct request *clone, int error)
886 struct dm_rq_target_io *tio = clone->end_io_data;
887 struct request *rq = tio->orig;
889 rq->cmd_flags |= REQ_FAILED;
890 dm_complete_request(clone, error);
892 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
895 * Called with the queue lock held
897 static void end_clone_request(struct request *clone, int error)
900 * For just cleaning up the information of the queue in which
901 * the clone was dispatched.
902 * The clone is *NOT* freed actually here because it is alloced from
903 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
905 __blk_put_request(clone->q, clone);
908 * Actual request completion is done in a softirq context which doesn't
909 * hold the queue lock. Otherwise, deadlock could occur because:
910 * - another request may be submitted by the upper level driver
911 * of the stacking during the completion
912 * - the submission which requires queue lock may be done
913 * against this queue
915 dm_complete_request(clone, error);
918 static sector_t max_io_len(struct mapped_device *md,
919 sector_t sector, struct dm_target *ti)
921 sector_t offset = sector - ti->begin;
922 sector_t len = ti->len - offset;
925 * Does the target need to split even further ?
927 if (ti->split_io) {
928 sector_t boundary;
929 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
930 - offset;
931 if (len > boundary)
932 len = boundary;
935 return len;
938 static void __map_bio(struct dm_target *ti, struct bio *clone,
939 struct dm_target_io *tio)
941 int r;
942 sector_t sector;
943 struct mapped_device *md;
945 clone->bi_end_io = clone_endio;
946 clone->bi_private = tio;
949 * Map the clone. If r == 0 we don't need to do
950 * anything, the target has assumed ownership of
951 * this io.
953 atomic_inc(&tio->io->io_count);
954 sector = clone->bi_sector;
955 r = ti->type->map(ti, clone, &tio->info);
956 if (r == DM_MAPIO_REMAPPED) {
957 /* the bio has been remapped so dispatch it */
959 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
960 tio->io->bio->bi_bdev->bd_dev, sector);
962 generic_make_request(clone);
963 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
964 /* error the io and bail out, or requeue it if needed */
965 md = tio->io->md;
966 dec_pending(tio->io, r);
968 * Store bio_set for cleanup.
970 clone->bi_private = md->bs;
971 bio_put(clone);
972 free_tio(md, tio);
973 } else if (r) {
974 DMWARN("unimplemented target map return value: %d", r);
975 BUG();
979 struct clone_info {
980 struct mapped_device *md;
981 struct dm_table *map;
982 struct bio *bio;
983 struct dm_io *io;
984 sector_t sector;
985 sector_t sector_count;
986 unsigned short idx;
989 static void dm_bio_destructor(struct bio *bio)
991 struct bio_set *bs = bio->bi_private;
993 bio_free(bio, bs);
997 * Creates a little bio that is just does part of a bvec.
999 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1000 unsigned short idx, unsigned int offset,
1001 unsigned int len, struct bio_set *bs)
1003 struct bio *clone;
1004 struct bio_vec *bv = bio->bi_io_vec + idx;
1006 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1007 clone->bi_destructor = dm_bio_destructor;
1008 *clone->bi_io_vec = *bv;
1010 clone->bi_sector = sector;
1011 clone->bi_bdev = bio->bi_bdev;
1012 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1013 clone->bi_vcnt = 1;
1014 clone->bi_size = to_bytes(len);
1015 clone->bi_io_vec->bv_offset = offset;
1016 clone->bi_io_vec->bv_len = clone->bi_size;
1017 clone->bi_flags |= 1 << BIO_CLONED;
1019 if (bio_integrity(bio)) {
1020 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1021 bio_integrity_trim(clone,
1022 bio_sector_offset(bio, idx, offset), len);
1025 return clone;
1029 * Creates a bio that consists of range of complete bvecs.
1031 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1032 unsigned short idx, unsigned short bv_count,
1033 unsigned int len, struct bio_set *bs)
1035 struct bio *clone;
1037 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1038 __bio_clone(clone, bio);
1039 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1040 clone->bi_destructor = dm_bio_destructor;
1041 clone->bi_sector = sector;
1042 clone->bi_idx = idx;
1043 clone->bi_vcnt = idx + bv_count;
1044 clone->bi_size = to_bytes(len);
1045 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1047 if (bio_integrity(bio)) {
1048 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1050 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1051 bio_integrity_trim(clone,
1052 bio_sector_offset(bio, idx, 0), len);
1055 return clone;
1058 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1059 struct dm_target *ti)
1061 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1063 tio->io = ci->io;
1064 tio->ti = ti;
1065 memset(&tio->info, 0, sizeof(tio->info));
1067 return tio;
1070 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1071 unsigned flush_nr)
1073 struct dm_target_io *tio = alloc_tio(ci, ti);
1074 struct bio *clone;
1076 tio->info.flush_request = flush_nr;
1078 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1079 __bio_clone(clone, ci->bio);
1080 clone->bi_destructor = dm_bio_destructor;
1082 __map_bio(ti, clone, tio);
1085 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1087 unsigned target_nr = 0, flush_nr;
1088 struct dm_target *ti;
1090 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1091 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1092 flush_nr++)
1093 __flush_target(ci, ti, flush_nr);
1095 ci->sector_count = 0;
1097 return 0;
1100 static int __clone_and_map(struct clone_info *ci)
1102 struct bio *clone, *bio = ci->bio;
1103 struct dm_target *ti;
1104 sector_t len = 0, max;
1105 struct dm_target_io *tio;
1107 if (unlikely(bio_empty_barrier(bio)))
1108 return __clone_and_map_empty_barrier(ci);
1110 ti = dm_table_find_target(ci->map, ci->sector);
1111 if (!dm_target_is_valid(ti))
1112 return -EIO;
1114 max = max_io_len(ci->md, ci->sector, ti);
1117 * Allocate a target io object.
1119 tio = alloc_tio(ci, ti);
1121 if (ci->sector_count <= max) {
1123 * Optimise for the simple case where we can do all of
1124 * the remaining io with a single clone.
1126 clone = clone_bio(bio, ci->sector, ci->idx,
1127 bio->bi_vcnt - ci->idx, ci->sector_count,
1128 ci->md->bs);
1129 __map_bio(ti, clone, tio);
1130 ci->sector_count = 0;
1132 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1134 * There are some bvecs that don't span targets.
1135 * Do as many of these as possible.
1137 int i;
1138 sector_t remaining = max;
1139 sector_t bv_len;
1141 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1142 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1144 if (bv_len > remaining)
1145 break;
1147 remaining -= bv_len;
1148 len += bv_len;
1151 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1152 ci->md->bs);
1153 __map_bio(ti, clone, tio);
1155 ci->sector += len;
1156 ci->sector_count -= len;
1157 ci->idx = i;
1159 } else {
1161 * Handle a bvec that must be split between two or more targets.
1163 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1164 sector_t remaining = to_sector(bv->bv_len);
1165 unsigned int offset = 0;
1167 do {
1168 if (offset) {
1169 ti = dm_table_find_target(ci->map, ci->sector);
1170 if (!dm_target_is_valid(ti))
1171 return -EIO;
1173 max = max_io_len(ci->md, ci->sector, ti);
1175 tio = alloc_tio(ci, ti);
1178 len = min(remaining, max);
1180 clone = split_bvec(bio, ci->sector, ci->idx,
1181 bv->bv_offset + offset, len,
1182 ci->md->bs);
1184 __map_bio(ti, clone, tio);
1186 ci->sector += len;
1187 ci->sector_count -= len;
1188 offset += to_bytes(len);
1189 } while (remaining -= len);
1191 ci->idx++;
1194 return 0;
1198 * Split the bio into several clones and submit it to targets.
1200 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1202 struct clone_info ci;
1203 int error = 0;
1205 ci.map = dm_get_table(md);
1206 if (unlikely(!ci.map)) {
1207 if (!bio_barrier(bio))
1208 bio_io_error(bio);
1209 else
1210 if (!md->barrier_error)
1211 md->barrier_error = -EIO;
1212 return;
1215 ci.md = md;
1216 ci.bio = bio;
1217 ci.io = alloc_io(md);
1218 ci.io->error = 0;
1219 atomic_set(&ci.io->io_count, 1);
1220 ci.io->bio = bio;
1221 ci.io->md = md;
1222 ci.sector = bio->bi_sector;
1223 ci.sector_count = bio_sectors(bio);
1224 if (unlikely(bio_empty_barrier(bio)))
1225 ci.sector_count = 1;
1226 ci.idx = bio->bi_idx;
1228 start_io_acct(ci.io);
1229 while (ci.sector_count && !error)
1230 error = __clone_and_map(&ci);
1232 /* drop the extra reference count */
1233 dec_pending(ci.io, error);
1234 dm_table_put(ci.map);
1236 /*-----------------------------------------------------------------
1237 * CRUD END
1238 *---------------------------------------------------------------*/
1240 static int dm_merge_bvec(struct request_queue *q,
1241 struct bvec_merge_data *bvm,
1242 struct bio_vec *biovec)
1244 struct mapped_device *md = q->queuedata;
1245 struct dm_table *map = dm_get_table(md);
1246 struct dm_target *ti;
1247 sector_t max_sectors;
1248 int max_size = 0;
1250 if (unlikely(!map))
1251 goto out;
1253 ti = dm_table_find_target(map, bvm->bi_sector);
1254 if (!dm_target_is_valid(ti))
1255 goto out_table;
1258 * Find maximum amount of I/O that won't need splitting
1260 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1261 (sector_t) BIO_MAX_SECTORS);
1262 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1263 if (max_size < 0)
1264 max_size = 0;
1267 * merge_bvec_fn() returns number of bytes
1268 * it can accept at this offset
1269 * max is precomputed maximal io size
1271 if (max_size && ti->type->merge)
1272 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1274 * If the target doesn't support merge method and some of the devices
1275 * provided their merge_bvec method (we know this by looking at
1276 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1277 * entries. So always set max_size to 0, and the code below allows
1278 * just one page.
1280 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1282 max_size = 0;
1284 out_table:
1285 dm_table_put(map);
1287 out:
1289 * Always allow an entire first page
1291 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1292 max_size = biovec->bv_len;
1294 return max_size;
1298 * The request function that just remaps the bio built up by
1299 * dm_merge_bvec.
1301 static int _dm_request(struct request_queue *q, struct bio *bio)
1303 int rw = bio_data_dir(bio);
1304 struct mapped_device *md = q->queuedata;
1305 int cpu;
1307 down_read(&md->io_lock);
1309 cpu = part_stat_lock();
1310 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1311 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1312 part_stat_unlock();
1315 * If we're suspended or the thread is processing barriers
1316 * we have to queue this io for later.
1318 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1319 unlikely(bio_barrier(bio))) {
1320 up_read(&md->io_lock);
1322 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1323 bio_rw(bio) == READA) {
1324 bio_io_error(bio);
1325 return 0;
1328 queue_io(md, bio);
1330 return 0;
1333 __split_and_process_bio(md, bio);
1334 up_read(&md->io_lock);
1335 return 0;
1338 static int dm_make_request(struct request_queue *q, struct bio *bio)
1340 struct mapped_device *md = q->queuedata;
1342 if (unlikely(bio_barrier(bio))) {
1343 bio_endio(bio, -EOPNOTSUPP);
1344 return 0;
1347 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1350 static int dm_request_based(struct mapped_device *md)
1352 return blk_queue_stackable(md->queue);
1355 static int dm_request(struct request_queue *q, struct bio *bio)
1357 struct mapped_device *md = q->queuedata;
1359 if (dm_request_based(md))
1360 return dm_make_request(q, bio);
1362 return _dm_request(q, bio);
1365 void dm_dispatch_request(struct request *rq)
1367 int r;
1369 if (blk_queue_io_stat(rq->q))
1370 rq->cmd_flags |= REQ_IO_STAT;
1372 rq->start_time = jiffies;
1373 r = blk_insert_cloned_request(rq->q, rq);
1374 if (r)
1375 dm_complete_request(rq, r);
1377 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1379 static void dm_rq_bio_destructor(struct bio *bio)
1381 struct dm_rq_clone_bio_info *info = bio->bi_private;
1382 struct mapped_device *md = info->tio->md;
1384 free_bio_info(info);
1385 bio_free(bio, md->bs);
1388 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1389 void *data)
1391 struct dm_rq_target_io *tio = data;
1392 struct mapped_device *md = tio->md;
1393 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1395 if (!info)
1396 return -ENOMEM;
1398 info->orig = bio_orig;
1399 info->tio = tio;
1400 bio->bi_end_io = end_clone_bio;
1401 bio->bi_private = info;
1402 bio->bi_destructor = dm_rq_bio_destructor;
1404 return 0;
1407 static int setup_clone(struct request *clone, struct request *rq,
1408 struct dm_rq_target_io *tio)
1410 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1411 dm_rq_bio_constructor, tio);
1413 if (r)
1414 return r;
1416 clone->cmd = rq->cmd;
1417 clone->cmd_len = rq->cmd_len;
1418 clone->sense = rq->sense;
1419 clone->buffer = rq->buffer;
1420 clone->end_io = end_clone_request;
1421 clone->end_io_data = tio;
1423 return 0;
1426 static int dm_rq_flush_suspending(struct mapped_device *md)
1428 return !md->suspend_rq.special;
1432 * Called with the queue lock held.
1434 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1436 struct mapped_device *md = q->queuedata;
1437 struct dm_rq_target_io *tio;
1438 struct request *clone;
1440 if (unlikely(rq == &md->suspend_rq)) {
1441 if (dm_rq_flush_suspending(md))
1442 return BLKPREP_OK;
1443 else
1444 /* The flush suspend was interrupted */
1445 return BLKPREP_KILL;
1448 if (unlikely(rq->special)) {
1449 DMWARN("Already has something in rq->special.");
1450 return BLKPREP_KILL;
1453 tio = alloc_rq_tio(md); /* Only one for each original request */
1454 if (!tio)
1455 /* -ENOMEM */
1456 return BLKPREP_DEFER;
1458 tio->md = md;
1459 tio->ti = NULL;
1460 tio->orig = rq;
1461 tio->error = 0;
1462 memset(&tio->info, 0, sizeof(tio->info));
1464 clone = &tio->clone;
1465 if (setup_clone(clone, rq, tio)) {
1466 /* -ENOMEM */
1467 free_rq_tio(tio);
1468 return BLKPREP_DEFER;
1471 rq->special = clone;
1472 rq->cmd_flags |= REQ_DONTPREP;
1474 return BLKPREP_OK;
1477 static void map_request(struct dm_target *ti, struct request *rq,
1478 struct mapped_device *md)
1480 int r;
1481 struct request *clone = rq->special;
1482 struct dm_rq_target_io *tio = clone->end_io_data;
1485 * Hold the md reference here for the in-flight I/O.
1486 * We can't rely on the reference count by device opener,
1487 * because the device may be closed during the request completion
1488 * when all bios are completed.
1489 * See the comment in rq_completed() too.
1491 dm_get(md);
1493 tio->ti = ti;
1494 r = ti->type->map_rq(ti, clone, &tio->info);
1495 switch (r) {
1496 case DM_MAPIO_SUBMITTED:
1497 /* The target has taken the I/O to submit by itself later */
1498 break;
1499 case DM_MAPIO_REMAPPED:
1500 /* The target has remapped the I/O so dispatch it */
1501 dm_dispatch_request(clone);
1502 break;
1503 case DM_MAPIO_REQUEUE:
1504 /* The target wants to requeue the I/O */
1505 dm_requeue_unmapped_request(clone);
1506 break;
1507 default:
1508 if (r > 0) {
1509 DMWARN("unimplemented target map return value: %d", r);
1510 BUG();
1513 /* The target wants to complete the I/O */
1514 dm_kill_unmapped_request(clone, r);
1515 break;
1520 * q->request_fn for request-based dm.
1521 * Called with the queue lock held.
1523 static void dm_request_fn(struct request_queue *q)
1525 struct mapped_device *md = q->queuedata;
1526 struct dm_table *map = dm_get_table(md);
1527 struct dm_target *ti;
1528 struct request *rq;
1531 * For noflush suspend, check blk_queue_stopped() to immediately
1532 * quit I/O dispatching.
1534 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1535 rq = blk_peek_request(q);
1536 if (!rq)
1537 goto plug_and_out;
1539 if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1540 if (queue_in_flight(q))
1541 /* Not quiet yet. Wait more */
1542 goto plug_and_out;
1544 /* This device should be quiet now */
1545 __stop_queue(q);
1546 blk_start_request(rq);
1547 __blk_end_request_all(rq, 0);
1548 wake_up(&md->wait);
1549 goto out;
1552 ti = dm_table_find_target(map, blk_rq_pos(rq));
1553 if (ti->type->busy && ti->type->busy(ti))
1554 goto plug_and_out;
1556 blk_start_request(rq);
1557 spin_unlock(q->queue_lock);
1558 map_request(ti, rq, md);
1559 spin_lock_irq(q->queue_lock);
1562 goto out;
1564 plug_and_out:
1565 if (!elv_queue_empty(q))
1566 /* Some requests still remain, retry later */
1567 blk_plug_device(q);
1569 out:
1570 dm_table_put(map);
1572 return;
1575 int dm_underlying_device_busy(struct request_queue *q)
1577 return blk_lld_busy(q);
1579 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1581 static int dm_lld_busy(struct request_queue *q)
1583 int r;
1584 struct mapped_device *md = q->queuedata;
1585 struct dm_table *map = dm_get_table(md);
1587 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1588 r = 1;
1589 else
1590 r = dm_table_any_busy_target(map);
1592 dm_table_put(map);
1594 return r;
1597 static void dm_unplug_all(struct request_queue *q)
1599 struct mapped_device *md = q->queuedata;
1600 struct dm_table *map = dm_get_table(md);
1602 if (map) {
1603 if (dm_request_based(md))
1604 generic_unplug_device(q);
1606 dm_table_unplug_all(map);
1607 dm_table_put(map);
1611 static int dm_any_congested(void *congested_data, int bdi_bits)
1613 int r = bdi_bits;
1614 struct mapped_device *md = congested_data;
1615 struct dm_table *map;
1617 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1618 map = dm_get_table(md);
1619 if (map) {
1621 * Request-based dm cares about only own queue for
1622 * the query about congestion status of request_queue
1624 if (dm_request_based(md))
1625 r = md->queue->backing_dev_info.state &
1626 bdi_bits;
1627 else
1628 r = dm_table_any_congested(map, bdi_bits);
1630 dm_table_put(map);
1634 return r;
1637 /*-----------------------------------------------------------------
1638 * An IDR is used to keep track of allocated minor numbers.
1639 *---------------------------------------------------------------*/
1640 static DEFINE_IDR(_minor_idr);
1642 static void free_minor(int minor)
1644 spin_lock(&_minor_lock);
1645 idr_remove(&_minor_idr, minor);
1646 spin_unlock(&_minor_lock);
1650 * See if the device with a specific minor # is free.
1652 static int specific_minor(int minor)
1654 int r, m;
1656 if (minor >= (1 << MINORBITS))
1657 return -EINVAL;
1659 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1660 if (!r)
1661 return -ENOMEM;
1663 spin_lock(&_minor_lock);
1665 if (idr_find(&_minor_idr, minor)) {
1666 r = -EBUSY;
1667 goto out;
1670 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1671 if (r)
1672 goto out;
1674 if (m != minor) {
1675 idr_remove(&_minor_idr, m);
1676 r = -EBUSY;
1677 goto out;
1680 out:
1681 spin_unlock(&_minor_lock);
1682 return r;
1685 static int next_free_minor(int *minor)
1687 int r, m;
1689 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1690 if (!r)
1691 return -ENOMEM;
1693 spin_lock(&_minor_lock);
1695 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1696 if (r)
1697 goto out;
1699 if (m >= (1 << MINORBITS)) {
1700 idr_remove(&_minor_idr, m);
1701 r = -ENOSPC;
1702 goto out;
1705 *minor = m;
1707 out:
1708 spin_unlock(&_minor_lock);
1709 return r;
1712 static struct block_device_operations dm_blk_dops;
1714 static void dm_wq_work(struct work_struct *work);
1717 * Allocate and initialise a blank device with a given minor.
1719 static struct mapped_device *alloc_dev(int minor)
1721 int r;
1722 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1723 void *old_md;
1725 if (!md) {
1726 DMWARN("unable to allocate device, out of memory.");
1727 return NULL;
1730 if (!try_module_get(THIS_MODULE))
1731 goto bad_module_get;
1733 /* get a minor number for the dev */
1734 if (minor == DM_ANY_MINOR)
1735 r = next_free_minor(&minor);
1736 else
1737 r = specific_minor(minor);
1738 if (r < 0)
1739 goto bad_minor;
1741 init_rwsem(&md->io_lock);
1742 mutex_init(&md->suspend_lock);
1743 spin_lock_init(&md->deferred_lock);
1744 rwlock_init(&md->map_lock);
1745 atomic_set(&md->holders, 1);
1746 atomic_set(&md->open_count, 0);
1747 atomic_set(&md->event_nr, 0);
1748 atomic_set(&md->uevent_seq, 0);
1749 INIT_LIST_HEAD(&md->uevent_list);
1750 spin_lock_init(&md->uevent_lock);
1752 md->queue = blk_init_queue(dm_request_fn, NULL);
1753 if (!md->queue)
1754 goto bad_queue;
1757 * Request-based dm devices cannot be stacked on top of bio-based dm
1758 * devices. The type of this dm device has not been decided yet,
1759 * although we initialized the queue using blk_init_queue().
1760 * The type is decided at the first table loading time.
1761 * To prevent problematic device stacking, clear the queue flag
1762 * for request stacking support until then.
1764 * This queue is new, so no concurrency on the queue_flags.
1766 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1767 md->saved_make_request_fn = md->queue->make_request_fn;
1768 md->queue->queuedata = md;
1769 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1770 md->queue->backing_dev_info.congested_data = md;
1771 blk_queue_make_request(md->queue, dm_request);
1772 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1773 md->queue->unplug_fn = dm_unplug_all;
1774 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1775 blk_queue_softirq_done(md->queue, dm_softirq_done);
1776 blk_queue_prep_rq(md->queue, dm_prep_fn);
1777 blk_queue_lld_busy(md->queue, dm_lld_busy);
1779 md->disk = alloc_disk(1);
1780 if (!md->disk)
1781 goto bad_disk;
1783 atomic_set(&md->pending, 0);
1784 init_waitqueue_head(&md->wait);
1785 INIT_WORK(&md->work, dm_wq_work);
1786 init_waitqueue_head(&md->eventq);
1788 md->disk->major = _major;
1789 md->disk->first_minor = minor;
1790 md->disk->fops = &dm_blk_dops;
1791 md->disk->queue = md->queue;
1792 md->disk->private_data = md;
1793 sprintf(md->disk->disk_name, "dm-%d", minor);
1794 add_disk(md->disk);
1795 format_dev_t(md->name, MKDEV(_major, minor));
1797 md->wq = create_singlethread_workqueue("kdmflush");
1798 if (!md->wq)
1799 goto bad_thread;
1801 md->bdev = bdget_disk(md->disk, 0);
1802 if (!md->bdev)
1803 goto bad_bdev;
1805 /* Populate the mapping, nobody knows we exist yet */
1806 spin_lock(&_minor_lock);
1807 old_md = idr_replace(&_minor_idr, md, minor);
1808 spin_unlock(&_minor_lock);
1810 BUG_ON(old_md != MINOR_ALLOCED);
1812 return md;
1814 bad_bdev:
1815 destroy_workqueue(md->wq);
1816 bad_thread:
1817 put_disk(md->disk);
1818 bad_disk:
1819 blk_cleanup_queue(md->queue);
1820 bad_queue:
1821 free_minor(minor);
1822 bad_minor:
1823 module_put(THIS_MODULE);
1824 bad_module_get:
1825 kfree(md);
1826 return NULL;
1829 static void unlock_fs(struct mapped_device *md);
1831 static void free_dev(struct mapped_device *md)
1833 int minor = MINOR(disk_devt(md->disk));
1835 unlock_fs(md);
1836 bdput(md->bdev);
1837 destroy_workqueue(md->wq);
1838 if (md->tio_pool)
1839 mempool_destroy(md->tio_pool);
1840 if (md->io_pool)
1841 mempool_destroy(md->io_pool);
1842 if (md->bs)
1843 bioset_free(md->bs);
1844 blk_integrity_unregister(md->disk);
1845 del_gendisk(md->disk);
1846 free_minor(minor);
1848 spin_lock(&_minor_lock);
1849 md->disk->private_data = NULL;
1850 spin_unlock(&_minor_lock);
1852 put_disk(md->disk);
1853 blk_cleanup_queue(md->queue);
1854 module_put(THIS_MODULE);
1855 kfree(md);
1858 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1860 struct dm_md_mempools *p;
1862 if (md->io_pool && md->tio_pool && md->bs)
1863 /* the md already has necessary mempools */
1864 goto out;
1866 p = dm_table_get_md_mempools(t);
1867 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1869 md->io_pool = p->io_pool;
1870 p->io_pool = NULL;
1871 md->tio_pool = p->tio_pool;
1872 p->tio_pool = NULL;
1873 md->bs = p->bs;
1874 p->bs = NULL;
1876 out:
1877 /* mempool bind completed, now no need any mempools in the table */
1878 dm_table_free_md_mempools(t);
1882 * Bind a table to the device.
1884 static void event_callback(void *context)
1886 unsigned long flags;
1887 LIST_HEAD(uevents);
1888 struct mapped_device *md = (struct mapped_device *) context;
1890 spin_lock_irqsave(&md->uevent_lock, flags);
1891 list_splice_init(&md->uevent_list, &uevents);
1892 spin_unlock_irqrestore(&md->uevent_lock, flags);
1894 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1896 atomic_inc(&md->event_nr);
1897 wake_up(&md->eventq);
1900 static void __set_size(struct mapped_device *md, sector_t size)
1902 set_capacity(md->disk, size);
1904 mutex_lock(&md->bdev->bd_inode->i_mutex);
1905 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1906 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1909 static int __bind(struct mapped_device *md, struct dm_table *t,
1910 struct queue_limits *limits)
1912 struct request_queue *q = md->queue;
1913 sector_t size;
1914 unsigned long flags;
1916 size = dm_table_get_size(t);
1919 * Wipe any geometry if the size of the table changed.
1921 if (size != get_capacity(md->disk))
1922 memset(&md->geometry, 0, sizeof(md->geometry));
1924 __set_size(md, size);
1926 if (!size) {
1927 dm_table_destroy(t);
1928 return 0;
1931 dm_table_event_callback(t, event_callback, md);
1934 * The queue hasn't been stopped yet, if the old table type wasn't
1935 * for request-based during suspension. So stop it to prevent
1936 * I/O mapping before resume.
1937 * This must be done before setting the queue restrictions,
1938 * because request-based dm may be run just after the setting.
1940 if (dm_table_request_based(t) && !blk_queue_stopped(q))
1941 stop_queue(q);
1943 __bind_mempools(md, t);
1945 write_lock_irqsave(&md->map_lock, flags);
1946 md->map = t;
1947 dm_table_set_restrictions(t, q, limits);
1948 write_unlock_irqrestore(&md->map_lock, flags);
1950 return 0;
1953 static void __unbind(struct mapped_device *md)
1955 struct dm_table *map = md->map;
1956 unsigned long flags;
1958 if (!map)
1959 return;
1961 dm_table_event_callback(map, NULL, NULL);
1962 write_lock_irqsave(&md->map_lock, flags);
1963 md->map = NULL;
1964 write_unlock_irqrestore(&md->map_lock, flags);
1965 dm_table_destroy(map);
1969 * Constructor for a new device.
1971 int dm_create(int minor, struct mapped_device **result)
1973 struct mapped_device *md;
1975 md = alloc_dev(minor);
1976 if (!md)
1977 return -ENXIO;
1979 dm_sysfs_init(md);
1981 *result = md;
1982 return 0;
1985 static struct mapped_device *dm_find_md(dev_t dev)
1987 struct mapped_device *md;
1988 unsigned minor = MINOR(dev);
1990 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1991 return NULL;
1993 spin_lock(&_minor_lock);
1995 md = idr_find(&_minor_idr, minor);
1996 if (md && (md == MINOR_ALLOCED ||
1997 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1998 test_bit(DMF_FREEING, &md->flags))) {
1999 md = NULL;
2000 goto out;
2003 out:
2004 spin_unlock(&_minor_lock);
2006 return md;
2009 struct mapped_device *dm_get_md(dev_t dev)
2011 struct mapped_device *md = dm_find_md(dev);
2013 if (md)
2014 dm_get(md);
2016 return md;
2019 void *dm_get_mdptr(struct mapped_device *md)
2021 return md->interface_ptr;
2024 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2026 md->interface_ptr = ptr;
2029 void dm_get(struct mapped_device *md)
2031 atomic_inc(&md->holders);
2034 const char *dm_device_name(struct mapped_device *md)
2036 return md->name;
2038 EXPORT_SYMBOL_GPL(dm_device_name);
2040 void dm_put(struct mapped_device *md)
2042 struct dm_table *map;
2044 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2046 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2047 map = dm_get_table(md);
2048 idr_replace(&_minor_idr, MINOR_ALLOCED,
2049 MINOR(disk_devt(dm_disk(md))));
2050 set_bit(DMF_FREEING, &md->flags);
2051 spin_unlock(&_minor_lock);
2052 if (!dm_suspended(md)) {
2053 dm_table_presuspend_targets(map);
2054 dm_table_postsuspend_targets(map);
2056 dm_sysfs_exit(md);
2057 dm_table_put(map);
2058 __unbind(md);
2059 free_dev(md);
2062 EXPORT_SYMBOL_GPL(dm_put);
2064 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2066 int r = 0;
2067 DECLARE_WAITQUEUE(wait, current);
2068 struct request_queue *q = md->queue;
2069 unsigned long flags;
2071 dm_unplug_all(md->queue);
2073 add_wait_queue(&md->wait, &wait);
2075 while (1) {
2076 set_current_state(interruptible);
2078 smp_mb();
2079 if (dm_request_based(md)) {
2080 spin_lock_irqsave(q->queue_lock, flags);
2081 if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2082 spin_unlock_irqrestore(q->queue_lock, flags);
2083 break;
2085 spin_unlock_irqrestore(q->queue_lock, flags);
2086 } else if (!atomic_read(&md->pending))
2087 break;
2089 if (interruptible == TASK_INTERRUPTIBLE &&
2090 signal_pending(current)) {
2091 r = -EINTR;
2092 break;
2095 io_schedule();
2097 set_current_state(TASK_RUNNING);
2099 remove_wait_queue(&md->wait, &wait);
2101 return r;
2104 static void dm_flush(struct mapped_device *md)
2106 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2108 bio_init(&md->barrier_bio);
2109 md->barrier_bio.bi_bdev = md->bdev;
2110 md->barrier_bio.bi_rw = WRITE_BARRIER;
2111 __split_and_process_bio(md, &md->barrier_bio);
2113 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2116 static void process_barrier(struct mapped_device *md, struct bio *bio)
2118 md->barrier_error = 0;
2120 dm_flush(md);
2122 if (!bio_empty_barrier(bio)) {
2123 __split_and_process_bio(md, bio);
2124 dm_flush(md);
2127 if (md->barrier_error != DM_ENDIO_REQUEUE)
2128 bio_endio(bio, md->barrier_error);
2129 else {
2130 spin_lock_irq(&md->deferred_lock);
2131 bio_list_add_head(&md->deferred, bio);
2132 spin_unlock_irq(&md->deferred_lock);
2137 * Process the deferred bios
2139 static void dm_wq_work(struct work_struct *work)
2141 struct mapped_device *md = container_of(work, struct mapped_device,
2142 work);
2143 struct bio *c;
2145 down_write(&md->io_lock);
2147 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2148 spin_lock_irq(&md->deferred_lock);
2149 c = bio_list_pop(&md->deferred);
2150 spin_unlock_irq(&md->deferred_lock);
2152 if (!c) {
2153 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2154 break;
2157 up_write(&md->io_lock);
2159 if (dm_request_based(md))
2160 generic_make_request(c);
2161 else {
2162 if (bio_barrier(c))
2163 process_barrier(md, c);
2164 else
2165 __split_and_process_bio(md, c);
2168 down_write(&md->io_lock);
2171 up_write(&md->io_lock);
2174 static void dm_queue_flush(struct mapped_device *md)
2176 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2177 smp_mb__after_clear_bit();
2178 queue_work(md->wq, &md->work);
2182 * Swap in a new table (destroying old one).
2184 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2186 struct queue_limits limits;
2187 int r = -EINVAL;
2189 mutex_lock(&md->suspend_lock);
2191 /* device must be suspended */
2192 if (!dm_suspended(md))
2193 goto out;
2195 r = dm_calculate_queue_limits(table, &limits);
2196 if (r)
2197 goto out;
2199 /* cannot change the device type, once a table is bound */
2200 if (md->map &&
2201 (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2202 DMWARN("can't change the device type after a table is bound");
2203 goto out;
2207 * It is enought that blk_queue_ordered() is called only once when
2208 * the first bio-based table is bound.
2210 * This setting should be moved to alloc_dev() when request-based dm
2211 * supports barrier.
2213 if (!md->map && dm_table_bio_based(table))
2214 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
2216 __unbind(md);
2217 r = __bind(md, table, &limits);
2219 out:
2220 mutex_unlock(&md->suspend_lock);
2221 return r;
2224 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2226 md->suspend_rq.special = (void *)0x1;
2229 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2231 struct request_queue *q = md->queue;
2232 unsigned long flags;
2234 spin_lock_irqsave(q->queue_lock, flags);
2235 if (!noflush)
2236 dm_rq_invalidate_suspend_marker(md);
2237 __start_queue(q);
2238 spin_unlock_irqrestore(q->queue_lock, flags);
2241 static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2243 struct request *rq = &md->suspend_rq;
2244 struct request_queue *q = md->queue;
2246 if (noflush)
2247 stop_queue(q);
2248 else {
2249 blk_rq_init(q, rq);
2250 blk_insert_request(q, rq, 0, NULL);
2254 static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2256 int r = 1;
2257 struct request *rq = &md->suspend_rq;
2258 struct request_queue *q = md->queue;
2259 unsigned long flags;
2261 if (noflush)
2262 return r;
2264 /* The marker must be protected by queue lock if it is in use */
2265 spin_lock_irqsave(q->queue_lock, flags);
2266 if (unlikely(rq->ref_count)) {
2268 * This can happen, when the previous flush suspend was
2269 * interrupted, the marker is still in the queue and
2270 * this flush suspend has been invoked, because we don't
2271 * remove the marker at the time of suspend interruption.
2272 * We have only one marker per mapped_device, so we can't
2273 * start another flush suspend while it is in use.
2275 BUG_ON(!rq->special); /* The marker should be invalidated */
2276 DMWARN("Invalidating the previous flush suspend is still in"
2277 " progress. Please retry later.");
2278 r = 0;
2280 spin_unlock_irqrestore(q->queue_lock, flags);
2282 return r;
2286 * Functions to lock and unlock any filesystem running on the
2287 * device.
2289 static int lock_fs(struct mapped_device *md)
2291 int r;
2293 WARN_ON(md->frozen_sb);
2295 md->frozen_sb = freeze_bdev(md->bdev);
2296 if (IS_ERR(md->frozen_sb)) {
2297 r = PTR_ERR(md->frozen_sb);
2298 md->frozen_sb = NULL;
2299 return r;
2302 set_bit(DMF_FROZEN, &md->flags);
2304 return 0;
2307 static void unlock_fs(struct mapped_device *md)
2309 if (!test_bit(DMF_FROZEN, &md->flags))
2310 return;
2312 thaw_bdev(md->bdev, md->frozen_sb);
2313 md->frozen_sb = NULL;
2314 clear_bit(DMF_FROZEN, &md->flags);
2318 * We need to be able to change a mapping table under a mounted
2319 * filesystem. For example we might want to move some data in
2320 * the background. Before the table can be swapped with
2321 * dm_bind_table, dm_suspend must be called to flush any in
2322 * flight bios and ensure that any further io gets deferred.
2325 * Suspend mechanism in request-based dm.
2327 * After the suspend starts, further incoming requests are kept in
2328 * the request_queue and deferred.
2329 * Remaining requests in the request_queue at the start of suspend are flushed
2330 * if it is flush suspend.
2331 * The suspend completes when the following conditions have been satisfied,
2332 * so wait for it:
2333 * 1. q->in_flight is 0 (which means no in_flight request)
2334 * 2. queue has been stopped (which means no request dispatching)
2337 * Noflush suspend
2338 * ---------------
2339 * Noflush suspend doesn't need to dispatch remaining requests.
2340 * So stop the queue immediately. Then, wait for all in_flight requests
2341 * to be completed or requeued.
2343 * To abort noflush suspend, start the queue.
2346 * Flush suspend
2347 * -------------
2348 * Flush suspend needs to dispatch remaining requests. So stop the queue
2349 * after the remaining requests are completed. (Requeued request must be also
2350 * re-dispatched and completed. Until then, we can't stop the queue.)
2352 * During flushing the remaining requests, further incoming requests are also
2353 * inserted to the same queue. To distinguish which requests are to be
2354 * flushed, we insert a marker request to the queue at the time of starting
2355 * flush suspend, like a barrier.
2356 * The dispatching is blocked when the marker is found on the top of the queue.
2357 * And the queue is stopped when all in_flight requests are completed, since
2358 * that means the remaining requests are completely flushed.
2359 * Then, the marker is removed from the queue.
2361 * To abort flush suspend, we also need to take care of the marker, not only
2362 * starting the queue.
2363 * We don't remove the marker forcibly from the queue since it's against
2364 * the block-layer manner. Instead, we put a invalidated mark on the marker.
2365 * When the invalidated marker is found on the top of the queue, it is
2366 * immediately removed from the queue, so it doesn't block dispatching.
2367 * Because we have only one marker per mapped_device, we can't start another
2368 * flush suspend until the invalidated marker is removed from the queue.
2369 * So fail and return with -EBUSY in such a case.
2371 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2373 struct dm_table *map = NULL;
2374 int r = 0;
2375 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2376 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2378 mutex_lock(&md->suspend_lock);
2380 if (dm_suspended(md)) {
2381 r = -EINVAL;
2382 goto out_unlock;
2385 if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2386 r = -EBUSY;
2387 goto out_unlock;
2390 map = dm_get_table(md);
2393 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2394 * This flag is cleared before dm_suspend returns.
2396 if (noflush)
2397 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2399 /* This does not get reverted if there's an error later. */
2400 dm_table_presuspend_targets(map);
2403 * Flush I/O to the device. noflush supersedes do_lockfs,
2404 * because lock_fs() needs to flush I/Os.
2406 if (!noflush && do_lockfs) {
2407 r = lock_fs(md);
2408 if (r)
2409 goto out;
2413 * Here we must make sure that no processes are submitting requests
2414 * to target drivers i.e. no one may be executing
2415 * __split_and_process_bio. This is called from dm_request and
2416 * dm_wq_work.
2418 * To get all processes out of __split_and_process_bio in dm_request,
2419 * we take the write lock. To prevent any process from reentering
2420 * __split_and_process_bio from dm_request, we set
2421 * DMF_QUEUE_IO_TO_THREAD.
2423 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2424 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2425 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2426 * further calls to __split_and_process_bio from dm_wq_work.
2428 down_write(&md->io_lock);
2429 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2430 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2431 up_write(&md->io_lock);
2433 flush_workqueue(md->wq);
2435 if (dm_request_based(md))
2436 dm_rq_start_suspend(md, noflush);
2439 * At this point no more requests are entering target request routines.
2440 * We call dm_wait_for_completion to wait for all existing requests
2441 * to finish.
2443 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2445 down_write(&md->io_lock);
2446 if (noflush)
2447 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2448 up_write(&md->io_lock);
2450 /* were we interrupted ? */
2451 if (r < 0) {
2452 dm_queue_flush(md);
2454 if (dm_request_based(md))
2455 dm_rq_abort_suspend(md, noflush);
2457 unlock_fs(md);
2458 goto out; /* pushback list is already flushed, so skip flush */
2462 * If dm_wait_for_completion returned 0, the device is completely
2463 * quiescent now. There is no request-processing activity. All new
2464 * requests are being added to md->deferred list.
2467 dm_table_postsuspend_targets(map);
2469 set_bit(DMF_SUSPENDED, &md->flags);
2471 out:
2472 dm_table_put(map);
2474 out_unlock:
2475 mutex_unlock(&md->suspend_lock);
2476 return r;
2479 int dm_resume(struct mapped_device *md)
2481 int r = -EINVAL;
2482 struct dm_table *map = NULL;
2484 mutex_lock(&md->suspend_lock);
2485 if (!dm_suspended(md))
2486 goto out;
2488 map = dm_get_table(md);
2489 if (!map || !dm_table_get_size(map))
2490 goto out;
2492 r = dm_table_resume_targets(map);
2493 if (r)
2494 goto out;
2496 dm_queue_flush(md);
2499 * Flushing deferred I/Os must be done after targets are resumed
2500 * so that mapping of targets can work correctly.
2501 * Request-based dm is queueing the deferred I/Os in its request_queue.
2503 if (dm_request_based(md))
2504 start_queue(md->queue);
2506 unlock_fs(md);
2508 clear_bit(DMF_SUSPENDED, &md->flags);
2510 dm_table_unplug_all(map);
2511 r = 0;
2512 out:
2513 dm_table_put(map);
2514 mutex_unlock(&md->suspend_lock);
2516 return r;
2519 /*-----------------------------------------------------------------
2520 * Event notification.
2521 *---------------------------------------------------------------*/
2522 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2523 unsigned cookie)
2525 char udev_cookie[DM_COOKIE_LENGTH];
2526 char *envp[] = { udev_cookie, NULL };
2528 if (!cookie)
2529 kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2530 else {
2531 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2532 DM_COOKIE_ENV_VAR_NAME, cookie);
2533 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2537 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2539 return atomic_add_return(1, &md->uevent_seq);
2542 uint32_t dm_get_event_nr(struct mapped_device *md)
2544 return atomic_read(&md->event_nr);
2547 int dm_wait_event(struct mapped_device *md, int event_nr)
2549 return wait_event_interruptible(md->eventq,
2550 (event_nr != atomic_read(&md->event_nr)));
2553 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2555 unsigned long flags;
2557 spin_lock_irqsave(&md->uevent_lock, flags);
2558 list_add(elist, &md->uevent_list);
2559 spin_unlock_irqrestore(&md->uevent_lock, flags);
2563 * The gendisk is only valid as long as you have a reference
2564 * count on 'md'.
2566 struct gendisk *dm_disk(struct mapped_device *md)
2568 return md->disk;
2571 struct kobject *dm_kobject(struct mapped_device *md)
2573 return &md->kobj;
2577 * struct mapped_device should not be exported outside of dm.c
2578 * so use this check to verify that kobj is part of md structure
2580 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2582 struct mapped_device *md;
2584 md = container_of(kobj, struct mapped_device, kobj);
2585 if (&md->kobj != kobj)
2586 return NULL;
2588 if (test_bit(DMF_FREEING, &md->flags) ||
2589 test_bit(DMF_DELETING, &md->flags))
2590 return NULL;
2592 dm_get(md);
2593 return md;
2596 int dm_suspended(struct mapped_device *md)
2598 return test_bit(DMF_SUSPENDED, &md->flags);
2601 int dm_noflush_suspending(struct dm_target *ti)
2603 struct mapped_device *md = dm_table_get_md(ti->table);
2604 int r = __noflush_suspending(md);
2606 dm_put(md);
2608 return r;
2610 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2612 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2614 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2616 if (!pools)
2617 return NULL;
2619 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2620 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2621 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2622 if (!pools->io_pool)
2623 goto free_pools_and_out;
2625 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2626 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2627 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2628 if (!pools->tio_pool)
2629 goto free_io_pool_and_out;
2631 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2632 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2633 if (!pools->bs)
2634 goto free_tio_pool_and_out;
2636 return pools;
2638 free_tio_pool_and_out:
2639 mempool_destroy(pools->tio_pool);
2641 free_io_pool_and_out:
2642 mempool_destroy(pools->io_pool);
2644 free_pools_and_out:
2645 kfree(pools);
2647 return NULL;
2650 void dm_free_md_mempools(struct dm_md_mempools *pools)
2652 if (!pools)
2653 return;
2655 if (pools->io_pool)
2656 mempool_destroy(pools->io_pool);
2658 if (pools->tio_pool)
2659 mempool_destroy(pools->tio_pool);
2661 if (pools->bs)
2662 bioset_free(pools->bs);
2664 kfree(pools);
2667 static struct block_device_operations dm_blk_dops = {
2668 .open = dm_blk_open,
2669 .release = dm_blk_close,
2670 .ioctl = dm_blk_ioctl,
2671 .getgeo = dm_blk_getgeo,
2672 .owner = THIS_MODULE
2675 EXPORT_SYMBOL(dm_get_mapinfo);
2678 * module hooks
2680 module_init(dm_init);
2681 module_exit(dm_exit);
2683 module_param(major, uint, 0);
2684 MODULE_PARM_DESC(major, "The major number of the device mapper");
2685 MODULE_DESCRIPTION(DM_NAME " driver");
2686 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2687 MODULE_LICENSE("GPL");