acpi_pad: build only on X86
[linux-2.6/linux-acpi-2.6.git] / drivers / misc / eeprom / at24.c
blobdb39f4a52f5311b56f73bf1a54d7c41808cb1174
1 /*
2 * at24.c - handle most I2C EEPROMs
4 * Copyright (C) 2005-2007 David Brownell
5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/sysfs.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c/at24.h>
27 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
28 * Differences between different vendor product lines (like Atmel AT24C or
29 * MicroChip 24LC, etc) won't much matter for typical read/write access.
30 * There are also I2C RAM chips, likewise interchangeable. One example
31 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
33 * However, misconfiguration can lose data. "Set 16-bit memory address"
34 * to a part with 8-bit addressing will overwrite data. Writing with too
35 * big a page size also loses data. And it's not safe to assume that the
36 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
37 * uses 0x51, for just one example.
39 * Accordingly, explicit board-specific configuration data should be used
40 * in almost all cases. (One partial exception is an SMBus used to access
41 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
43 * So this driver uses "new style" I2C driver binding, expecting to be
44 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
45 * similar kernel-resident tables; or, configuration data coming from
46 * a bootloader.
48 * Other than binding model, current differences from "eeprom" driver are
49 * that this one handles write access and isn't restricted to 24c02 devices.
50 * It also handles larger devices (32 kbit and up) with two-byte addresses,
51 * which won't work on pure SMBus systems.
54 struct at24_data {
55 struct at24_platform_data chip;
56 struct memory_accessor macc;
57 bool use_smbus;
60 * Lock protects against activities from other Linux tasks,
61 * but not from changes by other I2C masters.
63 struct mutex lock;
64 struct bin_attribute bin;
66 u8 *writebuf;
67 unsigned write_max;
68 unsigned num_addresses;
71 * Some chips tie up multiple I2C addresses; dummy devices reserve
72 * them for us, and we'll use them with SMBus calls.
74 struct i2c_client *client[];
78 * This parameter is to help this driver avoid blocking other drivers out
79 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
80 * clock, one 256 byte read takes about 1/43 second which is excessive;
81 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
82 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
84 * This value is forced to be a power of two so that writes align on pages.
86 static unsigned io_limit = 128;
87 module_param(io_limit, uint, 0);
88 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
91 * Specs often allow 5 msec for a page write, sometimes 20 msec;
92 * it's important to recover from write timeouts.
94 static unsigned write_timeout = 25;
95 module_param(write_timeout, uint, 0);
96 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
98 #define AT24_SIZE_BYTELEN 5
99 #define AT24_SIZE_FLAGS 8
101 #define AT24_BITMASK(x) (BIT(x) - 1)
103 /* create non-zero magic value for given eeprom parameters */
104 #define AT24_DEVICE_MAGIC(_len, _flags) \
105 ((1 << AT24_SIZE_FLAGS | (_flags)) \
106 << AT24_SIZE_BYTELEN | ilog2(_len))
108 static const struct i2c_device_id at24_ids[] = {
109 /* needs 8 addresses as A0-A2 are ignored */
110 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
111 /* old variants can't be handled with this generic entry! */
112 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
113 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
114 /* spd is a 24c02 in memory DIMMs */
115 { "spd", AT24_DEVICE_MAGIC(2048 / 8,
116 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
117 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
118 /* 24rf08 quirk is handled at i2c-core */
119 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
120 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
121 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
122 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
123 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
124 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
125 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
126 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
127 { "at24", 0 },
128 { /* END OF LIST */ }
130 MODULE_DEVICE_TABLE(i2c, at24_ids);
132 /*-------------------------------------------------------------------------*/
135 * This routine supports chips which consume multiple I2C addresses. It
136 * computes the addressing information to be used for a given r/w request.
137 * Assumes that sanity checks for offset happened at sysfs-layer.
139 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
140 unsigned *offset)
142 unsigned i;
144 if (at24->chip.flags & AT24_FLAG_ADDR16) {
145 i = *offset >> 16;
146 *offset &= 0xffff;
147 } else {
148 i = *offset >> 8;
149 *offset &= 0xff;
152 return at24->client[i];
155 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
156 unsigned offset, size_t count)
158 struct i2c_msg msg[2];
159 u8 msgbuf[2];
160 struct i2c_client *client;
161 int status, i;
163 memset(msg, 0, sizeof(msg));
166 * REVISIT some multi-address chips don't rollover page reads to
167 * the next slave address, so we may need to truncate the count.
168 * Those chips might need another quirk flag.
170 * If the real hardware used four adjacent 24c02 chips and that
171 * were misconfigured as one 24c08, that would be a similar effect:
172 * one "eeprom" file not four, but larger reads would fail when
173 * they crossed certain pages.
177 * Slave address and byte offset derive from the offset. Always
178 * set the byte address; on a multi-master board, another master
179 * may have changed the chip's "current" address pointer.
181 client = at24_translate_offset(at24, &offset);
183 if (count > io_limit)
184 count = io_limit;
186 /* Smaller eeproms can work given some SMBus extension calls */
187 if (at24->use_smbus) {
188 if (count > I2C_SMBUS_BLOCK_MAX)
189 count = I2C_SMBUS_BLOCK_MAX;
190 status = i2c_smbus_read_i2c_block_data(client, offset,
191 count, buf);
192 dev_dbg(&client->dev, "smbus read %zu@%d --> %d\n",
193 count, offset, status);
194 return (status < 0) ? -EIO : status;
198 * When we have a better choice than SMBus calls, use a combined
199 * I2C message. Write address; then read up to io_limit data bytes.
200 * Note that read page rollover helps us here (unlike writes).
201 * msgbuf is u8 and will cast to our needs.
203 i = 0;
204 if (at24->chip.flags & AT24_FLAG_ADDR16)
205 msgbuf[i++] = offset >> 8;
206 msgbuf[i++] = offset;
208 msg[0].addr = client->addr;
209 msg[0].buf = msgbuf;
210 msg[0].len = i;
212 msg[1].addr = client->addr;
213 msg[1].flags = I2C_M_RD;
214 msg[1].buf = buf;
215 msg[1].len = count;
217 status = i2c_transfer(client->adapter, msg, 2);
218 dev_dbg(&client->dev, "i2c read %zu@%d --> %d\n",
219 count, offset, status);
221 if (status == 2)
222 return count;
223 else if (status >= 0)
224 return -EIO;
225 else
226 return status;
229 static ssize_t at24_read(struct at24_data *at24,
230 char *buf, loff_t off, size_t count)
232 ssize_t retval = 0;
234 if (unlikely(!count))
235 return count;
238 * Read data from chip, protecting against concurrent updates
239 * from this host, but not from other I2C masters.
241 mutex_lock(&at24->lock);
243 while (count) {
244 ssize_t status;
246 status = at24_eeprom_read(at24, buf, off, count);
247 if (status <= 0) {
248 if (retval == 0)
249 retval = status;
250 break;
252 buf += status;
253 off += status;
254 count -= status;
255 retval += status;
258 mutex_unlock(&at24->lock);
260 return retval;
263 static ssize_t at24_bin_read(struct kobject *kobj, struct bin_attribute *attr,
264 char *buf, loff_t off, size_t count)
266 struct at24_data *at24;
268 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
269 return at24_read(at24, buf, off, count);
274 * Note that if the hardware write-protect pin is pulled high, the whole
275 * chip is normally write protected. But there are plenty of product
276 * variants here, including OTP fuses and partial chip protect.
278 * We only use page mode writes; the alternative is sloooow. This routine
279 * writes at most one page.
281 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
282 unsigned offset, size_t count)
284 struct i2c_client *client;
285 struct i2c_msg msg;
286 ssize_t status;
287 unsigned long timeout, write_time;
288 unsigned next_page;
290 /* Get corresponding I2C address and adjust offset */
291 client = at24_translate_offset(at24, &offset);
293 /* write_max is at most a page */
294 if (count > at24->write_max)
295 count = at24->write_max;
297 /* Never roll over backwards, to the start of this page */
298 next_page = roundup(offset + 1, at24->chip.page_size);
299 if (offset + count > next_page)
300 count = next_page - offset;
302 /* If we'll use I2C calls for I/O, set up the message */
303 if (!at24->use_smbus) {
304 int i = 0;
306 msg.addr = client->addr;
307 msg.flags = 0;
309 /* msg.buf is u8 and casts will mask the values */
310 msg.buf = at24->writebuf;
311 if (at24->chip.flags & AT24_FLAG_ADDR16)
312 msg.buf[i++] = offset >> 8;
314 msg.buf[i++] = offset;
315 memcpy(&msg.buf[i], buf, count);
316 msg.len = i + count;
320 * Writes fail if the previous one didn't complete yet. We may
321 * loop a few times until this one succeeds, waiting at least
322 * long enough for one entire page write to work.
324 timeout = jiffies + msecs_to_jiffies(write_timeout);
325 do {
326 write_time = jiffies;
327 if (at24->use_smbus) {
328 status = i2c_smbus_write_i2c_block_data(client,
329 offset, count, buf);
330 if (status == 0)
331 status = count;
332 } else {
333 status = i2c_transfer(client->adapter, &msg, 1);
334 if (status == 1)
335 status = count;
337 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
338 count, offset, status, jiffies);
340 if (status == count)
341 return count;
343 /* REVISIT: at HZ=100, this is sloooow */
344 msleep(1);
345 } while (time_before(write_time, timeout));
347 return -ETIMEDOUT;
350 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
351 size_t count)
353 ssize_t retval = 0;
355 if (unlikely(!count))
356 return count;
359 * Write data to chip, protecting against concurrent updates
360 * from this host, but not from other I2C masters.
362 mutex_lock(&at24->lock);
364 while (count) {
365 ssize_t status;
367 status = at24_eeprom_write(at24, buf, off, count);
368 if (status <= 0) {
369 if (retval == 0)
370 retval = status;
371 break;
373 buf += status;
374 off += status;
375 count -= status;
376 retval += status;
379 mutex_unlock(&at24->lock);
381 return retval;
384 static ssize_t at24_bin_write(struct kobject *kobj, struct bin_attribute *attr,
385 char *buf, loff_t off, size_t count)
387 struct at24_data *at24;
389 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
390 return at24_write(at24, buf, off, count);
393 /*-------------------------------------------------------------------------*/
396 * This lets other kernel code access the eeprom data. For example, it
397 * might hold a board's Ethernet address, or board-specific calibration
398 * data generated on the manufacturing floor.
401 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
402 off_t offset, size_t count)
404 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
406 return at24_read(at24, buf, offset, count);
409 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
410 off_t offset, size_t count)
412 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
414 return at24_write(at24, buf, offset, count);
417 /*-------------------------------------------------------------------------*/
419 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
421 struct at24_platform_data chip;
422 bool writable;
423 bool use_smbus = false;
424 struct at24_data *at24;
425 int err;
426 unsigned i, num_addresses;
427 kernel_ulong_t magic;
429 if (client->dev.platform_data) {
430 chip = *(struct at24_platform_data *)client->dev.platform_data;
431 } else {
432 if (!id->driver_data) {
433 err = -ENODEV;
434 goto err_out;
436 magic = id->driver_data;
437 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
438 magic >>= AT24_SIZE_BYTELEN;
439 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
441 * This is slow, but we can't know all eeproms, so we better
442 * play safe. Specifying custom eeprom-types via platform_data
443 * is recommended anyhow.
445 chip.page_size = 1;
447 chip.setup = NULL;
448 chip.context = NULL;
451 if (!is_power_of_2(chip.byte_len))
452 dev_warn(&client->dev,
453 "byte_len looks suspicious (no power of 2)!\n");
454 if (!is_power_of_2(chip.page_size))
455 dev_warn(&client->dev,
456 "page_size looks suspicious (no power of 2)!\n");
458 /* Use I2C operations unless we're stuck with SMBus extensions. */
459 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
460 if (chip.flags & AT24_FLAG_ADDR16) {
461 err = -EPFNOSUPPORT;
462 goto err_out;
464 if (!i2c_check_functionality(client->adapter,
465 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
466 err = -EPFNOSUPPORT;
467 goto err_out;
469 use_smbus = true;
472 if (chip.flags & AT24_FLAG_TAKE8ADDR)
473 num_addresses = 8;
474 else
475 num_addresses = DIV_ROUND_UP(chip.byte_len,
476 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
478 at24 = kzalloc(sizeof(struct at24_data) +
479 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
480 if (!at24) {
481 err = -ENOMEM;
482 goto err_out;
485 mutex_init(&at24->lock);
486 at24->use_smbus = use_smbus;
487 at24->chip = chip;
488 at24->num_addresses = num_addresses;
491 * Export the EEPROM bytes through sysfs, since that's convenient.
492 * By default, only root should see the data (maybe passwords etc)
494 at24->bin.attr.name = "eeprom";
495 at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
496 at24->bin.read = at24_bin_read;
497 at24->bin.size = chip.byte_len;
499 at24->macc.read = at24_macc_read;
501 writable = !(chip.flags & AT24_FLAG_READONLY);
502 if (writable) {
503 if (!use_smbus || i2c_check_functionality(client->adapter,
504 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
506 unsigned write_max = chip.page_size;
508 at24->macc.write = at24_macc_write;
510 at24->bin.write = at24_bin_write;
511 at24->bin.attr.mode |= S_IWUSR;
513 if (write_max > io_limit)
514 write_max = io_limit;
515 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
516 write_max = I2C_SMBUS_BLOCK_MAX;
517 at24->write_max = write_max;
519 /* buffer (data + address at the beginning) */
520 at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
521 if (!at24->writebuf) {
522 err = -ENOMEM;
523 goto err_struct;
525 } else {
526 dev_warn(&client->dev,
527 "cannot write due to controller restrictions.");
531 at24->client[0] = client;
533 /* use dummy devices for multiple-address chips */
534 for (i = 1; i < num_addresses; i++) {
535 at24->client[i] = i2c_new_dummy(client->adapter,
536 client->addr + i);
537 if (!at24->client[i]) {
538 dev_err(&client->dev, "address 0x%02x unavailable\n",
539 client->addr + i);
540 err = -EADDRINUSE;
541 goto err_clients;
545 err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
546 if (err)
547 goto err_clients;
549 i2c_set_clientdata(client, at24);
551 dev_info(&client->dev, "%zu byte %s EEPROM %s\n",
552 at24->bin.size, client->name,
553 writable ? "(writable)" : "(read-only)");
554 dev_dbg(&client->dev,
555 "page_size %d, num_addresses %d, write_max %d%s\n",
556 chip.page_size, num_addresses,
557 at24->write_max,
558 use_smbus ? ", use_smbus" : "");
560 /* export data to kernel code */
561 if (chip.setup)
562 chip.setup(&at24->macc, chip.context);
564 return 0;
566 err_clients:
567 for (i = 1; i < num_addresses; i++)
568 if (at24->client[i])
569 i2c_unregister_device(at24->client[i]);
571 kfree(at24->writebuf);
572 err_struct:
573 kfree(at24);
574 err_out:
575 dev_dbg(&client->dev, "probe error %d\n", err);
576 return err;
579 static int __devexit at24_remove(struct i2c_client *client)
581 struct at24_data *at24;
582 int i;
584 at24 = i2c_get_clientdata(client);
585 sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
587 for (i = 1; i < at24->num_addresses; i++)
588 i2c_unregister_device(at24->client[i]);
590 kfree(at24->writebuf);
591 kfree(at24);
592 i2c_set_clientdata(client, NULL);
593 return 0;
596 /*-------------------------------------------------------------------------*/
598 static struct i2c_driver at24_driver = {
599 .driver = {
600 .name = "at24",
601 .owner = THIS_MODULE,
603 .probe = at24_probe,
604 .remove = __devexit_p(at24_remove),
605 .id_table = at24_ids,
608 static int __init at24_init(void)
610 io_limit = rounddown_pow_of_two(io_limit);
611 return i2c_add_driver(&at24_driver);
613 module_init(at24_init);
615 static void __exit at24_exit(void)
617 i2c_del_driver(&at24_driver);
619 module_exit(at24_exit);
621 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
622 MODULE_AUTHOR("David Brownell and Wolfram Sang");
623 MODULE_LICENSE("GPL");