2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * The data sheet for this device can be found at:
5 * http://www.marvell.com/products/pcconn/88ALP01.jsp
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
13 #include <linux/device.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
25 #define CAFE_NAND_CTRL1 0x00
26 #define CAFE_NAND_CTRL2 0x04
27 #define CAFE_NAND_CTRL3 0x08
28 #define CAFE_NAND_STATUS 0x0c
29 #define CAFE_NAND_IRQ 0x10
30 #define CAFE_NAND_IRQ_MASK 0x14
31 #define CAFE_NAND_DATA_LEN 0x18
32 #define CAFE_NAND_ADDR1 0x1c
33 #define CAFE_NAND_ADDR2 0x20
34 #define CAFE_NAND_TIMING1 0x24
35 #define CAFE_NAND_TIMING2 0x28
36 #define CAFE_NAND_TIMING3 0x2c
37 #define CAFE_NAND_NONMEM 0x30
38 #define CAFE_NAND_ECC_RESULT 0x3C
39 #define CAFE_NAND_DMA_CTRL 0x40
40 #define CAFE_NAND_DMA_ADDR0 0x44
41 #define CAFE_NAND_DMA_ADDR1 0x48
42 #define CAFE_NAND_ECC_SYN01 0x50
43 #define CAFE_NAND_ECC_SYN23 0x54
44 #define CAFE_NAND_ECC_SYN45 0x58
45 #define CAFE_NAND_ECC_SYN67 0x5c
46 #define CAFE_NAND_READ_DATA 0x1000
47 #define CAFE_NAND_WRITE_DATA 0x2000
49 #define CAFE_GLOBAL_CTRL 0x3004
50 #define CAFE_GLOBAL_IRQ 0x3008
51 #define CAFE_GLOBAL_IRQ_MASK 0x300c
52 #define CAFE_NAND_RESET 0x3034
54 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
55 #define CTRL1_CHIPSELECT (1<<19)
58 struct nand_chip nand
;
59 struct mtd_partition
*parts
;
62 struct rs_control
*rs
;
70 unsigned char *dmabuf
;
73 static int usedma
= 1;
74 module_param(usedma
, int, 0644);
76 static int skipbbt
= 0;
77 module_param(skipbbt
, int, 0644);
80 module_param(debug
, int, 0644);
82 static int regdebug
= 0;
83 module_param(regdebug
, int, 0644);
85 static int checkecc
= 1;
86 module_param(checkecc
, int, 0644);
88 static unsigned int numtimings
;
90 module_param_array(timing
, int, &numtimings
, 0644);
92 #ifdef CONFIG_MTD_PARTITIONS
93 static const char *part_probes
[] = { "cmdlinepart", "RedBoot", NULL
};
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
103 static int cafe_device_ready(struct mtd_info
*mtd
)
105 struct cafe_priv
*cafe
= mtd
->priv
;
106 int result
= !!(cafe_readl(cafe
, NAND_STATUS
) | 0x40000000);
107 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
109 cafe_writel(cafe
, irqs
, NAND_IRQ
);
111 cafe_dev_dbg(&cafe
->pdev
->dev
, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 result
?"":" not", irqs
, cafe_readl(cafe
, NAND_IRQ
),
113 cafe_readl(cafe
, GLOBAL_IRQ
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
119 static void cafe_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
121 struct cafe_priv
*cafe
= mtd
->priv
;
124 memcpy(cafe
->dmabuf
+ cafe
->datalen
, buf
, len
);
126 memcpy_toio(cafe
->mmio
+ CAFE_NAND_WRITE_DATA
+ cafe
->datalen
, buf
, len
);
128 cafe
->datalen
+= len
;
130 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
134 static void cafe_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
136 struct cafe_priv
*cafe
= mtd
->priv
;
139 memcpy(buf
, cafe
->dmabuf
+ cafe
->datalen
, len
);
141 memcpy_fromio(buf
, cafe
->mmio
+ CAFE_NAND_READ_DATA
+ cafe
->datalen
, len
);
143 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145 cafe
->datalen
+= len
;
148 static uint8_t cafe_read_byte(struct mtd_info
*mtd
)
150 struct cafe_priv
*cafe
= mtd
->priv
;
153 cafe_read_buf(mtd
, &d
, 1);
154 cafe_dev_dbg(&cafe
->pdev
->dev
, "Read %02x\n", d
);
159 static void cafe_nand_cmdfunc(struct mtd_info
*mtd
, unsigned command
,
160 int column
, int page_addr
)
162 struct cafe_priv
*cafe
= mtd
->priv
;
165 uint32_t doneint
= 0x80000000;
167 cafe_dev_dbg(&cafe
->pdev
->dev
, "cmdfunc %02x, 0x%x, 0x%x\n",
168 command
, column
, page_addr
);
170 if (command
== NAND_CMD_ERASE2
|| command
== NAND_CMD_PAGEPROG
) {
171 /* Second half of a command we already calculated */
172 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | command
, NAND_CTRL2
);
174 cafe
->ctl2
&= ~(1<<30);
175 cafe_dev_dbg(&cafe
->pdev
->dev
, "Continue command, ctl1 %08x, #data %d\n",
176 cafe
->ctl1
, cafe
->nr_data
);
179 /* Reset ECC engine */
180 cafe_writel(cafe
, 0, NAND_CTRL2
);
182 /* Emulate NAND_CMD_READOOB on large-page chips */
183 if (mtd
->writesize
> 512 &&
184 command
== NAND_CMD_READOOB
) {
185 column
+= mtd
->writesize
;
186 command
= NAND_CMD_READ0
;
189 /* FIXME: Do we need to send read command before sending data
190 for small-page chips, to position the buffer correctly? */
193 cafe_writel(cafe
, column
, NAND_ADDR1
);
197 } else if (page_addr
!= -1) {
198 cafe_writel(cafe
, page_addr
& 0xffff, NAND_ADDR1
);
201 cafe_writel(cafe
, page_addr
, NAND_ADDR2
);
203 if (mtd
->size
> mtd
->writesize
<< 16)
207 cafe
->data_pos
= cafe
->datalen
= 0;
209 /* Set command valid bit, mask in the chip select bit */
210 ctl1
= 0x80000000 | command
| (cafe
->ctl1
& CTRL1_CHIPSELECT
);
212 /* Set RD or WR bits as appropriate */
213 if (command
== NAND_CMD_READID
|| command
== NAND_CMD_STATUS
) {
214 ctl1
|= (1<<26); /* rd */
215 /* Always 5 bytes, for now */
217 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
219 } else if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
220 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_RNDOUT
) {
221 ctl1
|= 1<<26; /* rd */
222 /* For now, assume just read to end of page */
223 cafe
->datalen
= mtd
->writesize
+ mtd
->oobsize
- column
;
224 } else if (command
== NAND_CMD_SEQIN
)
225 ctl1
|= 1<<25; /* wr */
227 /* Set number of address bytes */
229 ctl1
|= ((adrbytes
-1)|8) << 27;
231 if (command
== NAND_CMD_SEQIN
|| command
== NAND_CMD_ERASE1
) {
232 /* Ignore the first command of a pair; the hardware
233 deals with them both at once, later */
235 cafe_dev_dbg(&cafe
->pdev
->dev
, "Setup for delayed command, ctl1 %08x, dlen %x\n",
236 cafe
->ctl1
, cafe
->datalen
);
239 /* RNDOUT and READ0 commands need a following byte */
240 if (command
== NAND_CMD_RNDOUT
)
241 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_RNDOUTSTART
, NAND_CTRL2
);
242 else if (command
== NAND_CMD_READ0
&& mtd
->writesize
> 512)
243 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_READSTART
, NAND_CTRL2
);
246 cafe_dev_dbg(&cafe
->pdev
->dev
, "dlen %x, ctl1 %x, ctl2 %x\n",
247 cafe
->datalen
, ctl1
, cafe_readl(cafe
, NAND_CTRL2
));
249 /* NB: The datasheet lies -- we really should be subtracting 1 here */
250 cafe_writel(cafe
, cafe
->datalen
, NAND_DATA_LEN
);
251 cafe_writel(cafe
, 0x90000000, NAND_IRQ
);
252 if (usedma
&& (ctl1
& (3<<25))) {
253 uint32_t dmactl
= 0xc0000000 + cafe
->datalen
;
254 /* If WR or RD bits set, set up DMA */
255 if (ctl1
& (1<<26)) {
258 /* ... so it's done when the DMA is done, not just
260 doneint
= 0x10000000;
262 cafe_writel(cafe
, dmactl
, NAND_DMA_CTRL
);
266 if (unlikely(regdebug
)) {
268 printk("About to write command %08x to register 0\n", ctl1
);
269 for (i
=4; i
< 0x5c; i
+=4)
270 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
273 cafe_writel(cafe
, ctl1
, NAND_CTRL1
);
274 /* Apply this short delay always to ensure that we do wait tWB in
275 * any case on any machine. */
282 for (c
= 500000; c
!= 0; c
--) {
283 irqs
= cafe_readl(cafe
, NAND_IRQ
);
288 cafe_dev_dbg(&cafe
->pdev
->dev
, "Wait for ready, IRQ %x\n", irqs
);
291 cafe_writel(cafe
, doneint
, NAND_IRQ
);
292 cafe_dev_dbg(&cafe
->pdev
->dev
, "Command %x completed after %d usec, irqs %x (%x)\n",
293 command
, 500000-c
, irqs
, cafe_readl(cafe
, NAND_IRQ
));
296 WARN_ON(cafe
->ctl2
& (1<<30));
300 case NAND_CMD_CACHEDPROG
:
301 case NAND_CMD_PAGEPROG
:
302 case NAND_CMD_ERASE1
:
303 case NAND_CMD_ERASE2
:
306 case NAND_CMD_STATUS
:
307 case NAND_CMD_DEPLETE1
:
308 case NAND_CMD_RNDOUT
:
309 case NAND_CMD_STATUS_ERROR
:
310 case NAND_CMD_STATUS_ERROR0
:
311 case NAND_CMD_STATUS_ERROR1
:
312 case NAND_CMD_STATUS_ERROR2
:
313 case NAND_CMD_STATUS_ERROR3
:
314 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
317 nand_wait_ready(mtd
);
318 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
321 static void cafe_select_chip(struct mtd_info
*mtd
, int chipnr
)
323 struct cafe_priv
*cafe
= mtd
->priv
;
325 cafe_dev_dbg(&cafe
->pdev
->dev
, "select_chip %d\n", chipnr
);
327 /* Mask the appropriate bit into the stored value of ctl1
328 which will be used by cafe_nand_cmdfunc() */
330 cafe
->ctl1
|= CTRL1_CHIPSELECT
;
332 cafe
->ctl1
&= ~CTRL1_CHIPSELECT
;
335 static irqreturn_t
cafe_nand_interrupt(int irq
, void *id
)
337 struct mtd_info
*mtd
= id
;
338 struct cafe_priv
*cafe
= mtd
->priv
;
339 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
340 cafe_writel(cafe
, irqs
& ~0x90000000, NAND_IRQ
);
344 cafe_dev_dbg(&cafe
->pdev
->dev
, "irq, bits %x (%x)\n", irqs
, cafe_readl(cafe
, NAND_IRQ
));
348 static void cafe_nand_bug(struct mtd_info
*mtd
)
353 static int cafe_nand_write_oob(struct mtd_info
*mtd
,
354 struct nand_chip
*chip
, int page
)
358 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
359 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
360 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
361 status
= chip
->waitfunc(mtd
, chip
);
363 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
366 /* Don't use -- use nand_read_oob_std for now */
367 static int cafe_nand_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
368 int page
, int sndcmd
)
370 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
371 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
375 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
376 * @mtd: mtd info structure
377 * @chip: nand chip info structure
378 * @buf: buffer to store read data
380 * The hw generator calculates the error syndrome automatically. Therefor
381 * we need a special oob layout and handling.
383 static int cafe_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
386 struct cafe_priv
*cafe
= mtd
->priv
;
388 cafe_dev_dbg(&cafe
->pdev
->dev
, "ECC result %08x SYN1,2 %08x\n",
389 cafe_readl(cafe
, NAND_ECC_RESULT
),
390 cafe_readl(cafe
, NAND_ECC_SYN01
));
392 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
393 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
395 if (checkecc
&& cafe_readl(cafe
, NAND_ECC_RESULT
) & (1<<18)) {
396 unsigned short syn
[8], pat
[4];
398 u8
*oob
= chip
->oob_poi
;
401 for (i
=0; i
<8; i
+=2) {
402 uint32_t tmp
= cafe_readl(cafe
, NAND_ECC_SYN01
+ (i
*2));
403 syn
[i
] = cafe
->rs
->index_of
[tmp
& 0xfff];
404 syn
[i
+1] = cafe
->rs
->index_of
[(tmp
>> 16) & 0xfff];
407 n
= decode_rs16(cafe
->rs
, NULL
, NULL
, 1367, syn
, 0, pos
, 0,
410 for (i
= 0; i
< n
; i
++) {
413 /* The 12-bit symbols are mapped to bytes here */
419 /* high four bits do not correspond to data */
424 } else if (p
== 1365) {
425 buf
[2047] ^= pat
[i
] >> 4;
426 oob
[0] ^= pat
[i
] << 4;
427 } else if (p
> 1365) {
429 oob
[3*p
/2 - 2048] ^= pat
[i
] >> 4;
430 oob
[3*p
/2 - 2047] ^= pat
[i
] << 4;
432 oob
[3*p
/2 - 2049] ^= pat
[i
] >> 8;
433 oob
[3*p
/2 - 2048] ^= pat
[i
];
435 } else if ((p
& 1) == 1) {
436 buf
[3*p
/2] ^= pat
[i
] >> 4;
437 buf
[3*p
/2 + 1] ^= pat
[i
] << 4;
439 buf
[3*p
/2 - 1] ^= pat
[i
] >> 8;
440 buf
[3*p
/2] ^= pat
[i
];
445 dev_dbg(&cafe
->pdev
->dev
, "Failed to correct ECC at %08x\n",
446 cafe_readl(cafe
, NAND_ADDR2
) * 2048);
447 for (i
= 0; i
< 0x5c; i
+= 4)
448 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
449 mtd
->ecc_stats
.failed
++;
451 dev_dbg(&cafe
->pdev
->dev
, "Corrected %d symbol errors\n", n
);
452 mtd
->ecc_stats
.corrected
+= n
;
459 static struct nand_ecclayout cafe_oobinfo_2048
= {
461 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
462 .oobfree
= {{14, 50}}
465 /* Ick. The BBT code really ought to be able to work this bit out
466 for itself from the above, at least for the 2KiB case */
467 static uint8_t cafe_bbt_pattern_2048
[] = { 'B', 'b', 't', '0' };
468 static uint8_t cafe_mirror_pattern_2048
[] = { '1', 't', 'b', 'B' };
470 static uint8_t cafe_bbt_pattern_512
[] = { 0xBB };
471 static uint8_t cafe_mirror_pattern_512
[] = { 0xBC };
474 static struct nand_bbt_descr cafe_bbt_main_descr_2048
= {
475 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
476 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
481 .pattern
= cafe_bbt_pattern_2048
484 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048
= {
485 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
486 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
491 .pattern
= cafe_mirror_pattern_2048
494 static struct nand_ecclayout cafe_oobinfo_512
= {
496 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
500 static struct nand_bbt_descr cafe_bbt_main_descr_512
= {
501 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
502 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
507 .pattern
= cafe_bbt_pattern_512
510 static struct nand_bbt_descr cafe_bbt_mirror_descr_512
= {
511 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
512 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
517 .pattern
= cafe_mirror_pattern_512
521 static void cafe_nand_write_page_lowlevel(struct mtd_info
*mtd
,
522 struct nand_chip
*chip
, const uint8_t *buf
)
524 struct cafe_priv
*cafe
= mtd
->priv
;
526 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
527 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
529 /* Set up ECC autogeneration */
530 cafe
->ctl2
|= (1<<30);
533 static int cafe_nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
534 const uint8_t *buf
, int page
, int cached
, int raw
)
538 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
541 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
543 chip
->ecc
.write_page(mtd
, chip
, buf
);
546 * Cached progamming disabled for now, Not sure if its worth the
547 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
551 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
553 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
554 status
= chip
->waitfunc(mtd
, chip
);
556 * See if operation failed and additional status checks are
559 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
560 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
563 if (status
& NAND_STATUS_FAIL
)
566 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
567 status
= chip
->waitfunc(mtd
, chip
);
570 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
571 /* Send command to read back the data */
572 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
574 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
580 static int cafe_nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
585 /* F_2[X]/(X**6+X+1) */
586 static unsigned short __devinit
gf64_mul(u8 a
, u8 b
)
592 for (i
= 0; i
< 6; i
++) {
604 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
605 static u16 __devinit
gf4096_mul(u16 a
, u16 b
)
607 u8 ah
, al
, bh
, bl
, ch
, cl
;
614 ch
= gf64_mul(ah
^ al
, bh
^ bl
) ^ gf64_mul(al
, bl
);
615 cl
= gf64_mul(gf64_mul(ah
, bh
), 0x21) ^ gf64_mul(al
, bl
);
617 return (ch
<< 6) ^ cl
;
620 static int __devinit
cafe_mul(int x
)
624 return gf4096_mul(x
, 0xe01);
627 static int __devinit
cafe_nand_probe(struct pci_dev
*pdev
,
628 const struct pci_device_id
*ent
)
630 struct mtd_info
*mtd
;
631 struct cafe_priv
*cafe
;
634 #ifdef CONFIG_MTD_PARTITIONS
635 struct mtd_partition
*parts
;
639 /* Very old versions shared the same PCI ident for all three
640 functions on the chip. Verify the class too... */
641 if ((pdev
->class >> 8) != PCI_CLASS_MEMORY_FLASH
)
644 err
= pci_enable_device(pdev
);
648 pci_set_master(pdev
);
650 mtd
= kzalloc(sizeof(*mtd
) + sizeof(struct cafe_priv
), GFP_KERNEL
);
652 dev_warn(&pdev
->dev
, "failed to alloc mtd_info\n");
655 cafe
= (void *)(&mtd
[1]);
657 mtd
->dev
.parent
= &pdev
->dev
;
659 mtd
->owner
= THIS_MODULE
;
662 cafe
->mmio
= pci_iomap(pdev
, 0, 0);
664 dev_warn(&pdev
->dev
, "failed to iomap\n");
668 cafe
->dmabuf
= dma_alloc_coherent(&cafe
->pdev
->dev
, 2112 + sizeof(struct nand_buffers
),
669 &cafe
->dmaaddr
, GFP_KERNEL
);
674 cafe
->nand
.buffers
= (void *)cafe
->dmabuf
+ 2112;
676 cafe
->rs
= init_rs_non_canonical(12, &cafe_mul
, 0, 1, 8);
682 cafe
->nand
.cmdfunc
= cafe_nand_cmdfunc
;
683 cafe
->nand
.dev_ready
= cafe_device_ready
;
684 cafe
->nand
.read_byte
= cafe_read_byte
;
685 cafe
->nand
.read_buf
= cafe_read_buf
;
686 cafe
->nand
.write_buf
= cafe_write_buf
;
687 cafe
->nand
.select_chip
= cafe_select_chip
;
689 cafe
->nand
.chip_delay
= 0;
691 /* Enable the following for a flash based bad block table */
692 cafe
->nand
.options
= NAND_USE_FLASH_BBT
| NAND_NO_AUTOINCR
| NAND_OWN_BUFFERS
;
695 cafe
->nand
.options
|= NAND_SKIP_BBTSCAN
;
696 cafe
->nand
.block_bad
= cafe_nand_block_bad
;
699 if (numtimings
&& numtimings
!= 3) {
700 dev_warn(&cafe
->pdev
->dev
, "%d timing register values ignored; precisely three are required\n", numtimings
);
703 if (numtimings
== 3) {
704 cafe_dev_dbg(&cafe
->pdev
->dev
, "Using provided timings (%08x %08x %08x)\n",
705 timing
[0], timing
[1], timing
[2]);
707 timing
[0] = cafe_readl(cafe
, NAND_TIMING1
);
708 timing
[1] = cafe_readl(cafe
, NAND_TIMING2
);
709 timing
[2] = cafe_readl(cafe
, NAND_TIMING3
);
711 if (timing
[0] | timing
[1] | timing
[2]) {
712 cafe_dev_dbg(&cafe
->pdev
->dev
, "Timing registers already set (%08x %08x %08x)\n",
713 timing
[0], timing
[1], timing
[2]);
715 dev_warn(&cafe
->pdev
->dev
, "Timing registers unset; using most conservative defaults\n");
716 timing
[0] = timing
[1] = timing
[2] = 0xffffffff;
720 /* Start off by resetting the NAND controller completely */
721 cafe_writel(cafe
, 1, NAND_RESET
);
722 cafe_writel(cafe
, 0, NAND_RESET
);
724 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
725 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
726 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
728 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
729 err
= request_irq(pdev
->irq
, &cafe_nand_interrupt
, IRQF_SHARED
,
732 dev_warn(&pdev
->dev
, "Could not register IRQ %d\n", pdev
->irq
);
736 /* Disable master reset, enable NAND clock */
737 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
740 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
741 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
742 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
744 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
745 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
747 /* Set up DMA address */
748 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
749 if (sizeof(cafe
->dmaaddr
) > 4)
750 /* Shift in two parts to shut the compiler up */
751 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
753 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
755 cafe_dev_dbg(&cafe
->pdev
->dev
, "Set DMA address to %x (virt %p)\n",
756 cafe_readl(cafe
, NAND_DMA_ADDR0
), cafe
->dmabuf
);
758 /* Enable NAND IRQ in global IRQ mask register */
759 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
760 cafe_dev_dbg(&cafe
->pdev
->dev
, "Control %x, IRQ mask %x\n",
761 cafe_readl(cafe
, GLOBAL_CTRL
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
763 /* Scan to find existence of the device */
764 if (nand_scan_ident(mtd
, 2)) {
769 cafe
->ctl2
= 1<<27; /* Reed-Solomon ECC */
770 if (mtd
->writesize
== 2048)
771 cafe
->ctl2
|= 1<<29; /* 2KiB page size */
773 /* Set up ECC according to the type of chip we found */
774 if (mtd
->writesize
== 2048) {
775 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_2048
;
776 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_2048
;
777 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_2048
;
778 } else if (mtd
->writesize
== 512) {
779 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_512
;
780 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_512
;
781 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_512
;
783 printk(KERN_WARNING
"Unexpected NAND flash writesize %d. Aborting\n",
787 cafe
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
788 cafe
->nand
.ecc
.size
= mtd
->writesize
;
789 cafe
->nand
.ecc
.bytes
= 14;
790 cafe
->nand
.ecc
.hwctl
= (void *)cafe_nand_bug
;
791 cafe
->nand
.ecc
.calculate
= (void *)cafe_nand_bug
;
792 cafe
->nand
.ecc
.correct
= (void *)cafe_nand_bug
;
793 cafe
->nand
.write_page
= cafe_nand_write_page
;
794 cafe
->nand
.ecc
.write_page
= cafe_nand_write_page_lowlevel
;
795 cafe
->nand
.ecc
.write_oob
= cafe_nand_write_oob
;
796 cafe
->nand
.ecc
.read_page
= cafe_nand_read_page
;
797 cafe
->nand
.ecc
.read_oob
= cafe_nand_read_oob
;
799 err
= nand_scan_tail(mtd
);
803 pci_set_drvdata(pdev
, mtd
);
805 /* We register the whole device first, separate from the partitions */
808 #ifdef CONFIG_MTD_PARTITIONS
809 #ifdef CONFIG_MTD_CMDLINE_PARTS
810 mtd
->name
= "cafe_nand";
812 nr_parts
= parse_mtd_partitions(mtd
, part_probes
, &parts
, 0);
815 dev_info(&cafe
->pdev
->dev
, "%d partitions found\n", nr_parts
);
816 add_mtd_partitions(mtd
, parts
, nr_parts
);
822 /* Disable NAND IRQ in global IRQ mask register */
823 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
824 free_irq(pdev
->irq
, mtd
);
826 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
828 pci_iounmap(pdev
, cafe
->mmio
);
835 static void __devexit
cafe_nand_remove(struct pci_dev
*pdev
)
837 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
838 struct cafe_priv
*cafe
= mtd
->priv
;
841 /* Disable NAND IRQ in global IRQ mask register */
842 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
843 free_irq(pdev
->irq
, mtd
);
846 pci_iounmap(pdev
, cafe
->mmio
);
847 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
851 static struct pci_device_id cafe_nand_tbl
[] = {
852 { PCI_VENDOR_ID_MARVELL
, PCI_DEVICE_ID_MARVELL_88ALP01_NAND
,
853 PCI_ANY_ID
, PCI_ANY_ID
},
857 MODULE_DEVICE_TABLE(pci
, cafe_nand_tbl
);
859 static int cafe_nand_resume(struct pci_dev
*pdev
)
862 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
863 struct cafe_priv
*cafe
= mtd
->priv
;
865 /* Start off by resetting the NAND controller completely */
866 cafe_writel(cafe
, 1, NAND_RESET
);
867 cafe_writel(cafe
, 0, NAND_RESET
);
868 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
870 /* Restore timing configuration */
871 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
872 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
873 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
875 /* Disable master reset, enable NAND clock */
876 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
879 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
880 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
881 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
882 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
883 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
885 /* Set up DMA address */
886 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
887 if (sizeof(cafe
->dmaaddr
) > 4)
888 /* Shift in two parts to shut the compiler up */
889 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
891 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
893 /* Enable NAND IRQ in global IRQ mask register */
894 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
898 static struct pci_driver cafe_nand_pci_driver
= {
900 .id_table
= cafe_nand_tbl
,
901 .probe
= cafe_nand_probe
,
902 .remove
= __devexit_p(cafe_nand_remove
),
903 .resume
= cafe_nand_resume
,
906 static int cafe_nand_init(void)
908 return pci_register_driver(&cafe_nand_pci_driver
);
911 static void cafe_nand_exit(void)
913 pci_unregister_driver(&cafe_nand_pci_driver
);
915 module_init(cafe_nand_init
);
916 module_exit(cafe_nand_exit
);
918 MODULE_LICENSE("GPL");
919 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
920 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");