2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
36 #include <mach/nand.h>
38 #include <asm/mach-types.h>
42 * This is a device driver for the NAND flash controller found on the
43 * various DaVinci family chips. It handles up to four SoC chipselects,
44 * and some flavors of secondary chipselect (e.g. based on A12) as used
45 * with multichip packages.
47 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
48 * available on chips like the DM355 and OMAP-L137 and needed with the
49 * more error-prone MLC NAND chips.
51 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
52 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 struct davinci_nand_info
{
56 struct nand_chip chip
;
57 struct nand_ecclayout ecclayout
;
71 uint32_t mask_chipsel
;
75 uint32_t core_chipsel
;
78 static DEFINE_SPINLOCK(davinci_nand_lock
);
79 static bool ecc4_busy
;
81 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84 static inline unsigned int davinci_nand_readl(struct davinci_nand_info
*info
,
87 return __raw_readl(info
->base
+ offset
);
90 static inline void davinci_nand_writel(struct davinci_nand_info
*info
,
91 int offset
, unsigned long value
)
93 __raw_writel(value
, info
->base
+ offset
);
96 /*----------------------------------------------------------------------*/
99 * Access to hardware control lines: ALE, CLE, secondary chipselect.
102 static void nand_davinci_hwcontrol(struct mtd_info
*mtd
, int cmd
,
105 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
106 uint32_t addr
= info
->current_cs
;
107 struct nand_chip
*nand
= mtd
->priv
;
109 /* Did the control lines change? */
110 if (ctrl
& NAND_CTRL_CHANGE
) {
111 if ((ctrl
& NAND_CTRL_CLE
) == NAND_CTRL_CLE
)
112 addr
|= info
->mask_cle
;
113 else if ((ctrl
& NAND_CTRL_ALE
) == NAND_CTRL_ALE
)
114 addr
|= info
->mask_ale
;
116 nand
->IO_ADDR_W
= (void __iomem __force
*)addr
;
119 if (cmd
!= NAND_CMD_NONE
)
120 iowrite8(cmd
, nand
->IO_ADDR_W
);
123 static void nand_davinci_select_chip(struct mtd_info
*mtd
, int chip
)
125 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
126 uint32_t addr
= info
->ioaddr
;
128 /* maybe kick in a second chipselect */
130 addr
|= info
->mask_chipsel
;
131 info
->current_cs
= addr
;
133 info
->chip
.IO_ADDR_W
= (void __iomem __force
*)addr
;
134 info
->chip
.IO_ADDR_R
= info
->chip
.IO_ADDR_W
;
137 /*----------------------------------------------------------------------*/
140 * 1-bit hardware ECC ... context maintained for each core chipselect
143 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info
*mtd
)
145 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
147 return davinci_nand_readl(info
, NANDF1ECC_OFFSET
148 + 4 * info
->core_chipsel
);
151 static void nand_davinci_hwctl_1bit(struct mtd_info
*mtd
, int mode
)
153 struct davinci_nand_info
*info
;
157 info
= to_davinci_nand(mtd
);
159 /* Reset ECC hardware */
160 nand_davinci_readecc_1bit(mtd
);
162 spin_lock_irqsave(&davinci_nand_lock
, flags
);
164 /* Restart ECC hardware */
165 nandcfr
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
166 nandcfr
|= BIT(8 + info
->core_chipsel
);
167 davinci_nand_writel(info
, NANDFCR_OFFSET
, nandcfr
);
169 spin_unlock_irqrestore(&davinci_nand_lock
, flags
);
173 * Read hardware ECC value and pack into three bytes
175 static int nand_davinci_calculate_1bit(struct mtd_info
*mtd
,
176 const u_char
*dat
, u_char
*ecc_code
)
178 unsigned int ecc_val
= nand_davinci_readecc_1bit(mtd
);
179 unsigned int ecc24
= (ecc_val
& 0x0fff) | ((ecc_val
& 0x0fff0000) >> 4);
181 /* invert so that erased block ecc is correct */
183 ecc_code
[0] = (u_char
)(ecc24
);
184 ecc_code
[1] = (u_char
)(ecc24
>> 8);
185 ecc_code
[2] = (u_char
)(ecc24
>> 16);
190 static int nand_davinci_correct_1bit(struct mtd_info
*mtd
, u_char
*dat
,
191 u_char
*read_ecc
, u_char
*calc_ecc
)
193 struct nand_chip
*chip
= mtd
->priv
;
194 uint32_t eccNand
= read_ecc
[0] | (read_ecc
[1] << 8) |
196 uint32_t eccCalc
= calc_ecc
[0] | (calc_ecc
[1] << 8) |
198 uint32_t diff
= eccCalc
^ eccNand
;
201 if ((((diff
>> 12) ^ diff
) & 0xfff) == 0xfff) {
202 /* Correctable error */
203 if ((diff
>> (12 + 3)) < chip
->ecc
.size
) {
204 dat
[diff
>> (12 + 3)] ^= BIT((diff
>> 12) & 7);
209 } else if (!(diff
& (diff
- 1))) {
210 /* Single bit ECC error in the ECC itself,
214 /* Uncorrectable error */
222 /*----------------------------------------------------------------------*/
225 * 4-bit hardware ECC ... context maintained over entire AEMIF
227 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
228 * since that forces use of a problematic "infix OOB" layout.
229 * Among other things, it trashes manufacturer bad block markers.
230 * Also, and specific to this hardware, it ECC-protects the "prepad"
231 * in the OOB ... while having ECC protection for parts of OOB would
232 * seem useful, the current MTD stack sometimes wants to update the
233 * OOB without recomputing ECC.
236 static void nand_davinci_hwctl_4bit(struct mtd_info
*mtd
, int mode
)
238 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
242 spin_lock_irqsave(&davinci_nand_lock
, flags
);
244 /* Start 4-bit ECC calculation for read/write */
245 val
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
247 val
|= (info
->core_chipsel
<< 4) | BIT(12);
248 davinci_nand_writel(info
, NANDFCR_OFFSET
, val
);
250 info
->is_readmode
= (mode
== NAND_ECC_READ
);
252 spin_unlock_irqrestore(&davinci_nand_lock
, flags
);
255 /* Read raw ECC code after writing to NAND. */
257 nand_davinci_readecc_4bit(struct davinci_nand_info
*info
, u32 code
[4])
259 const u32 mask
= 0x03ff03ff;
261 code
[0] = davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
) & mask
;
262 code
[1] = davinci_nand_readl(info
, NAND_4BIT_ECC2_OFFSET
) & mask
;
263 code
[2] = davinci_nand_readl(info
, NAND_4BIT_ECC3_OFFSET
) & mask
;
264 code
[3] = davinci_nand_readl(info
, NAND_4BIT_ECC4_OFFSET
) & mask
;
267 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
268 static int nand_davinci_calculate_4bit(struct mtd_info
*mtd
,
269 const u_char
*dat
, u_char
*ecc_code
)
271 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
275 /* After a read, terminate ECC calculation by a dummy read
276 * of some 4-bit ECC register. ECC covers everything that
277 * was read; correct() just uses the hardware state, so
278 * ecc_code is not needed.
280 if (info
->is_readmode
) {
281 davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
);
285 /* Pack eight raw 10-bit ecc values into ten bytes, making
286 * two passes which each convert four values (in upper and
287 * lower halves of two 32-bit words) into five bytes. The
288 * ROM boot loader uses this same packing scheme.
290 nand_davinci_readecc_4bit(info
, raw_ecc
);
291 for (i
= 0, p
= raw_ecc
; i
< 2; i
++, p
+= 2) {
292 *ecc_code
++ = p
[0] & 0xff;
293 *ecc_code
++ = ((p
[0] >> 8) & 0x03) | ((p
[0] >> 14) & 0xfc);
294 *ecc_code
++ = ((p
[0] >> 22) & 0x0f) | ((p
[1] << 4) & 0xf0);
295 *ecc_code
++ = ((p
[1] >> 4) & 0x3f) | ((p
[1] >> 10) & 0xc0);
296 *ecc_code
++ = (p
[1] >> 18) & 0xff;
302 /* Correct up to 4 bits in data we just read, using state left in the
303 * hardware plus the ecc_code computed when it was first written.
305 static int nand_davinci_correct_4bit(struct mtd_info
*mtd
,
306 u_char
*data
, u_char
*ecc_code
, u_char
*null
)
309 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
310 unsigned short ecc10
[8];
311 unsigned short *ecc16
;
313 unsigned num_errors
, corrected
;
315 /* All bytes 0xff? It's an erased page; ignore its ECC. */
316 for (i
= 0; i
< 10; i
++) {
317 if (ecc_code
[i
] != 0xff)
323 /* Unpack ten bytes into eight 10 bit values. We know we're
324 * little-endian, and use type punning for less shifting/masking.
326 if (WARN_ON(0x01 & (unsigned) ecc_code
))
328 ecc16
= (unsigned short *)ecc_code
;
330 ecc10
[0] = (ecc16
[0] >> 0) & 0x3ff;
331 ecc10
[1] = ((ecc16
[0] >> 10) & 0x3f) | ((ecc16
[1] << 6) & 0x3c0);
332 ecc10
[2] = (ecc16
[1] >> 4) & 0x3ff;
333 ecc10
[3] = ((ecc16
[1] >> 14) & 0x3) | ((ecc16
[2] << 2) & 0x3fc);
334 ecc10
[4] = (ecc16
[2] >> 8) | ((ecc16
[3] << 8) & 0x300);
335 ecc10
[5] = (ecc16
[3] >> 2) & 0x3ff;
336 ecc10
[6] = ((ecc16
[3] >> 12) & 0xf) | ((ecc16
[4] << 4) & 0x3f0);
337 ecc10
[7] = (ecc16
[4] >> 6) & 0x3ff;
339 /* Tell ECC controller about the expected ECC codes. */
340 for (i
= 7; i
>= 0; i
--)
341 davinci_nand_writel(info
, NAND_4BIT_ECC_LOAD_OFFSET
, ecc10
[i
]);
343 /* Allow time for syndrome calculation ... then read it.
344 * A syndrome of all zeroes 0 means no detected errors.
346 davinci_nand_readl(info
, NANDFSR_OFFSET
);
347 nand_davinci_readecc_4bit(info
, syndrome
);
348 if (!(syndrome
[0] | syndrome
[1] | syndrome
[2] | syndrome
[3]))
351 /* Start address calculation, and wait for it to complete.
352 * We _could_ start reading more data while this is working,
353 * to speed up the overall page read.
355 davinci_nand_writel(info
, NANDFCR_OFFSET
,
356 davinci_nand_readl(info
, NANDFCR_OFFSET
) | BIT(13));
358 u32 fsr
= davinci_nand_readl(info
, NANDFSR_OFFSET
);
360 switch ((fsr
>> 8) & 0x0f) {
361 case 0: /* no error, should not happen */
363 case 1: /* five or more errors detected */
365 case 2: /* error addresses computed */
367 num_errors
= 1 + ((fsr
>> 16) & 0x03);
369 default: /* still working on it */
376 /* correct each error */
377 for (i
= 0, corrected
= 0; i
< num_errors
; i
++) {
378 int error_address
, error_value
;
381 error_address
= davinci_nand_readl(info
,
382 NAND_ERR_ADD2_OFFSET
);
383 error_value
= davinci_nand_readl(info
,
384 NAND_ERR_ERRVAL2_OFFSET
);
386 error_address
= davinci_nand_readl(info
,
387 NAND_ERR_ADD1_OFFSET
);
388 error_value
= davinci_nand_readl(info
,
389 NAND_ERR_ERRVAL1_OFFSET
);
393 error_address
>>= 16;
396 error_address
&= 0x3ff;
397 error_address
= (512 + 7) - error_address
;
399 if (error_address
< 512) {
400 data
[error_address
] ^= error_value
;
408 /*----------------------------------------------------------------------*/
411 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
412 * how these chips are normally wired. This translates to both 8 and 16
413 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
415 * For now we assume that configuration, or any other one which ignores
416 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
417 * and have that transparently morphed into multiple NAND operations.
419 static void nand_davinci_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
421 struct nand_chip
*chip
= mtd
->priv
;
423 if ((0x03 & ((unsigned)buf
)) == 0 && (0x03 & len
) == 0)
424 ioread32_rep(chip
->IO_ADDR_R
, buf
, len
>> 2);
425 else if ((0x01 & ((unsigned)buf
)) == 0 && (0x01 & len
) == 0)
426 ioread16_rep(chip
->IO_ADDR_R
, buf
, len
>> 1);
428 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
431 static void nand_davinci_write_buf(struct mtd_info
*mtd
,
432 const uint8_t *buf
, int len
)
434 struct nand_chip
*chip
= mtd
->priv
;
436 if ((0x03 & ((unsigned)buf
)) == 0 && (0x03 & len
) == 0)
437 iowrite32_rep(chip
->IO_ADDR_R
, buf
, len
>> 2);
438 else if ((0x01 & ((unsigned)buf
)) == 0 && (0x01 & len
) == 0)
439 iowrite16_rep(chip
->IO_ADDR_R
, buf
, len
>> 1);
441 iowrite8_rep(chip
->IO_ADDR_R
, buf
, len
);
445 * Check hardware register for wait status. Returns 1 if device is ready,
446 * 0 if it is still busy.
448 static int nand_davinci_dev_ready(struct mtd_info
*mtd
)
450 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
452 return davinci_nand_readl(info
, NANDFSR_OFFSET
) & BIT(0);
455 static void __init
nand_dm6446evm_flash_init(struct davinci_nand_info
*info
)
457 uint32_t regval
, a1cr
;
460 * NAND FLASH timings @ PLL1 == 459 MHz
461 * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz
462 * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns
465 | (0 << 31) /* selectStrobe */
466 | (0 << 30) /* extWait (never with NAND) */
467 | (1 << 26) /* writeSetup 10 ns */
468 | (3 << 20) /* writeStrobe 40 ns */
469 | (1 << 17) /* writeHold 10 ns */
470 | (0 << 13) /* readSetup 10 ns */
471 | (3 << 7) /* readStrobe 60 ns */
472 | (0 << 4) /* readHold 10 ns */
473 | (3 << 2) /* turnAround ?? ns */
474 | (0 << 0) /* asyncSize 8-bit bus */
476 a1cr
= davinci_nand_readl(info
, A1CR_OFFSET
);
477 if (a1cr
!= regval
) {
478 dev_dbg(info
->dev
, "Warning: NAND config: Set A1CR " \
479 "reg to 0x%08x, was 0x%08x, should be done by " \
480 "bootloader.\n", regval
, a1cr
);
481 davinci_nand_writel(info
, A1CR_OFFSET
, regval
);
485 /*----------------------------------------------------------------------*/
487 /* An ECC layout for using 4-bit ECC with small-page flash, storing
488 * ten ECC bytes plus the manufacturer's bad block marker byte, and
489 * and not overlapping the default BBT markers.
491 static struct nand_ecclayout hwecc4_small __initconst
= {
493 .eccpos
= { 0, 1, 2, 3, 4,
494 /* offset 5 holds the badblock marker */
498 {.offset
= 8, .length
= 5, },
504 static int __init
nand_davinci_probe(struct platform_device
*pdev
)
506 struct davinci_nand_pdata
*pdata
= pdev
->dev
.platform_data
;
507 struct davinci_nand_info
*info
;
508 struct resource
*res1
;
509 struct resource
*res2
;
514 nand_ecc_modes_t ecc_mode
;
516 /* insist on board-specific configuration */
520 /* which external chipselect will we be managing? */
521 if (pdev
->id
< 0 || pdev
->id
> 3)
524 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
526 dev_err(&pdev
->dev
, "unable to allocate memory\n");
531 platform_set_drvdata(pdev
, info
);
533 res1
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
534 res2
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
535 if (!res1
|| !res2
) {
536 dev_err(&pdev
->dev
, "resource missing\n");
541 vaddr
= ioremap(res1
->start
, res1
->end
- res1
->start
);
542 base
= ioremap(res2
->start
, res2
->end
- res2
->start
);
543 if (!vaddr
|| !base
) {
544 dev_err(&pdev
->dev
, "ioremap failed\n");
549 info
->dev
= &pdev
->dev
;
553 info
->mtd
.priv
= &info
->chip
;
554 info
->mtd
.name
= dev_name(&pdev
->dev
);
555 info
->mtd
.owner
= THIS_MODULE
;
557 info
->mtd
.dev
.parent
= &pdev
->dev
;
559 info
->chip
.IO_ADDR_R
= vaddr
;
560 info
->chip
.IO_ADDR_W
= vaddr
;
561 info
->chip
.chip_delay
= 0;
562 info
->chip
.select_chip
= nand_davinci_select_chip
;
564 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
565 info
->chip
.options
= pdata
->options
;
567 info
->ioaddr
= (uint32_t __force
) vaddr
;
569 info
->current_cs
= info
->ioaddr
;
570 info
->core_chipsel
= pdev
->id
;
571 info
->mask_chipsel
= pdata
->mask_chipsel
;
573 /* use nandboot-capable ALE/CLE masks by default */
574 info
->mask_ale
= pdata
->mask_cle
? : MASK_ALE
;
575 info
->mask_cle
= pdata
->mask_cle
? : MASK_CLE
;
577 /* Set address of hardware control function */
578 info
->chip
.cmd_ctrl
= nand_davinci_hwcontrol
;
579 info
->chip
.dev_ready
= nand_davinci_dev_ready
;
581 /* Speed up buffer I/O */
582 info
->chip
.read_buf
= nand_davinci_read_buf
;
583 info
->chip
.write_buf
= nand_davinci_write_buf
;
585 /* Use board-specific ECC config */
586 ecc_mode
= pdata
->ecc_mode
;
595 if (pdata
->ecc_bits
== 4) {
596 /* No sanity checks: CPUs must support this,
597 * and the chips may not use NAND_BUSWIDTH_16.
600 /* No sharing 4-bit hardware between chipselects yet */
601 spin_lock_irq(&davinci_nand_lock
);
606 spin_unlock_irq(&davinci_nand_lock
);
611 info
->chip
.ecc
.calculate
= nand_davinci_calculate_4bit
;
612 info
->chip
.ecc
.correct
= nand_davinci_correct_4bit
;
613 info
->chip
.ecc
.hwctl
= nand_davinci_hwctl_4bit
;
614 info
->chip
.ecc
.bytes
= 10;
616 info
->chip
.ecc
.calculate
= nand_davinci_calculate_1bit
;
617 info
->chip
.ecc
.correct
= nand_davinci_correct_1bit
;
618 info
->chip
.ecc
.hwctl
= nand_davinci_hwctl_1bit
;
619 info
->chip
.ecc
.bytes
= 3;
621 info
->chip
.ecc
.size
= 512;
627 info
->chip
.ecc
.mode
= ecc_mode
;
629 info
->clk
= clk_get(&pdev
->dev
, "aemif");
630 if (IS_ERR(info
->clk
)) {
631 ret
= PTR_ERR(info
->clk
);
632 dev_dbg(&pdev
->dev
, "unable to get AEMIF clock, err %d\n", ret
);
636 ret
= clk_enable(info
->clk
);
638 dev_dbg(&pdev
->dev
, "unable to enable AEMIF clock, err %d\n",
643 /* EMIF timings should normally be set by the boot loader,
644 * especially after boot-from-NAND. The *only* reason to
645 * have this special casing for the DM6446 EVM is to work
646 * with boot-from-NOR ... with CS0 manually re-jumpered
647 * (after startup) so it addresses the NAND flash, not NOR.
648 * Even for dev boards, that's unusually rude...
650 if (machine_is_davinci_evm())
651 nand_dm6446evm_flash_init(info
);
653 spin_lock_irq(&davinci_nand_lock
);
655 /* put CSxNAND into NAND mode */
656 val
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
657 val
|= BIT(info
->core_chipsel
);
658 davinci_nand_writel(info
, NANDFCR_OFFSET
, val
);
660 spin_unlock_irq(&davinci_nand_lock
);
662 /* Scan to find existence of the device(s) */
663 ret
= nand_scan_ident(&info
->mtd
, pdata
->mask_chipsel
? 2 : 1);
665 dev_dbg(&pdev
->dev
, "no NAND chip(s) found\n");
669 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
670 * is OK, but it allocates 6 bytes when only 3 are needed (for
671 * each 512 bytes). For the 4-bit HW ECC, that default is not
672 * usable: 10 bytes are needed, not 6.
674 if (pdata
->ecc_bits
== 4) {
675 int chunks
= info
->mtd
.writesize
/ 512;
677 if (!chunks
|| info
->mtd
.oobsize
< 16) {
678 dev_dbg(&pdev
->dev
, "too small\n");
683 /* For small page chips, preserve the manufacturer's
684 * badblock marking data ... and make sure a flash BBT
685 * table marker fits in the free bytes.
688 info
->ecclayout
= hwecc4_small
;
689 info
->ecclayout
.oobfree
[1].length
=
690 info
->mtd
.oobsize
- 16;
694 /* For large page chips we'll be wanting to use a
695 * not-yet-implemented mode that reads OOB data
696 * before reading the body of the page, to avoid
697 * the "infix OOB" model of NAND_ECC_HW_SYNDROME
698 * (and preserve manufacturer badblock markings).
700 dev_warn(&pdev
->dev
, "no 4-bit ECC support yet "
701 "for large page NAND\n");
706 info
->chip
.ecc
.layout
= &info
->ecclayout
;
709 ret
= nand_scan_tail(&info
->mtd
);
713 if (mtd_has_partitions()) {
714 struct mtd_partition
*mtd_parts
= NULL
;
715 int mtd_parts_nb
= 0;
717 if (mtd_has_cmdlinepart()) {
718 static const char *probes
[] __initconst
=
719 { "cmdlinepart", NULL
};
721 mtd_parts_nb
= parse_mtd_partitions(&info
->mtd
, probes
,
725 if (mtd_parts_nb
<= 0) {
726 mtd_parts
= pdata
->parts
;
727 mtd_parts_nb
= pdata
->nr_parts
;
730 /* Register any partitions */
731 if (mtd_parts_nb
> 0) {
732 ret
= add_mtd_partitions(&info
->mtd
,
733 mtd_parts
, mtd_parts_nb
);
735 info
->partitioned
= true;
738 } else if (pdata
->nr_parts
) {
739 dev_warn(&pdev
->dev
, "ignoring %d default partitions on %s\n",
740 pdata
->nr_parts
, info
->mtd
.name
);
743 /* If there's no partition info, just package the whole chip
744 * as a single MTD device.
746 if (!info
->partitioned
)
747 ret
= add_mtd_device(&info
->mtd
) ? -ENODEV
: 0;
752 val
= davinci_nand_readl(info
, NRCSR_OFFSET
);
753 dev_info(&pdev
->dev
, "controller rev. %d.%d\n",
754 (val
>> 8) & 0xff, val
& 0xff);
759 clk_disable(info
->clk
);
764 spin_lock_irq(&davinci_nand_lock
);
765 if (ecc_mode
== NAND_ECC_HW_SYNDROME
)
767 spin_unlock_irq(&davinci_nand_lock
);
782 static int __exit
nand_davinci_remove(struct platform_device
*pdev
)
784 struct davinci_nand_info
*info
= platform_get_drvdata(pdev
);
787 if (mtd_has_partitions() && info
->partitioned
)
788 status
= del_mtd_partitions(&info
->mtd
);
790 status
= del_mtd_device(&info
->mtd
);
792 spin_lock_irq(&davinci_nand_lock
);
793 if (info
->chip
.ecc
.mode
== NAND_ECC_HW_SYNDROME
)
795 spin_unlock_irq(&davinci_nand_lock
);
798 iounmap(info
->vaddr
);
800 nand_release(&info
->mtd
);
802 clk_disable(info
->clk
);
810 static struct platform_driver nand_davinci_driver
= {
811 .remove
= __exit_p(nand_davinci_remove
),
813 .name
= "davinci_nand",
816 MODULE_ALIAS("platform:davinci_nand");
818 static int __init
nand_davinci_init(void)
820 return platform_driver_probe(&nand_davinci_driver
, nand_davinci_probe
);
822 module_init(nand_davinci_init
);
824 static void __exit
nand_davinci_exit(void)
826 platform_driver_unregister(&nand_davinci_driver
);
828 module_exit(nand_davinci_exit
);
830 MODULE_LICENSE("GPL");
831 MODULE_AUTHOR("Texas Instruments");
832 MODULE_DESCRIPTION("Davinci NAND flash driver");