2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
61 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67 are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
70 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
75 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
77 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
79 return mm_to_dma_pfn(page_to_pfn(pg
));
81 static inline unsigned long virt_to_dma_pfn(void *p
)
83 return page_to_dma_pfn(virt_to_page(p
));
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu
**g_iommus
;
89 static int rwbf_quirk
;
94 * 12-63: Context Ptr (12 - (haw-1))
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry
*root
)
104 return (root
->val
& 1);
106 static inline void set_root_present(struct root_entry
*root
)
110 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
112 root
->val
|= value
& VTD_PAGE_MASK
;
115 static inline struct context_entry
*
116 get_context_addr_from_root(struct root_entry
*root
)
118 return (struct context_entry
*)
119 (root_present(root
)?phys_to_virt(
120 root
->val
& VTD_PAGE_MASK
) :
127 * 1: fault processing disable
128 * 2-3: translation type
129 * 12-63: address space root
135 struct context_entry
{
140 static inline bool context_present(struct context_entry
*context
)
142 return (context
->lo
& 1);
144 static inline void context_set_present(struct context_entry
*context
)
149 static inline void context_set_fault_enable(struct context_entry
*context
)
151 context
->lo
&= (((u64
)-1) << 2) | 1;
154 static inline void context_set_translation_type(struct context_entry
*context
,
157 context
->lo
&= (((u64
)-1) << 4) | 3;
158 context
->lo
|= (value
& 3) << 2;
161 static inline void context_set_address_root(struct context_entry
*context
,
164 context
->lo
|= value
& VTD_PAGE_MASK
;
167 static inline void context_set_address_width(struct context_entry
*context
,
170 context
->hi
|= value
& 7;
173 static inline void context_set_domain_id(struct context_entry
*context
,
176 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
179 static inline void context_clear_entry(struct context_entry
*context
)
192 * 12-63: Host physcial address
198 static inline void dma_clear_pte(struct dma_pte
*pte
)
203 static inline void dma_set_pte_readable(struct dma_pte
*pte
)
205 pte
->val
|= DMA_PTE_READ
;
208 static inline void dma_set_pte_writable(struct dma_pte
*pte
)
210 pte
->val
|= DMA_PTE_WRITE
;
213 static inline void dma_set_pte_snp(struct dma_pte
*pte
)
215 pte
->val
|= DMA_PTE_SNP
;
218 static inline void dma_set_pte_prot(struct dma_pte
*pte
, unsigned long prot
)
220 pte
->val
= (pte
->val
& ~3) | (prot
& 3);
223 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
226 return pte
->val
& VTD_PAGE_MASK
;
228 /* Must have a full atomic 64-bit read */
229 return __cmpxchg64(pte
, 0ULL, 0ULL) & VTD_PAGE_MASK
;
233 static inline void dma_set_pte_pfn(struct dma_pte
*pte
, unsigned long pfn
)
235 pte
->val
|= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
238 static inline bool dma_pte_present(struct dma_pte
*pte
)
240 return (pte
->val
& 3) != 0;
243 static inline int first_pte_in_page(struct dma_pte
*pte
)
245 return !((unsigned long)pte
& ~VTD_PAGE_MASK
);
249 * This domain is a statically identity mapping domain.
250 * 1. This domain creats a static 1:1 mapping to all usable memory.
251 * 2. It maps to each iommu if successful.
252 * 3. Each iommu mapps to this domain if successful.
254 struct dmar_domain
*si_domain
;
256 /* devices under the same p2p bridge are owned in one domain */
257 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
259 /* domain represents a virtual machine, more than one devices
260 * across iommus may be owned in one domain, e.g. kvm guest.
262 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
264 /* si_domain contains mulitple devices */
265 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
268 int id
; /* domain id */
269 unsigned long iommu_bmp
; /* bitmap of iommus this domain uses*/
271 struct list_head devices
; /* all devices' list */
272 struct iova_domain iovad
; /* iova's that belong to this domain */
274 struct dma_pte
*pgd
; /* virtual address */
275 int gaw
; /* max guest address width */
277 /* adjusted guest address width, 0 is level 2 30-bit */
280 int flags
; /* flags to find out type of domain */
282 int iommu_coherency
;/* indicate coherency of iommu access */
283 int iommu_snooping
; /* indicate snooping control feature*/
284 int iommu_count
; /* reference count of iommu */
285 spinlock_t iommu_lock
; /* protect iommu set in domain */
286 u64 max_addr
; /* maximum mapped address */
289 /* PCI domain-device relationship */
290 struct device_domain_info
{
291 struct list_head link
; /* link to domain siblings */
292 struct list_head global
; /* link to global list */
293 int segment
; /* PCI domain */
294 u8 bus
; /* PCI bus number */
295 u8 devfn
; /* PCI devfn number */
296 struct pci_dev
*dev
; /* it's NULL for PCIE-to-PCI bridge */
297 struct intel_iommu
*iommu
; /* IOMMU used by this device */
298 struct dmar_domain
*domain
; /* pointer to domain */
301 static void flush_unmaps_timeout(unsigned long data
);
303 DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
305 #define HIGH_WATER_MARK 250
306 struct deferred_flush_tables
{
308 struct iova
*iova
[HIGH_WATER_MARK
];
309 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
312 static struct deferred_flush_tables
*deferred_flush
;
314 /* bitmap for indexing intel_iommus */
315 static int g_num_of_iommus
;
317 static DEFINE_SPINLOCK(async_umap_flush_lock
);
318 static LIST_HEAD(unmaps_to_do
);
321 static long list_size
;
323 static void domain_remove_dev_info(struct dmar_domain
*domain
);
325 #ifdef CONFIG_DMAR_DEFAULT_ON
326 int dmar_disabled
= 0;
328 int dmar_disabled
= 1;
329 #endif /*CONFIG_DMAR_DEFAULT_ON*/
331 static int __initdata dmar_map_gfx
= 1;
332 static int dmar_forcedac
;
333 static int intel_iommu_strict
;
335 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
336 static DEFINE_SPINLOCK(device_domain_lock
);
337 static LIST_HEAD(device_domain_list
);
339 static struct iommu_ops intel_iommu_ops
;
341 static int __init
intel_iommu_setup(char *str
)
346 if (!strncmp(str
, "on", 2)) {
348 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
349 } else if (!strncmp(str
, "off", 3)) {
351 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
352 } else if (!strncmp(str
, "igfx_off", 8)) {
355 "Intel-IOMMU: disable GFX device mapping\n");
356 } else if (!strncmp(str
, "forcedac", 8)) {
358 "Intel-IOMMU: Forcing DAC for PCI devices\n");
360 } else if (!strncmp(str
, "strict", 6)) {
362 "Intel-IOMMU: disable batched IOTLB flush\n");
363 intel_iommu_strict
= 1;
366 str
+= strcspn(str
, ",");
372 __setup("intel_iommu=", intel_iommu_setup
);
374 static struct kmem_cache
*iommu_domain_cache
;
375 static struct kmem_cache
*iommu_devinfo_cache
;
376 static struct kmem_cache
*iommu_iova_cache
;
378 static inline void *iommu_kmem_cache_alloc(struct kmem_cache
*cachep
)
383 /* trying to avoid low memory issues */
384 flags
= current
->flags
& PF_MEMALLOC
;
385 current
->flags
|= PF_MEMALLOC
;
386 vaddr
= kmem_cache_alloc(cachep
, GFP_ATOMIC
);
387 current
->flags
&= (~PF_MEMALLOC
| flags
);
392 static inline void *alloc_pgtable_page(void)
397 /* trying to avoid low memory issues */
398 flags
= current
->flags
& PF_MEMALLOC
;
399 current
->flags
|= PF_MEMALLOC
;
400 vaddr
= (void *)get_zeroed_page(GFP_ATOMIC
);
401 current
->flags
&= (~PF_MEMALLOC
| flags
);
405 static inline void free_pgtable_page(void *vaddr
)
407 free_page((unsigned long)vaddr
);
410 static inline void *alloc_domain_mem(void)
412 return iommu_kmem_cache_alloc(iommu_domain_cache
);
415 static void free_domain_mem(void *vaddr
)
417 kmem_cache_free(iommu_domain_cache
, vaddr
);
420 static inline void * alloc_devinfo_mem(void)
422 return iommu_kmem_cache_alloc(iommu_devinfo_cache
);
425 static inline void free_devinfo_mem(void *vaddr
)
427 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
430 struct iova
*alloc_iova_mem(void)
432 return iommu_kmem_cache_alloc(iommu_iova_cache
);
435 void free_iova_mem(struct iova
*iova
)
437 kmem_cache_free(iommu_iova_cache
, iova
);
441 static inline int width_to_agaw(int width
);
443 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
448 sagaw
= cap_sagaw(iommu
->cap
);
449 for (agaw
= width_to_agaw(max_gaw
);
451 if (test_bit(agaw
, &sagaw
))
459 * Calculate max SAGAW for each iommu.
461 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
463 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
467 * calculate agaw for each iommu.
468 * "SAGAW" may be different across iommus, use a default agaw, and
469 * get a supported less agaw for iommus that don't support the default agaw.
471 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
473 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
476 /* This functionin only returns single iommu in a domain */
477 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
481 /* si_domain and vm domain should not get here. */
482 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
483 BUG_ON(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
);
485 iommu_id
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
486 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
489 return g_iommus
[iommu_id
];
492 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
496 domain
->iommu_coherency
= 1;
498 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
499 for (; i
< g_num_of_iommus
; ) {
500 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
501 domain
->iommu_coherency
= 0;
504 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
508 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
512 domain
->iommu_snooping
= 1;
514 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
515 for (; i
< g_num_of_iommus
; ) {
516 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
517 domain
->iommu_snooping
= 0;
520 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
524 /* Some capabilities may be different across iommus */
525 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
527 domain_update_iommu_coherency(domain
);
528 domain_update_iommu_snooping(domain
);
531 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
533 struct dmar_drhd_unit
*drhd
= NULL
;
536 for_each_drhd_unit(drhd
) {
539 if (segment
!= drhd
->segment
)
542 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
543 if (drhd
->devices
[i
] &&
544 drhd
->devices
[i
]->bus
->number
== bus
&&
545 drhd
->devices
[i
]->devfn
== devfn
)
547 if (drhd
->devices
[i
] &&
548 drhd
->devices
[i
]->subordinate
&&
549 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
550 drhd
->devices
[i
]->subordinate
->subordinate
>= bus
)
554 if (drhd
->include_all
)
561 static void domain_flush_cache(struct dmar_domain
*domain
,
562 void *addr
, int size
)
564 if (!domain
->iommu_coherency
)
565 clflush_cache_range(addr
, size
);
568 /* Gets context entry for a given bus and devfn */
569 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
572 struct root_entry
*root
;
573 struct context_entry
*context
;
574 unsigned long phy_addr
;
577 spin_lock_irqsave(&iommu
->lock
, flags
);
578 root
= &iommu
->root_entry
[bus
];
579 context
= get_context_addr_from_root(root
);
581 context
= (struct context_entry
*)alloc_pgtable_page();
583 spin_unlock_irqrestore(&iommu
->lock
, flags
);
586 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
587 phy_addr
= virt_to_phys((void *)context
);
588 set_root_value(root
, phy_addr
);
589 set_root_present(root
);
590 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
592 spin_unlock_irqrestore(&iommu
->lock
, flags
);
593 return &context
[devfn
];
596 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
598 struct root_entry
*root
;
599 struct context_entry
*context
;
603 spin_lock_irqsave(&iommu
->lock
, flags
);
604 root
= &iommu
->root_entry
[bus
];
605 context
= get_context_addr_from_root(root
);
610 ret
= context_present(&context
[devfn
]);
612 spin_unlock_irqrestore(&iommu
->lock
, flags
);
616 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
618 struct root_entry
*root
;
619 struct context_entry
*context
;
622 spin_lock_irqsave(&iommu
->lock
, flags
);
623 root
= &iommu
->root_entry
[bus
];
624 context
= get_context_addr_from_root(root
);
626 context_clear_entry(&context
[devfn
]);
627 __iommu_flush_cache(iommu
, &context
[devfn
], \
630 spin_unlock_irqrestore(&iommu
->lock
, flags
);
633 static void free_context_table(struct intel_iommu
*iommu
)
635 struct root_entry
*root
;
638 struct context_entry
*context
;
640 spin_lock_irqsave(&iommu
->lock
, flags
);
641 if (!iommu
->root_entry
) {
644 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
645 root
= &iommu
->root_entry
[i
];
646 context
= get_context_addr_from_root(root
);
648 free_pgtable_page(context
);
650 free_pgtable_page(iommu
->root_entry
);
651 iommu
->root_entry
= NULL
;
653 spin_unlock_irqrestore(&iommu
->lock
, flags
);
656 /* page table handling */
657 #define LEVEL_STRIDE (9)
658 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
660 static inline int agaw_to_level(int agaw
)
665 static inline int agaw_to_width(int agaw
)
667 return 30 + agaw
* LEVEL_STRIDE
;
671 static inline int width_to_agaw(int width
)
673 return (width
- 30) / LEVEL_STRIDE
;
676 static inline unsigned int level_to_offset_bits(int level
)
678 return (level
- 1) * LEVEL_STRIDE
;
681 static inline int pfn_level_offset(unsigned long pfn
, int level
)
683 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
686 static inline unsigned long level_mask(int level
)
688 return -1UL << level_to_offset_bits(level
);
691 static inline unsigned long level_size(int level
)
693 return 1UL << level_to_offset_bits(level
);
696 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
698 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
701 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
704 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
705 struct dma_pte
*parent
, *pte
= NULL
;
706 int level
= agaw_to_level(domain
->agaw
);
709 BUG_ON(!domain
->pgd
);
710 BUG_ON(addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
);
711 parent
= domain
->pgd
;
716 offset
= pfn_level_offset(pfn
, level
);
717 pte
= &parent
[offset
];
721 if (!dma_pte_present(pte
)) {
724 tmp_page
= alloc_pgtable_page();
729 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
730 pteval
= (virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
731 if (cmpxchg64(&pte
->val
, 0ULL, pteval
)) {
732 /* Someone else set it while we were thinking; use theirs. */
733 free_pgtable_page(tmp_page
);
736 domain_flush_cache(domain
, pte
, sizeof(*pte
));
739 parent
= phys_to_virt(dma_pte_addr(pte
));
746 /* return address's pte at specific level */
747 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
751 struct dma_pte
*parent
, *pte
= NULL
;
752 int total
= agaw_to_level(domain
->agaw
);
755 parent
= domain
->pgd
;
756 while (level
<= total
) {
757 offset
= pfn_level_offset(pfn
, total
);
758 pte
= &parent
[offset
];
762 if (!dma_pte_present(pte
))
764 parent
= phys_to_virt(dma_pte_addr(pte
));
770 /* clear last level pte, a tlb flush should be followed */
771 static void dma_pte_clear_range(struct dmar_domain
*domain
,
772 unsigned long start_pfn
,
773 unsigned long last_pfn
)
775 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
776 struct dma_pte
*first_pte
, *pte
;
778 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
779 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
781 /* we don't need lock here; nobody else touches the iova range */
782 while (start_pfn
<= last_pfn
) {
783 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1);
785 start_pfn
= align_to_level(start_pfn
+ 1, 2);
792 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
794 domain_flush_cache(domain
, first_pte
,
795 (void *)pte
- (void *)first_pte
);
799 /* free page table pages. last level pte should already be cleared */
800 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
801 unsigned long start_pfn
,
802 unsigned long last_pfn
)
804 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
805 struct dma_pte
*first_pte
, *pte
;
806 int total
= agaw_to_level(domain
->agaw
);
810 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
811 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
813 /* We don't need lock here; nobody else touches the iova range */
815 while (level
<= total
) {
816 tmp
= align_to_level(start_pfn
, level
);
818 /* If we can't even clear one PTE at this level, we're done */
819 if (tmp
+ level_size(level
) - 1 > last_pfn
)
822 while (tmp
+ level_size(level
) - 1 <= last_pfn
) {
823 first_pte
= pte
= dma_pfn_level_pte(domain
, tmp
, level
);
825 tmp
= align_to_level(tmp
+ 1, level
+ 1);
829 if (dma_pte_present(pte
)) {
830 free_pgtable_page(phys_to_virt(dma_pte_addr(pte
)));
834 tmp
+= level_size(level
);
835 } while (!first_pte_in_page(pte
) &&
836 tmp
+ level_size(level
) - 1 <= last_pfn
);
838 domain_flush_cache(domain
, first_pte
,
839 (void *)pte
- (void *)first_pte
);
845 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
846 free_pgtable_page(domain
->pgd
);
852 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
854 struct root_entry
*root
;
857 root
= (struct root_entry
*)alloc_pgtable_page();
861 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
863 spin_lock_irqsave(&iommu
->lock
, flags
);
864 iommu
->root_entry
= root
;
865 spin_unlock_irqrestore(&iommu
->lock
, flags
);
870 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
876 addr
= iommu
->root_entry
;
878 spin_lock_irqsave(&iommu
->register_lock
, flag
);
879 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
881 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
883 /* Make sure hardware complete it */
884 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
885 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
887 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
890 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
895 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
898 spin_lock_irqsave(&iommu
->register_lock
, flag
);
899 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
901 /* Make sure hardware complete it */
902 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
903 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
905 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
908 /* return value determine if we need a write buffer flush */
909 static void __iommu_flush_context(struct intel_iommu
*iommu
,
910 u16 did
, u16 source_id
, u8 function_mask
,
917 case DMA_CCMD_GLOBAL_INVL
:
918 val
= DMA_CCMD_GLOBAL_INVL
;
920 case DMA_CCMD_DOMAIN_INVL
:
921 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
923 case DMA_CCMD_DEVICE_INVL
:
924 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
925 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
932 spin_lock_irqsave(&iommu
->register_lock
, flag
);
933 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
935 /* Make sure hardware complete it */
936 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
937 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
939 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
942 /* return value determine if we need a write buffer flush */
943 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
944 u64 addr
, unsigned int size_order
, u64 type
)
946 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
947 u64 val
= 0, val_iva
= 0;
951 case DMA_TLB_GLOBAL_FLUSH
:
952 /* global flush doesn't need set IVA_REG */
953 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
955 case DMA_TLB_DSI_FLUSH
:
956 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
958 case DMA_TLB_PSI_FLUSH
:
959 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
960 /* Note: always flush non-leaf currently */
961 val_iva
= size_order
| addr
;
966 /* Note: set drain read/write */
969 * This is probably to be super secure.. Looks like we can
970 * ignore it without any impact.
972 if (cap_read_drain(iommu
->cap
))
973 val
|= DMA_TLB_READ_DRAIN
;
975 if (cap_write_drain(iommu
->cap
))
976 val
|= DMA_TLB_WRITE_DRAIN
;
978 spin_lock_irqsave(&iommu
->register_lock
, flag
);
979 /* Note: Only uses first TLB reg currently */
981 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
982 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
986 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
988 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
990 /* check IOTLB invalidation granularity */
991 if (DMA_TLB_IAIG(val
) == 0)
992 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
993 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
994 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
995 (unsigned long long)DMA_TLB_IIRG(type
),
996 (unsigned long long)DMA_TLB_IAIG(val
));
999 static struct device_domain_info
*iommu_support_dev_iotlb(
1000 struct dmar_domain
*domain
, int segment
, u8 bus
, u8 devfn
)
1003 unsigned long flags
;
1004 struct device_domain_info
*info
;
1005 struct intel_iommu
*iommu
= device_to_iommu(segment
, bus
, devfn
);
1007 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1013 spin_lock_irqsave(&device_domain_lock
, flags
);
1014 list_for_each_entry(info
, &domain
->devices
, link
)
1015 if (info
->bus
== bus
&& info
->devfn
== devfn
) {
1019 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1021 if (!found
|| !info
->dev
)
1024 if (!pci_find_ext_capability(info
->dev
, PCI_EXT_CAP_ID_ATS
))
1027 if (!dmar_find_matched_atsr_unit(info
->dev
))
1030 info
->iommu
= iommu
;
1035 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1040 pci_enable_ats(info
->dev
, VTD_PAGE_SHIFT
);
1043 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1045 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1048 pci_disable_ats(info
->dev
);
1051 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1052 u64 addr
, unsigned mask
)
1055 unsigned long flags
;
1056 struct device_domain_info
*info
;
1058 spin_lock_irqsave(&device_domain_lock
, flags
);
1059 list_for_each_entry(info
, &domain
->devices
, link
) {
1060 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1063 sid
= info
->bus
<< 8 | info
->devfn
;
1064 qdep
= pci_ats_queue_depth(info
->dev
);
1065 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1067 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1070 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1071 unsigned long pfn
, unsigned int pages
)
1073 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1074 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1079 * Fallback to domain selective flush if no PSI support or the size is
1081 * PSI requires page size to be 2 ^ x, and the base address is naturally
1082 * aligned to the size
1084 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1085 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1088 iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
1092 * In caching mode, domain ID 0 is reserved for non-present to present
1093 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1095 if (!cap_caching_mode(iommu
->cap
) || did
)
1096 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1099 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1102 unsigned long flags
;
1104 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1105 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1106 pmen
&= ~DMA_PMEN_EPM
;
1107 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1109 /* wait for the protected region status bit to clear */
1110 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1111 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1113 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1116 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1119 unsigned long flags
;
1121 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1122 iommu
->gcmd
|= DMA_GCMD_TE
;
1123 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1125 /* Make sure hardware complete it */
1126 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1127 readl
, (sts
& DMA_GSTS_TES
), sts
);
1129 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1133 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1138 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1139 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1140 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1142 /* Make sure hardware complete it */
1143 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1144 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1146 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1151 static int iommu_init_domains(struct intel_iommu
*iommu
)
1153 unsigned long ndomains
;
1154 unsigned long nlongs
;
1156 ndomains
= cap_ndoms(iommu
->cap
);
1157 pr_debug("Number of Domains supportd <%ld>\n", ndomains
);
1158 nlongs
= BITS_TO_LONGS(ndomains
);
1160 /* TBD: there might be 64K domains,
1161 * consider other allocation for future chip
1163 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1164 if (!iommu
->domain_ids
) {
1165 printk(KERN_ERR
"Allocating domain id array failed\n");
1168 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1170 if (!iommu
->domains
) {
1171 printk(KERN_ERR
"Allocating domain array failed\n");
1172 kfree(iommu
->domain_ids
);
1176 spin_lock_init(&iommu
->lock
);
1179 * if Caching mode is set, then invalid translations are tagged
1180 * with domainid 0. Hence we need to pre-allocate it.
1182 if (cap_caching_mode(iommu
->cap
))
1183 set_bit(0, iommu
->domain_ids
);
1188 static void domain_exit(struct dmar_domain
*domain
);
1189 static void vm_domain_exit(struct dmar_domain
*domain
);
1191 void free_dmar_iommu(struct intel_iommu
*iommu
)
1193 struct dmar_domain
*domain
;
1195 unsigned long flags
;
1197 i
= find_first_bit(iommu
->domain_ids
, cap_ndoms(iommu
->cap
));
1198 for (; i
< cap_ndoms(iommu
->cap
); ) {
1199 domain
= iommu
->domains
[i
];
1200 clear_bit(i
, iommu
->domain_ids
);
1202 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1203 if (--domain
->iommu_count
== 0) {
1204 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1205 vm_domain_exit(domain
);
1207 domain_exit(domain
);
1209 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1211 i
= find_next_bit(iommu
->domain_ids
,
1212 cap_ndoms(iommu
->cap
), i
+1);
1215 if (iommu
->gcmd
& DMA_GCMD_TE
)
1216 iommu_disable_translation(iommu
);
1219 set_irq_data(iommu
->irq
, NULL
);
1220 /* This will mask the irq */
1221 free_irq(iommu
->irq
, iommu
);
1222 destroy_irq(iommu
->irq
);
1225 kfree(iommu
->domains
);
1226 kfree(iommu
->domain_ids
);
1228 g_iommus
[iommu
->seq_id
] = NULL
;
1230 /* if all iommus are freed, free g_iommus */
1231 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1236 if (i
== g_num_of_iommus
)
1239 /* free context mapping */
1240 free_context_table(iommu
);
1243 static struct dmar_domain
*alloc_domain(void)
1245 struct dmar_domain
*domain
;
1247 domain
= alloc_domain_mem();
1251 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
1257 static int iommu_attach_domain(struct dmar_domain
*domain
,
1258 struct intel_iommu
*iommu
)
1261 unsigned long ndomains
;
1262 unsigned long flags
;
1264 ndomains
= cap_ndoms(iommu
->cap
);
1266 spin_lock_irqsave(&iommu
->lock
, flags
);
1268 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1269 if (num
>= ndomains
) {
1270 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1271 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1276 set_bit(num
, iommu
->domain_ids
);
1277 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1278 iommu
->domains
[num
] = domain
;
1279 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1284 static void iommu_detach_domain(struct dmar_domain
*domain
,
1285 struct intel_iommu
*iommu
)
1287 unsigned long flags
;
1291 spin_lock_irqsave(&iommu
->lock
, flags
);
1292 ndomains
= cap_ndoms(iommu
->cap
);
1293 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1294 for (; num
< ndomains
; ) {
1295 if (iommu
->domains
[num
] == domain
) {
1299 num
= find_next_bit(iommu
->domain_ids
,
1300 cap_ndoms(iommu
->cap
), num
+1);
1304 clear_bit(num
, iommu
->domain_ids
);
1305 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1306 iommu
->domains
[num
] = NULL
;
1308 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1311 static struct iova_domain reserved_iova_list
;
1312 static struct lock_class_key reserved_alloc_key
;
1313 static struct lock_class_key reserved_rbtree_key
;
1315 static void dmar_init_reserved_ranges(void)
1317 struct pci_dev
*pdev
= NULL
;
1321 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1323 lockdep_set_class(&reserved_iova_list
.iova_alloc_lock
,
1324 &reserved_alloc_key
);
1325 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1326 &reserved_rbtree_key
);
1328 /* IOAPIC ranges shouldn't be accessed by DMA */
1329 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1330 IOVA_PFN(IOAPIC_RANGE_END
));
1332 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1334 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1335 for_each_pci_dev(pdev
) {
1338 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1339 r
= &pdev
->resource
[i
];
1340 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1342 iova
= reserve_iova(&reserved_iova_list
,
1346 printk(KERN_ERR
"Reserve iova failed\n");
1352 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1354 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1357 static inline int guestwidth_to_adjustwidth(int gaw
)
1360 int r
= (gaw
- 12) % 9;
1371 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1373 struct intel_iommu
*iommu
;
1374 int adjust_width
, agaw
;
1375 unsigned long sagaw
;
1377 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1378 spin_lock_init(&domain
->iommu_lock
);
1380 domain_reserve_special_ranges(domain
);
1382 /* calculate AGAW */
1383 iommu
= domain_get_iommu(domain
);
1384 if (guest_width
> cap_mgaw(iommu
->cap
))
1385 guest_width
= cap_mgaw(iommu
->cap
);
1386 domain
->gaw
= guest_width
;
1387 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1388 agaw
= width_to_agaw(adjust_width
);
1389 sagaw
= cap_sagaw(iommu
->cap
);
1390 if (!test_bit(agaw
, &sagaw
)) {
1391 /* hardware doesn't support it, choose a bigger one */
1392 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1393 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1397 domain
->agaw
= agaw
;
1398 INIT_LIST_HEAD(&domain
->devices
);
1400 if (ecap_coherent(iommu
->ecap
))
1401 domain
->iommu_coherency
= 1;
1403 domain
->iommu_coherency
= 0;
1405 if (ecap_sc_support(iommu
->ecap
))
1406 domain
->iommu_snooping
= 1;
1408 domain
->iommu_snooping
= 0;
1410 domain
->iommu_count
= 1;
1412 /* always allocate the top pgd */
1413 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
1416 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1420 static void domain_exit(struct dmar_domain
*domain
)
1422 struct dmar_drhd_unit
*drhd
;
1423 struct intel_iommu
*iommu
;
1425 /* Domain 0 is reserved, so dont process it */
1429 domain_remove_dev_info(domain
);
1431 put_iova_domain(&domain
->iovad
);
1434 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1436 /* free page tables */
1437 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1439 for_each_active_iommu(iommu
, drhd
)
1440 if (test_bit(iommu
->seq_id
, &domain
->iommu_bmp
))
1441 iommu_detach_domain(domain
, iommu
);
1443 free_domain_mem(domain
);
1446 static int domain_context_mapping_one(struct dmar_domain
*domain
, int segment
,
1447 u8 bus
, u8 devfn
, int translation
)
1449 struct context_entry
*context
;
1450 unsigned long flags
;
1451 struct intel_iommu
*iommu
;
1452 struct dma_pte
*pgd
;
1454 unsigned long ndomains
;
1457 struct device_domain_info
*info
= NULL
;
1459 pr_debug("Set context mapping for %02x:%02x.%d\n",
1460 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1462 BUG_ON(!domain
->pgd
);
1463 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1464 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1466 iommu
= device_to_iommu(segment
, bus
, devfn
);
1470 context
= device_to_context_entry(iommu
, bus
, devfn
);
1473 spin_lock_irqsave(&iommu
->lock
, flags
);
1474 if (context_present(context
)) {
1475 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1482 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
1483 domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) {
1486 /* find an available domain id for this device in iommu */
1487 ndomains
= cap_ndoms(iommu
->cap
);
1488 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1489 for (; num
< ndomains
; ) {
1490 if (iommu
->domains
[num
] == domain
) {
1495 num
= find_next_bit(iommu
->domain_ids
,
1496 cap_ndoms(iommu
->cap
), num
+1);
1500 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1501 if (num
>= ndomains
) {
1502 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1503 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1507 set_bit(num
, iommu
->domain_ids
);
1508 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1509 iommu
->domains
[num
] = domain
;
1513 /* Skip top levels of page tables for
1514 * iommu which has less agaw than default.
1516 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1517 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1518 if (!dma_pte_present(pgd
)) {
1519 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1525 context_set_domain_id(context
, id
);
1527 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1528 info
= iommu_support_dev_iotlb(domain
, segment
, bus
, devfn
);
1529 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1530 CONTEXT_TT_MULTI_LEVEL
;
1533 * In pass through mode, AW must be programmed to indicate the largest
1534 * AGAW value supported by hardware. And ASR is ignored by hardware.
1536 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1537 context_set_address_width(context
, iommu
->msagaw
);
1539 context_set_address_root(context
, virt_to_phys(pgd
));
1540 context_set_address_width(context
, iommu
->agaw
);
1543 context_set_translation_type(context
, translation
);
1544 context_set_fault_enable(context
);
1545 context_set_present(context
);
1546 domain_flush_cache(domain
, context
, sizeof(*context
));
1549 * It's a non-present to present mapping. If hardware doesn't cache
1550 * non-present entry we only need to flush the write-buffer. If the
1551 * _does_ cache non-present entries, then it does so in the special
1552 * domain #0, which we have to flush:
1554 if (cap_caching_mode(iommu
->cap
)) {
1555 iommu
->flush
.flush_context(iommu
, 0,
1556 (((u16
)bus
) << 8) | devfn
,
1557 DMA_CCMD_MASK_NOBIT
,
1558 DMA_CCMD_DEVICE_INVL
);
1559 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_DSI_FLUSH
);
1561 iommu_flush_write_buffer(iommu
);
1563 iommu_enable_dev_iotlb(info
);
1564 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1566 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1567 if (!test_and_set_bit(iommu
->seq_id
, &domain
->iommu_bmp
)) {
1568 domain
->iommu_count
++;
1569 domain_update_iommu_cap(domain
);
1571 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1576 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
,
1580 struct pci_dev
*tmp
, *parent
;
1582 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1583 pdev
->bus
->number
, pdev
->devfn
,
1588 /* dependent device mapping */
1589 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1592 /* Secondary interface's bus number and devfn 0 */
1593 parent
= pdev
->bus
->self
;
1594 while (parent
!= tmp
) {
1595 ret
= domain_context_mapping_one(domain
,
1596 pci_domain_nr(parent
->bus
),
1597 parent
->bus
->number
,
1598 parent
->devfn
, translation
);
1601 parent
= parent
->bus
->self
;
1603 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
1604 return domain_context_mapping_one(domain
,
1605 pci_domain_nr(tmp
->subordinate
),
1606 tmp
->subordinate
->number
, 0,
1608 else /* this is a legacy PCI bridge */
1609 return domain_context_mapping_one(domain
,
1610 pci_domain_nr(tmp
->bus
),
1616 static int domain_context_mapped(struct pci_dev
*pdev
)
1619 struct pci_dev
*tmp
, *parent
;
1620 struct intel_iommu
*iommu
;
1622 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1627 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1630 /* dependent device mapping */
1631 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1634 /* Secondary interface's bus number and devfn 0 */
1635 parent
= pdev
->bus
->self
;
1636 while (parent
!= tmp
) {
1637 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1641 parent
= parent
->bus
->self
;
1644 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1647 return device_context_mapped(iommu
, tmp
->bus
->number
,
1651 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1652 struct scatterlist
*sg
, unsigned long phys_pfn
,
1653 unsigned long nr_pages
, int prot
)
1655 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
1656 phys_addr_t
uninitialized_var(pteval
);
1657 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
1658 unsigned long sg_res
;
1660 BUG_ON(addr_width
< BITS_PER_LONG
&& (iov_pfn
+ nr_pages
- 1) >> addr_width
);
1662 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1665 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
1670 sg_res
= nr_pages
+ 1;
1671 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
1674 while (nr_pages
--) {
1678 sg_res
= (sg
->offset
+ sg
->length
+ VTD_PAGE_SIZE
- 1) >> VTD_PAGE_SHIFT
;
1679 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + sg
->offset
;
1680 sg
->dma_length
= sg
->length
;
1681 pteval
= page_to_phys(sg_page(sg
)) | prot
;
1684 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
);
1688 /* We don't need lock here, nobody else
1689 * touches the iova range
1691 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
1693 static int dumps
= 5;
1694 printk(KERN_CRIT
"ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1695 iov_pfn
, tmp
, (unsigned long long)pteval
);
1698 debug_dma_dump_mappings(NULL
);
1703 if (!nr_pages
|| first_pte_in_page(pte
)) {
1704 domain_flush_cache(domain
, first_pte
,
1705 (void *)pte
- (void *)first_pte
);
1709 pteval
+= VTD_PAGE_SIZE
;
1717 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1718 struct scatterlist
*sg
, unsigned long nr_pages
,
1721 return __domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
1724 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1725 unsigned long phys_pfn
, unsigned long nr_pages
,
1728 return __domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
1731 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1736 clear_context_table(iommu
, bus
, devfn
);
1737 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1738 DMA_CCMD_GLOBAL_INVL
);
1739 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
1742 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1744 struct device_domain_info
*info
;
1745 unsigned long flags
;
1746 struct intel_iommu
*iommu
;
1748 spin_lock_irqsave(&device_domain_lock
, flags
);
1749 while (!list_empty(&domain
->devices
)) {
1750 info
= list_entry(domain
->devices
.next
,
1751 struct device_domain_info
, link
);
1752 list_del(&info
->link
);
1753 list_del(&info
->global
);
1755 info
->dev
->dev
.archdata
.iommu
= NULL
;
1756 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1758 iommu_disable_dev_iotlb(info
);
1759 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1760 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1761 free_devinfo_mem(info
);
1763 spin_lock_irqsave(&device_domain_lock
, flags
);
1765 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1770 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1772 static struct dmar_domain
*
1773 find_domain(struct pci_dev
*pdev
)
1775 struct device_domain_info
*info
;
1777 /* No lock here, assumes no domain exit in normal case */
1778 info
= pdev
->dev
.archdata
.iommu
;
1780 return info
->domain
;
1784 /* domain is initialized */
1785 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1787 struct dmar_domain
*domain
, *found
= NULL
;
1788 struct intel_iommu
*iommu
;
1789 struct dmar_drhd_unit
*drhd
;
1790 struct device_domain_info
*info
, *tmp
;
1791 struct pci_dev
*dev_tmp
;
1792 unsigned long flags
;
1793 int bus
= 0, devfn
= 0;
1797 domain
= find_domain(pdev
);
1801 segment
= pci_domain_nr(pdev
->bus
);
1803 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1805 if (dev_tmp
->is_pcie
) {
1806 bus
= dev_tmp
->subordinate
->number
;
1809 bus
= dev_tmp
->bus
->number
;
1810 devfn
= dev_tmp
->devfn
;
1812 spin_lock_irqsave(&device_domain_lock
, flags
);
1813 list_for_each_entry(info
, &device_domain_list
, global
) {
1814 if (info
->segment
== segment
&&
1815 info
->bus
== bus
&& info
->devfn
== devfn
) {
1816 found
= info
->domain
;
1820 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1821 /* pcie-pci bridge already has a domain, uses it */
1828 domain
= alloc_domain();
1832 /* Allocate new domain for the device */
1833 drhd
= dmar_find_matched_drhd_unit(pdev
);
1835 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
1839 iommu
= drhd
->iommu
;
1841 ret
= iommu_attach_domain(domain
, iommu
);
1843 domain_exit(domain
);
1847 if (domain_init(domain
, gaw
)) {
1848 domain_exit(domain
);
1852 /* register pcie-to-pci device */
1854 info
= alloc_devinfo_mem();
1856 domain_exit(domain
);
1859 info
->segment
= segment
;
1861 info
->devfn
= devfn
;
1863 info
->domain
= domain
;
1864 /* This domain is shared by devices under p2p bridge */
1865 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
1867 /* pcie-to-pci bridge already has a domain, uses it */
1869 spin_lock_irqsave(&device_domain_lock
, flags
);
1870 list_for_each_entry(tmp
, &device_domain_list
, global
) {
1871 if (tmp
->segment
== segment
&&
1872 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
1873 found
= tmp
->domain
;
1878 free_devinfo_mem(info
);
1879 domain_exit(domain
);
1882 list_add(&info
->link
, &domain
->devices
);
1883 list_add(&info
->global
, &device_domain_list
);
1885 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1889 info
= alloc_devinfo_mem();
1892 info
->segment
= segment
;
1893 info
->bus
= pdev
->bus
->number
;
1894 info
->devfn
= pdev
->devfn
;
1896 info
->domain
= domain
;
1897 spin_lock_irqsave(&device_domain_lock
, flags
);
1898 /* somebody is fast */
1899 found
= find_domain(pdev
);
1900 if (found
!= NULL
) {
1901 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1902 if (found
!= domain
) {
1903 domain_exit(domain
);
1906 free_devinfo_mem(info
);
1909 list_add(&info
->link
, &domain
->devices
);
1910 list_add(&info
->global
, &device_domain_list
);
1911 pdev
->dev
.archdata
.iommu
= info
;
1912 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1915 /* recheck it here, maybe others set it */
1916 return find_domain(pdev
);
1919 static int iommu_identity_mapping
;
1921 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
1922 unsigned long long start
,
1923 unsigned long long end
)
1925 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
1926 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
1928 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
1929 dma_to_mm_pfn(last_vpfn
))) {
1930 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
1934 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1935 start
, end
, domain
->id
);
1937 * RMRR range might have overlap with physical memory range,
1940 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
1942 return domain_pfn_mapping(domain
, first_vpfn
, first_vpfn
,
1943 last_vpfn
- first_vpfn
+ 1,
1944 DMA_PTE_READ
|DMA_PTE_WRITE
);
1947 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
1948 unsigned long long start
,
1949 unsigned long long end
)
1951 struct dmar_domain
*domain
;
1955 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1956 pci_name(pdev
), start
, end
);
1958 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
1962 ret
= iommu_domain_identity_map(domain
, start
, end
);
1966 /* context entry init */
1967 ret
= domain_context_mapping(domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
1974 domain_exit(domain
);
1978 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
1979 struct pci_dev
*pdev
)
1981 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
1983 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
1984 rmrr
->end_address
+ 1);
1987 #ifdef CONFIG_DMAR_FLOPPY_WA
1988 static inline void iommu_prepare_isa(void)
1990 struct pci_dev
*pdev
;
1993 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
1997 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1998 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024);
2001 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
2002 "floppy might not work\n");
2006 static inline void iommu_prepare_isa(void)
2010 #endif /* !CONFIG_DMAR_FLPY_WA */
2012 /* Initialize each context entry as pass through.*/
2013 static int __init
init_context_pass_through(void)
2015 struct pci_dev
*pdev
= NULL
;
2016 struct dmar_domain
*domain
;
2019 for_each_pci_dev(pdev
) {
2020 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2021 ret
= domain_context_mapping(domain
, pdev
,
2022 CONTEXT_TT_PASS_THROUGH
);
2029 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2031 static int __init
si_domain_work_fn(unsigned long start_pfn
,
2032 unsigned long end_pfn
, void *datax
)
2036 *ret
= iommu_domain_identity_map(si_domain
,
2037 (uint64_t)start_pfn
<< PAGE_SHIFT
,
2038 (uint64_t)end_pfn
<< PAGE_SHIFT
);
2043 static int si_domain_init(void)
2045 struct dmar_drhd_unit
*drhd
;
2046 struct intel_iommu
*iommu
;
2049 si_domain
= alloc_domain();
2053 pr_debug("Identity mapping domain is domain %d\n", si_domain
->id
);
2055 for_each_active_iommu(iommu
, drhd
) {
2056 ret
= iommu_attach_domain(si_domain
, iommu
);
2058 domain_exit(si_domain
);
2063 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2064 domain_exit(si_domain
);
2068 si_domain
->flags
= DOMAIN_FLAG_STATIC_IDENTITY
;
2070 for_each_online_node(nid
) {
2071 work_with_active_regions(nid
, si_domain_work_fn
, &ret
);
2079 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
2080 struct pci_dev
*pdev
);
2081 static int identity_mapping(struct pci_dev
*pdev
)
2083 struct device_domain_info
*info
;
2085 if (likely(!iommu_identity_mapping
))
2089 list_for_each_entry(info
, &si_domain
->devices
, link
)
2090 if (info
->dev
== pdev
)
2095 static int domain_add_dev_info(struct dmar_domain
*domain
,
2096 struct pci_dev
*pdev
)
2098 struct device_domain_info
*info
;
2099 unsigned long flags
;
2101 info
= alloc_devinfo_mem();
2105 info
->segment
= pci_domain_nr(pdev
->bus
);
2106 info
->bus
= pdev
->bus
->number
;
2107 info
->devfn
= pdev
->devfn
;
2109 info
->domain
= domain
;
2111 spin_lock_irqsave(&device_domain_lock
, flags
);
2112 list_add(&info
->link
, &domain
->devices
);
2113 list_add(&info
->global
, &device_domain_list
);
2114 pdev
->dev
.archdata
.iommu
= info
;
2115 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2120 static int iommu_should_identity_map(struct pci_dev
*pdev
, int startup
)
2122 if (iommu_identity_mapping
== 2)
2123 return IS_GFX_DEVICE(pdev
);
2126 * We want to start off with all devices in the 1:1 domain, and
2127 * take them out later if we find they can't access all of memory.
2129 * However, we can't do this for PCI devices behind bridges,
2130 * because all PCI devices behind the same bridge will end up
2131 * with the same source-id on their transactions.
2133 * Practically speaking, we can't change things around for these
2134 * devices at run-time, because we can't be sure there'll be no
2135 * DMA transactions in flight for any of their siblings.
2137 * So PCI devices (unless they're on the root bus) as well as
2138 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2139 * the 1:1 domain, just in _case_ one of their siblings turns out
2140 * not to be able to map all of memory.
2142 if (!pdev
->is_pcie
) {
2143 if (!pci_is_root_bus(pdev
->bus
))
2145 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2147 } else if (pdev
->pcie_type
== PCI_EXP_TYPE_PCI_BRIDGE
)
2151 * At boot time, we don't yet know if devices will be 64-bit capable.
2152 * Assume that they will -- if they turn out not to be, then we can
2153 * take them out of the 1:1 domain later.
2156 return pdev
->dma_mask
> DMA_BIT_MASK(32);
2161 static int iommu_prepare_static_identity_mapping(void)
2163 struct pci_dev
*pdev
= NULL
;
2166 ret
= si_domain_init();
2170 for_each_pci_dev(pdev
) {
2171 if (iommu_should_identity_map(pdev
, 1)) {
2172 printk(KERN_INFO
"IOMMU: identity mapping for device %s\n",
2175 ret
= domain_context_mapping(si_domain
, pdev
,
2176 CONTEXT_TT_MULTI_LEVEL
);
2179 ret
= domain_add_dev_info(si_domain
, pdev
);
2188 int __init
init_dmars(void)
2190 struct dmar_drhd_unit
*drhd
;
2191 struct dmar_rmrr_unit
*rmrr
;
2192 struct pci_dev
*pdev
;
2193 struct intel_iommu
*iommu
;
2195 int pass_through
= 1;
2198 * In case pass through can not be enabled, iommu tries to use identity
2201 if (iommu_pass_through
)
2202 iommu_identity_mapping
= 1;
2207 * initialize and program root entry to not present
2210 for_each_drhd_unit(drhd
) {
2213 * lock not needed as this is only incremented in the single
2214 * threaded kernel __init code path all other access are read
2219 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2222 printk(KERN_ERR
"Allocating global iommu array failed\n");
2227 deferred_flush
= kzalloc(g_num_of_iommus
*
2228 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2229 if (!deferred_flush
) {
2235 for_each_drhd_unit(drhd
) {
2239 iommu
= drhd
->iommu
;
2240 g_iommus
[iommu
->seq_id
] = iommu
;
2242 ret
= iommu_init_domains(iommu
);
2248 * we could share the same root & context tables
2249 * amoung all IOMMU's. Need to Split it later.
2251 ret
= iommu_alloc_root_entry(iommu
);
2253 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
2256 if (!ecap_pass_through(iommu
->ecap
))
2259 if (iommu_pass_through
)
2260 if (!pass_through
) {
2262 "Pass Through is not supported by hardware.\n");
2263 iommu_pass_through
= 0;
2267 * Start from the sane iommu hardware state.
2269 for_each_drhd_unit(drhd
) {
2273 iommu
= drhd
->iommu
;
2276 * If the queued invalidation is already initialized by us
2277 * (for example, while enabling interrupt-remapping) then
2278 * we got the things already rolling from a sane state.
2284 * Clear any previous faults.
2286 dmar_fault(-1, iommu
);
2288 * Disable queued invalidation if supported and already enabled
2289 * before OS handover.
2291 dmar_disable_qi(iommu
);
2294 for_each_drhd_unit(drhd
) {
2298 iommu
= drhd
->iommu
;
2300 if (dmar_enable_qi(iommu
)) {
2302 * Queued Invalidate not enabled, use Register Based
2305 iommu
->flush
.flush_context
= __iommu_flush_context
;
2306 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2307 printk(KERN_INFO
"IOMMU 0x%Lx: using Register based "
2309 (unsigned long long)drhd
->reg_base_addr
);
2311 iommu
->flush
.flush_context
= qi_flush_context
;
2312 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2313 printk(KERN_INFO
"IOMMU 0x%Lx: using Queued "
2315 (unsigned long long)drhd
->reg_base_addr
);
2320 * If pass through is set and enabled, context entries of all pci
2321 * devices are intialized by pass through translation type.
2323 if (iommu_pass_through
) {
2324 ret
= init_context_pass_through();
2326 printk(KERN_ERR
"IOMMU: Pass through init failed.\n");
2327 iommu_pass_through
= 0;
2332 * If pass through is not set or not enabled, setup context entries for
2333 * identity mappings for rmrr, gfx, and isa and may fall back to static
2334 * identity mapping if iommu_identity_mapping is set.
2336 if (!iommu_pass_through
) {
2337 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2338 if (!iommu_identity_mapping
)
2339 iommu_identity_mapping
= 2;
2341 if (iommu_identity_mapping
)
2342 iommu_prepare_static_identity_mapping();
2345 * for each dev attached to rmrr
2347 * locate drhd for dev, alloc domain for dev
2348 * allocate free domain
2349 * allocate page table entries for rmrr
2350 * if context not allocated for bus
2351 * allocate and init context
2352 * set present in root table for this bus
2353 * init context with domain, translation etc
2357 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2358 for_each_rmrr_units(rmrr
) {
2359 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2360 pdev
= rmrr
->devices
[i
];
2362 * some BIOS lists non-exist devices in DMAR
2367 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2370 "IOMMU: mapping reserved region failed\n");
2374 iommu_prepare_isa();
2380 * global invalidate context cache
2381 * global invalidate iotlb
2382 * enable translation
2384 for_each_drhd_unit(drhd
) {
2387 iommu
= drhd
->iommu
;
2389 iommu_flush_write_buffer(iommu
);
2391 ret
= dmar_set_interrupt(iommu
);
2395 iommu_set_root_entry(iommu
);
2397 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2398 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2399 iommu_disable_protect_mem_regions(iommu
);
2401 ret
= iommu_enable_translation(iommu
);
2408 for_each_drhd_unit(drhd
) {
2411 iommu
= drhd
->iommu
;
2418 /* Returns a number of VTD pages, but aligned to MM page size */
2419 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
2422 host_addr
&= ~PAGE_MASK
;
2423 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
2426 /* This takes a number of _MM_ pages, not VTD pages */
2427 static struct iova
*intel_alloc_iova(struct device
*dev
,
2428 struct dmar_domain
*domain
,
2429 unsigned long nrpages
, uint64_t dma_mask
)
2431 struct pci_dev
*pdev
= to_pci_dev(dev
);
2432 struct iova
*iova
= NULL
;
2434 /* Restrict dma_mask to the width that the iommu can handle */
2435 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
2437 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
2439 * First try to allocate an io virtual address in
2440 * DMA_BIT_MASK(32) and if that fails then try allocating
2443 iova
= alloc_iova(&domain
->iovad
, nrpages
,
2444 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2448 iova
= alloc_iova(&domain
->iovad
, nrpages
, IOVA_PFN(dma_mask
), 1);
2449 if (unlikely(!iova
)) {
2450 printk(KERN_ERR
"Allocating %ld-page iova for %s failed",
2451 nrpages
, pci_name(pdev
));
2458 static struct dmar_domain
*
2459 get_valid_domain_for_dev(struct pci_dev
*pdev
)
2461 struct dmar_domain
*domain
;
2464 domain
= get_domain_for_dev(pdev
,
2465 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2468 "Allocating domain for %s failed", pci_name(pdev
));
2472 /* make sure context mapping is ok */
2473 if (unlikely(!domain_context_mapped(pdev
))) {
2474 ret
= domain_context_mapping(domain
, pdev
,
2475 CONTEXT_TT_MULTI_LEVEL
);
2478 "Domain context map for %s failed",
2487 static int iommu_dummy(struct pci_dev
*pdev
)
2489 return pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2492 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2493 static int iommu_no_mapping(struct device
*dev
)
2495 struct pci_dev
*pdev
;
2498 if (unlikely(dev
->bus
!= &pci_bus_type
))
2501 pdev
= to_pci_dev(dev
);
2502 if (iommu_dummy(pdev
))
2505 if (!iommu_identity_mapping
)
2508 found
= identity_mapping(pdev
);
2510 if (iommu_should_identity_map(pdev
, 0))
2514 * 32 bit DMA is removed from si_domain and fall back
2515 * to non-identity mapping.
2517 domain_remove_one_dev_info(si_domain
, pdev
);
2518 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
2524 * In case of a detached 64 bit DMA device from vm, the device
2525 * is put into si_domain for identity mapping.
2527 if (iommu_should_identity_map(pdev
, 0)) {
2529 ret
= domain_add_dev_info(si_domain
, pdev
);
2532 ret
= domain_context_mapping(si_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
2534 printk(KERN_INFO
"64bit %s uses identity mapping\n",
2544 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2545 size_t size
, int dir
, u64 dma_mask
)
2547 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2548 struct dmar_domain
*domain
;
2549 phys_addr_t start_paddr
;
2553 struct intel_iommu
*iommu
;
2555 BUG_ON(dir
== DMA_NONE
);
2557 if (iommu_no_mapping(hwdev
))
2560 domain
= get_valid_domain_for_dev(pdev
);
2564 iommu
= domain_get_iommu(domain
);
2565 size
= aligned_nrpages(paddr
, size
);
2567 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2573 * Check if DMAR supports zero-length reads on write only
2576 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2577 !cap_zlr(iommu
->cap
))
2578 prot
|= DMA_PTE_READ
;
2579 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2580 prot
|= DMA_PTE_WRITE
;
2582 * paddr - (paddr + size) might be partial page, we should map the whole
2583 * page. Note: if two part of one page are separately mapped, we
2584 * might have two guest_addr mapping to the same host paddr, but this
2585 * is not a big problem
2587 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova
->pfn_lo
),
2588 paddr
>> VTD_PAGE_SHIFT
, size
, prot
);
2592 /* it's a non-present to present mapping. Only flush if caching mode */
2593 if (cap_caching_mode(iommu
->cap
))
2594 iommu_flush_iotlb_psi(iommu
, 0, mm_to_dma_pfn(iova
->pfn_lo
), size
);
2596 iommu_flush_write_buffer(iommu
);
2598 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2599 start_paddr
+= paddr
& ~PAGE_MASK
;
2604 __free_iova(&domain
->iovad
, iova
);
2605 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2606 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2610 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2611 unsigned long offset
, size_t size
,
2612 enum dma_data_direction dir
,
2613 struct dma_attrs
*attrs
)
2615 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2616 dir
, to_pci_dev(dev
)->dma_mask
);
2619 static void flush_unmaps(void)
2625 /* just flush them all */
2626 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2627 struct intel_iommu
*iommu
= g_iommus
[i
];
2631 if (!deferred_flush
[i
].next
)
2634 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2635 DMA_TLB_GLOBAL_FLUSH
);
2636 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2638 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
2640 mask
= (iova
->pfn_hi
- iova
->pfn_lo
+ 1) << PAGE_SHIFT
;
2641 mask
= ilog2(mask
>> VTD_PAGE_SHIFT
);
2642 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
2643 iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
2644 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
2646 deferred_flush
[i
].next
= 0;
2652 static void flush_unmaps_timeout(unsigned long data
)
2654 unsigned long flags
;
2656 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2658 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2661 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2663 unsigned long flags
;
2665 struct intel_iommu
*iommu
;
2667 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2668 if (list_size
== HIGH_WATER_MARK
)
2671 iommu
= domain_get_iommu(dom
);
2672 iommu_id
= iommu
->seq_id
;
2674 next
= deferred_flush
[iommu_id
].next
;
2675 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2676 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2677 deferred_flush
[iommu_id
].next
++;
2680 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2684 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2687 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2688 size_t size
, enum dma_data_direction dir
,
2689 struct dma_attrs
*attrs
)
2691 struct pci_dev
*pdev
= to_pci_dev(dev
);
2692 struct dmar_domain
*domain
;
2693 unsigned long start_pfn
, last_pfn
;
2695 struct intel_iommu
*iommu
;
2697 if (iommu_no_mapping(dev
))
2700 domain
= find_domain(pdev
);
2703 iommu
= domain_get_iommu(domain
);
2705 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2706 if (WARN_ONCE(!iova
, "Driver unmaps unmatched page at PFN %llx\n",
2707 (unsigned long long)dev_addr
))
2710 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2711 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2713 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2714 pci_name(pdev
), start_pfn
, last_pfn
);
2716 /* clear the whole page */
2717 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2719 /* free page tables */
2720 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2722 if (intel_iommu_strict
) {
2723 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2724 last_pfn
- start_pfn
+ 1);
2726 __free_iova(&domain
->iovad
, iova
);
2728 add_unmap(domain
, iova
);
2730 * queue up the release of the unmap to save the 1/6th of the
2731 * cpu used up by the iotlb flush operation...
2736 static void intel_unmap_single(struct device
*dev
, dma_addr_t dev_addr
, size_t size
,
2739 intel_unmap_page(dev
, dev_addr
, size
, dir
, NULL
);
2742 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
2743 dma_addr_t
*dma_handle
, gfp_t flags
)
2748 size
= PAGE_ALIGN(size
);
2749 order
= get_order(size
);
2750 flags
&= ~(GFP_DMA
| GFP_DMA32
);
2752 vaddr
= (void *)__get_free_pages(flags
, order
);
2755 memset(vaddr
, 0, size
);
2757 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
2759 hwdev
->coherent_dma_mask
);
2762 free_pages((unsigned long)vaddr
, order
);
2766 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
2767 dma_addr_t dma_handle
)
2771 size
= PAGE_ALIGN(size
);
2772 order
= get_order(size
);
2774 intel_unmap_single(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
2775 free_pages((unsigned long)vaddr
, order
);
2778 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
2779 int nelems
, enum dma_data_direction dir
,
2780 struct dma_attrs
*attrs
)
2782 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2783 struct dmar_domain
*domain
;
2784 unsigned long start_pfn
, last_pfn
;
2786 struct intel_iommu
*iommu
;
2788 if (iommu_no_mapping(hwdev
))
2791 domain
= find_domain(pdev
);
2794 iommu
= domain_get_iommu(domain
);
2796 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
2797 if (WARN_ONCE(!iova
, "Driver unmaps unmatched sglist at PFN %llx\n",
2798 (unsigned long long)sglist
[0].dma_address
))
2801 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2802 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2804 /* clear the whole page */
2805 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2807 /* free page tables */
2808 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2810 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2811 (last_pfn
- start_pfn
+ 1));
2814 __free_iova(&domain
->iovad
, iova
);
2817 static int intel_nontranslate_map_sg(struct device
*hddev
,
2818 struct scatterlist
*sglist
, int nelems
, int dir
)
2821 struct scatterlist
*sg
;
2823 for_each_sg(sglist
, sg
, nelems
, i
) {
2824 BUG_ON(!sg_page(sg
));
2825 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2826 sg
->dma_length
= sg
->length
;
2831 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
2832 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2835 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2836 struct dmar_domain
*domain
;
2839 size_t offset_pfn
= 0;
2840 struct iova
*iova
= NULL
;
2842 struct scatterlist
*sg
;
2843 unsigned long start_vpfn
;
2844 struct intel_iommu
*iommu
;
2846 BUG_ON(dir
== DMA_NONE
);
2847 if (iommu_no_mapping(hwdev
))
2848 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
2850 domain
= get_valid_domain_for_dev(pdev
);
2854 iommu
= domain_get_iommu(domain
);
2856 for_each_sg(sglist
, sg
, nelems
, i
)
2857 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
2859 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2862 sglist
->dma_length
= 0;
2867 * Check if DMAR supports zero-length reads on write only
2870 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2871 !cap_zlr(iommu
->cap
))
2872 prot
|= DMA_PTE_READ
;
2873 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2874 prot
|= DMA_PTE_WRITE
;
2876 start_vpfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2878 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, mm_to_dma_pfn(size
), prot
);
2879 if (unlikely(ret
)) {
2880 /* clear the page */
2881 dma_pte_clear_range(domain
, start_vpfn
,
2882 start_vpfn
+ size
- 1);
2883 /* free page tables */
2884 dma_pte_free_pagetable(domain
, start_vpfn
,
2885 start_vpfn
+ size
- 1);
2887 __free_iova(&domain
->iovad
, iova
);
2891 /* it's a non-present to present mapping. Only flush if caching mode */
2892 if (cap_caching_mode(iommu
->cap
))
2893 iommu_flush_iotlb_psi(iommu
, 0, start_vpfn
, offset_pfn
);
2895 iommu_flush_write_buffer(iommu
);
2900 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2905 struct dma_map_ops intel_dma_ops
= {
2906 .alloc_coherent
= intel_alloc_coherent
,
2907 .free_coherent
= intel_free_coherent
,
2908 .map_sg
= intel_map_sg
,
2909 .unmap_sg
= intel_unmap_sg
,
2910 .map_page
= intel_map_page
,
2911 .unmap_page
= intel_unmap_page
,
2912 .mapping_error
= intel_mapping_error
,
2915 static inline int iommu_domain_cache_init(void)
2919 iommu_domain_cache
= kmem_cache_create("iommu_domain",
2920 sizeof(struct dmar_domain
),
2925 if (!iommu_domain_cache
) {
2926 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
2933 static inline int iommu_devinfo_cache_init(void)
2937 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
2938 sizeof(struct device_domain_info
),
2942 if (!iommu_devinfo_cache
) {
2943 printk(KERN_ERR
"Couldn't create devinfo cache\n");
2950 static inline int iommu_iova_cache_init(void)
2954 iommu_iova_cache
= kmem_cache_create("iommu_iova",
2955 sizeof(struct iova
),
2959 if (!iommu_iova_cache
) {
2960 printk(KERN_ERR
"Couldn't create iova cache\n");
2967 static int __init
iommu_init_mempool(void)
2970 ret
= iommu_iova_cache_init();
2974 ret
= iommu_domain_cache_init();
2978 ret
= iommu_devinfo_cache_init();
2982 kmem_cache_destroy(iommu_domain_cache
);
2984 kmem_cache_destroy(iommu_iova_cache
);
2989 static void __init
iommu_exit_mempool(void)
2991 kmem_cache_destroy(iommu_devinfo_cache
);
2992 kmem_cache_destroy(iommu_domain_cache
);
2993 kmem_cache_destroy(iommu_iova_cache
);
2997 static void __init
init_no_remapping_devices(void)
2999 struct dmar_drhd_unit
*drhd
;
3001 for_each_drhd_unit(drhd
) {
3002 if (!drhd
->include_all
) {
3004 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3005 if (drhd
->devices
[i
] != NULL
)
3007 /* ignore DMAR unit if no pci devices exist */
3008 if (i
== drhd
->devices_cnt
)
3016 for_each_drhd_unit(drhd
) {
3018 if (drhd
->ignored
|| drhd
->include_all
)
3021 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3022 if (drhd
->devices
[i
] &&
3023 !IS_GFX_DEVICE(drhd
->devices
[i
]))
3026 if (i
< drhd
->devices_cnt
)
3029 /* bypass IOMMU if it is just for gfx devices */
3031 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
3032 if (!drhd
->devices
[i
])
3034 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3039 #ifdef CONFIG_SUSPEND
3040 static int init_iommu_hw(void)
3042 struct dmar_drhd_unit
*drhd
;
3043 struct intel_iommu
*iommu
= NULL
;
3045 for_each_active_iommu(iommu
, drhd
)
3047 dmar_reenable_qi(iommu
);
3049 for_each_active_iommu(iommu
, drhd
) {
3050 iommu_flush_write_buffer(iommu
);
3052 iommu_set_root_entry(iommu
);
3054 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3055 DMA_CCMD_GLOBAL_INVL
);
3056 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3057 DMA_TLB_GLOBAL_FLUSH
);
3058 iommu_disable_protect_mem_regions(iommu
);
3059 iommu_enable_translation(iommu
);
3065 static void iommu_flush_all(void)
3067 struct dmar_drhd_unit
*drhd
;
3068 struct intel_iommu
*iommu
;
3070 for_each_active_iommu(iommu
, drhd
) {
3071 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3072 DMA_CCMD_GLOBAL_INVL
);
3073 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3074 DMA_TLB_GLOBAL_FLUSH
);
3078 static int iommu_suspend(struct sys_device
*dev
, pm_message_t state
)
3080 struct dmar_drhd_unit
*drhd
;
3081 struct intel_iommu
*iommu
= NULL
;
3084 for_each_active_iommu(iommu
, drhd
) {
3085 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3087 if (!iommu
->iommu_state
)
3093 for_each_active_iommu(iommu
, drhd
) {
3094 iommu_disable_translation(iommu
);
3096 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3098 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3099 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3100 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3101 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3102 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3103 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3104 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3105 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3107 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3112 for_each_active_iommu(iommu
, drhd
)
3113 kfree(iommu
->iommu_state
);
3118 static int iommu_resume(struct sys_device
*dev
)
3120 struct dmar_drhd_unit
*drhd
;
3121 struct intel_iommu
*iommu
= NULL
;
3124 if (init_iommu_hw()) {
3125 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3129 for_each_active_iommu(iommu
, drhd
) {
3131 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3133 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3134 iommu
->reg
+ DMAR_FECTL_REG
);
3135 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3136 iommu
->reg
+ DMAR_FEDATA_REG
);
3137 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3138 iommu
->reg
+ DMAR_FEADDR_REG
);
3139 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3140 iommu
->reg
+ DMAR_FEUADDR_REG
);
3142 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3145 for_each_active_iommu(iommu
, drhd
)
3146 kfree(iommu
->iommu_state
);
3151 static struct sysdev_class iommu_sysclass
= {
3153 .resume
= iommu_resume
,
3154 .suspend
= iommu_suspend
,
3157 static struct sys_device device_iommu
= {
3158 .cls
= &iommu_sysclass
,
3161 static int __init
init_iommu_sysfs(void)
3165 error
= sysdev_class_register(&iommu_sysclass
);
3169 error
= sysdev_register(&device_iommu
);
3171 sysdev_class_unregister(&iommu_sysclass
);
3177 static int __init
init_iommu_sysfs(void)
3181 #endif /* CONFIG_PM */
3183 int __init
intel_iommu_init(void)
3187 if (dmar_table_init())
3190 if (dmar_dev_scope_init())
3194 * Check the need for DMA-remapping initialization now.
3195 * Above initialization will also be used by Interrupt-remapping.
3197 if (no_iommu
|| (swiotlb
&& !iommu_pass_through
) || dmar_disabled
)
3200 iommu_init_mempool();
3201 dmar_init_reserved_ranges();
3203 init_no_remapping_devices();
3207 printk(KERN_ERR
"IOMMU: dmar init failed\n");
3208 put_iova_domain(&reserved_iova_list
);
3209 iommu_exit_mempool();
3213 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3215 init_timer(&unmap_timer
);
3218 if (!iommu_pass_through
) {
3220 "Multi-level page-table translation for DMAR.\n");
3221 dma_ops
= &intel_dma_ops
;
3224 "DMAR: Pass through translation for DMAR.\n");
3228 register_iommu(&intel_iommu_ops
);
3233 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
3234 struct pci_dev
*pdev
)
3236 struct pci_dev
*tmp
, *parent
;
3238 if (!iommu
|| !pdev
)
3241 /* dependent device detach */
3242 tmp
= pci_find_upstream_pcie_bridge(pdev
);
3243 /* Secondary interface's bus number and devfn 0 */
3245 parent
= pdev
->bus
->self
;
3246 while (parent
!= tmp
) {
3247 iommu_detach_dev(iommu
, parent
->bus
->number
,
3249 parent
= parent
->bus
->self
;
3251 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
3252 iommu_detach_dev(iommu
,
3253 tmp
->subordinate
->number
, 0);
3254 else /* this is a legacy PCI bridge */
3255 iommu_detach_dev(iommu
, tmp
->bus
->number
,
3260 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
3261 struct pci_dev
*pdev
)
3263 struct device_domain_info
*info
;
3264 struct intel_iommu
*iommu
;
3265 unsigned long flags
;
3267 struct list_head
*entry
, *tmp
;
3269 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3274 spin_lock_irqsave(&device_domain_lock
, flags
);
3275 list_for_each_safe(entry
, tmp
, &domain
->devices
) {
3276 info
= list_entry(entry
, struct device_domain_info
, link
);
3277 /* No need to compare PCI domain; it has to be the same */
3278 if (info
->bus
== pdev
->bus
->number
&&
3279 info
->devfn
== pdev
->devfn
) {
3280 list_del(&info
->link
);
3281 list_del(&info
->global
);
3283 info
->dev
->dev
.archdata
.iommu
= NULL
;
3284 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3286 iommu_disable_dev_iotlb(info
);
3287 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3288 iommu_detach_dependent_devices(iommu
, pdev
);
3289 free_devinfo_mem(info
);
3291 spin_lock_irqsave(&device_domain_lock
, flags
);
3299 /* if there is no other devices under the same iommu
3300 * owned by this domain, clear this iommu in iommu_bmp
3301 * update iommu count and coherency
3303 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
3309 unsigned long tmp_flags
;
3310 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
3311 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
3312 domain
->iommu_count
--;
3313 domain_update_iommu_cap(domain
);
3314 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
3317 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3320 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
3322 struct device_domain_info
*info
;
3323 struct intel_iommu
*iommu
;
3324 unsigned long flags1
, flags2
;
3326 spin_lock_irqsave(&device_domain_lock
, flags1
);
3327 while (!list_empty(&domain
->devices
)) {
3328 info
= list_entry(domain
->devices
.next
,
3329 struct device_domain_info
, link
);
3330 list_del(&info
->link
);
3331 list_del(&info
->global
);
3333 info
->dev
->dev
.archdata
.iommu
= NULL
;
3335 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3337 iommu_disable_dev_iotlb(info
);
3338 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
3339 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3340 iommu_detach_dependent_devices(iommu
, info
->dev
);
3342 /* clear this iommu in iommu_bmp, update iommu count
3345 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
3346 if (test_and_clear_bit(iommu
->seq_id
,
3347 &domain
->iommu_bmp
)) {
3348 domain
->iommu_count
--;
3349 domain_update_iommu_cap(domain
);
3351 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
3353 free_devinfo_mem(info
);
3354 spin_lock_irqsave(&device_domain_lock
, flags1
);
3356 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3359 /* domain id for virtual machine, it won't be set in context */
3360 static unsigned long vm_domid
;
3362 static int vm_domain_min_agaw(struct dmar_domain
*domain
)
3365 int min_agaw
= domain
->agaw
;
3367 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
3368 for (; i
< g_num_of_iommus
; ) {
3369 if (min_agaw
> g_iommus
[i
]->agaw
)
3370 min_agaw
= g_iommus
[i
]->agaw
;
3372 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
3378 static struct dmar_domain
*iommu_alloc_vm_domain(void)
3380 struct dmar_domain
*domain
;
3382 domain
= alloc_domain_mem();
3386 domain
->id
= vm_domid
++;
3387 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
3388 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3393 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
3397 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3398 spin_lock_init(&domain
->iommu_lock
);
3400 domain_reserve_special_ranges(domain
);
3402 /* calculate AGAW */
3403 domain
->gaw
= guest_width
;
3404 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3405 domain
->agaw
= width_to_agaw(adjust_width
);
3407 INIT_LIST_HEAD(&domain
->devices
);
3409 domain
->iommu_count
= 0;
3410 domain
->iommu_coherency
= 0;
3411 domain
->max_addr
= 0;
3413 /* always allocate the top pgd */
3414 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
3417 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3421 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3423 unsigned long flags
;
3424 struct dmar_drhd_unit
*drhd
;
3425 struct intel_iommu
*iommu
;
3427 unsigned long ndomains
;
3429 for_each_drhd_unit(drhd
) {
3432 iommu
= drhd
->iommu
;
3434 ndomains
= cap_ndoms(iommu
->cap
);
3435 i
= find_first_bit(iommu
->domain_ids
, ndomains
);
3436 for (; i
< ndomains
; ) {
3437 if (iommu
->domains
[i
] == domain
) {
3438 spin_lock_irqsave(&iommu
->lock
, flags
);
3439 clear_bit(i
, iommu
->domain_ids
);
3440 iommu
->domains
[i
] = NULL
;
3441 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3444 i
= find_next_bit(iommu
->domain_ids
, ndomains
, i
+1);
3449 static void vm_domain_exit(struct dmar_domain
*domain
)
3451 /* Domain 0 is reserved, so dont process it */
3455 vm_domain_remove_all_dev_info(domain
);
3457 put_iova_domain(&domain
->iovad
);
3460 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3462 /* free page tables */
3463 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3465 iommu_free_vm_domain(domain
);
3466 free_domain_mem(domain
);
3469 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3471 struct dmar_domain
*dmar_domain
;
3473 dmar_domain
= iommu_alloc_vm_domain();
3476 "intel_iommu_domain_init: dmar_domain == NULL\n");
3479 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3481 "intel_iommu_domain_init() failed\n");
3482 vm_domain_exit(dmar_domain
);
3485 domain
->priv
= dmar_domain
;
3490 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
3492 struct dmar_domain
*dmar_domain
= domain
->priv
;
3494 domain
->priv
= NULL
;
3495 vm_domain_exit(dmar_domain
);
3498 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
3501 struct dmar_domain
*dmar_domain
= domain
->priv
;
3502 struct pci_dev
*pdev
= to_pci_dev(dev
);
3503 struct intel_iommu
*iommu
;
3508 /* normally pdev is not mapped */
3509 if (unlikely(domain_context_mapped(pdev
))) {
3510 struct dmar_domain
*old_domain
;
3512 old_domain
= find_domain(pdev
);
3514 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
3515 dmar_domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)
3516 domain_remove_one_dev_info(old_domain
, pdev
);
3518 domain_remove_dev_info(old_domain
);
3522 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3527 /* check if this iommu agaw is sufficient for max mapped address */
3528 addr_width
= agaw_to_width(iommu
->agaw
);
3529 end
= DOMAIN_MAX_ADDR(addr_width
);
3530 end
= end
& VTD_PAGE_MASK
;
3531 if (end
< dmar_domain
->max_addr
) {
3532 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3533 "sufficient for the mapped address (%llx)\n",
3534 __func__
, iommu
->agaw
, dmar_domain
->max_addr
);
3538 ret
= domain_add_dev_info(dmar_domain
, pdev
);
3542 ret
= domain_context_mapping(dmar_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
3546 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
3549 struct dmar_domain
*dmar_domain
= domain
->priv
;
3550 struct pci_dev
*pdev
= to_pci_dev(dev
);
3552 domain_remove_one_dev_info(dmar_domain
, pdev
);
3555 static int intel_iommu_map_range(struct iommu_domain
*domain
,
3556 unsigned long iova
, phys_addr_t hpa
,
3557 size_t size
, int iommu_prot
)
3559 struct dmar_domain
*dmar_domain
= domain
->priv
;
3565 if (iommu_prot
& IOMMU_READ
)
3566 prot
|= DMA_PTE_READ
;
3567 if (iommu_prot
& IOMMU_WRITE
)
3568 prot
|= DMA_PTE_WRITE
;
3569 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
3570 prot
|= DMA_PTE_SNP
;
3572 max_addr
= iova
+ size
;
3573 if (dmar_domain
->max_addr
< max_addr
) {
3577 /* check if minimum agaw is sufficient for mapped address */
3578 min_agaw
= vm_domain_min_agaw(dmar_domain
);
3579 addr_width
= agaw_to_width(min_agaw
);
3580 end
= DOMAIN_MAX_ADDR(addr_width
);
3581 end
= end
& VTD_PAGE_MASK
;
3582 if (end
< max_addr
) {
3583 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3584 "sufficient for the mapped address (%llx)\n",
3585 __func__
, min_agaw
, max_addr
);
3588 dmar_domain
->max_addr
= max_addr
;
3590 /* Round up size to next multiple of PAGE_SIZE, if it and
3591 the low bits of hpa would take us onto the next page */
3592 size
= aligned_nrpages(hpa
, size
);
3593 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3594 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
3598 static void intel_iommu_unmap_range(struct iommu_domain
*domain
,
3599 unsigned long iova
, size_t size
)
3601 struct dmar_domain
*dmar_domain
= domain
->priv
;
3606 dma_pte_clear_range(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3607 (iova
+ size
- 1) >> VTD_PAGE_SHIFT
);
3609 if (dmar_domain
->max_addr
== iova
+ size
)
3610 dmar_domain
->max_addr
= iova
;
3613 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
3616 struct dmar_domain
*dmar_domain
= domain
->priv
;
3617 struct dma_pte
*pte
;
3620 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
);
3622 phys
= dma_pte_addr(pte
);
3627 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
3630 struct dmar_domain
*dmar_domain
= domain
->priv
;
3632 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
3633 return dmar_domain
->iommu_snooping
;
3638 static struct iommu_ops intel_iommu_ops
= {
3639 .domain_init
= intel_iommu_domain_init
,
3640 .domain_destroy
= intel_iommu_domain_destroy
,
3641 .attach_dev
= intel_iommu_attach_device
,
3642 .detach_dev
= intel_iommu_detach_device
,
3643 .map
= intel_iommu_map_range
,
3644 .unmap
= intel_iommu_unmap_range
,
3645 .iova_to_phys
= intel_iommu_iova_to_phys
,
3646 .domain_has_cap
= intel_iommu_domain_has_cap
,
3649 static void __devinit
quirk_iommu_rwbf(struct pci_dev
*dev
)
3652 * Mobile 4 Series Chipset neglects to set RWBF capability,
3655 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
3659 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);