acpi_pad: build only on X86
[linux-2.6/linux-acpi-2.6.git] / include / linux / mmzone.h
blob889598537370b6f1de72e672efd55b6f3db1b377
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_RESERVE 3
42 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
43 #define MIGRATE_TYPES 5
45 #define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
49 extern int page_group_by_mobility_disabled;
51 static inline int get_pageblock_migratetype(struct page *page)
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
56 struct free_area {
57 struct list_head free_list[MIGRATE_TYPES];
58 unsigned long nr_free;
61 struct pglist_data;
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
69 #if defined(CONFIG_SMP)
70 struct zone_padding {
71 char x[0];
72 } ____cacheline_internodealigned_in_smp;
73 #define ZONE_PADDING(name) struct zone_padding name;
74 #else
75 #define ZONE_PADDING(name)
76 #endif
78 enum zone_stat_item {
79 /* First 128 byte cacheline (assuming 64 bit words) */
80 NR_FREE_PAGES,
81 NR_LRU_BASE,
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
86 NR_UNEVICTABLE, /* " " " " " */
87 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
88 NR_ANON_PAGES, /* Mapped anonymous pages */
89 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
90 only modified from process context */
91 NR_FILE_PAGES,
92 NR_FILE_DIRTY,
93 NR_WRITEBACK,
94 NR_SLAB_RECLAIMABLE,
95 NR_SLAB_UNRECLAIMABLE,
96 NR_PAGETABLE, /* used for pagetables */
97 NR_UNSTABLE_NFS, /* NFS unstable pages */
98 NR_BOUNCE,
99 NR_VMSCAN_WRITE,
100 /* Second 128 byte cacheline */
101 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
102 #ifdef CONFIG_NUMA
103 NUMA_HIT, /* allocated in intended node */
104 NUMA_MISS, /* allocated in non intended node */
105 NUMA_FOREIGN, /* was intended here, hit elsewhere */
106 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
107 NUMA_LOCAL, /* allocation from local node */
108 NUMA_OTHER, /* allocation from other node */
109 #endif
110 NR_VM_ZONE_STAT_ITEMS };
113 * We do arithmetic on the LRU lists in various places in the code,
114 * so it is important to keep the active lists LRU_ACTIVE higher in
115 * the array than the corresponding inactive lists, and to keep
116 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
118 * This has to be kept in sync with the statistics in zone_stat_item
119 * above and the descriptions in vmstat_text in mm/vmstat.c
121 #define LRU_BASE 0
122 #define LRU_ACTIVE 1
123 #define LRU_FILE 2
125 enum lru_list {
126 LRU_INACTIVE_ANON = LRU_BASE,
127 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
128 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
129 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
130 LRU_UNEVICTABLE,
131 NR_LRU_LISTS
134 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
136 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
138 static inline int is_file_lru(enum lru_list l)
140 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
143 static inline int is_active_lru(enum lru_list l)
145 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
148 static inline int is_unevictable_lru(enum lru_list l)
150 return (l == LRU_UNEVICTABLE);
153 enum zone_watermarks {
154 WMARK_MIN,
155 WMARK_LOW,
156 WMARK_HIGH,
157 NR_WMARK
160 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
161 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
162 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
164 struct per_cpu_pages {
165 int count; /* number of pages in the list */
166 int high; /* high watermark, emptying needed */
167 int batch; /* chunk size for buddy add/remove */
168 struct list_head list; /* the list of pages */
171 struct per_cpu_pageset {
172 struct per_cpu_pages pcp;
173 #ifdef CONFIG_NUMA
174 s8 expire;
175 #endif
176 #ifdef CONFIG_SMP
177 s8 stat_threshold;
178 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
179 #endif
180 } ____cacheline_aligned_in_smp;
182 #ifdef CONFIG_NUMA
183 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
184 #else
185 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
186 #endif
188 #endif /* !__GENERATING_BOUNDS.H */
190 enum zone_type {
191 #ifdef CONFIG_ZONE_DMA
193 * ZONE_DMA is used when there are devices that are not able
194 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
195 * carve out the portion of memory that is needed for these devices.
196 * The range is arch specific.
198 * Some examples
200 * Architecture Limit
201 * ---------------------------
202 * parisc, ia64, sparc <4G
203 * s390 <2G
204 * arm Various
205 * alpha Unlimited or 0-16MB.
207 * i386, x86_64 and multiple other arches
208 * <16M.
210 ZONE_DMA,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
214 * x86_64 needs two ZONE_DMAs because it supports devices that are
215 * only able to do DMA to the lower 16M but also 32 bit devices that
216 * can only do DMA areas below 4G.
218 ZONE_DMA32,
219 #endif
221 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
222 * performed on pages in ZONE_NORMAL if the DMA devices support
223 * transfers to all addressable memory.
225 ZONE_NORMAL,
226 #ifdef CONFIG_HIGHMEM
228 * A memory area that is only addressable by the kernel through
229 * mapping portions into its own address space. This is for example
230 * used by i386 to allow the kernel to address the memory beyond
231 * 900MB. The kernel will set up special mappings (page
232 * table entries on i386) for each page that the kernel needs to
233 * access.
235 ZONE_HIGHMEM,
236 #endif
237 ZONE_MOVABLE,
238 __MAX_NR_ZONES
241 #ifndef __GENERATING_BOUNDS_H
244 * When a memory allocation must conform to specific limitations (such
245 * as being suitable for DMA) the caller will pass in hints to the
246 * allocator in the gfp_mask, in the zone modifier bits. These bits
247 * are used to select a priority ordered list of memory zones which
248 * match the requested limits. See gfp_zone() in include/linux/gfp.h
251 #if MAX_NR_ZONES < 2
252 #define ZONES_SHIFT 0
253 #elif MAX_NR_ZONES <= 2
254 #define ZONES_SHIFT 1
255 #elif MAX_NR_ZONES <= 4
256 #define ZONES_SHIFT 2
257 #else
258 #error ZONES_SHIFT -- too many zones configured adjust calculation
259 #endif
261 struct zone_reclaim_stat {
263 * The pageout code in vmscan.c keeps track of how many of the
264 * mem/swap backed and file backed pages are refeferenced.
265 * The higher the rotated/scanned ratio, the more valuable
266 * that cache is.
268 * The anon LRU stats live in [0], file LRU stats in [1]
270 unsigned long recent_rotated[2];
271 unsigned long recent_scanned[2];
274 struct zone {
275 /* Fields commonly accessed by the page allocator */
277 /* zone watermarks, access with *_wmark_pages(zone) macros */
278 unsigned long watermark[NR_WMARK];
281 * We don't know if the memory that we're going to allocate will be freeable
282 * or/and it will be released eventually, so to avoid totally wasting several
283 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
284 * to run OOM on the lower zones despite there's tons of freeable ram
285 * on the higher zones). This array is recalculated at runtime if the
286 * sysctl_lowmem_reserve_ratio sysctl changes.
288 unsigned long lowmem_reserve[MAX_NR_ZONES];
290 #ifdef CONFIG_NUMA
291 int node;
293 * zone reclaim becomes active if more unmapped pages exist.
295 unsigned long min_unmapped_pages;
296 unsigned long min_slab_pages;
297 struct per_cpu_pageset *pageset[NR_CPUS];
298 #else
299 struct per_cpu_pageset pageset[NR_CPUS];
300 #endif
302 * free areas of different sizes
304 spinlock_t lock;
305 #ifdef CONFIG_MEMORY_HOTPLUG
306 /* see spanned/present_pages for more description */
307 seqlock_t span_seqlock;
308 #endif
309 struct free_area free_area[MAX_ORDER];
311 #ifndef CONFIG_SPARSEMEM
313 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
314 * In SPARSEMEM, this map is stored in struct mem_section
316 unsigned long *pageblock_flags;
317 #endif /* CONFIG_SPARSEMEM */
320 ZONE_PADDING(_pad1_)
322 /* Fields commonly accessed by the page reclaim scanner */
323 spinlock_t lru_lock;
324 struct zone_lru {
325 struct list_head list;
326 unsigned long nr_saved_scan; /* accumulated for batching */
327 } lru[NR_LRU_LISTS];
329 struct zone_reclaim_stat reclaim_stat;
331 unsigned long pages_scanned; /* since last reclaim */
332 unsigned long flags; /* zone flags, see below */
334 /* Zone statistics */
335 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
338 * prev_priority holds the scanning priority for this zone. It is
339 * defined as the scanning priority at which we achieved our reclaim
340 * target at the previous try_to_free_pages() or balance_pgdat()
341 * invokation.
343 * We use prev_priority as a measure of how much stress page reclaim is
344 * under - it drives the swappiness decision: whether to unmap mapped
345 * pages.
347 * Access to both this field is quite racy even on uniprocessor. But
348 * it is expected to average out OK.
350 int prev_priority;
353 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
354 * this zone's LRU. Maintained by the pageout code.
356 unsigned int inactive_ratio;
359 ZONE_PADDING(_pad2_)
360 /* Rarely used or read-mostly fields */
363 * wait_table -- the array holding the hash table
364 * wait_table_hash_nr_entries -- the size of the hash table array
365 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
367 * The purpose of all these is to keep track of the people
368 * waiting for a page to become available and make them
369 * runnable again when possible. The trouble is that this
370 * consumes a lot of space, especially when so few things
371 * wait on pages at a given time. So instead of using
372 * per-page waitqueues, we use a waitqueue hash table.
374 * The bucket discipline is to sleep on the same queue when
375 * colliding and wake all in that wait queue when removing.
376 * When something wakes, it must check to be sure its page is
377 * truly available, a la thundering herd. The cost of a
378 * collision is great, but given the expected load of the
379 * table, they should be so rare as to be outweighed by the
380 * benefits from the saved space.
382 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
383 * primary users of these fields, and in mm/page_alloc.c
384 * free_area_init_core() performs the initialization of them.
386 wait_queue_head_t * wait_table;
387 unsigned long wait_table_hash_nr_entries;
388 unsigned long wait_table_bits;
391 * Discontig memory support fields.
393 struct pglist_data *zone_pgdat;
394 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
395 unsigned long zone_start_pfn;
398 * zone_start_pfn, spanned_pages and present_pages are all
399 * protected by span_seqlock. It is a seqlock because it has
400 * to be read outside of zone->lock, and it is done in the main
401 * allocator path. But, it is written quite infrequently.
403 * The lock is declared along with zone->lock because it is
404 * frequently read in proximity to zone->lock. It's good to
405 * give them a chance of being in the same cacheline.
407 unsigned long spanned_pages; /* total size, including holes */
408 unsigned long present_pages; /* amount of memory (excluding holes) */
411 * rarely used fields:
413 const char *name;
414 } ____cacheline_internodealigned_in_smp;
416 typedef enum {
417 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
418 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
419 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
420 } zone_flags_t;
422 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
424 set_bit(flag, &zone->flags);
427 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
429 return test_and_set_bit(flag, &zone->flags);
432 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
434 clear_bit(flag, &zone->flags);
437 static inline int zone_is_all_unreclaimable(const struct zone *zone)
439 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
442 static inline int zone_is_reclaim_locked(const struct zone *zone)
444 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
447 static inline int zone_is_oom_locked(const struct zone *zone)
449 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
453 * The "priority" of VM scanning is how much of the queues we will scan in one
454 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
455 * queues ("queue_length >> 12") during an aging round.
457 #define DEF_PRIORITY 12
459 /* Maximum number of zones on a zonelist */
460 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
462 #ifdef CONFIG_NUMA
465 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
466 * allocations to a single node for GFP_THISNODE.
468 * [0] : Zonelist with fallback
469 * [1] : No fallback (GFP_THISNODE)
471 #define MAX_ZONELISTS 2
475 * We cache key information from each zonelist for smaller cache
476 * footprint when scanning for free pages in get_page_from_freelist().
478 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
479 * up short of free memory since the last time (last_fullzone_zap)
480 * we zero'd fullzones.
481 * 2) The array z_to_n[] maps each zone in the zonelist to its node
482 * id, so that we can efficiently evaluate whether that node is
483 * set in the current tasks mems_allowed.
485 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
486 * indexed by a zones offset in the zonelist zones[] array.
488 * The get_page_from_freelist() routine does two scans. During the
489 * first scan, we skip zones whose corresponding bit in 'fullzones'
490 * is set or whose corresponding node in current->mems_allowed (which
491 * comes from cpusets) is not set. During the second scan, we bypass
492 * this zonelist_cache, to ensure we look methodically at each zone.
494 * Once per second, we zero out (zap) fullzones, forcing us to
495 * reconsider nodes that might have regained more free memory.
496 * The field last_full_zap is the time we last zapped fullzones.
498 * This mechanism reduces the amount of time we waste repeatedly
499 * reexaming zones for free memory when they just came up low on
500 * memory momentarilly ago.
502 * The zonelist_cache struct members logically belong in struct
503 * zonelist. However, the mempolicy zonelists constructed for
504 * MPOL_BIND are intentionally variable length (and usually much
505 * shorter). A general purpose mechanism for handling structs with
506 * multiple variable length members is more mechanism than we want
507 * here. We resort to some special case hackery instead.
509 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
510 * part because they are shorter), so we put the fixed length stuff
511 * at the front of the zonelist struct, ending in a variable length
512 * zones[], as is needed by MPOL_BIND.
514 * Then we put the optional zonelist cache on the end of the zonelist
515 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
516 * the fixed length portion at the front of the struct. This pointer
517 * both enables us to find the zonelist cache, and in the case of
518 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
519 * to know that the zonelist cache is not there.
521 * The end result is that struct zonelists come in two flavors:
522 * 1) The full, fixed length version, shown below, and
523 * 2) The custom zonelists for MPOL_BIND.
524 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
526 * Even though there may be multiple CPU cores on a node modifying
527 * fullzones or last_full_zap in the same zonelist_cache at the same
528 * time, we don't lock it. This is just hint data - if it is wrong now
529 * and then, the allocator will still function, perhaps a bit slower.
533 struct zonelist_cache {
534 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
535 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
536 unsigned long last_full_zap; /* when last zap'd (jiffies) */
538 #else
539 #define MAX_ZONELISTS 1
540 struct zonelist_cache;
541 #endif
544 * This struct contains information about a zone in a zonelist. It is stored
545 * here to avoid dereferences into large structures and lookups of tables
547 struct zoneref {
548 struct zone *zone; /* Pointer to actual zone */
549 int zone_idx; /* zone_idx(zoneref->zone) */
553 * One allocation request operates on a zonelist. A zonelist
554 * is a list of zones, the first one is the 'goal' of the
555 * allocation, the other zones are fallback zones, in decreasing
556 * priority.
558 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
559 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
561 * To speed the reading of the zonelist, the zonerefs contain the zone index
562 * of the entry being read. Helper functions to access information given
563 * a struct zoneref are
565 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
566 * zonelist_zone_idx() - Return the index of the zone for an entry
567 * zonelist_node_idx() - Return the index of the node for an entry
569 struct zonelist {
570 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
571 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
572 #ifdef CONFIG_NUMA
573 struct zonelist_cache zlcache; // optional ...
574 #endif
577 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
578 struct node_active_region {
579 unsigned long start_pfn;
580 unsigned long end_pfn;
581 int nid;
583 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
585 #ifndef CONFIG_DISCONTIGMEM
586 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
587 extern struct page *mem_map;
588 #endif
591 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
592 * (mostly NUMA machines?) to denote a higher-level memory zone than the
593 * zone denotes.
595 * On NUMA machines, each NUMA node would have a pg_data_t to describe
596 * it's memory layout.
598 * Memory statistics and page replacement data structures are maintained on a
599 * per-zone basis.
601 struct bootmem_data;
602 typedef struct pglist_data {
603 struct zone node_zones[MAX_NR_ZONES];
604 struct zonelist node_zonelists[MAX_ZONELISTS];
605 int nr_zones;
606 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
607 struct page *node_mem_map;
608 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
609 struct page_cgroup *node_page_cgroup;
610 #endif
611 #endif
612 struct bootmem_data *bdata;
613 #ifdef CONFIG_MEMORY_HOTPLUG
615 * Must be held any time you expect node_start_pfn, node_present_pages
616 * or node_spanned_pages stay constant. Holding this will also
617 * guarantee that any pfn_valid() stays that way.
619 * Nests above zone->lock and zone->size_seqlock.
621 spinlock_t node_size_lock;
622 #endif
623 unsigned long node_start_pfn;
624 unsigned long node_present_pages; /* total number of physical pages */
625 unsigned long node_spanned_pages; /* total size of physical page
626 range, including holes */
627 int node_id;
628 wait_queue_head_t kswapd_wait;
629 struct task_struct *kswapd;
630 int kswapd_max_order;
631 } pg_data_t;
633 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
634 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
635 #ifdef CONFIG_FLAT_NODE_MEM_MAP
636 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
637 #else
638 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
639 #endif
640 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
642 #include <linux/memory_hotplug.h>
644 void get_zone_counts(unsigned long *active, unsigned long *inactive,
645 unsigned long *free);
646 void build_all_zonelists(void);
647 void wakeup_kswapd(struct zone *zone, int order);
648 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
649 int classzone_idx, int alloc_flags);
650 enum memmap_context {
651 MEMMAP_EARLY,
652 MEMMAP_HOTPLUG,
654 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
655 unsigned long size,
656 enum memmap_context context);
658 #ifdef CONFIG_HAVE_MEMORY_PRESENT
659 void memory_present(int nid, unsigned long start, unsigned long end);
660 #else
661 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
662 #endif
664 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
665 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
666 #endif
669 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
671 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
673 static inline int populated_zone(struct zone *zone)
675 return (!!zone->present_pages);
678 extern int movable_zone;
680 static inline int zone_movable_is_highmem(void)
682 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
683 return movable_zone == ZONE_HIGHMEM;
684 #else
685 return 0;
686 #endif
689 static inline int is_highmem_idx(enum zone_type idx)
691 #ifdef CONFIG_HIGHMEM
692 return (idx == ZONE_HIGHMEM ||
693 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
694 #else
695 return 0;
696 #endif
699 static inline int is_normal_idx(enum zone_type idx)
701 return (idx == ZONE_NORMAL);
705 * is_highmem - helper function to quickly check if a struct zone is a
706 * highmem zone or not. This is an attempt to keep references
707 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
708 * @zone - pointer to struct zone variable
710 static inline int is_highmem(struct zone *zone)
712 #ifdef CONFIG_HIGHMEM
713 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
714 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
715 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
716 zone_movable_is_highmem());
717 #else
718 return 0;
719 #endif
722 static inline int is_normal(struct zone *zone)
724 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
727 static inline int is_dma32(struct zone *zone)
729 #ifdef CONFIG_ZONE_DMA32
730 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
731 #else
732 return 0;
733 #endif
736 static inline int is_dma(struct zone *zone)
738 #ifdef CONFIG_ZONE_DMA
739 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
740 #else
741 return 0;
742 #endif
745 /* These two functions are used to setup the per zone pages min values */
746 struct ctl_table;
747 struct file;
748 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
749 void __user *, size_t *, loff_t *);
750 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
751 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
752 void __user *, size_t *, loff_t *);
753 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
754 void __user *, size_t *, loff_t *);
755 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
756 struct file *, void __user *, size_t *, loff_t *);
757 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
758 struct file *, void __user *, size_t *, loff_t *);
760 extern int numa_zonelist_order_handler(struct ctl_table *, int,
761 struct file *, void __user *, size_t *, loff_t *);
762 extern char numa_zonelist_order[];
763 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
765 #ifndef CONFIG_NEED_MULTIPLE_NODES
767 extern struct pglist_data contig_page_data;
768 #define NODE_DATA(nid) (&contig_page_data)
769 #define NODE_MEM_MAP(nid) mem_map
771 #else /* CONFIG_NEED_MULTIPLE_NODES */
773 #include <asm/mmzone.h>
775 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
777 extern struct pglist_data *first_online_pgdat(void);
778 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
779 extern struct zone *next_zone(struct zone *zone);
782 * for_each_online_pgdat - helper macro to iterate over all online nodes
783 * @pgdat - pointer to a pg_data_t variable
785 #define for_each_online_pgdat(pgdat) \
786 for (pgdat = first_online_pgdat(); \
787 pgdat; \
788 pgdat = next_online_pgdat(pgdat))
790 * for_each_zone - helper macro to iterate over all memory zones
791 * @zone - pointer to struct zone variable
793 * The user only needs to declare the zone variable, for_each_zone
794 * fills it in.
796 #define for_each_zone(zone) \
797 for (zone = (first_online_pgdat())->node_zones; \
798 zone; \
799 zone = next_zone(zone))
801 #define for_each_populated_zone(zone) \
802 for (zone = (first_online_pgdat())->node_zones; \
803 zone; \
804 zone = next_zone(zone)) \
805 if (!populated_zone(zone)) \
806 ; /* do nothing */ \
807 else
809 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
811 return zoneref->zone;
814 static inline int zonelist_zone_idx(struct zoneref *zoneref)
816 return zoneref->zone_idx;
819 static inline int zonelist_node_idx(struct zoneref *zoneref)
821 #ifdef CONFIG_NUMA
822 /* zone_to_nid not available in this context */
823 return zoneref->zone->node;
824 #else
825 return 0;
826 #endif /* CONFIG_NUMA */
830 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
831 * @z - The cursor used as a starting point for the search
832 * @highest_zoneidx - The zone index of the highest zone to return
833 * @nodes - An optional nodemask to filter the zonelist with
834 * @zone - The first suitable zone found is returned via this parameter
836 * This function returns the next zone at or below a given zone index that is
837 * within the allowed nodemask using a cursor as the starting point for the
838 * search. The zoneref returned is a cursor that represents the current zone
839 * being examined. It should be advanced by one before calling
840 * next_zones_zonelist again.
842 struct zoneref *next_zones_zonelist(struct zoneref *z,
843 enum zone_type highest_zoneidx,
844 nodemask_t *nodes,
845 struct zone **zone);
848 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
849 * @zonelist - The zonelist to search for a suitable zone
850 * @highest_zoneidx - The zone index of the highest zone to return
851 * @nodes - An optional nodemask to filter the zonelist with
852 * @zone - The first suitable zone found is returned via this parameter
854 * This function returns the first zone at or below a given zone index that is
855 * within the allowed nodemask. The zoneref returned is a cursor that can be
856 * used to iterate the zonelist with next_zones_zonelist by advancing it by
857 * one before calling.
859 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
860 enum zone_type highest_zoneidx,
861 nodemask_t *nodes,
862 struct zone **zone)
864 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
865 zone);
869 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
870 * @zone - The current zone in the iterator
871 * @z - The current pointer within zonelist->zones being iterated
872 * @zlist - The zonelist being iterated
873 * @highidx - The zone index of the highest zone to return
874 * @nodemask - Nodemask allowed by the allocator
876 * This iterator iterates though all zones at or below a given zone index and
877 * within a given nodemask
879 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
880 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
881 zone; \
882 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
885 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
886 * @zone - The current zone in the iterator
887 * @z - The current pointer within zonelist->zones being iterated
888 * @zlist - The zonelist being iterated
889 * @highidx - The zone index of the highest zone to return
891 * This iterator iterates though all zones at or below a given zone index.
893 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
894 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
896 #ifdef CONFIG_SPARSEMEM
897 #include <asm/sparsemem.h>
898 #endif
900 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
901 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
902 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
904 return 0;
906 #endif
908 #ifdef CONFIG_FLATMEM
909 #define pfn_to_nid(pfn) (0)
910 #endif
912 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
913 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
915 #ifdef CONFIG_SPARSEMEM
918 * SECTION_SHIFT #bits space required to store a section #
920 * PA_SECTION_SHIFT physical address to/from section number
921 * PFN_SECTION_SHIFT pfn to/from section number
923 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
925 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
926 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
928 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
930 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
931 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
933 #define SECTION_BLOCKFLAGS_BITS \
934 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
936 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
937 #error Allocator MAX_ORDER exceeds SECTION_SIZE
938 #endif
940 struct page;
941 struct page_cgroup;
942 struct mem_section {
944 * This is, logically, a pointer to an array of struct
945 * pages. However, it is stored with some other magic.
946 * (see sparse.c::sparse_init_one_section())
948 * Additionally during early boot we encode node id of
949 * the location of the section here to guide allocation.
950 * (see sparse.c::memory_present())
952 * Making it a UL at least makes someone do a cast
953 * before using it wrong.
955 unsigned long section_mem_map;
957 /* See declaration of similar field in struct zone */
958 unsigned long *pageblock_flags;
959 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
961 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
962 * section. (see memcontrol.h/page_cgroup.h about this.)
964 struct page_cgroup *page_cgroup;
965 unsigned long pad;
966 #endif
969 #ifdef CONFIG_SPARSEMEM_EXTREME
970 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
971 #else
972 #define SECTIONS_PER_ROOT 1
973 #endif
975 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
976 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
977 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
979 #ifdef CONFIG_SPARSEMEM_EXTREME
980 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
981 #else
982 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
983 #endif
985 static inline struct mem_section *__nr_to_section(unsigned long nr)
987 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
988 return NULL;
989 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
991 extern int __section_nr(struct mem_section* ms);
992 extern unsigned long usemap_size(void);
995 * We use the lower bits of the mem_map pointer to store
996 * a little bit of information. There should be at least
997 * 3 bits here due to 32-bit alignment.
999 #define SECTION_MARKED_PRESENT (1UL<<0)
1000 #define SECTION_HAS_MEM_MAP (1UL<<1)
1001 #define SECTION_MAP_LAST_BIT (1UL<<2)
1002 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1003 #define SECTION_NID_SHIFT 2
1005 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1007 unsigned long map = section->section_mem_map;
1008 map &= SECTION_MAP_MASK;
1009 return (struct page *)map;
1012 static inline int present_section(struct mem_section *section)
1014 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1017 static inline int present_section_nr(unsigned long nr)
1019 return present_section(__nr_to_section(nr));
1022 static inline int valid_section(struct mem_section *section)
1024 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1027 static inline int valid_section_nr(unsigned long nr)
1029 return valid_section(__nr_to_section(nr));
1032 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1034 return __nr_to_section(pfn_to_section_nr(pfn));
1037 static inline int pfn_valid(unsigned long pfn)
1039 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1040 return 0;
1041 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1044 static inline int pfn_present(unsigned long pfn)
1046 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1047 return 0;
1048 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1052 * These are _only_ used during initialisation, therefore they
1053 * can use __initdata ... They could have names to indicate
1054 * this restriction.
1056 #ifdef CONFIG_NUMA
1057 #define pfn_to_nid(pfn) \
1058 ({ \
1059 unsigned long __pfn_to_nid_pfn = (pfn); \
1060 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1062 #else
1063 #define pfn_to_nid(pfn) (0)
1064 #endif
1066 #define early_pfn_valid(pfn) pfn_valid(pfn)
1067 void sparse_init(void);
1068 #else
1069 #define sparse_init() do {} while (0)
1070 #define sparse_index_init(_sec, _nid) do {} while (0)
1071 #endif /* CONFIG_SPARSEMEM */
1073 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1074 bool early_pfn_in_nid(unsigned long pfn, int nid);
1075 #else
1076 #define early_pfn_in_nid(pfn, nid) (1)
1077 #endif
1079 #ifndef early_pfn_valid
1080 #define early_pfn_valid(pfn) (1)
1081 #endif
1083 void memory_present(int nid, unsigned long start, unsigned long end);
1084 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1087 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1088 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1089 * pfn_valid_within() should be used in this case; we optimise this away
1090 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1092 #ifdef CONFIG_HOLES_IN_ZONE
1093 #define pfn_valid_within(pfn) pfn_valid(pfn)
1094 #else
1095 #define pfn_valid_within(pfn) (1)
1096 #endif
1098 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1100 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1101 * associated with it or not. In FLATMEM, it is expected that holes always
1102 * have valid memmap as long as there is valid PFNs either side of the hole.
1103 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1104 * entire section.
1106 * However, an ARM, and maybe other embedded architectures in the future
1107 * free memmap backing holes to save memory on the assumption the memmap is
1108 * never used. The page_zone linkages are then broken even though pfn_valid()
1109 * returns true. A walker of the full memmap must then do this additional
1110 * check to ensure the memmap they are looking at is sane by making sure
1111 * the zone and PFN linkages are still valid. This is expensive, but walkers
1112 * of the full memmap are extremely rare.
1114 int memmap_valid_within(unsigned long pfn,
1115 struct page *page, struct zone *zone);
1116 #else
1117 static inline int memmap_valid_within(unsigned long pfn,
1118 struct page *page, struct zone *zone)
1120 return 1;
1122 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1124 #endif /* !__GENERATING_BOUNDS.H */
1125 #endif /* !__ASSEMBLY__ */
1126 #endif /* _LINUX_MMZONE_H */