ACPI: pci_root: simplify list traversals
[linux-2.6/linux-acpi-2.6.git] / drivers / block / loop.c
blobddae80825899ae0459bff4a8109d8fc3468868c3
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/smp_lock.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/loop.h>
68 #include <linux/compat.h>
69 #include <linux/suspend.h>
70 #include <linux/freezer.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
79 #include <asm/uaccess.h>
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
84 static int max_part;
85 static int part_shift;
88 * Transfer functions
90 static int transfer_none(struct loop_device *lo, int cmd,
91 struct page *raw_page, unsigned raw_off,
92 struct page *loop_page, unsigned loop_off,
93 int size, sector_t real_block)
95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 if (cmd == READ)
99 memcpy(loop_buf, raw_buf, size);
100 else
101 memcpy(raw_buf, loop_buf, size);
103 kunmap_atomic(raw_buf, KM_USER0);
104 kunmap_atomic(loop_buf, KM_USER1);
105 cond_resched();
106 return 0;
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 struct page *raw_page, unsigned raw_off,
111 struct page *loop_page, unsigned loop_off,
112 int size, sector_t real_block)
114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 char *in, *out, *key;
117 int i, keysize;
119 if (cmd == READ) {
120 in = raw_buf;
121 out = loop_buf;
122 } else {
123 in = loop_buf;
124 out = raw_buf;
127 key = lo->lo_encrypt_key;
128 keysize = lo->lo_encrypt_key_size;
129 for (i = 0; i < size; i++)
130 *out++ = *in++ ^ key[(i & 511) % keysize];
132 kunmap_atomic(raw_buf, KM_USER0);
133 kunmap_atomic(loop_buf, KM_USER1);
134 cond_resched();
135 return 0;
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 if (unlikely(info->lo_encrypt_key_size <= 0))
141 return -EINVAL;
142 return 0;
145 static struct loop_func_table none_funcs = {
146 .number = LO_CRYPT_NONE,
147 .transfer = transfer_none,
150 static struct loop_func_table xor_funcs = {
151 .number = LO_CRYPT_XOR,
152 .transfer = transfer_xor,
153 .init = xor_init
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 &none_funcs,
159 &xor_funcs
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 loff_t size, offset, loopsize;
166 /* Compute loopsize in bytes */
167 size = i_size_read(file->f_mapping->host);
168 offset = lo->lo_offset;
169 loopsize = size - offset;
170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 loopsize = lo->lo_sizelimit;
174 * Unfortunately, if we want to do I/O on the device,
175 * the number of 512-byte sectors has to fit into a sector_t.
177 return loopsize >> 9;
180 static int
181 figure_loop_size(struct loop_device *lo)
183 loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 sector_t x = (sector_t)size;
186 if (unlikely((loff_t)x != size))
187 return -EFBIG;
189 set_capacity(lo->lo_disk, x);
190 return 0;
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 struct page *rpage, unsigned roffs,
196 struct page *lpage, unsigned loffs,
197 int size, sector_t rblock)
199 if (unlikely(!lo->transfer))
200 return 0;
202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
206 * do_lo_send_aops - helper for writing data to a loop device
208 * This is the fast version for backing filesystems which implement the address
209 * space operations write_begin and write_end.
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 loff_t pos, struct page *unused)
214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 struct address_space *mapping = file->f_mapping;
216 pgoff_t index;
217 unsigned offset, bv_offs;
218 int len, ret;
220 mutex_lock(&mapping->host->i_mutex);
221 index = pos >> PAGE_CACHE_SHIFT;
222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 bv_offs = bvec->bv_offset;
224 len = bvec->bv_len;
225 while (len > 0) {
226 sector_t IV;
227 unsigned size, copied;
228 int transfer_result;
229 struct page *page;
230 void *fsdata;
232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 size = PAGE_CACHE_SIZE - offset;
234 if (size > len)
235 size = len;
237 ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 &page, &fsdata);
239 if (ret)
240 goto fail;
242 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
243 bvec->bv_page, bv_offs, size, IV);
244 copied = size;
245 if (unlikely(transfer_result))
246 copied = 0;
248 ret = pagecache_write_end(file, mapping, pos, size, copied,
249 page, fsdata);
250 if (ret < 0 || ret != copied)
251 goto fail;
253 if (unlikely(transfer_result))
254 goto fail;
256 bv_offs += copied;
257 len -= copied;
258 offset = 0;
259 index++;
260 pos += copied;
262 ret = 0;
263 out:
264 mutex_unlock(&mapping->host->i_mutex);
265 return ret;
266 fail:
267 ret = -1;
268 goto out;
272 * __do_lo_send_write - helper for writing data to a loop device
274 * This helper just factors out common code between do_lo_send_direct_write()
275 * and do_lo_send_write().
277 static int __do_lo_send_write(struct file *file,
278 u8 *buf, const int len, loff_t pos)
280 ssize_t bw;
281 mm_segment_t old_fs = get_fs();
283 set_fs(get_ds());
284 bw = file->f_op->write(file, buf, len, &pos);
285 set_fs(old_fs);
286 if (likely(bw == len))
287 return 0;
288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
289 (unsigned long long)pos, len);
290 if (bw >= 0)
291 bw = -EIO;
292 return bw;
296 * do_lo_send_direct_write - helper for writing data to a loop device
298 * This is the fast, non-transforming version for backing filesystems which do
299 * not implement the address space operations write_begin and write_end.
300 * It uses the write file operation which should be present on all writeable
301 * filesystems.
303 static int do_lo_send_direct_write(struct loop_device *lo,
304 struct bio_vec *bvec, loff_t pos, struct page *page)
306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
307 kmap(bvec->bv_page) + bvec->bv_offset,
308 bvec->bv_len, pos);
309 kunmap(bvec->bv_page);
310 cond_resched();
311 return bw;
315 * do_lo_send_write - helper for writing data to a loop device
317 * This is the slow, transforming version for filesystems which do not
318 * implement the address space operations write_begin and write_end. It
319 * uses the write file operation which should be present on all writeable
320 * filesystems.
322 * Using fops->write is slower than using aops->{prepare,commit}_write in the
323 * transforming case because we need to double buffer the data as we cannot do
324 * the transformations in place as we do not have direct access to the
325 * destination pages of the backing file.
327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
328 loff_t pos, struct page *page)
330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
331 bvec->bv_offset, bvec->bv_len, pos >> 9);
332 if (likely(!ret))
333 return __do_lo_send_write(lo->lo_backing_file,
334 page_address(page), bvec->bv_len,
335 pos);
336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
337 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
338 if (ret > 0)
339 ret = -EIO;
340 return ret;
343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
346 struct page *page);
347 struct bio_vec *bvec;
348 struct page *page = NULL;
349 int i, ret = 0;
351 do_lo_send = do_lo_send_aops;
352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
353 do_lo_send = do_lo_send_direct_write;
354 if (lo->transfer != transfer_none) {
355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
356 if (unlikely(!page))
357 goto fail;
358 kmap(page);
359 do_lo_send = do_lo_send_write;
362 bio_for_each_segment(bvec, bio, i) {
363 ret = do_lo_send(lo, bvec, pos, page);
364 if (ret < 0)
365 break;
366 pos += bvec->bv_len;
368 if (page) {
369 kunmap(page);
370 __free_page(page);
372 out:
373 return ret;
374 fail:
375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
376 ret = -ENOMEM;
377 goto out;
380 struct lo_read_data {
381 struct loop_device *lo;
382 struct page *page;
383 unsigned offset;
384 int bsize;
387 static int
388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
389 struct splice_desc *sd)
391 struct lo_read_data *p = sd->u.data;
392 struct loop_device *lo = p->lo;
393 struct page *page = buf->page;
394 sector_t IV;
395 int size, ret;
397 ret = buf->ops->confirm(pipe, buf);
398 if (unlikely(ret))
399 return ret;
401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
402 (buf->offset >> 9);
403 size = sd->len;
404 if (size > p->bsize)
405 size = p->bsize;
407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
408 printk(KERN_ERR "loop: transfer error block %ld\n",
409 page->index);
410 size = -EINVAL;
413 flush_dcache_page(p->page);
415 if (size > 0)
416 p->offset += size;
418 return size;
421 static int
422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
424 return __splice_from_pipe(pipe, sd, lo_splice_actor);
427 static int
428 do_lo_receive(struct loop_device *lo,
429 struct bio_vec *bvec, int bsize, loff_t pos)
431 struct lo_read_data cookie;
432 struct splice_desc sd;
433 struct file *file;
434 long retval;
436 cookie.lo = lo;
437 cookie.page = bvec->bv_page;
438 cookie.offset = bvec->bv_offset;
439 cookie.bsize = bsize;
441 sd.len = 0;
442 sd.total_len = bvec->bv_len;
443 sd.flags = 0;
444 sd.pos = pos;
445 sd.u.data = &cookie;
447 file = lo->lo_backing_file;
448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
450 if (retval < 0)
451 return retval;
453 return 0;
456 static int
457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
459 struct bio_vec *bvec;
460 int i, ret = 0;
462 bio_for_each_segment(bvec, bio, i) {
463 ret = do_lo_receive(lo, bvec, bsize, pos);
464 if (ret < 0)
465 break;
466 pos += bvec->bv_len;
468 return ret;
471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
473 loff_t pos;
474 int ret;
476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
478 if (bio_rw(bio) == WRITE) {
479 int barrier = bio_barrier(bio);
480 struct file *file = lo->lo_backing_file;
482 if (barrier) {
483 if (unlikely(!file->f_op->fsync)) {
484 ret = -EOPNOTSUPP;
485 goto out;
488 ret = vfs_fsync(file, file->f_path.dentry, 0);
489 if (unlikely(ret)) {
490 ret = -EIO;
491 goto out;
495 ret = lo_send(lo, bio, pos);
497 if (barrier && !ret) {
498 ret = vfs_fsync(file, file->f_path.dentry, 0);
499 if (unlikely(ret))
500 ret = -EIO;
502 } else
503 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
505 out:
506 return ret;
510 * Add bio to back of pending list
512 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
514 if (lo->lo_biotail) {
515 lo->lo_biotail->bi_next = bio;
516 lo->lo_biotail = bio;
517 } else
518 lo->lo_bio = lo->lo_biotail = bio;
522 * Grab first pending buffer
524 static struct bio *loop_get_bio(struct loop_device *lo)
526 struct bio *bio;
528 if ((bio = lo->lo_bio)) {
529 if (bio == lo->lo_biotail)
530 lo->lo_biotail = NULL;
531 lo->lo_bio = bio->bi_next;
532 bio->bi_next = NULL;
535 return bio;
538 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
540 struct loop_device *lo = q->queuedata;
541 int rw = bio_rw(old_bio);
543 if (rw == READA)
544 rw = READ;
546 BUG_ON(!lo || (rw != READ && rw != WRITE));
548 spin_lock_irq(&lo->lo_lock);
549 if (lo->lo_state != Lo_bound)
550 goto out;
551 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
552 goto out;
553 loop_add_bio(lo, old_bio);
554 wake_up(&lo->lo_event);
555 spin_unlock_irq(&lo->lo_lock);
556 return 0;
558 out:
559 spin_unlock_irq(&lo->lo_lock);
560 bio_io_error(old_bio);
561 return 0;
565 * kick off io on the underlying address space
567 static void loop_unplug(struct request_queue *q)
569 struct loop_device *lo = q->queuedata;
571 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
572 blk_run_address_space(lo->lo_backing_file->f_mapping);
575 struct switch_request {
576 struct file *file;
577 struct completion wait;
580 static void do_loop_switch(struct loop_device *, struct switch_request *);
582 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
584 if (unlikely(!bio->bi_bdev)) {
585 do_loop_switch(lo, bio->bi_private);
586 bio_put(bio);
587 } else {
588 int ret = do_bio_filebacked(lo, bio);
589 bio_endio(bio, ret);
594 * worker thread that handles reads/writes to file backed loop devices,
595 * to avoid blocking in our make_request_fn. it also does loop decrypting
596 * on reads for block backed loop, as that is too heavy to do from
597 * b_end_io context where irqs may be disabled.
599 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
600 * calling kthread_stop(). Therefore once kthread_should_stop() is
601 * true, make_request will not place any more requests. Therefore
602 * once kthread_should_stop() is true and lo_bio is NULL, we are
603 * done with the loop.
605 static int loop_thread(void *data)
607 struct loop_device *lo = data;
608 struct bio *bio;
610 set_user_nice(current, -20);
612 while (!kthread_should_stop() || lo->lo_bio) {
614 wait_event_interruptible(lo->lo_event,
615 lo->lo_bio || kthread_should_stop());
617 if (!lo->lo_bio)
618 continue;
619 spin_lock_irq(&lo->lo_lock);
620 bio = loop_get_bio(lo);
621 spin_unlock_irq(&lo->lo_lock);
623 BUG_ON(!bio);
624 loop_handle_bio(lo, bio);
627 return 0;
631 * loop_switch performs the hard work of switching a backing store.
632 * First it needs to flush existing IO, it does this by sending a magic
633 * BIO down the pipe. The completion of this BIO does the actual switch.
635 static int loop_switch(struct loop_device *lo, struct file *file)
637 struct switch_request w;
638 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
639 if (!bio)
640 return -ENOMEM;
641 init_completion(&w.wait);
642 w.file = file;
643 bio->bi_private = &w;
644 bio->bi_bdev = NULL;
645 loop_make_request(lo->lo_queue, bio);
646 wait_for_completion(&w.wait);
647 return 0;
651 * Helper to flush the IOs in loop, but keeping loop thread running
653 static int loop_flush(struct loop_device *lo)
655 /* loop not yet configured, no running thread, nothing to flush */
656 if (!lo->lo_thread)
657 return 0;
659 return loop_switch(lo, NULL);
663 * Do the actual switch; called from the BIO completion routine
665 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
667 struct file *file = p->file;
668 struct file *old_file = lo->lo_backing_file;
669 struct address_space *mapping;
671 /* if no new file, only flush of queued bios requested */
672 if (!file)
673 goto out;
675 mapping = file->f_mapping;
676 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
677 lo->lo_backing_file = file;
678 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
679 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
680 lo->old_gfp_mask = mapping_gfp_mask(mapping);
681 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
682 out:
683 complete(&p->wait);
688 * loop_change_fd switched the backing store of a loopback device to
689 * a new file. This is useful for operating system installers to free up
690 * the original file and in High Availability environments to switch to
691 * an alternative location for the content in case of server meltdown.
692 * This can only work if the loop device is used read-only, and if the
693 * new backing store is the same size and type as the old backing store.
695 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
696 unsigned int arg)
698 struct file *file, *old_file;
699 struct inode *inode;
700 int error;
702 error = -ENXIO;
703 if (lo->lo_state != Lo_bound)
704 goto out;
706 /* the loop device has to be read-only */
707 error = -EINVAL;
708 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
709 goto out;
711 error = -EBADF;
712 file = fget(arg);
713 if (!file)
714 goto out;
716 inode = file->f_mapping->host;
717 old_file = lo->lo_backing_file;
719 error = -EINVAL;
721 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
722 goto out_putf;
724 /* new backing store needs to support loop (eg splice_read) */
725 if (!inode->i_fop->splice_read)
726 goto out_putf;
728 /* size of the new backing store needs to be the same */
729 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
730 goto out_putf;
732 /* and ... switch */
733 error = loop_switch(lo, file);
734 if (error)
735 goto out_putf;
737 fput(old_file);
738 if (max_part > 0)
739 ioctl_by_bdev(bdev, BLKRRPART, 0);
740 return 0;
742 out_putf:
743 fput(file);
744 out:
745 return error;
748 static inline int is_loop_device(struct file *file)
750 struct inode *i = file->f_mapping->host;
752 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
755 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
756 struct block_device *bdev, unsigned int arg)
758 struct file *file, *f;
759 struct inode *inode;
760 struct address_space *mapping;
761 unsigned lo_blocksize;
762 int lo_flags = 0;
763 int error;
764 loff_t size;
766 /* This is safe, since we have a reference from open(). */
767 __module_get(THIS_MODULE);
769 error = -EBADF;
770 file = fget(arg);
771 if (!file)
772 goto out;
774 error = -EBUSY;
775 if (lo->lo_state != Lo_unbound)
776 goto out_putf;
778 /* Avoid recursion */
779 f = file;
780 while (is_loop_device(f)) {
781 struct loop_device *l;
783 if (f->f_mapping->host->i_bdev == bdev)
784 goto out_putf;
786 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
787 if (l->lo_state == Lo_unbound) {
788 error = -EINVAL;
789 goto out_putf;
791 f = l->lo_backing_file;
794 mapping = file->f_mapping;
795 inode = mapping->host;
797 if (!(file->f_mode & FMODE_WRITE))
798 lo_flags |= LO_FLAGS_READ_ONLY;
800 error = -EINVAL;
801 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
802 const struct address_space_operations *aops = mapping->a_ops;
804 * If we can't read - sorry. If we only can't write - well,
805 * it's going to be read-only.
807 if (!file->f_op->splice_read)
808 goto out_putf;
809 if (aops->write_begin)
810 lo_flags |= LO_FLAGS_USE_AOPS;
811 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
812 lo_flags |= LO_FLAGS_READ_ONLY;
814 lo_blocksize = S_ISBLK(inode->i_mode) ?
815 inode->i_bdev->bd_block_size : PAGE_SIZE;
817 error = 0;
818 } else {
819 goto out_putf;
822 size = get_loop_size(lo, file);
824 if ((loff_t)(sector_t)size != size) {
825 error = -EFBIG;
826 goto out_putf;
829 if (!(mode & FMODE_WRITE))
830 lo_flags |= LO_FLAGS_READ_ONLY;
832 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
834 lo->lo_blocksize = lo_blocksize;
835 lo->lo_device = bdev;
836 lo->lo_flags = lo_flags;
837 lo->lo_backing_file = file;
838 lo->transfer = transfer_none;
839 lo->ioctl = NULL;
840 lo->lo_sizelimit = 0;
841 lo->old_gfp_mask = mapping_gfp_mask(mapping);
842 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
844 lo->lo_bio = lo->lo_biotail = NULL;
847 * set queue make_request_fn, and add limits based on lower level
848 * device
850 blk_queue_make_request(lo->lo_queue, loop_make_request);
851 lo->lo_queue->queuedata = lo;
852 lo->lo_queue->unplug_fn = loop_unplug;
854 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
855 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL);
857 set_capacity(lo->lo_disk, size);
858 bd_set_size(bdev, size << 9);
860 set_blocksize(bdev, lo_blocksize);
862 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
863 lo->lo_number);
864 if (IS_ERR(lo->lo_thread)) {
865 error = PTR_ERR(lo->lo_thread);
866 goto out_clr;
868 lo->lo_state = Lo_bound;
869 wake_up_process(lo->lo_thread);
870 if (max_part > 0)
871 ioctl_by_bdev(bdev, BLKRRPART, 0);
872 return 0;
874 out_clr:
875 lo->lo_thread = NULL;
876 lo->lo_device = NULL;
877 lo->lo_backing_file = NULL;
878 lo->lo_flags = 0;
879 set_capacity(lo->lo_disk, 0);
880 invalidate_bdev(bdev);
881 bd_set_size(bdev, 0);
882 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
883 lo->lo_state = Lo_unbound;
884 out_putf:
885 fput(file);
886 out:
887 /* This is safe: open() is still holding a reference. */
888 module_put(THIS_MODULE);
889 return error;
892 static int
893 loop_release_xfer(struct loop_device *lo)
895 int err = 0;
896 struct loop_func_table *xfer = lo->lo_encryption;
898 if (xfer) {
899 if (xfer->release)
900 err = xfer->release(lo);
901 lo->transfer = NULL;
902 lo->lo_encryption = NULL;
903 module_put(xfer->owner);
905 return err;
908 static int
909 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
910 const struct loop_info64 *i)
912 int err = 0;
914 if (xfer) {
915 struct module *owner = xfer->owner;
917 if (!try_module_get(owner))
918 return -EINVAL;
919 if (xfer->init)
920 err = xfer->init(lo, i);
921 if (err)
922 module_put(owner);
923 else
924 lo->lo_encryption = xfer;
926 return err;
929 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
931 struct file *filp = lo->lo_backing_file;
932 gfp_t gfp = lo->old_gfp_mask;
934 if (lo->lo_state != Lo_bound)
935 return -ENXIO;
937 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
938 return -EBUSY;
940 if (filp == NULL)
941 return -EINVAL;
943 spin_lock_irq(&lo->lo_lock);
944 lo->lo_state = Lo_rundown;
945 spin_unlock_irq(&lo->lo_lock);
947 kthread_stop(lo->lo_thread);
949 lo->lo_queue->unplug_fn = NULL;
950 lo->lo_backing_file = NULL;
952 loop_release_xfer(lo);
953 lo->transfer = NULL;
954 lo->ioctl = NULL;
955 lo->lo_device = NULL;
956 lo->lo_encryption = NULL;
957 lo->lo_offset = 0;
958 lo->lo_sizelimit = 0;
959 lo->lo_encrypt_key_size = 0;
960 lo->lo_flags = 0;
961 lo->lo_thread = NULL;
962 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
963 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
964 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
965 if (bdev)
966 invalidate_bdev(bdev);
967 set_capacity(lo->lo_disk, 0);
968 if (bdev)
969 bd_set_size(bdev, 0);
970 mapping_set_gfp_mask(filp->f_mapping, gfp);
971 lo->lo_state = Lo_unbound;
972 /* This is safe: open() is still holding a reference. */
973 module_put(THIS_MODULE);
974 if (max_part > 0)
975 ioctl_by_bdev(bdev, BLKRRPART, 0);
976 mutex_unlock(&lo->lo_ctl_mutex);
978 * Need not hold lo_ctl_mutex to fput backing file.
979 * Calling fput holding lo_ctl_mutex triggers a circular
980 * lock dependency possibility warning as fput can take
981 * bd_mutex which is usually taken before lo_ctl_mutex.
983 fput(filp);
984 return 0;
987 static int
988 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
990 int err;
991 struct loop_func_table *xfer;
992 uid_t uid = current_uid();
994 if (lo->lo_encrypt_key_size &&
995 lo->lo_key_owner != uid &&
996 !capable(CAP_SYS_ADMIN))
997 return -EPERM;
998 if (lo->lo_state != Lo_bound)
999 return -ENXIO;
1000 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1001 return -EINVAL;
1003 err = loop_release_xfer(lo);
1004 if (err)
1005 return err;
1007 if (info->lo_encrypt_type) {
1008 unsigned int type = info->lo_encrypt_type;
1010 if (type >= MAX_LO_CRYPT)
1011 return -EINVAL;
1012 xfer = xfer_funcs[type];
1013 if (xfer == NULL)
1014 return -EINVAL;
1015 } else
1016 xfer = NULL;
1018 err = loop_init_xfer(lo, xfer, info);
1019 if (err)
1020 return err;
1022 if (lo->lo_offset != info->lo_offset ||
1023 lo->lo_sizelimit != info->lo_sizelimit) {
1024 lo->lo_offset = info->lo_offset;
1025 lo->lo_sizelimit = info->lo_sizelimit;
1026 if (figure_loop_size(lo))
1027 return -EFBIG;
1030 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1031 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1032 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1033 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1035 if (!xfer)
1036 xfer = &none_funcs;
1037 lo->transfer = xfer->transfer;
1038 lo->ioctl = xfer->ioctl;
1040 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1041 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1042 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1044 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1045 lo->lo_init[0] = info->lo_init[0];
1046 lo->lo_init[1] = info->lo_init[1];
1047 if (info->lo_encrypt_key_size) {
1048 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1049 info->lo_encrypt_key_size);
1050 lo->lo_key_owner = uid;
1053 return 0;
1056 static int
1057 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1059 struct file *file = lo->lo_backing_file;
1060 struct kstat stat;
1061 int error;
1063 if (lo->lo_state != Lo_bound)
1064 return -ENXIO;
1065 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1066 if (error)
1067 return error;
1068 memset(info, 0, sizeof(*info));
1069 info->lo_number = lo->lo_number;
1070 info->lo_device = huge_encode_dev(stat.dev);
1071 info->lo_inode = stat.ino;
1072 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1073 info->lo_offset = lo->lo_offset;
1074 info->lo_sizelimit = lo->lo_sizelimit;
1075 info->lo_flags = lo->lo_flags;
1076 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1077 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1078 info->lo_encrypt_type =
1079 lo->lo_encryption ? lo->lo_encryption->number : 0;
1080 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1081 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1082 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1083 lo->lo_encrypt_key_size);
1085 return 0;
1088 static void
1089 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1091 memset(info64, 0, sizeof(*info64));
1092 info64->lo_number = info->lo_number;
1093 info64->lo_device = info->lo_device;
1094 info64->lo_inode = info->lo_inode;
1095 info64->lo_rdevice = info->lo_rdevice;
1096 info64->lo_offset = info->lo_offset;
1097 info64->lo_sizelimit = 0;
1098 info64->lo_encrypt_type = info->lo_encrypt_type;
1099 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1100 info64->lo_flags = info->lo_flags;
1101 info64->lo_init[0] = info->lo_init[0];
1102 info64->lo_init[1] = info->lo_init[1];
1103 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1104 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1105 else
1106 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1107 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1110 static int
1111 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1113 memset(info, 0, sizeof(*info));
1114 info->lo_number = info64->lo_number;
1115 info->lo_device = info64->lo_device;
1116 info->lo_inode = info64->lo_inode;
1117 info->lo_rdevice = info64->lo_rdevice;
1118 info->lo_offset = info64->lo_offset;
1119 info->lo_encrypt_type = info64->lo_encrypt_type;
1120 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1121 info->lo_flags = info64->lo_flags;
1122 info->lo_init[0] = info64->lo_init[0];
1123 info->lo_init[1] = info64->lo_init[1];
1124 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1125 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1126 else
1127 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1128 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1130 /* error in case values were truncated */
1131 if (info->lo_device != info64->lo_device ||
1132 info->lo_rdevice != info64->lo_rdevice ||
1133 info->lo_inode != info64->lo_inode ||
1134 info->lo_offset != info64->lo_offset)
1135 return -EOVERFLOW;
1137 return 0;
1140 static int
1141 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1143 struct loop_info info;
1144 struct loop_info64 info64;
1146 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1147 return -EFAULT;
1148 loop_info64_from_old(&info, &info64);
1149 return loop_set_status(lo, &info64);
1152 static int
1153 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1155 struct loop_info64 info64;
1157 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1158 return -EFAULT;
1159 return loop_set_status(lo, &info64);
1162 static int
1163 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1164 struct loop_info info;
1165 struct loop_info64 info64;
1166 int err = 0;
1168 if (!arg)
1169 err = -EINVAL;
1170 if (!err)
1171 err = loop_get_status(lo, &info64);
1172 if (!err)
1173 err = loop_info64_to_old(&info64, &info);
1174 if (!err && copy_to_user(arg, &info, sizeof(info)))
1175 err = -EFAULT;
1177 return err;
1180 static int
1181 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1182 struct loop_info64 info64;
1183 int err = 0;
1185 if (!arg)
1186 err = -EINVAL;
1187 if (!err)
1188 err = loop_get_status(lo, &info64);
1189 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1190 err = -EFAULT;
1192 return err;
1195 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1197 int err;
1198 sector_t sec;
1199 loff_t sz;
1201 err = -ENXIO;
1202 if (unlikely(lo->lo_state != Lo_bound))
1203 goto out;
1204 err = figure_loop_size(lo);
1205 if (unlikely(err))
1206 goto out;
1207 sec = get_capacity(lo->lo_disk);
1208 /* the width of sector_t may be narrow for bit-shift */
1209 sz = sec;
1210 sz <<= 9;
1211 mutex_lock(&bdev->bd_mutex);
1212 bd_set_size(bdev, sz);
1213 mutex_unlock(&bdev->bd_mutex);
1215 out:
1216 return err;
1219 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1220 unsigned int cmd, unsigned long arg)
1222 struct loop_device *lo = bdev->bd_disk->private_data;
1223 int err;
1225 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1226 switch (cmd) {
1227 case LOOP_SET_FD:
1228 err = loop_set_fd(lo, mode, bdev, arg);
1229 break;
1230 case LOOP_CHANGE_FD:
1231 err = loop_change_fd(lo, bdev, arg);
1232 break;
1233 case LOOP_CLR_FD:
1234 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1235 err = loop_clr_fd(lo, bdev);
1236 if (!err)
1237 goto out_unlocked;
1238 break;
1239 case LOOP_SET_STATUS:
1240 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1241 break;
1242 case LOOP_GET_STATUS:
1243 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1244 break;
1245 case LOOP_SET_STATUS64:
1246 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1247 break;
1248 case LOOP_GET_STATUS64:
1249 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1250 break;
1251 case LOOP_SET_CAPACITY:
1252 err = -EPERM;
1253 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1254 err = loop_set_capacity(lo, bdev);
1255 break;
1256 default:
1257 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1259 mutex_unlock(&lo->lo_ctl_mutex);
1261 out_unlocked:
1262 return err;
1265 #ifdef CONFIG_COMPAT
1266 struct compat_loop_info {
1267 compat_int_t lo_number; /* ioctl r/o */
1268 compat_dev_t lo_device; /* ioctl r/o */
1269 compat_ulong_t lo_inode; /* ioctl r/o */
1270 compat_dev_t lo_rdevice; /* ioctl r/o */
1271 compat_int_t lo_offset;
1272 compat_int_t lo_encrypt_type;
1273 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1274 compat_int_t lo_flags; /* ioctl r/o */
1275 char lo_name[LO_NAME_SIZE];
1276 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1277 compat_ulong_t lo_init[2];
1278 char reserved[4];
1282 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1283 * - noinlined to reduce stack space usage in main part of driver
1285 static noinline int
1286 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1287 struct loop_info64 *info64)
1289 struct compat_loop_info info;
1291 if (copy_from_user(&info, arg, sizeof(info)))
1292 return -EFAULT;
1294 memset(info64, 0, sizeof(*info64));
1295 info64->lo_number = info.lo_number;
1296 info64->lo_device = info.lo_device;
1297 info64->lo_inode = info.lo_inode;
1298 info64->lo_rdevice = info.lo_rdevice;
1299 info64->lo_offset = info.lo_offset;
1300 info64->lo_sizelimit = 0;
1301 info64->lo_encrypt_type = info.lo_encrypt_type;
1302 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1303 info64->lo_flags = info.lo_flags;
1304 info64->lo_init[0] = info.lo_init[0];
1305 info64->lo_init[1] = info.lo_init[1];
1306 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1307 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1308 else
1309 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1310 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1311 return 0;
1315 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1316 * - noinlined to reduce stack space usage in main part of driver
1318 static noinline int
1319 loop_info64_to_compat(const struct loop_info64 *info64,
1320 struct compat_loop_info __user *arg)
1322 struct compat_loop_info info;
1324 memset(&info, 0, sizeof(info));
1325 info.lo_number = info64->lo_number;
1326 info.lo_device = info64->lo_device;
1327 info.lo_inode = info64->lo_inode;
1328 info.lo_rdevice = info64->lo_rdevice;
1329 info.lo_offset = info64->lo_offset;
1330 info.lo_encrypt_type = info64->lo_encrypt_type;
1331 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1332 info.lo_flags = info64->lo_flags;
1333 info.lo_init[0] = info64->lo_init[0];
1334 info.lo_init[1] = info64->lo_init[1];
1335 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1336 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1337 else
1338 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1339 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1341 /* error in case values were truncated */
1342 if (info.lo_device != info64->lo_device ||
1343 info.lo_rdevice != info64->lo_rdevice ||
1344 info.lo_inode != info64->lo_inode ||
1345 info.lo_offset != info64->lo_offset ||
1346 info.lo_init[0] != info64->lo_init[0] ||
1347 info.lo_init[1] != info64->lo_init[1])
1348 return -EOVERFLOW;
1350 if (copy_to_user(arg, &info, sizeof(info)))
1351 return -EFAULT;
1352 return 0;
1355 static int
1356 loop_set_status_compat(struct loop_device *lo,
1357 const struct compat_loop_info __user *arg)
1359 struct loop_info64 info64;
1360 int ret;
1362 ret = loop_info64_from_compat(arg, &info64);
1363 if (ret < 0)
1364 return ret;
1365 return loop_set_status(lo, &info64);
1368 static int
1369 loop_get_status_compat(struct loop_device *lo,
1370 struct compat_loop_info __user *arg)
1372 struct loop_info64 info64;
1373 int err = 0;
1375 if (!arg)
1376 err = -EINVAL;
1377 if (!err)
1378 err = loop_get_status(lo, &info64);
1379 if (!err)
1380 err = loop_info64_to_compat(&info64, arg);
1381 return err;
1384 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1385 unsigned int cmd, unsigned long arg)
1387 struct loop_device *lo = bdev->bd_disk->private_data;
1388 int err;
1390 switch(cmd) {
1391 case LOOP_SET_STATUS:
1392 mutex_lock(&lo->lo_ctl_mutex);
1393 err = loop_set_status_compat(
1394 lo, (const struct compat_loop_info __user *) arg);
1395 mutex_unlock(&lo->lo_ctl_mutex);
1396 break;
1397 case LOOP_GET_STATUS:
1398 mutex_lock(&lo->lo_ctl_mutex);
1399 err = loop_get_status_compat(
1400 lo, (struct compat_loop_info __user *) arg);
1401 mutex_unlock(&lo->lo_ctl_mutex);
1402 break;
1403 case LOOP_SET_CAPACITY:
1404 case LOOP_CLR_FD:
1405 case LOOP_GET_STATUS64:
1406 case LOOP_SET_STATUS64:
1407 arg = (unsigned long) compat_ptr(arg);
1408 case LOOP_SET_FD:
1409 case LOOP_CHANGE_FD:
1410 err = lo_ioctl(bdev, mode, cmd, arg);
1411 break;
1412 default:
1413 err = -ENOIOCTLCMD;
1414 break;
1416 return err;
1418 #endif
1420 static int lo_open(struct block_device *bdev, fmode_t mode)
1422 struct loop_device *lo = bdev->bd_disk->private_data;
1424 mutex_lock(&lo->lo_ctl_mutex);
1425 lo->lo_refcnt++;
1426 mutex_unlock(&lo->lo_ctl_mutex);
1428 return 0;
1431 static int lo_release(struct gendisk *disk, fmode_t mode)
1433 struct loop_device *lo = disk->private_data;
1434 int err;
1436 mutex_lock(&lo->lo_ctl_mutex);
1438 if (--lo->lo_refcnt)
1439 goto out;
1441 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1443 * In autoclear mode, stop the loop thread
1444 * and remove configuration after last close.
1446 err = loop_clr_fd(lo, NULL);
1447 if (!err)
1448 goto out_unlocked;
1449 } else {
1451 * Otherwise keep thread (if running) and config,
1452 * but flush possible ongoing bios in thread.
1454 loop_flush(lo);
1457 out:
1458 mutex_unlock(&lo->lo_ctl_mutex);
1459 out_unlocked:
1460 return 0;
1463 static struct block_device_operations lo_fops = {
1464 .owner = THIS_MODULE,
1465 .open = lo_open,
1466 .release = lo_release,
1467 .ioctl = lo_ioctl,
1468 #ifdef CONFIG_COMPAT
1469 .compat_ioctl = lo_compat_ioctl,
1470 #endif
1474 * And now the modules code and kernel interface.
1476 static int max_loop;
1477 module_param(max_loop, int, 0);
1478 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1479 module_param(max_part, int, 0);
1480 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1481 MODULE_LICENSE("GPL");
1482 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1484 int loop_register_transfer(struct loop_func_table *funcs)
1486 unsigned int n = funcs->number;
1488 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1489 return -EINVAL;
1490 xfer_funcs[n] = funcs;
1491 return 0;
1494 int loop_unregister_transfer(int number)
1496 unsigned int n = number;
1497 struct loop_device *lo;
1498 struct loop_func_table *xfer;
1500 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1501 return -EINVAL;
1503 xfer_funcs[n] = NULL;
1505 list_for_each_entry(lo, &loop_devices, lo_list) {
1506 mutex_lock(&lo->lo_ctl_mutex);
1508 if (lo->lo_encryption == xfer)
1509 loop_release_xfer(lo);
1511 mutex_unlock(&lo->lo_ctl_mutex);
1514 return 0;
1517 EXPORT_SYMBOL(loop_register_transfer);
1518 EXPORT_SYMBOL(loop_unregister_transfer);
1520 static struct loop_device *loop_alloc(int i)
1522 struct loop_device *lo;
1523 struct gendisk *disk;
1525 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1526 if (!lo)
1527 goto out;
1529 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1530 if (!lo->lo_queue)
1531 goto out_free_dev;
1533 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1534 if (!disk)
1535 goto out_free_queue;
1537 mutex_init(&lo->lo_ctl_mutex);
1538 lo->lo_number = i;
1539 lo->lo_thread = NULL;
1540 init_waitqueue_head(&lo->lo_event);
1541 spin_lock_init(&lo->lo_lock);
1542 disk->major = LOOP_MAJOR;
1543 disk->first_minor = i << part_shift;
1544 disk->fops = &lo_fops;
1545 disk->private_data = lo;
1546 disk->queue = lo->lo_queue;
1547 sprintf(disk->disk_name, "loop%d", i);
1548 return lo;
1550 out_free_queue:
1551 blk_cleanup_queue(lo->lo_queue);
1552 out_free_dev:
1553 kfree(lo);
1554 out:
1555 return NULL;
1558 static void loop_free(struct loop_device *lo)
1560 blk_cleanup_queue(lo->lo_queue);
1561 put_disk(lo->lo_disk);
1562 list_del(&lo->lo_list);
1563 kfree(lo);
1566 static struct loop_device *loop_init_one(int i)
1568 struct loop_device *lo;
1570 list_for_each_entry(lo, &loop_devices, lo_list) {
1571 if (lo->lo_number == i)
1572 return lo;
1575 lo = loop_alloc(i);
1576 if (lo) {
1577 add_disk(lo->lo_disk);
1578 list_add_tail(&lo->lo_list, &loop_devices);
1580 return lo;
1583 static void loop_del_one(struct loop_device *lo)
1585 del_gendisk(lo->lo_disk);
1586 loop_free(lo);
1589 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1591 struct loop_device *lo;
1592 struct kobject *kobj;
1594 mutex_lock(&loop_devices_mutex);
1595 lo = loop_init_one(dev & MINORMASK);
1596 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1597 mutex_unlock(&loop_devices_mutex);
1599 *part = 0;
1600 return kobj;
1603 static int __init loop_init(void)
1605 int i, nr;
1606 unsigned long range;
1607 struct loop_device *lo, *next;
1610 * loop module now has a feature to instantiate underlying device
1611 * structure on-demand, provided that there is an access dev node.
1612 * However, this will not work well with user space tool that doesn't
1613 * know about such "feature". In order to not break any existing
1614 * tool, we do the following:
1616 * (1) if max_loop is specified, create that many upfront, and this
1617 * also becomes a hard limit.
1618 * (2) if max_loop is not specified, create 8 loop device on module
1619 * load, user can further extend loop device by create dev node
1620 * themselves and have kernel automatically instantiate actual
1621 * device on-demand.
1624 part_shift = 0;
1625 if (max_part > 0)
1626 part_shift = fls(max_part);
1628 if (max_loop > 1UL << (MINORBITS - part_shift))
1629 return -EINVAL;
1631 if (max_loop) {
1632 nr = max_loop;
1633 range = max_loop;
1634 } else {
1635 nr = 8;
1636 range = 1UL << (MINORBITS - part_shift);
1639 if (register_blkdev(LOOP_MAJOR, "loop"))
1640 return -EIO;
1642 for (i = 0; i < nr; i++) {
1643 lo = loop_alloc(i);
1644 if (!lo)
1645 goto Enomem;
1646 list_add_tail(&lo->lo_list, &loop_devices);
1649 /* point of no return */
1651 list_for_each_entry(lo, &loop_devices, lo_list)
1652 add_disk(lo->lo_disk);
1654 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1655 THIS_MODULE, loop_probe, NULL, NULL);
1657 printk(KERN_INFO "loop: module loaded\n");
1658 return 0;
1660 Enomem:
1661 printk(KERN_INFO "loop: out of memory\n");
1663 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1664 loop_free(lo);
1666 unregister_blkdev(LOOP_MAJOR, "loop");
1667 return -ENOMEM;
1670 static void __exit loop_exit(void)
1672 unsigned long range;
1673 struct loop_device *lo, *next;
1675 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift);
1677 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1678 loop_del_one(lo);
1680 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1681 unregister_blkdev(LOOP_MAJOR, "loop");
1684 module_init(loop_init);
1685 module_exit(loop_exit);
1687 #ifndef MODULE
1688 static int __init max_loop_setup(char *str)
1690 max_loop = simple_strtol(str, NULL, 0);
1691 return 1;
1694 __setup("max_loop=", max_loop_setup);
1695 #endif