ACPI: pci_root: simplify list traversals
[linux-2.6/linux-acpi-2.6.git] / drivers / isdn / hisax / avm_pci.c
blob7cabc5a19492457e96d5de130f63c9ca352202b3
1 /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
3 * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
5 * Author Karsten Keil
6 * Copyright by Karsten Keil <keil@isdn4linux.de>
8 * This software may be used and distributed according to the terms
9 * of the GNU General Public License, incorporated herein by reference.
11 * Thanks to AVM, Berlin for information
15 #include <linux/init.h>
16 #include "hisax.h"
17 #include "isac.h"
18 #include "isdnl1.h"
19 #include <linux/pci.h>
20 #include <linux/isapnp.h>
21 #include <linux/interrupt.h>
23 static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
25 #define AVM_FRITZ_PCI 1
26 #define AVM_FRITZ_PNP 2
28 #define HDLC_FIFO 0x0
29 #define HDLC_STATUS 0x4
31 #define AVM_HDLC_1 0x00
32 #define AVM_HDLC_2 0x01
33 #define AVM_ISAC_FIFO 0x02
34 #define AVM_ISAC_REG_LOW 0x04
35 #define AVM_ISAC_REG_HIGH 0x06
37 #define AVM_STATUS0_IRQ_ISAC 0x01
38 #define AVM_STATUS0_IRQ_HDLC 0x02
39 #define AVM_STATUS0_IRQ_TIMER 0x04
40 #define AVM_STATUS0_IRQ_MASK 0x07
42 #define AVM_STATUS0_RESET 0x01
43 #define AVM_STATUS0_DIS_TIMER 0x02
44 #define AVM_STATUS0_RES_TIMER 0x04
45 #define AVM_STATUS0_ENA_IRQ 0x08
46 #define AVM_STATUS0_TESTBIT 0x10
48 #define AVM_STATUS1_INT_SEL 0x0f
49 #define AVM_STATUS1_ENA_IOM 0x80
51 #define HDLC_MODE_ITF_FLG 0x01
52 #define HDLC_MODE_TRANS 0x02
53 #define HDLC_MODE_CCR_7 0x04
54 #define HDLC_MODE_CCR_16 0x08
55 #define HDLC_MODE_TESTLOOP 0x80
57 #define HDLC_INT_XPR 0x80
58 #define HDLC_INT_XDU 0x40
59 #define HDLC_INT_RPR 0x20
60 #define HDLC_INT_MASK 0xE0
62 #define HDLC_STAT_RME 0x01
63 #define HDLC_STAT_RDO 0x10
64 #define HDLC_STAT_CRCVFRRAB 0x0E
65 #define HDLC_STAT_CRCVFR 0x06
66 #define HDLC_STAT_RML_MASK 0x3f00
68 #define HDLC_CMD_XRS 0x80
69 #define HDLC_CMD_XME 0x01
70 #define HDLC_CMD_RRS 0x20
71 #define HDLC_CMD_XML_MASK 0x3f00
74 /* Interface functions */
76 static u_char
77 ReadISAC(struct IsdnCardState *cs, u_char offset)
79 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
80 register u_char val;
82 outb(idx, cs->hw.avm.cfg_reg + 4);
83 val = inb(cs->hw.avm.isac + (offset & 0xf));
84 return (val);
87 static void
88 WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
90 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
92 outb(idx, cs->hw.avm.cfg_reg + 4);
93 outb(value, cs->hw.avm.isac + (offset & 0xf));
96 static void
97 ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
99 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
100 insb(cs->hw.avm.isac, data, size);
103 static void
104 WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
106 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
107 outsb(cs->hw.avm.isac, data, size);
110 static inline u_int
111 ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
113 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
114 register u_int val;
116 outl(idx, cs->hw.avm.cfg_reg + 4);
117 val = inl(cs->hw.avm.isac + offset);
118 return (val);
121 static inline void
122 WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
124 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
126 outl(idx, cs->hw.avm.cfg_reg + 4);
127 outl(value, cs->hw.avm.isac + offset);
130 static inline u_char
131 ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
133 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
134 register u_char val;
136 outb(idx, cs->hw.avm.cfg_reg + 4);
137 val = inb(cs->hw.avm.isac + offset);
138 return (val);
141 static inline void
142 WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
144 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
146 outb(idx, cs->hw.avm.cfg_reg + 4);
147 outb(value, cs->hw.avm.isac + offset);
150 static u_char
151 ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
153 return(0xff & ReadHDLCPCI(cs, chan, offset));
156 static void
157 WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
159 WriteHDLCPCI(cs, chan, offset, value);
162 static inline
163 struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
165 if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
166 return(&cs->bcs[0]);
167 else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
168 return(&cs->bcs[1]);
169 else
170 return(NULL);
173 static void
174 write_ctrl(struct BCState *bcs, int which) {
176 if (bcs->cs->debug & L1_DEB_HSCX)
177 debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
178 'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
179 if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
180 WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
181 } else {
182 if (which & 4)
183 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
184 bcs->hw.hdlc.ctrl.sr.mode);
185 if (which & 2)
186 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
187 bcs->hw.hdlc.ctrl.sr.xml);
188 if (which & 1)
189 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
190 bcs->hw.hdlc.ctrl.sr.cmd);
194 static void
195 modehdlc(struct BCState *bcs, int mode, int bc)
197 struct IsdnCardState *cs = bcs->cs;
198 int hdlc = bcs->channel;
200 if (cs->debug & L1_DEB_HSCX)
201 debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
202 'A' + hdlc, bcs->mode, mode, hdlc, bc);
203 bcs->hw.hdlc.ctrl.ctrl = 0;
204 switch (mode) {
205 case (-1): /* used for init */
206 bcs->mode = 1;
207 bcs->channel = bc;
208 bc = 0;
209 case (L1_MODE_NULL):
210 if (bcs->mode == L1_MODE_NULL)
211 return;
212 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
213 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
214 write_ctrl(bcs, 5);
215 bcs->mode = L1_MODE_NULL;
216 bcs->channel = bc;
217 break;
218 case (L1_MODE_TRANS):
219 bcs->mode = mode;
220 bcs->channel = bc;
221 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
222 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
223 write_ctrl(bcs, 5);
224 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
225 write_ctrl(bcs, 1);
226 bcs->hw.hdlc.ctrl.sr.cmd = 0;
227 schedule_event(bcs, B_XMTBUFREADY);
228 break;
229 case (L1_MODE_HDLC):
230 bcs->mode = mode;
231 bcs->channel = bc;
232 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
233 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
234 write_ctrl(bcs, 5);
235 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
236 write_ctrl(bcs, 1);
237 bcs->hw.hdlc.ctrl.sr.cmd = 0;
238 schedule_event(bcs, B_XMTBUFREADY);
239 break;
243 static inline void
244 hdlc_empty_fifo(struct BCState *bcs, int count)
246 register u_int *ptr;
247 u_char *p;
248 u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
249 int cnt=0;
250 struct IsdnCardState *cs = bcs->cs;
252 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
253 debugl1(cs, "hdlc_empty_fifo %d", count);
254 if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
255 if (cs->debug & L1_DEB_WARN)
256 debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
257 return;
259 p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
260 ptr = (u_int *)p;
261 bcs->hw.hdlc.rcvidx += count;
262 if (cs->subtyp == AVM_FRITZ_PCI) {
263 outl(idx, cs->hw.avm.cfg_reg + 4);
264 while (cnt < count) {
265 #ifdef __powerpc__
266 *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
267 #else
268 *ptr++ = inl(cs->hw.avm.isac);
269 #endif /* __powerpc__ */
270 cnt += 4;
272 } else {
273 outb(idx, cs->hw.avm.cfg_reg + 4);
274 while (cnt < count) {
275 *p++ = inb(cs->hw.avm.isac);
276 cnt++;
279 if (cs->debug & L1_DEB_HSCX_FIFO) {
280 char *t = bcs->blog;
282 if (cs->subtyp == AVM_FRITZ_PNP)
283 p = (u_char *) ptr;
284 t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
285 bcs->channel ? 'B' : 'A', count);
286 QuickHex(t, p, count);
287 debugl1(cs, bcs->blog);
291 static inline void
292 hdlc_fill_fifo(struct BCState *bcs)
294 struct IsdnCardState *cs = bcs->cs;
295 int count, cnt =0;
296 int fifo_size = 32;
297 u_char *p;
298 u_int *ptr;
300 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
301 debugl1(cs, "hdlc_fill_fifo");
302 if (!bcs->tx_skb)
303 return;
304 if (bcs->tx_skb->len <= 0)
305 return;
307 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
308 if (bcs->tx_skb->len > fifo_size) {
309 count = fifo_size;
310 } else {
311 count = bcs->tx_skb->len;
312 if (bcs->mode != L1_MODE_TRANS)
313 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
315 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
316 debugl1(cs, "hdlc_fill_fifo %d/%ld", count, bcs->tx_skb->len);
317 p = bcs->tx_skb->data;
318 ptr = (u_int *)p;
319 skb_pull(bcs->tx_skb, count);
320 bcs->tx_cnt -= count;
321 bcs->hw.hdlc.count += count;
322 bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
323 write_ctrl(bcs, 3); /* sets the correct index too */
324 if (cs->subtyp == AVM_FRITZ_PCI) {
325 while (cnt<count) {
326 #ifdef __powerpc__
327 out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
328 #else
329 outl(*ptr++, cs->hw.avm.isac);
330 #endif /* __powerpc__ */
331 cnt += 4;
333 } else {
334 while (cnt<count) {
335 outb(*p++, cs->hw.avm.isac);
336 cnt++;
339 if (cs->debug & L1_DEB_HSCX_FIFO) {
340 char *t = bcs->blog;
342 if (cs->subtyp == AVM_FRITZ_PNP)
343 p = (u_char *) ptr;
344 t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
345 bcs->channel ? 'B' : 'A', count);
346 QuickHex(t, p, count);
347 debugl1(cs, bcs->blog);
351 static void
352 HDLC_irq(struct BCState *bcs, u_int stat) {
353 int len;
354 struct sk_buff *skb;
356 if (bcs->cs->debug & L1_DEB_HSCX)
357 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
358 if (stat & HDLC_INT_RPR) {
359 if (stat & HDLC_STAT_RDO) {
360 if (bcs->cs->debug & L1_DEB_HSCX)
361 debugl1(bcs->cs, "RDO");
362 else
363 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
364 bcs->hw.hdlc.ctrl.sr.xml = 0;
365 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
366 write_ctrl(bcs, 1);
367 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
368 write_ctrl(bcs, 1);
369 bcs->hw.hdlc.rcvidx = 0;
370 } else {
371 if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
372 len = 32;
373 hdlc_empty_fifo(bcs, len);
374 if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
375 if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
376 (bcs->mode == L1_MODE_TRANS)) {
377 if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
378 printk(KERN_WARNING "HDLC: receive out of memory\n");
379 else {
380 memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
381 bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
382 skb_queue_tail(&bcs->rqueue, skb);
384 bcs->hw.hdlc.rcvidx = 0;
385 schedule_event(bcs, B_RCVBUFREADY);
386 } else {
387 if (bcs->cs->debug & L1_DEB_HSCX)
388 debugl1(bcs->cs, "invalid frame");
389 else
390 debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
391 bcs->hw.hdlc.rcvidx = 0;
396 if (stat & HDLC_INT_XDU) {
397 /* Here we lost an TX interrupt, so
398 * restart transmitting the whole frame.
400 if (bcs->tx_skb) {
401 skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
402 bcs->tx_cnt += bcs->hw.hdlc.count;
403 bcs->hw.hdlc.count = 0;
404 if (bcs->cs->debug & L1_DEB_WARN)
405 debugl1(bcs->cs, "ch%d XDU", bcs->channel);
406 } else if (bcs->cs->debug & L1_DEB_WARN)
407 debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
408 bcs->hw.hdlc.ctrl.sr.xml = 0;
409 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
410 write_ctrl(bcs, 1);
411 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
412 write_ctrl(bcs, 1);
413 hdlc_fill_fifo(bcs);
414 } else if (stat & HDLC_INT_XPR) {
415 if (bcs->tx_skb) {
416 if (bcs->tx_skb->len) {
417 hdlc_fill_fifo(bcs);
418 return;
419 } else {
420 if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
421 (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
422 u_long flags;
423 spin_lock_irqsave(&bcs->aclock, flags);
424 bcs->ackcnt += bcs->hw.hdlc.count;
425 spin_unlock_irqrestore(&bcs->aclock, flags);
426 schedule_event(bcs, B_ACKPENDING);
428 dev_kfree_skb_irq(bcs->tx_skb);
429 bcs->hw.hdlc.count = 0;
430 bcs->tx_skb = NULL;
433 if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
434 bcs->hw.hdlc.count = 0;
435 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
436 hdlc_fill_fifo(bcs);
437 } else {
438 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
439 schedule_event(bcs, B_XMTBUFREADY);
444 static inline void
445 HDLC_irq_main(struct IsdnCardState *cs)
447 u_int stat;
448 struct BCState *bcs;
450 if (cs->subtyp == AVM_FRITZ_PCI) {
451 stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
452 } else {
453 stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
454 if (stat & HDLC_INT_RPR)
455 stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
457 if (stat & HDLC_INT_MASK) {
458 if (!(bcs = Sel_BCS(cs, 0))) {
459 if (cs->debug)
460 debugl1(cs, "hdlc spurious channel 0 IRQ");
461 } else
462 HDLC_irq(bcs, stat);
464 if (cs->subtyp == AVM_FRITZ_PCI) {
465 stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
466 } else {
467 stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
468 if (stat & HDLC_INT_RPR)
469 stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
471 if (stat & HDLC_INT_MASK) {
472 if (!(bcs = Sel_BCS(cs, 1))) {
473 if (cs->debug)
474 debugl1(cs, "hdlc spurious channel 1 IRQ");
475 } else
476 HDLC_irq(bcs, stat);
480 static void
481 hdlc_l2l1(struct PStack *st, int pr, void *arg)
483 struct BCState *bcs = st->l1.bcs;
484 struct sk_buff *skb = arg;
485 u_long flags;
487 switch (pr) {
488 case (PH_DATA | REQUEST):
489 spin_lock_irqsave(&bcs->cs->lock, flags);
490 if (bcs->tx_skb) {
491 skb_queue_tail(&bcs->squeue, skb);
492 } else {
493 bcs->tx_skb = skb;
494 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
495 bcs->hw.hdlc.count = 0;
496 bcs->cs->BC_Send_Data(bcs);
498 spin_unlock_irqrestore(&bcs->cs->lock, flags);
499 break;
500 case (PH_PULL | INDICATION):
501 spin_lock_irqsave(&bcs->cs->lock, flags);
502 if (bcs->tx_skb) {
503 printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
504 } else {
505 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
506 bcs->tx_skb = skb;
507 bcs->hw.hdlc.count = 0;
508 bcs->cs->BC_Send_Data(bcs);
510 spin_unlock_irqrestore(&bcs->cs->lock, flags);
511 break;
512 case (PH_PULL | REQUEST):
513 if (!bcs->tx_skb) {
514 test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
515 st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
516 } else
517 test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
518 break;
519 case (PH_ACTIVATE | REQUEST):
520 spin_lock_irqsave(&bcs->cs->lock, flags);
521 test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
522 modehdlc(bcs, st->l1.mode, st->l1.bc);
523 spin_unlock_irqrestore(&bcs->cs->lock, flags);
524 l1_msg_b(st, pr, arg);
525 break;
526 case (PH_DEACTIVATE | REQUEST):
527 l1_msg_b(st, pr, arg);
528 break;
529 case (PH_DEACTIVATE | CONFIRM):
530 spin_lock_irqsave(&bcs->cs->lock, flags);
531 test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
532 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
533 modehdlc(bcs, 0, st->l1.bc);
534 spin_unlock_irqrestore(&bcs->cs->lock, flags);
535 st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
536 break;
540 static void
541 close_hdlcstate(struct BCState *bcs)
543 modehdlc(bcs, 0, 0);
544 if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
545 kfree(bcs->hw.hdlc.rcvbuf);
546 bcs->hw.hdlc.rcvbuf = NULL;
547 kfree(bcs->blog);
548 bcs->blog = NULL;
549 skb_queue_purge(&bcs->rqueue);
550 skb_queue_purge(&bcs->squeue);
551 if (bcs->tx_skb) {
552 dev_kfree_skb_any(bcs->tx_skb);
553 bcs->tx_skb = NULL;
554 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
559 static int
560 open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
562 if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
563 if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
564 printk(KERN_WARNING
565 "HiSax: No memory for hdlc.rcvbuf\n");
566 return (1);
568 if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
569 printk(KERN_WARNING
570 "HiSax: No memory for bcs->blog\n");
571 test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
572 kfree(bcs->hw.hdlc.rcvbuf);
573 bcs->hw.hdlc.rcvbuf = NULL;
574 return (2);
576 skb_queue_head_init(&bcs->rqueue);
577 skb_queue_head_init(&bcs->squeue);
579 bcs->tx_skb = NULL;
580 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
581 bcs->event = 0;
582 bcs->hw.hdlc.rcvidx = 0;
583 bcs->tx_cnt = 0;
584 return (0);
587 static int
588 setstack_hdlc(struct PStack *st, struct BCState *bcs)
590 bcs->channel = st->l1.bc;
591 if (open_hdlcstate(st->l1.hardware, bcs))
592 return (-1);
593 st->l1.bcs = bcs;
594 st->l2.l2l1 = hdlc_l2l1;
595 setstack_manager(st);
596 bcs->st = st;
597 setstack_l1_B(st);
598 return (0);
601 #if 0
602 void __init
603 clear_pending_hdlc_ints(struct IsdnCardState *cs)
605 u_int val;
607 if (cs->subtyp == AVM_FRITZ_PCI) {
608 val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
609 debugl1(cs, "HDLC 1 STA %x", val);
610 val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
611 debugl1(cs, "HDLC 2 STA %x", val);
612 } else {
613 val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
614 debugl1(cs, "HDLC 1 STA %x", val);
615 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
616 debugl1(cs, "HDLC 1 RML %x", val);
617 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
618 debugl1(cs, "HDLC 1 MODE %x", val);
619 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
620 debugl1(cs, "HDLC 1 VIN %x", val);
621 val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
622 debugl1(cs, "HDLC 2 STA %x", val);
623 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
624 debugl1(cs, "HDLC 2 RML %x", val);
625 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
626 debugl1(cs, "HDLC 2 MODE %x", val);
627 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
628 debugl1(cs, "HDLC 2 VIN %x", val);
631 #endif /* 0 */
633 static void
634 inithdlc(struct IsdnCardState *cs)
636 cs->bcs[0].BC_SetStack = setstack_hdlc;
637 cs->bcs[1].BC_SetStack = setstack_hdlc;
638 cs->bcs[0].BC_Close = close_hdlcstate;
639 cs->bcs[1].BC_Close = close_hdlcstate;
640 modehdlc(cs->bcs, -1, 0);
641 modehdlc(cs->bcs + 1, -1, 1);
644 static irqreturn_t
645 avm_pcipnp_interrupt(int intno, void *dev_id)
647 struct IsdnCardState *cs = dev_id;
648 u_long flags;
649 u_char val;
650 u_char sval;
652 spin_lock_irqsave(&cs->lock, flags);
653 sval = inb(cs->hw.avm.cfg_reg + 2);
654 if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
655 /* possible a shared IRQ reqest */
656 spin_unlock_irqrestore(&cs->lock, flags);
657 return IRQ_NONE;
659 if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
660 val = ReadISAC(cs, ISAC_ISTA);
661 isac_interrupt(cs, val);
663 if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
664 HDLC_irq_main(cs);
666 WriteISAC(cs, ISAC_MASK, 0xFF);
667 WriteISAC(cs, ISAC_MASK, 0x0);
668 spin_unlock_irqrestore(&cs->lock, flags);
669 return IRQ_HANDLED;
672 static void
673 reset_avmpcipnp(struct IsdnCardState *cs)
675 printk(KERN_INFO "AVM PCI/PnP: reset\n");
676 outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
677 mdelay(10);
678 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
679 outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
680 mdelay(10);
681 printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
684 static int
685 AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
687 u_long flags;
689 switch (mt) {
690 case CARD_RESET:
691 spin_lock_irqsave(&cs->lock, flags);
692 reset_avmpcipnp(cs);
693 spin_unlock_irqrestore(&cs->lock, flags);
694 return(0);
695 case CARD_RELEASE:
696 outb(0, cs->hw.avm.cfg_reg + 2);
697 release_region(cs->hw.avm.cfg_reg, 32);
698 return(0);
699 case CARD_INIT:
700 spin_lock_irqsave(&cs->lock, flags);
701 reset_avmpcipnp(cs);
702 clear_pending_isac_ints(cs);
703 initisac(cs);
704 inithdlc(cs);
705 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
706 cs->hw.avm.cfg_reg + 2);
707 WriteISAC(cs, ISAC_MASK, 0);
708 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
709 AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
710 /* RESET Receiver and Transmitter */
711 WriteISAC(cs, ISAC_CMDR, 0x41);
712 spin_unlock_irqrestore(&cs->lock, flags);
713 return(0);
714 case CARD_TEST:
715 return(0);
717 return(0);
720 static int __devinit avm_setup_rest(struct IsdnCardState *cs)
722 u_int val, ver;
724 cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
725 if (!request_region(cs->hw.avm.cfg_reg, 32,
726 (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
727 printk(KERN_WARNING
728 "HiSax: Fritz!PCI/PNP config port %x-%x already in use\n",
729 cs->hw.avm.cfg_reg,
730 cs->hw.avm.cfg_reg + 31);
731 return (0);
733 switch (cs->subtyp) {
734 case AVM_FRITZ_PCI:
735 val = inl(cs->hw.avm.cfg_reg);
736 printk(KERN_INFO "AVM PCI: stat %#x\n", val);
737 printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
738 val & 0xff, (val>>8) & 0xff);
739 cs->BC_Read_Reg = &ReadHDLC_s;
740 cs->BC_Write_Reg = &WriteHDLC_s;
741 break;
742 case AVM_FRITZ_PNP:
743 val = inb(cs->hw.avm.cfg_reg);
744 ver = inb(cs->hw.avm.cfg_reg + 1);
745 printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
746 cs->BC_Read_Reg = &ReadHDLCPnP;
747 cs->BC_Write_Reg = &WriteHDLCPnP;
748 break;
749 default:
750 printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
751 return(0);
753 printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
754 (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
755 cs->irq, cs->hw.avm.cfg_reg);
757 setup_isac(cs);
758 cs->readisac = &ReadISAC;
759 cs->writeisac = &WriteISAC;
760 cs->readisacfifo = &ReadISACfifo;
761 cs->writeisacfifo = &WriteISACfifo;
762 cs->BC_Send_Data = &hdlc_fill_fifo;
763 cs->cardmsg = &AVM_card_msg;
764 cs->irq_func = &avm_pcipnp_interrupt;
765 cs->writeisac(cs, ISAC_MASK, 0xFF);
766 ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
767 return (1);
770 #ifndef __ISAPNP__
772 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
774 return(1); /* no-op: success */
777 #else
779 static struct pnp_card *pnp_avm_c __devinitdata = NULL;
781 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
783 struct pnp_dev *pnp_avm_d = NULL;
785 if (!isapnp_present())
786 return(1); /* no-op: success */
788 if ((pnp_avm_c = pnp_find_card(
789 ISAPNP_VENDOR('A', 'V', 'M'),
790 ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
791 if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
792 ISAPNP_VENDOR('A', 'V', 'M'),
793 ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
794 int err;
796 pnp_disable_dev(pnp_avm_d);
797 err = pnp_activate_dev(pnp_avm_d);
798 if (err<0) {
799 printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
800 __func__, err);
801 return(0);
803 cs->hw.avm.cfg_reg =
804 pnp_port_start(pnp_avm_d, 0);
805 cs->irq = pnp_irq(pnp_avm_d, 0);
806 if (!cs->irq) {
807 printk(KERN_ERR "FritzPnP:No IRQ\n");
808 return(0);
810 if (!cs->hw.avm.cfg_reg) {
811 printk(KERN_ERR "FritzPnP:No IO address\n");
812 return(0);
814 cs->subtyp = AVM_FRITZ_PNP;
816 return (2); /* goto 'ready' label */
820 return (1);
823 #endif /* __ISAPNP__ */
825 #ifndef CONFIG_PCI_LEGACY
827 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
829 return(1); /* no-op: success */
832 #else
834 static struct pci_dev *dev_avm __devinitdata = NULL;
836 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
838 if ((dev_avm = pci_find_device(PCI_VENDOR_ID_AVM,
839 PCI_DEVICE_ID_AVM_A1, dev_avm))) {
841 if (pci_enable_device(dev_avm))
842 return(0);
844 cs->irq = dev_avm->irq;
845 if (!cs->irq) {
846 printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
847 return(0);
850 cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
851 if (!cs->hw.avm.cfg_reg) {
852 printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
853 return(0);
856 cs->subtyp = AVM_FRITZ_PCI;
857 } else {
858 printk(KERN_WARNING "FritzPCI: No PCI card found\n");
859 return(0);
862 cs->irq_flags |= IRQF_SHARED;
864 return (1);
867 #endif /* CONFIG_PCI_LEGACY */
869 int __devinit
870 setup_avm_pcipnp(struct IsdnCard *card)
872 struct IsdnCardState *cs = card->cs;
873 char tmp[64];
874 int rc;
876 strcpy(tmp, avm_pci_rev);
877 printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
879 if (cs->typ != ISDN_CTYPE_FRITZPCI)
880 return (0);
882 if (card->para[1]) {
883 /* old manual method */
884 cs->hw.avm.cfg_reg = card->para[1];
885 cs->irq = card->para[0];
886 cs->subtyp = AVM_FRITZ_PNP;
887 goto ready;
890 rc = avm_pnp_setup(cs);
891 if (rc < 1)
892 return (0);
893 if (rc == 2)
894 goto ready;
896 rc = avm_pci_setup(cs);
897 if (rc < 1)
898 return (0);
900 ready:
901 return avm_setup_rest(cs);