2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "ref-cache.h"
52 #include "compression.h"
55 struct btrfs_iget_args
{
57 struct btrfs_root
*root
;
60 static struct inode_operations btrfs_dir_inode_operations
;
61 static struct inode_operations btrfs_symlink_inode_operations
;
62 static struct inode_operations btrfs_dir_ro_inode_operations
;
63 static struct inode_operations btrfs_special_inode_operations
;
64 static struct inode_operations btrfs_file_inode_operations
;
65 static struct address_space_operations btrfs_aops
;
66 static struct address_space_operations btrfs_symlink_aops
;
67 static struct file_operations btrfs_dir_file_operations
;
68 static struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_transaction_cachep
;
73 struct kmem_cache
*btrfs_path_cachep
;
76 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
77 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
78 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
79 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
80 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
81 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
82 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
83 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
86 static void btrfs_truncate(struct inode
*inode
);
87 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
88 static noinline
int cow_file_range(struct inode
*inode
,
89 struct page
*locked_page
,
90 u64 start
, u64 end
, int *page_started
,
91 unsigned long *nr_written
, int unlock
);
93 static int btrfs_init_inode_security(struct inode
*inode
, struct inode
*dir
)
97 err
= btrfs_init_acl(inode
, dir
);
99 err
= btrfs_xattr_security_init(inode
, dir
);
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
109 struct btrfs_root
*root
, struct inode
*inode
,
110 u64 start
, size_t size
, size_t compressed_size
,
111 struct page
**compressed_pages
)
113 struct btrfs_key key
;
114 struct btrfs_path
*path
;
115 struct extent_buffer
*leaf
;
116 struct page
*page
= NULL
;
119 struct btrfs_file_extent_item
*ei
;
122 size_t cur_size
= size
;
124 unsigned long offset
;
125 int use_compress
= 0;
127 if (compressed_size
&& compressed_pages
) {
129 cur_size
= compressed_size
;
132 path
= btrfs_alloc_path();
136 path
->leave_spinning
= 1;
137 btrfs_set_trans_block_group(trans
, inode
);
139 key
.objectid
= inode
->i_ino
;
141 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
142 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
144 inode_add_bytes(inode
, size
);
145 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
152 leaf
= path
->nodes
[0];
153 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_file_extent_item
);
155 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
156 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
157 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
158 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
159 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
160 ptr
= btrfs_file_extent_inline_start(ei
);
165 while (compressed_size
> 0) {
166 cpage
= compressed_pages
[i
];
167 cur_size
= min_t(unsigned long, compressed_size
,
170 kaddr
= kmap_atomic(cpage
, KM_USER0
);
171 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
172 kunmap_atomic(kaddr
, KM_USER0
);
176 compressed_size
-= cur_size
;
178 btrfs_set_file_extent_compression(leaf
, ei
,
179 BTRFS_COMPRESS_ZLIB
);
181 page
= find_get_page(inode
->i_mapping
,
182 start
>> PAGE_CACHE_SHIFT
);
183 btrfs_set_file_extent_compression(leaf
, ei
, 0);
184 kaddr
= kmap_atomic(page
, KM_USER0
);
185 offset
= start
& (PAGE_CACHE_SIZE
- 1);
186 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
187 kunmap_atomic(kaddr
, KM_USER0
);
188 page_cache_release(page
);
190 btrfs_mark_buffer_dirty(leaf
);
191 btrfs_free_path(path
);
193 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
194 btrfs_update_inode(trans
, root
, inode
);
197 btrfs_free_path(path
);
203 * conditionally insert an inline extent into the file. This
204 * does the checks required to make sure the data is small enough
205 * to fit as an inline extent.
207 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
208 struct btrfs_root
*root
,
209 struct inode
*inode
, u64 start
, u64 end
,
210 size_t compressed_size
,
211 struct page
**compressed_pages
)
213 u64 isize
= i_size_read(inode
);
214 u64 actual_end
= min(end
+ 1, isize
);
215 u64 inline_len
= actual_end
- start
;
216 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
217 ~((u64
)root
->sectorsize
- 1);
219 u64 data_len
= inline_len
;
223 data_len
= compressed_size
;
226 actual_end
>= PAGE_CACHE_SIZE
||
227 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
229 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
231 data_len
> root
->fs_info
->max_inline
) {
235 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
236 aligned_end
, aligned_end
, start
, &hint_byte
);
239 if (isize
> actual_end
)
240 inline_len
= min_t(u64
, isize
, actual_end
);
241 ret
= insert_inline_extent(trans
, root
, inode
, start
,
242 inline_len
, compressed_size
,
245 btrfs_drop_extent_cache(inode
, start
, aligned_end
, 0);
249 struct async_extent
{
254 unsigned long nr_pages
;
255 struct list_head list
;
260 struct btrfs_root
*root
;
261 struct page
*locked_page
;
264 struct list_head extents
;
265 struct btrfs_work work
;
268 static noinline
int add_async_extent(struct async_cow
*cow
,
269 u64 start
, u64 ram_size
,
272 unsigned long nr_pages
)
274 struct async_extent
*async_extent
;
276 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
277 async_extent
->start
= start
;
278 async_extent
->ram_size
= ram_size
;
279 async_extent
->compressed_size
= compressed_size
;
280 async_extent
->pages
= pages
;
281 async_extent
->nr_pages
= nr_pages
;
282 list_add_tail(&async_extent
->list
, &cow
->extents
);
287 * we create compressed extents in two phases. The first
288 * phase compresses a range of pages that have already been
289 * locked (both pages and state bits are locked).
291 * This is done inside an ordered work queue, and the compression
292 * is spread across many cpus. The actual IO submission is step
293 * two, and the ordered work queue takes care of making sure that
294 * happens in the same order things were put onto the queue by
295 * writepages and friends.
297 * If this code finds it can't get good compression, it puts an
298 * entry onto the work queue to write the uncompressed bytes. This
299 * makes sure that both compressed inodes and uncompressed inodes
300 * are written in the same order that pdflush sent them down.
302 static noinline
int compress_file_range(struct inode
*inode
,
303 struct page
*locked_page
,
305 struct async_cow
*async_cow
,
308 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
309 struct btrfs_trans_handle
*trans
;
313 u64 blocksize
= root
->sectorsize
;
315 u64 isize
= i_size_read(inode
);
317 struct page
**pages
= NULL
;
318 unsigned long nr_pages
;
319 unsigned long nr_pages_ret
= 0;
320 unsigned long total_compressed
= 0;
321 unsigned long total_in
= 0;
322 unsigned long max_compressed
= 128 * 1024;
323 unsigned long max_uncompressed
= 128 * 1024;
329 actual_end
= min_t(u64
, isize
, end
+ 1);
332 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
333 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
336 * we don't want to send crud past the end of i_size through
337 * compression, that's just a waste of CPU time. So, if the
338 * end of the file is before the start of our current
339 * requested range of bytes, we bail out to the uncompressed
340 * cleanup code that can deal with all of this.
342 * It isn't really the fastest way to fix things, but this is a
343 * very uncommon corner.
345 if (actual_end
<= start
)
346 goto cleanup_and_bail_uncompressed
;
348 total_compressed
= actual_end
- start
;
350 /* we want to make sure that amount of ram required to uncompress
351 * an extent is reasonable, so we limit the total size in ram
352 * of a compressed extent to 128k. This is a crucial number
353 * because it also controls how easily we can spread reads across
354 * cpus for decompression.
356 * We also want to make sure the amount of IO required to do
357 * a random read is reasonably small, so we limit the size of
358 * a compressed extent to 128k.
360 total_compressed
= min(total_compressed
, max_uncompressed
);
361 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
362 num_bytes
= max(blocksize
, num_bytes
);
363 disk_num_bytes
= num_bytes
;
368 * we do compression for mount -o compress and when the
369 * inode has not been flagged as nocompress. This flag can
370 * change at any time if we discover bad compression ratios.
372 if (!btrfs_test_flag(inode
, NOCOMPRESS
) &&
373 btrfs_test_opt(root
, COMPRESS
)) {
375 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
377 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
378 total_compressed
, pages
,
379 nr_pages
, &nr_pages_ret
,
385 unsigned long offset
= total_compressed
&
386 (PAGE_CACHE_SIZE
- 1);
387 struct page
*page
= pages
[nr_pages_ret
- 1];
390 /* zero the tail end of the last page, we might be
391 * sending it down to disk
394 kaddr
= kmap_atomic(page
, KM_USER0
);
395 memset(kaddr
+ offset
, 0,
396 PAGE_CACHE_SIZE
- offset
);
397 kunmap_atomic(kaddr
, KM_USER0
);
403 trans
= btrfs_join_transaction(root
, 1);
405 btrfs_set_trans_block_group(trans
, inode
);
407 /* lets try to make an inline extent */
408 if (ret
|| total_in
< (actual_end
- start
)) {
409 /* we didn't compress the entire range, try
410 * to make an uncompressed inline extent.
412 ret
= cow_file_range_inline(trans
, root
, inode
,
413 start
, end
, 0, NULL
);
415 /* try making a compressed inline extent */
416 ret
= cow_file_range_inline(trans
, root
, inode
,
418 total_compressed
, pages
);
420 btrfs_end_transaction(trans
, root
);
423 * inline extent creation worked, we don't need
424 * to create any more async work items. Unlock
425 * and free up our temp pages.
427 extent_clear_unlock_delalloc(inode
,
428 &BTRFS_I(inode
)->io_tree
,
429 start
, end
, NULL
, 1, 0,
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
442 total_compressed
= (total_compressed
+ blocksize
- 1) &
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
449 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
450 ~(PAGE_CACHE_SIZE
- 1);
451 if (total_compressed
>= total_in
) {
454 disk_num_bytes
= total_compressed
;
455 num_bytes
= total_in
;
458 if (!will_compress
&& pages
) {
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
463 for (i
= 0; i
< nr_pages_ret
; i
++) {
464 WARN_ON(pages
[i
]->mapping
);
465 page_cache_release(pages
[i
]);
469 total_compressed
= 0;
472 /* flag the file so we don't compress in the future */
473 btrfs_set_flag(inode
, NOCOMPRESS
);
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
482 add_async_extent(async_cow
, start
, num_bytes
,
483 total_compressed
, pages
, nr_pages_ret
);
485 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
492 cleanup_and_bail_uncompressed
:
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
500 if (page_offset(locked_page
) >= start
&&
501 page_offset(locked_page
) <= end
) {
502 __set_page_dirty_nobuffers(locked_page
);
503 /* unlocked later on in the async handlers */
505 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
513 for (i
= 0; i
< nr_pages_ret
; i
++) {
514 WARN_ON(pages
[i
]->mapping
);
515 page_cache_release(pages
[i
]);
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
528 static noinline
int submit_compressed_extents(struct inode
*inode
,
529 struct async_cow
*async_cow
)
531 struct async_extent
*async_extent
;
533 struct btrfs_trans_handle
*trans
;
534 struct btrfs_key ins
;
535 struct extent_map
*em
;
536 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
537 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
538 struct extent_io_tree
*io_tree
;
541 if (list_empty(&async_cow
->extents
))
544 trans
= btrfs_join_transaction(root
, 1);
546 while (!list_empty(&async_cow
->extents
)) {
547 async_extent
= list_entry(async_cow
->extents
.next
,
548 struct async_extent
, list
);
549 list_del(&async_extent
->list
);
551 io_tree
= &BTRFS_I(inode
)->io_tree
;
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent
->pages
) {
555 int page_started
= 0;
556 unsigned long nr_written
= 0;
558 lock_extent(io_tree
, async_extent
->start
,
559 async_extent
->start
+
560 async_extent
->ram_size
- 1, GFP_NOFS
);
562 /* allocate blocks */
563 cow_file_range(inode
, async_cow
->locked_page
,
565 async_extent
->start
+
566 async_extent
->ram_size
- 1,
567 &page_started
, &nr_written
, 0);
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
576 extent_write_locked_range(io_tree
,
577 inode
, async_extent
->start
,
578 async_extent
->start
+
579 async_extent
->ram_size
- 1,
587 lock_extent(io_tree
, async_extent
->start
,
588 async_extent
->start
+ async_extent
->ram_size
- 1,
591 * here we're doing allocation and writeback of the
594 btrfs_drop_extent_cache(inode
, async_extent
->start
,
595 async_extent
->start
+
596 async_extent
->ram_size
- 1, 0);
598 ret
= btrfs_reserve_extent(trans
, root
,
599 async_extent
->compressed_size
,
600 async_extent
->compressed_size
,
604 em
= alloc_extent_map(GFP_NOFS
);
605 em
->start
= async_extent
->start
;
606 em
->len
= async_extent
->ram_size
;
607 em
->orig_start
= em
->start
;
609 em
->block_start
= ins
.objectid
;
610 em
->block_len
= ins
.offset
;
611 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
612 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
613 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
616 spin_lock(&em_tree
->lock
);
617 ret
= add_extent_mapping(em_tree
, em
);
618 spin_unlock(&em_tree
->lock
);
619 if (ret
!= -EEXIST
) {
623 btrfs_drop_extent_cache(inode
, async_extent
->start
,
624 async_extent
->start
+
625 async_extent
->ram_size
- 1, 0);
628 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
630 async_extent
->ram_size
,
632 BTRFS_ORDERED_COMPRESSED
);
635 btrfs_end_transaction(trans
, root
);
638 * clear dirty, set writeback and unlock the pages.
640 extent_clear_unlock_delalloc(inode
,
641 &BTRFS_I(inode
)->io_tree
,
643 async_extent
->start
+
644 async_extent
->ram_size
- 1,
645 NULL
, 1, 1, 0, 1, 1, 0);
647 ret
= btrfs_submit_compressed_write(inode
,
649 async_extent
->ram_size
,
651 ins
.offset
, async_extent
->pages
,
652 async_extent
->nr_pages
);
655 trans
= btrfs_join_transaction(root
, 1);
656 alloc_hint
= ins
.objectid
+ ins
.offset
;
661 btrfs_end_transaction(trans
, root
);
666 * when extent_io.c finds a delayed allocation range in the file,
667 * the call backs end up in this code. The basic idea is to
668 * allocate extents on disk for the range, and create ordered data structs
669 * in ram to track those extents.
671 * locked_page is the page that writepage had locked already. We use
672 * it to make sure we don't do extra locks or unlocks.
674 * *page_started is set to one if we unlock locked_page and do everything
675 * required to start IO on it. It may be clean and already done with
678 static noinline
int cow_file_range(struct inode
*inode
,
679 struct page
*locked_page
,
680 u64 start
, u64 end
, int *page_started
,
681 unsigned long *nr_written
,
684 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
685 struct btrfs_trans_handle
*trans
;
688 unsigned long ram_size
;
691 u64 blocksize
= root
->sectorsize
;
693 u64 isize
= i_size_read(inode
);
694 struct btrfs_key ins
;
695 struct extent_map
*em
;
696 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
699 trans
= btrfs_join_transaction(root
, 1);
701 btrfs_set_trans_block_group(trans
, inode
);
703 actual_end
= min_t(u64
, isize
, end
+ 1);
705 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
706 num_bytes
= max(blocksize
, num_bytes
);
707 disk_num_bytes
= num_bytes
;
711 /* lets try to make an inline extent */
712 ret
= cow_file_range_inline(trans
, root
, inode
,
713 start
, end
, 0, NULL
);
715 extent_clear_unlock_delalloc(inode
,
716 &BTRFS_I(inode
)->io_tree
,
717 start
, end
, NULL
, 1, 1,
719 *nr_written
= *nr_written
+
720 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
727 BUG_ON(disk_num_bytes
>
728 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
730 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
732 while (disk_num_bytes
> 0) {
733 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
734 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
735 root
->sectorsize
, 0, alloc_hint
,
739 em
= alloc_extent_map(GFP_NOFS
);
741 em
->orig_start
= em
->start
;
743 ram_size
= ins
.offset
;
744 em
->len
= ins
.offset
;
746 em
->block_start
= ins
.objectid
;
747 em
->block_len
= ins
.offset
;
748 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
749 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
752 spin_lock(&em_tree
->lock
);
753 ret
= add_extent_mapping(em_tree
, em
);
754 spin_unlock(&em_tree
->lock
);
755 if (ret
!= -EEXIST
) {
759 btrfs_drop_extent_cache(inode
, start
,
760 start
+ ram_size
- 1, 0);
763 cur_alloc_size
= ins
.offset
;
764 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
765 ram_size
, cur_alloc_size
, 0);
768 if (root
->root_key
.objectid
==
769 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
770 ret
= btrfs_reloc_clone_csums(inode
, start
,
775 if (disk_num_bytes
< cur_alloc_size
)
778 /* we're not doing compressed IO, don't unlock the first
779 * page (which the caller expects to stay locked), don't
780 * clear any dirty bits and don't set any writeback bits
782 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
783 start
, start
+ ram_size
- 1,
784 locked_page
, unlock
, 1,
786 disk_num_bytes
-= cur_alloc_size
;
787 num_bytes
-= cur_alloc_size
;
788 alloc_hint
= ins
.objectid
+ ins
.offset
;
789 start
+= cur_alloc_size
;
793 btrfs_end_transaction(trans
, root
);
799 * work queue call back to started compression on a file and pages
801 static noinline
void async_cow_start(struct btrfs_work
*work
)
803 struct async_cow
*async_cow
;
805 async_cow
= container_of(work
, struct async_cow
, work
);
807 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
808 async_cow
->start
, async_cow
->end
, async_cow
,
811 async_cow
->inode
= NULL
;
815 * work queue call back to submit previously compressed pages
817 static noinline
void async_cow_submit(struct btrfs_work
*work
)
819 struct async_cow
*async_cow
;
820 struct btrfs_root
*root
;
821 unsigned long nr_pages
;
823 async_cow
= container_of(work
, struct async_cow
, work
);
825 root
= async_cow
->root
;
826 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
829 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
831 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
833 waitqueue_active(&root
->fs_info
->async_submit_wait
))
834 wake_up(&root
->fs_info
->async_submit_wait
);
836 if (async_cow
->inode
)
837 submit_compressed_extents(async_cow
->inode
, async_cow
);
840 static noinline
void async_cow_free(struct btrfs_work
*work
)
842 struct async_cow
*async_cow
;
843 async_cow
= container_of(work
, struct async_cow
, work
);
847 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
848 u64 start
, u64 end
, int *page_started
,
849 unsigned long *nr_written
)
851 struct async_cow
*async_cow
;
852 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
853 unsigned long nr_pages
;
855 int limit
= 10 * 1024 * 1042;
857 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
|
858 EXTENT_DELALLOC
, 1, 0, GFP_NOFS
);
859 while (start
< end
) {
860 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
861 async_cow
->inode
= inode
;
862 async_cow
->root
= root
;
863 async_cow
->locked_page
= locked_page
;
864 async_cow
->start
= start
;
866 if (btrfs_test_flag(inode
, NOCOMPRESS
))
869 cur_end
= min(end
, start
+ 512 * 1024 - 1);
871 async_cow
->end
= cur_end
;
872 INIT_LIST_HEAD(&async_cow
->extents
);
874 async_cow
->work
.func
= async_cow_start
;
875 async_cow
->work
.ordered_func
= async_cow_submit
;
876 async_cow
->work
.ordered_free
= async_cow_free
;
877 async_cow
->work
.flags
= 0;
879 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
881 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
883 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
886 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
887 wait_event(root
->fs_info
->async_submit_wait
,
888 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
892 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
893 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
894 wait_event(root
->fs_info
->async_submit_wait
,
895 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
899 *nr_written
+= nr_pages
;
906 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
907 u64 bytenr
, u64 num_bytes
)
910 struct btrfs_ordered_sum
*sums
;
913 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
914 bytenr
+ num_bytes
- 1, &list
);
915 if (ret
== 0 && list_empty(&list
))
918 while (!list_empty(&list
)) {
919 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
920 list_del(&sums
->list
);
927 * when nowcow writeback call back. This checks for snapshots or COW copies
928 * of the extents that exist in the file, and COWs the file as required.
930 * If no cow copies or snapshots exist, we write directly to the existing
933 static noinline
int run_delalloc_nocow(struct inode
*inode
,
934 struct page
*locked_page
,
935 u64 start
, u64 end
, int *page_started
, int force
,
936 unsigned long *nr_written
)
938 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
939 struct btrfs_trans_handle
*trans
;
940 struct extent_buffer
*leaf
;
941 struct btrfs_path
*path
;
942 struct btrfs_file_extent_item
*fi
;
943 struct btrfs_key found_key
;
955 path
= btrfs_alloc_path();
957 trans
= btrfs_join_transaction(root
, 1);
963 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
966 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
967 leaf
= path
->nodes
[0];
968 btrfs_item_key_to_cpu(leaf
, &found_key
,
970 if (found_key
.objectid
== inode
->i_ino
&&
971 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
976 leaf
= path
->nodes
[0];
977 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
978 ret
= btrfs_next_leaf(root
, path
);
983 leaf
= path
->nodes
[0];
989 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
991 if (found_key
.objectid
> inode
->i_ino
||
992 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
993 found_key
.offset
> end
)
996 if (found_key
.offset
> cur_offset
) {
997 extent_end
= found_key
.offset
;
1001 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1002 struct btrfs_file_extent_item
);
1003 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1005 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1006 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1007 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1008 extent_end
= found_key
.offset
+
1009 btrfs_file_extent_num_bytes(leaf
, fi
);
1010 if (extent_end
<= start
) {
1014 if (disk_bytenr
== 0)
1016 if (btrfs_file_extent_compression(leaf
, fi
) ||
1017 btrfs_file_extent_encryption(leaf
, fi
) ||
1018 btrfs_file_extent_other_encoding(leaf
, fi
))
1020 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1022 if (btrfs_extent_readonly(root
, disk_bytenr
))
1024 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1027 disk_bytenr
+= btrfs_file_extent_offset(leaf
, fi
);
1028 disk_bytenr
+= cur_offset
- found_key
.offset
;
1029 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1031 * force cow if csum exists in the range.
1032 * this ensure that csum for a given extent are
1033 * either valid or do not exist.
1035 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1038 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1039 extent_end
= found_key
.offset
+
1040 btrfs_file_extent_inline_len(leaf
, fi
);
1041 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1046 if (extent_end
<= start
) {
1051 if (cow_start
== (u64
)-1)
1052 cow_start
= cur_offset
;
1053 cur_offset
= extent_end
;
1054 if (cur_offset
> end
)
1060 btrfs_release_path(root
, path
);
1061 if (cow_start
!= (u64
)-1) {
1062 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1063 found_key
.offset
- 1, page_started
,
1066 cow_start
= (u64
)-1;
1069 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1070 struct extent_map
*em
;
1071 struct extent_map_tree
*em_tree
;
1072 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1073 em
= alloc_extent_map(GFP_NOFS
);
1074 em
->start
= cur_offset
;
1075 em
->orig_start
= em
->start
;
1076 em
->len
= num_bytes
;
1077 em
->block_len
= num_bytes
;
1078 em
->block_start
= disk_bytenr
;
1079 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1080 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1082 spin_lock(&em_tree
->lock
);
1083 ret
= add_extent_mapping(em_tree
, em
);
1084 spin_unlock(&em_tree
->lock
);
1085 if (ret
!= -EEXIST
) {
1086 free_extent_map(em
);
1089 btrfs_drop_extent_cache(inode
, em
->start
,
1090 em
->start
+ em
->len
- 1, 0);
1092 type
= BTRFS_ORDERED_PREALLOC
;
1094 type
= BTRFS_ORDERED_NOCOW
;
1097 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1098 num_bytes
, num_bytes
, type
);
1101 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1102 cur_offset
, cur_offset
+ num_bytes
- 1,
1103 locked_page
, 1, 1, 1, 0, 0, 0);
1104 cur_offset
= extent_end
;
1105 if (cur_offset
> end
)
1108 btrfs_release_path(root
, path
);
1110 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1111 cow_start
= cur_offset
;
1112 if (cow_start
!= (u64
)-1) {
1113 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1114 page_started
, nr_written
, 1);
1118 ret
= btrfs_end_transaction(trans
, root
);
1120 btrfs_free_path(path
);
1125 * extent_io.c call back to do delayed allocation processing
1127 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1128 u64 start
, u64 end
, int *page_started
,
1129 unsigned long *nr_written
)
1132 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1134 if (btrfs_test_flag(inode
, NODATACOW
))
1135 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1136 page_started
, 1, nr_written
);
1137 else if (btrfs_test_flag(inode
, PREALLOC
))
1138 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1139 page_started
, 0, nr_written
);
1140 else if (!btrfs_test_opt(root
, COMPRESS
))
1141 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1142 page_started
, nr_written
, 1);
1144 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1145 page_started
, nr_written
);
1150 * extent_io.c set_bit_hook, used to track delayed allocation
1151 * bytes in this file, and to maintain the list of inodes that
1152 * have pending delalloc work to be done.
1154 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1155 unsigned long old
, unsigned long bits
)
1158 * set_bit and clear bit hooks normally require _irqsave/restore
1159 * but in this case, we are only testeing for the DELALLOC
1160 * bit, which is only set or cleared with irqs on
1162 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1163 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1164 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1165 spin_lock(&root
->fs_info
->delalloc_lock
);
1166 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1167 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1168 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1169 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1170 &root
->fs_info
->delalloc_inodes
);
1172 spin_unlock(&root
->fs_info
->delalloc_lock
);
1178 * extent_io.c clear_bit_hook, see set_bit_hook for why
1180 static int btrfs_clear_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1181 unsigned long old
, unsigned long bits
)
1184 * set_bit and clear bit hooks normally require _irqsave/restore
1185 * but in this case, we are only testeing for the DELALLOC
1186 * bit, which is only set or cleared with irqs on
1188 if ((old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1189 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1191 spin_lock(&root
->fs_info
->delalloc_lock
);
1192 if (end
- start
+ 1 > root
->fs_info
->delalloc_bytes
) {
1193 printk(KERN_INFO
"btrfs warning: delalloc account "
1195 (unsigned long long)end
- start
+ 1,
1196 (unsigned long long)
1197 root
->fs_info
->delalloc_bytes
);
1198 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1199 root
->fs_info
->delalloc_bytes
= 0;
1200 BTRFS_I(inode
)->delalloc_bytes
= 0;
1202 btrfs_delalloc_free_space(root
, inode
,
1204 root
->fs_info
->delalloc_bytes
-= end
- start
+ 1;
1205 BTRFS_I(inode
)->delalloc_bytes
-= end
- start
+ 1;
1207 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1208 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1209 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1211 spin_unlock(&root
->fs_info
->delalloc_lock
);
1217 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1218 * we don't create bios that span stripes or chunks
1220 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1221 size_t size
, struct bio
*bio
,
1222 unsigned long bio_flags
)
1224 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1225 struct btrfs_mapping_tree
*map_tree
;
1226 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1231 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1234 length
= bio
->bi_size
;
1235 map_tree
= &root
->fs_info
->mapping_tree
;
1236 map_length
= length
;
1237 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1238 &map_length
, NULL
, 0);
1240 if (map_length
< length
+ size
)
1246 * in order to insert checksums into the metadata in large chunks,
1247 * we wait until bio submission time. All the pages in the bio are
1248 * checksummed and sums are attached onto the ordered extent record.
1250 * At IO completion time the cums attached on the ordered extent record
1251 * are inserted into the btree
1253 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1254 struct bio
*bio
, int mirror_num
,
1255 unsigned long bio_flags
)
1257 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1260 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1266 * in order to insert checksums into the metadata in large chunks,
1267 * we wait until bio submission time. All the pages in the bio are
1268 * checksummed and sums are attached onto the ordered extent record.
1270 * At IO completion time the cums attached on the ordered extent record
1271 * are inserted into the btree
1273 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1274 int mirror_num
, unsigned long bio_flags
)
1276 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1277 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1281 * extent_io.c submission hook. This does the right thing for csum calculation
1282 * on write, or reading the csums from the tree before a read
1284 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1285 int mirror_num
, unsigned long bio_flags
)
1287 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1291 skip_sum
= btrfs_test_flag(inode
, NODATASUM
);
1293 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1296 if (!(rw
& (1 << BIO_RW
))) {
1297 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1298 return btrfs_submit_compressed_read(inode
, bio
,
1299 mirror_num
, bio_flags
);
1300 } else if (!skip_sum
)
1301 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1303 } else if (!skip_sum
) {
1304 /* csum items have already been cloned */
1305 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1307 /* we're doing a write, do the async checksumming */
1308 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1309 inode
, rw
, bio
, mirror_num
,
1310 bio_flags
, __btrfs_submit_bio_start
,
1311 __btrfs_submit_bio_done
);
1315 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1319 * given a list of ordered sums record them in the inode. This happens
1320 * at IO completion time based on sums calculated at bio submission time.
1322 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1323 struct inode
*inode
, u64 file_offset
,
1324 struct list_head
*list
)
1326 struct btrfs_ordered_sum
*sum
;
1328 btrfs_set_trans_block_group(trans
, inode
);
1330 list_for_each_entry(sum
, list
, list
) {
1331 btrfs_csum_file_blocks(trans
,
1332 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1337 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1339 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1341 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1345 /* see btrfs_writepage_start_hook for details on why this is required */
1346 struct btrfs_writepage_fixup
{
1348 struct btrfs_work work
;
1351 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1353 struct btrfs_writepage_fixup
*fixup
;
1354 struct btrfs_ordered_extent
*ordered
;
1356 struct inode
*inode
;
1360 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1364 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1365 ClearPageChecked(page
);
1369 inode
= page
->mapping
->host
;
1370 page_start
= page_offset(page
);
1371 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1373 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1375 /* already ordered? We're done */
1376 if (test_range_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1377 EXTENT_ORDERED
, 0)) {
1381 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1383 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1384 page_end
, GFP_NOFS
);
1386 btrfs_start_ordered_extent(inode
, ordered
, 1);
1390 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1391 ClearPageChecked(page
);
1393 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1396 page_cache_release(page
);
1400 * There are a few paths in the higher layers of the kernel that directly
1401 * set the page dirty bit without asking the filesystem if it is a
1402 * good idea. This causes problems because we want to make sure COW
1403 * properly happens and the data=ordered rules are followed.
1405 * In our case any range that doesn't have the ORDERED bit set
1406 * hasn't been properly setup for IO. We kick off an async process
1407 * to fix it up. The async helper will wait for ordered extents, set
1408 * the delalloc bit and make it safe to write the page.
1410 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1412 struct inode
*inode
= page
->mapping
->host
;
1413 struct btrfs_writepage_fixup
*fixup
;
1414 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1417 ret
= test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1422 if (PageChecked(page
))
1425 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1429 SetPageChecked(page
);
1430 page_cache_get(page
);
1431 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1433 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1437 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1438 struct inode
*inode
, u64 file_pos
,
1439 u64 disk_bytenr
, u64 disk_num_bytes
,
1440 u64 num_bytes
, u64 ram_bytes
,
1442 u8 compression
, u8 encryption
,
1443 u16 other_encoding
, int extent_type
)
1445 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1446 struct btrfs_file_extent_item
*fi
;
1447 struct btrfs_path
*path
;
1448 struct extent_buffer
*leaf
;
1449 struct btrfs_key ins
;
1453 path
= btrfs_alloc_path();
1456 path
->leave_spinning
= 1;
1457 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1458 file_pos
+ num_bytes
, locked_end
,
1462 ins
.objectid
= inode
->i_ino
;
1463 ins
.offset
= file_pos
;
1464 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1465 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1467 leaf
= path
->nodes
[0];
1468 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1469 struct btrfs_file_extent_item
);
1470 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1471 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1472 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1473 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1474 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1475 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1476 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1477 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1478 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1479 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1481 btrfs_unlock_up_safe(path
, 1);
1482 btrfs_set_lock_blocking(leaf
);
1484 btrfs_mark_buffer_dirty(leaf
);
1486 inode_add_bytes(inode
, num_bytes
);
1487 btrfs_drop_extent_cache(inode
, file_pos
, file_pos
+ num_bytes
- 1, 0);
1489 ins
.objectid
= disk_bytenr
;
1490 ins
.offset
= disk_num_bytes
;
1491 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1492 ret
= btrfs_alloc_reserved_extent(trans
, root
, leaf
->start
,
1493 root
->root_key
.objectid
,
1494 trans
->transid
, inode
->i_ino
, &ins
);
1496 btrfs_free_path(path
);
1502 * helper function for btrfs_finish_ordered_io, this
1503 * just reads in some of the csum leaves to prime them into ram
1504 * before we start the transaction. It limits the amount of btree
1505 * reads required while inside the transaction.
1507 static noinline
void reada_csum(struct btrfs_root
*root
,
1508 struct btrfs_path
*path
,
1509 struct btrfs_ordered_extent
*ordered_extent
)
1511 struct btrfs_ordered_sum
*sum
;
1514 sum
= list_entry(ordered_extent
->list
.next
, struct btrfs_ordered_sum
,
1516 bytenr
= sum
->sums
[0].bytenr
;
1519 * we don't care about the results, the point of this search is
1520 * just to get the btree leaves into ram
1522 btrfs_lookup_csum(NULL
, root
->fs_info
->csum_root
, path
, bytenr
, 0);
1525 /* as ordered data IO finishes, this gets called so we can finish
1526 * an ordered extent if the range of bytes in the file it covers are
1529 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1531 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1532 struct btrfs_trans_handle
*trans
;
1533 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1534 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1535 struct btrfs_path
*path
;
1539 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1544 * before we join the transaction, try to do some of our IO.
1545 * This will limit the amount of IO that we have to do with
1546 * the transaction running. We're unlikely to need to do any
1547 * IO if the file extents are new, the disk_i_size checks
1548 * covers the most common case.
1550 if (start
< BTRFS_I(inode
)->disk_i_size
) {
1551 path
= btrfs_alloc_path();
1553 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
1556 ordered_extent
= btrfs_lookup_ordered_extent(inode
,
1558 if (!list_empty(&ordered_extent
->list
)) {
1559 btrfs_release_path(root
, path
);
1560 reada_csum(root
, path
, ordered_extent
);
1562 btrfs_free_path(path
);
1566 trans
= btrfs_join_transaction(root
, 1);
1568 if (!ordered_extent
)
1569 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1570 BUG_ON(!ordered_extent
);
1571 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1574 lock_extent(io_tree
, ordered_extent
->file_offset
,
1575 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1578 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1580 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1582 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1583 ordered_extent
->file_offset
,
1584 ordered_extent
->file_offset
+
1585 ordered_extent
->len
);
1588 ret
= insert_reserved_file_extent(trans
, inode
,
1589 ordered_extent
->file_offset
,
1590 ordered_extent
->start
,
1591 ordered_extent
->disk_len
,
1592 ordered_extent
->len
,
1593 ordered_extent
->len
,
1594 ordered_extent
->file_offset
+
1595 ordered_extent
->len
,
1597 BTRFS_FILE_EXTENT_REG
);
1600 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1601 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1604 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1605 &ordered_extent
->list
);
1607 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1608 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1609 btrfs_update_inode(trans
, root
, inode
);
1610 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1611 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1614 btrfs_put_ordered_extent(ordered_extent
);
1615 /* once for the tree */
1616 btrfs_put_ordered_extent(ordered_extent
);
1618 btrfs_end_transaction(trans
, root
);
1622 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1623 struct extent_state
*state
, int uptodate
)
1625 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1629 * When IO fails, either with EIO or csum verification fails, we
1630 * try other mirrors that might have a good copy of the data. This
1631 * io_failure_record is used to record state as we go through all the
1632 * mirrors. If another mirror has good data, the page is set up to date
1633 * and things continue. If a good mirror can't be found, the original
1634 * bio end_io callback is called to indicate things have failed.
1636 struct io_failure_record
{
1641 unsigned long bio_flags
;
1645 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1646 struct page
*page
, u64 start
, u64 end
,
1647 struct extent_state
*state
)
1649 struct io_failure_record
*failrec
= NULL
;
1651 struct extent_map
*em
;
1652 struct inode
*inode
= page
->mapping
->host
;
1653 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1654 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1661 ret
= get_state_private(failure_tree
, start
, &private);
1663 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1666 failrec
->start
= start
;
1667 failrec
->len
= end
- start
+ 1;
1668 failrec
->last_mirror
= 0;
1669 failrec
->bio_flags
= 0;
1671 spin_lock(&em_tree
->lock
);
1672 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1673 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1674 free_extent_map(em
);
1677 spin_unlock(&em_tree
->lock
);
1679 if (!em
|| IS_ERR(em
)) {
1683 logical
= start
- em
->start
;
1684 logical
= em
->block_start
+ logical
;
1685 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1686 logical
= em
->block_start
;
1687 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1689 failrec
->logical
= logical
;
1690 free_extent_map(em
);
1691 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1692 EXTENT_DIRTY
, GFP_NOFS
);
1693 set_state_private(failure_tree
, start
,
1694 (u64
)(unsigned long)failrec
);
1696 failrec
= (struct io_failure_record
*)(unsigned long)private;
1698 num_copies
= btrfs_num_copies(
1699 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1700 failrec
->logical
, failrec
->len
);
1701 failrec
->last_mirror
++;
1703 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1704 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1707 if (state
&& state
->start
!= failrec
->start
)
1709 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1711 if (!state
|| failrec
->last_mirror
> num_copies
) {
1712 set_state_private(failure_tree
, failrec
->start
, 0);
1713 clear_extent_bits(failure_tree
, failrec
->start
,
1714 failrec
->start
+ failrec
->len
- 1,
1715 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1719 bio
= bio_alloc(GFP_NOFS
, 1);
1720 bio
->bi_private
= state
;
1721 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1722 bio
->bi_sector
= failrec
->logical
>> 9;
1723 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1726 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1727 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1732 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1733 failrec
->last_mirror
,
1734 failrec
->bio_flags
);
1739 * each time an IO finishes, we do a fast check in the IO failure tree
1740 * to see if we need to process or clean up an io_failure_record
1742 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1745 u64 private_failure
;
1746 struct io_failure_record
*failure
;
1750 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1751 (u64
)-1, 1, EXTENT_DIRTY
)) {
1752 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1753 start
, &private_failure
);
1755 failure
= (struct io_failure_record
*)(unsigned long)
1757 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1759 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1761 failure
->start
+ failure
->len
- 1,
1762 EXTENT_DIRTY
| EXTENT_LOCKED
,
1771 * when reads are done, we need to check csums to verify the data is correct
1772 * if there's a match, we allow the bio to finish. If not, we go through
1773 * the io_failure_record routines to find good copies
1775 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1776 struct extent_state
*state
)
1778 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1779 struct inode
*inode
= page
->mapping
->host
;
1780 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1782 u64
private = ~(u32
)0;
1784 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1787 if (PageChecked(page
)) {
1788 ClearPageChecked(page
);
1791 if (btrfs_test_flag(inode
, NODATASUM
))
1794 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1795 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1)) {
1796 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1801 if (state
&& state
->start
== start
) {
1802 private = state
->private;
1805 ret
= get_state_private(io_tree
, start
, &private);
1807 kaddr
= kmap_atomic(page
, KM_USER0
);
1811 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1812 btrfs_csum_final(csum
, (char *)&csum
);
1813 if (csum
!= private)
1816 kunmap_atomic(kaddr
, KM_USER0
);
1818 /* if the io failure tree for this inode is non-empty,
1819 * check to see if we've recovered from a failed IO
1821 btrfs_clean_io_failures(inode
, start
);
1825 if (printk_ratelimit()) {
1826 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1827 "private %llu\n", page
->mapping
->host
->i_ino
,
1828 (unsigned long long)start
, csum
,
1829 (unsigned long long)private);
1831 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1832 flush_dcache_page(page
);
1833 kunmap_atomic(kaddr
, KM_USER0
);
1840 * This creates an orphan entry for the given inode in case something goes
1841 * wrong in the middle of an unlink/truncate.
1843 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1845 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1848 spin_lock(&root
->list_lock
);
1850 /* already on the orphan list, we're good */
1851 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1852 spin_unlock(&root
->list_lock
);
1856 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1858 spin_unlock(&root
->list_lock
);
1861 * insert an orphan item to track this unlinked/truncated file
1863 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
1869 * We have done the truncate/delete so we can go ahead and remove the orphan
1870 * item for this particular inode.
1872 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1874 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1877 spin_lock(&root
->list_lock
);
1879 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1880 spin_unlock(&root
->list_lock
);
1884 list_del_init(&BTRFS_I(inode
)->i_orphan
);
1886 spin_unlock(&root
->list_lock
);
1890 spin_unlock(&root
->list_lock
);
1892 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
1898 * this cleans up any orphans that may be left on the list from the last use
1901 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
1903 struct btrfs_path
*path
;
1904 struct extent_buffer
*leaf
;
1905 struct btrfs_item
*item
;
1906 struct btrfs_key key
, found_key
;
1907 struct btrfs_trans_handle
*trans
;
1908 struct inode
*inode
;
1909 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
1911 path
= btrfs_alloc_path();
1916 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1917 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1918 key
.offset
= (u64
)-1;
1922 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1924 printk(KERN_ERR
"Error searching slot for orphan: %d"
1930 * if ret == 0 means we found what we were searching for, which
1931 * is weird, but possible, so only screw with path if we didnt
1932 * find the key and see if we have stuff that matches
1935 if (path
->slots
[0] == 0)
1940 /* pull out the item */
1941 leaf
= path
->nodes
[0];
1942 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
1943 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1945 /* make sure the item matches what we want */
1946 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
1948 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
1951 /* release the path since we're done with it */
1952 btrfs_release_path(root
, path
);
1955 * this is where we are basically btrfs_lookup, without the
1956 * crossing root thing. we store the inode number in the
1957 * offset of the orphan item.
1959 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
1960 found_key
.offset
, root
);
1964 if (inode
->i_state
& I_NEW
) {
1965 BTRFS_I(inode
)->root
= root
;
1967 /* have to set the location manually */
1968 BTRFS_I(inode
)->location
.objectid
= inode
->i_ino
;
1969 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
1970 BTRFS_I(inode
)->location
.offset
= 0;
1972 btrfs_read_locked_inode(inode
);
1973 unlock_new_inode(inode
);
1977 * add this inode to the orphan list so btrfs_orphan_del does
1978 * the proper thing when we hit it
1980 spin_lock(&root
->list_lock
);
1981 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1982 spin_unlock(&root
->list_lock
);
1985 * if this is a bad inode, means we actually succeeded in
1986 * removing the inode, but not the orphan record, which means
1987 * we need to manually delete the orphan since iput will just
1988 * do a destroy_inode
1990 if (is_bad_inode(inode
)) {
1991 trans
= btrfs_start_transaction(root
, 1);
1992 btrfs_orphan_del(trans
, inode
);
1993 btrfs_end_transaction(trans
, root
);
1998 /* if we have links, this was a truncate, lets do that */
1999 if (inode
->i_nlink
) {
2001 btrfs_truncate(inode
);
2006 /* this will do delete_inode and everything for us */
2011 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2013 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2015 btrfs_free_path(path
);
2019 * very simple check to peek ahead in the leaf looking for xattrs. If we
2020 * don't find any xattrs, we know there can't be any acls.
2022 * slot is the slot the inode is in, objectid is the objectid of the inode
2024 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2025 int slot
, u64 objectid
)
2027 u32 nritems
= btrfs_header_nritems(leaf
);
2028 struct btrfs_key found_key
;
2032 while (slot
< nritems
) {
2033 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2035 /* we found a different objectid, there must not be acls */
2036 if (found_key
.objectid
!= objectid
)
2039 /* we found an xattr, assume we've got an acl */
2040 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2044 * we found a key greater than an xattr key, there can't
2045 * be any acls later on
2047 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2054 * it goes inode, inode backrefs, xattrs, extents,
2055 * so if there are a ton of hard links to an inode there can
2056 * be a lot of backrefs. Don't waste time searching too hard,
2057 * this is just an optimization
2062 /* we hit the end of the leaf before we found an xattr or
2063 * something larger than an xattr. We have to assume the inode
2070 * read an inode from the btree into the in-memory inode
2072 void btrfs_read_locked_inode(struct inode
*inode
)
2074 struct btrfs_path
*path
;
2075 struct extent_buffer
*leaf
;
2076 struct btrfs_inode_item
*inode_item
;
2077 struct btrfs_timespec
*tspec
;
2078 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2079 struct btrfs_key location
;
2081 u64 alloc_group_block
;
2085 path
= btrfs_alloc_path();
2087 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2089 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2093 leaf
= path
->nodes
[0];
2094 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2095 struct btrfs_inode_item
);
2097 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2098 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2099 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2100 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2101 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2103 tspec
= btrfs_inode_atime(inode_item
);
2104 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2105 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2107 tspec
= btrfs_inode_mtime(inode_item
);
2108 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2109 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2111 tspec
= btrfs_inode_ctime(inode_item
);
2112 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2113 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2115 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2116 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2117 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2118 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2120 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2122 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2123 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2125 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2128 * try to precache a NULL acl entry for files that don't have
2129 * any xattrs or acls
2131 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2133 BTRFS_I(inode
)->i_acl
= NULL
;
2134 BTRFS_I(inode
)->i_default_acl
= NULL
;
2137 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2138 alloc_group_block
, 0);
2139 btrfs_free_path(path
);
2142 switch (inode
->i_mode
& S_IFMT
) {
2144 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2145 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2146 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2147 inode
->i_fop
= &btrfs_file_operations
;
2148 inode
->i_op
= &btrfs_file_inode_operations
;
2151 inode
->i_fop
= &btrfs_dir_file_operations
;
2152 if (root
== root
->fs_info
->tree_root
)
2153 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2155 inode
->i_op
= &btrfs_dir_inode_operations
;
2158 inode
->i_op
= &btrfs_symlink_inode_operations
;
2159 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2160 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2163 inode
->i_op
= &btrfs_special_inode_operations
;
2164 init_special_inode(inode
, inode
->i_mode
, rdev
);
2170 btrfs_free_path(path
);
2171 make_bad_inode(inode
);
2175 * given a leaf and an inode, copy the inode fields into the leaf
2177 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2178 struct extent_buffer
*leaf
,
2179 struct btrfs_inode_item
*item
,
2180 struct inode
*inode
)
2182 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2183 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2184 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2185 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2186 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2188 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2189 inode
->i_atime
.tv_sec
);
2190 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2191 inode
->i_atime
.tv_nsec
);
2193 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2194 inode
->i_mtime
.tv_sec
);
2195 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2196 inode
->i_mtime
.tv_nsec
);
2198 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2199 inode
->i_ctime
.tv_sec
);
2200 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2201 inode
->i_ctime
.tv_nsec
);
2203 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2204 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2205 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2206 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2207 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2208 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2209 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2213 * copy everything in the in-memory inode into the btree.
2215 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2216 struct btrfs_root
*root
, struct inode
*inode
)
2218 struct btrfs_inode_item
*inode_item
;
2219 struct btrfs_path
*path
;
2220 struct extent_buffer
*leaf
;
2223 path
= btrfs_alloc_path();
2225 path
->leave_spinning
= 1;
2226 ret
= btrfs_lookup_inode(trans
, root
, path
,
2227 &BTRFS_I(inode
)->location
, 1);
2234 btrfs_unlock_up_safe(path
, 1);
2235 leaf
= path
->nodes
[0];
2236 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2237 struct btrfs_inode_item
);
2239 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2240 btrfs_mark_buffer_dirty(leaf
);
2241 btrfs_set_inode_last_trans(trans
, inode
);
2244 btrfs_free_path(path
);
2250 * unlink helper that gets used here in inode.c and in the tree logging
2251 * recovery code. It remove a link in a directory with a given name, and
2252 * also drops the back refs in the inode to the directory
2254 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2255 struct btrfs_root
*root
,
2256 struct inode
*dir
, struct inode
*inode
,
2257 const char *name
, int name_len
)
2259 struct btrfs_path
*path
;
2261 struct extent_buffer
*leaf
;
2262 struct btrfs_dir_item
*di
;
2263 struct btrfs_key key
;
2266 path
= btrfs_alloc_path();
2272 path
->leave_spinning
= 1;
2273 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2274 name
, name_len
, -1);
2283 leaf
= path
->nodes
[0];
2284 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2285 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2288 btrfs_release_path(root
, path
);
2290 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2292 dir
->i_ino
, &index
);
2294 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2295 "inode %lu parent %lu\n", name_len
, name
,
2296 inode
->i_ino
, dir
->i_ino
);
2300 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2301 index
, name
, name_len
, -1);
2310 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2311 btrfs_release_path(root
, path
);
2313 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2315 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2317 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2321 btrfs_free_path(path
);
2325 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2326 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2327 btrfs_update_inode(trans
, root
, dir
);
2328 btrfs_drop_nlink(inode
);
2329 ret
= btrfs_update_inode(trans
, root
, inode
);
2330 dir
->i_sb
->s_dirt
= 1;
2335 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2337 struct btrfs_root
*root
;
2338 struct btrfs_trans_handle
*trans
;
2339 struct inode
*inode
= dentry
->d_inode
;
2341 unsigned long nr
= 0;
2343 root
= BTRFS_I(dir
)->root
;
2345 trans
= btrfs_start_transaction(root
, 1);
2347 btrfs_set_trans_block_group(trans
, dir
);
2349 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2351 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2352 dentry
->d_name
.name
, dentry
->d_name
.len
);
2354 if (inode
->i_nlink
== 0)
2355 ret
= btrfs_orphan_add(trans
, inode
);
2357 nr
= trans
->blocks_used
;
2359 btrfs_end_transaction_throttle(trans
, root
);
2360 btrfs_btree_balance_dirty(root
, nr
);
2364 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2366 struct inode
*inode
= dentry
->d_inode
;
2369 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2370 struct btrfs_trans_handle
*trans
;
2371 unsigned long nr
= 0;
2374 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2375 * the root of a subvolume or snapshot
2377 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2378 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
2382 trans
= btrfs_start_transaction(root
, 1);
2383 btrfs_set_trans_block_group(trans
, dir
);
2385 err
= btrfs_orphan_add(trans
, inode
);
2389 /* now the directory is empty */
2390 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2391 dentry
->d_name
.name
, dentry
->d_name
.len
);
2393 btrfs_i_size_write(inode
, 0);
2396 nr
= trans
->blocks_used
;
2397 ret
= btrfs_end_transaction_throttle(trans
, root
);
2398 btrfs_btree_balance_dirty(root
, nr
);
2407 * when truncating bytes in a file, it is possible to avoid reading
2408 * the leaves that contain only checksum items. This can be the
2409 * majority of the IO required to delete a large file, but it must
2410 * be done carefully.
2412 * The keys in the level just above the leaves are checked to make sure
2413 * the lowest key in a given leaf is a csum key, and starts at an offset
2414 * after the new size.
2416 * Then the key for the next leaf is checked to make sure it also has
2417 * a checksum item for the same file. If it does, we know our target leaf
2418 * contains only checksum items, and it can be safely freed without reading
2421 * This is just an optimization targeted at large files. It may do
2422 * nothing. It will return 0 unless things went badly.
2424 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2425 struct btrfs_root
*root
,
2426 struct btrfs_path
*path
,
2427 struct inode
*inode
, u64 new_size
)
2429 struct btrfs_key key
;
2432 struct btrfs_key found_key
;
2433 struct btrfs_key other_key
;
2434 struct btrfs_leaf_ref
*ref
;
2438 path
->lowest_level
= 1;
2439 key
.objectid
= inode
->i_ino
;
2440 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2441 key
.offset
= new_size
;
2443 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2447 if (path
->nodes
[1] == NULL
) {
2452 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2453 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2458 if (path
->slots
[1] >= nritems
)
2461 /* did we find a key greater than anything we want to delete? */
2462 if (found_key
.objectid
> inode
->i_ino
||
2463 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2466 /* we check the next key in the node to make sure the leave contains
2467 * only checksum items. This comparison doesn't work if our
2468 * leaf is the last one in the node
2470 if (path
->slots
[1] + 1 >= nritems
) {
2472 /* search forward from the last key in the node, this
2473 * will bring us into the next node in the tree
2475 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2477 /* unlikely, but we inc below, so check to be safe */
2478 if (found_key
.offset
== (u64
)-1)
2481 /* search_forward needs a path with locks held, do the
2482 * search again for the original key. It is possible
2483 * this will race with a balance and return a path that
2484 * we could modify, but this drop is just an optimization
2485 * and is allowed to miss some leaves.
2487 btrfs_release_path(root
, path
);
2490 /* setup a max key for search_forward */
2491 other_key
.offset
= (u64
)-1;
2492 other_key
.type
= key
.type
;
2493 other_key
.objectid
= key
.objectid
;
2495 path
->keep_locks
= 1;
2496 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2498 path
->keep_locks
= 0;
2499 if (ret
|| found_key
.objectid
!= key
.objectid
||
2500 found_key
.type
!= key
.type
) {
2505 key
.offset
= found_key
.offset
;
2506 btrfs_release_path(root
, path
);
2511 /* we know there's one more slot after us in the tree,
2512 * read that key so we can verify it is also a checksum item
2514 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2516 if (found_key
.objectid
< inode
->i_ino
)
2519 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2523 * if the key for the next leaf isn't a csum key from this objectid,
2524 * we can't be sure there aren't good items inside this leaf.
2527 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2530 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2531 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2533 * it is safe to delete this leaf, it contains only
2534 * csum items from this inode at an offset >= new_size
2536 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2539 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2540 ref
= btrfs_alloc_leaf_ref(root
, 0);
2542 ref
->root_gen
= root
->root_key
.offset
;
2543 ref
->bytenr
= leaf_start
;
2545 ref
->generation
= leaf_gen
;
2548 btrfs_sort_leaf_ref(ref
);
2550 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2552 btrfs_free_leaf_ref(root
, ref
);
2558 btrfs_release_path(root
, path
);
2560 if (other_key
.objectid
== inode
->i_ino
&&
2561 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2562 key
.offset
= other_key
.offset
;
2568 /* fixup any changes we've made to the path */
2569 path
->lowest_level
= 0;
2570 path
->keep_locks
= 0;
2571 btrfs_release_path(root
, path
);
2578 * this can truncate away extent items, csum items and directory items.
2579 * It starts at a high offset and removes keys until it can't find
2580 * any higher than new_size
2582 * csum items that cross the new i_size are truncated to the new size
2585 * min_type is the minimum key type to truncate down to. If set to 0, this
2586 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2588 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2589 struct btrfs_root
*root
,
2590 struct inode
*inode
,
2591 u64 new_size
, u32 min_type
)
2594 struct btrfs_path
*path
;
2595 struct btrfs_key key
;
2596 struct btrfs_key found_key
;
2597 u32 found_type
= (u8
)-1;
2598 struct extent_buffer
*leaf
;
2599 struct btrfs_file_extent_item
*fi
;
2600 u64 extent_start
= 0;
2601 u64 extent_num_bytes
= 0;
2607 int pending_del_nr
= 0;
2608 int pending_del_slot
= 0;
2609 int extent_type
= -1;
2611 u64 mask
= root
->sectorsize
- 1;
2614 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2615 path
= btrfs_alloc_path();
2619 /* FIXME, add redo link to tree so we don't leak on crash */
2620 key
.objectid
= inode
->i_ino
;
2621 key
.offset
= (u64
)-1;
2625 path
->leave_spinning
= 1;
2626 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2631 /* there are no items in the tree for us to truncate, we're
2634 if (path
->slots
[0] == 0) {
2643 leaf
= path
->nodes
[0];
2644 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2645 found_type
= btrfs_key_type(&found_key
);
2648 if (found_key
.objectid
!= inode
->i_ino
)
2651 if (found_type
< min_type
)
2654 item_end
= found_key
.offset
;
2655 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2656 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2657 struct btrfs_file_extent_item
);
2658 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2659 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2660 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2661 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2663 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2665 btrfs_file_extent_num_bytes(leaf
, fi
);
2666 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2667 item_end
+= btrfs_file_extent_inline_len(leaf
,
2672 if (item_end
< new_size
) {
2673 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2674 found_type
= BTRFS_INODE_ITEM_KEY
;
2675 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2676 found_type
= BTRFS_EXTENT_DATA_KEY
;
2677 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2678 found_type
= BTRFS_XATTR_ITEM_KEY
;
2679 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2680 found_type
= BTRFS_INODE_REF_KEY
;
2681 else if (found_type
)
2685 btrfs_set_key_type(&key
, found_type
);
2688 if (found_key
.offset
>= new_size
)
2694 /* FIXME, shrink the extent if the ref count is only 1 */
2695 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2698 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2700 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2701 if (!del_item
&& !encoding
) {
2702 u64 orig_num_bytes
=
2703 btrfs_file_extent_num_bytes(leaf
, fi
);
2704 extent_num_bytes
= new_size
-
2705 found_key
.offset
+ root
->sectorsize
- 1;
2706 extent_num_bytes
= extent_num_bytes
&
2707 ~((u64
)root
->sectorsize
- 1);
2708 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2710 num_dec
= (orig_num_bytes
-
2712 if (root
->ref_cows
&& extent_start
!= 0)
2713 inode_sub_bytes(inode
, num_dec
);
2714 btrfs_mark_buffer_dirty(leaf
);
2717 btrfs_file_extent_disk_num_bytes(leaf
,
2719 /* FIXME blocksize != 4096 */
2720 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2721 if (extent_start
!= 0) {
2724 inode_sub_bytes(inode
, num_dec
);
2726 root_gen
= btrfs_header_generation(leaf
);
2727 root_owner
= btrfs_header_owner(leaf
);
2729 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2731 * we can't truncate inline items that have had
2735 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2736 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2737 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2738 u32 size
= new_size
- found_key
.offset
;
2740 if (root
->ref_cows
) {
2741 inode_sub_bytes(inode
, item_end
+ 1 -
2745 btrfs_file_extent_calc_inline_size(size
);
2746 ret
= btrfs_truncate_item(trans
, root
, path
,
2749 } else if (root
->ref_cows
) {
2750 inode_sub_bytes(inode
, item_end
+ 1 -
2756 if (!pending_del_nr
) {
2757 /* no pending yet, add ourselves */
2758 pending_del_slot
= path
->slots
[0];
2760 } else if (pending_del_nr
&&
2761 path
->slots
[0] + 1 == pending_del_slot
) {
2762 /* hop on the pending chunk */
2764 pending_del_slot
= path
->slots
[0];
2772 btrfs_set_path_blocking(path
);
2773 ret
= btrfs_free_extent(trans
, root
, extent_start
,
2775 leaf
->start
, root_owner
,
2776 root_gen
, inode
->i_ino
, 0);
2780 if (path
->slots
[0] == 0) {
2783 btrfs_release_path(root
, path
);
2784 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2790 if (pending_del_nr
&&
2791 path
->slots
[0] + 1 != pending_del_slot
) {
2792 struct btrfs_key debug
;
2794 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
2796 ret
= btrfs_del_items(trans
, root
, path
,
2801 btrfs_release_path(root
, path
);
2802 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2809 if (pending_del_nr
) {
2810 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
2813 btrfs_free_path(path
);
2814 inode
->i_sb
->s_dirt
= 1;
2819 * taken from block_truncate_page, but does cow as it zeros out
2820 * any bytes left in the last page in the file.
2822 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
2824 struct inode
*inode
= mapping
->host
;
2825 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2826 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2827 struct btrfs_ordered_extent
*ordered
;
2829 u32 blocksize
= root
->sectorsize
;
2830 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2831 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2837 if ((offset
& (blocksize
- 1)) == 0)
2842 page
= grab_cache_page(mapping
, index
);
2846 page_start
= page_offset(page
);
2847 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2849 if (!PageUptodate(page
)) {
2850 ret
= btrfs_readpage(NULL
, page
);
2852 if (page
->mapping
!= mapping
) {
2854 page_cache_release(page
);
2857 if (!PageUptodate(page
)) {
2862 wait_on_page_writeback(page
);
2864 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2865 set_page_extent_mapped(page
);
2867 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
2869 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2871 page_cache_release(page
);
2872 btrfs_start_ordered_extent(inode
, ordered
, 1);
2873 btrfs_put_ordered_extent(ordered
);
2877 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
2879 if (offset
!= PAGE_CACHE_SIZE
) {
2881 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2882 flush_dcache_page(page
);
2885 ClearPageChecked(page
);
2886 set_page_dirty(page
);
2887 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2891 page_cache_release(page
);
2896 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
2898 struct btrfs_trans_handle
*trans
;
2899 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2900 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2901 struct extent_map
*em
;
2902 u64 mask
= root
->sectorsize
- 1;
2903 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
2904 u64 block_end
= (size
+ mask
) & ~mask
;
2910 if (size
<= hole_start
)
2913 err
= btrfs_check_metadata_free_space(root
);
2917 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
2920 struct btrfs_ordered_extent
*ordered
;
2921 btrfs_wait_ordered_range(inode
, hole_start
,
2922 block_end
- hole_start
);
2923 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2924 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
2927 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2928 btrfs_put_ordered_extent(ordered
);
2931 trans
= btrfs_start_transaction(root
, 1);
2932 btrfs_set_trans_block_group(trans
, inode
);
2934 cur_offset
= hole_start
;
2936 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2937 block_end
- cur_offset
, 0);
2938 BUG_ON(IS_ERR(em
) || !em
);
2939 last_byte
= min(extent_map_end(em
), block_end
);
2940 last_byte
= (last_byte
+ mask
) & ~mask
;
2941 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2943 hole_size
= last_byte
- cur_offset
;
2944 err
= btrfs_drop_extents(trans
, root
, inode
,
2946 cur_offset
+ hole_size
,
2948 cur_offset
, &hint_byte
);
2951 err
= btrfs_insert_file_extent(trans
, root
,
2952 inode
->i_ino
, cur_offset
, 0,
2953 0, hole_size
, 0, hole_size
,
2955 btrfs_drop_extent_cache(inode
, hole_start
,
2958 free_extent_map(em
);
2959 cur_offset
= last_byte
;
2960 if (err
|| cur_offset
>= block_end
)
2964 btrfs_end_transaction(trans
, root
);
2965 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2969 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2971 struct inode
*inode
= dentry
->d_inode
;
2974 err
= inode_change_ok(inode
, attr
);
2978 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
2979 if (attr
->ia_size
> inode
->i_size
) {
2980 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
2983 } else if (inode
->i_size
> 0 &&
2984 attr
->ia_size
== 0) {
2986 /* we're truncating a file that used to have good
2987 * data down to zero. Make sure it gets into
2988 * the ordered flush list so that any new writes
2989 * get down to disk quickly.
2991 BTRFS_I(inode
)->ordered_data_close
= 1;
2995 err
= inode_setattr(inode
, attr
);
2997 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
2998 err
= btrfs_acl_chmod(inode
);
3002 void btrfs_delete_inode(struct inode
*inode
)
3004 struct btrfs_trans_handle
*trans
;
3005 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3009 truncate_inode_pages(&inode
->i_data
, 0);
3010 if (is_bad_inode(inode
)) {
3011 btrfs_orphan_del(NULL
, inode
);
3014 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3016 btrfs_i_size_write(inode
, 0);
3017 trans
= btrfs_join_transaction(root
, 1);
3019 btrfs_set_trans_block_group(trans
, inode
);
3020 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
3022 btrfs_orphan_del(NULL
, inode
);
3023 goto no_delete_lock
;
3026 btrfs_orphan_del(trans
, inode
);
3028 nr
= trans
->blocks_used
;
3031 btrfs_end_transaction(trans
, root
);
3032 btrfs_btree_balance_dirty(root
, nr
);
3036 nr
= trans
->blocks_used
;
3037 btrfs_end_transaction(trans
, root
);
3038 btrfs_btree_balance_dirty(root
, nr
);
3044 * this returns the key found in the dir entry in the location pointer.
3045 * If no dir entries were found, location->objectid is 0.
3047 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3048 struct btrfs_key
*location
)
3050 const char *name
= dentry
->d_name
.name
;
3051 int namelen
= dentry
->d_name
.len
;
3052 struct btrfs_dir_item
*di
;
3053 struct btrfs_path
*path
;
3054 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3057 path
= btrfs_alloc_path();
3060 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3065 if (!di
|| IS_ERR(di
))
3068 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3070 btrfs_free_path(path
);
3073 location
->objectid
= 0;
3078 * when we hit a tree root in a directory, the btrfs part of the inode
3079 * needs to be changed to reflect the root directory of the tree root. This
3080 * is kind of like crossing a mount point.
3082 static int fixup_tree_root_location(struct btrfs_root
*root
,
3083 struct btrfs_key
*location
,
3084 struct btrfs_root
**sub_root
,
3085 struct dentry
*dentry
)
3087 struct btrfs_root_item
*ri
;
3089 if (btrfs_key_type(location
) != BTRFS_ROOT_ITEM_KEY
)
3091 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
3094 *sub_root
= btrfs_read_fs_root(root
->fs_info
, location
,
3095 dentry
->d_name
.name
,
3096 dentry
->d_name
.len
);
3097 if (IS_ERR(*sub_root
))
3098 return PTR_ERR(*sub_root
);
3100 ri
= &(*sub_root
)->root_item
;
3101 location
->objectid
= btrfs_root_dirid(ri
);
3102 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3103 location
->offset
= 0;
3108 static noinline
void init_btrfs_i(struct inode
*inode
)
3110 struct btrfs_inode
*bi
= BTRFS_I(inode
);
3112 bi
->i_acl
= BTRFS_ACL_NOT_CACHED
;
3113 bi
->i_default_acl
= BTRFS_ACL_NOT_CACHED
;
3118 bi
->logged_trans
= 0;
3119 bi
->delalloc_bytes
= 0;
3120 bi
->reserved_bytes
= 0;
3121 bi
->disk_i_size
= 0;
3123 bi
->index_cnt
= (u64
)-1;
3124 bi
->last_unlink_trans
= 0;
3125 bi
->ordered_data_close
= 0;
3126 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
3127 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
3128 inode
->i_mapping
, GFP_NOFS
);
3129 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
3130 inode
->i_mapping
, GFP_NOFS
);
3131 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
3132 INIT_LIST_HEAD(&BTRFS_I(inode
)->ordered_operations
);
3133 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
3134 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
3135 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3138 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3140 struct btrfs_iget_args
*args
= p
;
3141 inode
->i_ino
= args
->ino
;
3142 init_btrfs_i(inode
);
3143 BTRFS_I(inode
)->root
= args
->root
;
3144 btrfs_set_inode_space_info(args
->root
, inode
);
3148 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3150 struct btrfs_iget_args
*args
= opaque
;
3151 return args
->ino
== inode
->i_ino
&&
3152 args
->root
== BTRFS_I(inode
)->root
;
3155 struct inode
*btrfs_ilookup(struct super_block
*s
, u64 objectid
,
3156 struct btrfs_root
*root
, int wait
)
3158 struct inode
*inode
;
3159 struct btrfs_iget_args args
;
3160 args
.ino
= objectid
;
3164 inode
= ilookup5(s
, objectid
, btrfs_find_actor
,
3167 inode
= ilookup5_nowait(s
, objectid
, btrfs_find_actor
,
3173 struct inode
*btrfs_iget_locked(struct super_block
*s
, u64 objectid
,
3174 struct btrfs_root
*root
)
3176 struct inode
*inode
;
3177 struct btrfs_iget_args args
;
3178 args
.ino
= objectid
;
3181 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3182 btrfs_init_locked_inode
,
3187 /* Get an inode object given its location and corresponding root.
3188 * Returns in *is_new if the inode was read from disk
3190 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3191 struct btrfs_root
*root
, int *is_new
)
3193 struct inode
*inode
;
3195 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3197 return ERR_PTR(-EACCES
);
3199 if (inode
->i_state
& I_NEW
) {
3200 BTRFS_I(inode
)->root
= root
;
3201 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3202 btrfs_read_locked_inode(inode
);
3203 unlock_new_inode(inode
);
3214 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3216 struct inode
*inode
;
3217 struct btrfs_inode
*bi
= BTRFS_I(dir
);
3218 struct btrfs_root
*root
= bi
->root
;
3219 struct btrfs_root
*sub_root
= root
;
3220 struct btrfs_key location
;
3223 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3224 return ERR_PTR(-ENAMETOOLONG
);
3226 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3229 return ERR_PTR(ret
);
3232 if (location
.objectid
) {
3233 ret
= fixup_tree_root_location(root
, &location
, &sub_root
,
3236 return ERR_PTR(ret
);
3238 return ERR_PTR(-ENOENT
);
3239 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, &new);
3241 return ERR_CAST(inode
);
3246 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3247 struct nameidata
*nd
)
3249 struct inode
*inode
;
3251 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3252 return ERR_PTR(-ENAMETOOLONG
);
3254 inode
= btrfs_lookup_dentry(dir
, dentry
);
3256 return ERR_CAST(inode
);
3258 return d_splice_alias(inode
, dentry
);
3261 static unsigned char btrfs_filetype_table
[] = {
3262 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3265 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3268 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3269 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3270 struct btrfs_item
*item
;
3271 struct btrfs_dir_item
*di
;
3272 struct btrfs_key key
;
3273 struct btrfs_key found_key
;
3274 struct btrfs_path
*path
;
3277 struct extent_buffer
*leaf
;
3280 unsigned char d_type
;
3285 int key_type
= BTRFS_DIR_INDEX_KEY
;
3290 /* FIXME, use a real flag for deciding about the key type */
3291 if (root
->fs_info
->tree_root
== root
)
3292 key_type
= BTRFS_DIR_ITEM_KEY
;
3294 /* special case for "." */
3295 if (filp
->f_pos
== 0) {
3296 over
= filldir(dirent
, ".", 1,
3303 /* special case for .., just use the back ref */
3304 if (filp
->f_pos
== 1) {
3305 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3306 over
= filldir(dirent
, "..", 2,
3312 path
= btrfs_alloc_path();
3315 btrfs_set_key_type(&key
, key_type
);
3316 key
.offset
= filp
->f_pos
;
3317 key
.objectid
= inode
->i_ino
;
3319 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3325 leaf
= path
->nodes
[0];
3326 nritems
= btrfs_header_nritems(leaf
);
3327 slot
= path
->slots
[0];
3328 if (advance
|| slot
>= nritems
) {
3329 if (slot
>= nritems
- 1) {
3330 ret
= btrfs_next_leaf(root
, path
);
3333 leaf
= path
->nodes
[0];
3334 nritems
= btrfs_header_nritems(leaf
);
3335 slot
= path
->slots
[0];
3343 item
= btrfs_item_nr(leaf
, slot
);
3344 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3346 if (found_key
.objectid
!= key
.objectid
)
3348 if (btrfs_key_type(&found_key
) != key_type
)
3350 if (found_key
.offset
< filp
->f_pos
)
3353 filp
->f_pos
= found_key
.offset
;
3355 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3357 di_total
= btrfs_item_size(leaf
, item
);
3359 while (di_cur
< di_total
) {
3360 struct btrfs_key location
;
3362 name_len
= btrfs_dir_name_len(leaf
, di
);
3363 if (name_len
<= sizeof(tmp_name
)) {
3364 name_ptr
= tmp_name
;
3366 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3372 read_extent_buffer(leaf
, name_ptr
,
3373 (unsigned long)(di
+ 1), name_len
);
3375 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3376 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3378 /* is this a reference to our own snapshot? If so
3381 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3382 location
.objectid
== root
->root_key
.objectid
) {
3386 over
= filldir(dirent
, name_ptr
, name_len
,
3387 found_key
.offset
, location
.objectid
,
3391 if (name_ptr
!= tmp_name
)
3396 di_len
= btrfs_dir_name_len(leaf
, di
) +
3397 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3399 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3403 /* Reached end of directory/root. Bump pos past the last item. */
3404 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3405 filp
->f_pos
= INT_LIMIT(off_t
);
3411 btrfs_free_path(path
);
3415 int btrfs_write_inode(struct inode
*inode
, int wait
)
3417 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3418 struct btrfs_trans_handle
*trans
;
3421 if (root
->fs_info
->btree_inode
== inode
)
3425 trans
= btrfs_join_transaction(root
, 1);
3426 btrfs_set_trans_block_group(trans
, inode
);
3427 ret
= btrfs_commit_transaction(trans
, root
);
3433 * This is somewhat expensive, updating the tree every time the
3434 * inode changes. But, it is most likely to find the inode in cache.
3435 * FIXME, needs more benchmarking...there are no reasons other than performance
3436 * to keep or drop this code.
3438 void btrfs_dirty_inode(struct inode
*inode
)
3440 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3441 struct btrfs_trans_handle
*trans
;
3443 trans
= btrfs_join_transaction(root
, 1);
3444 btrfs_set_trans_block_group(trans
, inode
);
3445 btrfs_update_inode(trans
, root
, inode
);
3446 btrfs_end_transaction(trans
, root
);
3450 * find the highest existing sequence number in a directory
3451 * and then set the in-memory index_cnt variable to reflect
3452 * free sequence numbers
3454 static int btrfs_set_inode_index_count(struct inode
*inode
)
3456 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3457 struct btrfs_key key
, found_key
;
3458 struct btrfs_path
*path
;
3459 struct extent_buffer
*leaf
;
3462 key
.objectid
= inode
->i_ino
;
3463 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3464 key
.offset
= (u64
)-1;
3466 path
= btrfs_alloc_path();
3470 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3473 /* FIXME: we should be able to handle this */
3479 * MAGIC NUMBER EXPLANATION:
3480 * since we search a directory based on f_pos we have to start at 2
3481 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3482 * else has to start at 2
3484 if (path
->slots
[0] == 0) {
3485 BTRFS_I(inode
)->index_cnt
= 2;
3491 leaf
= path
->nodes
[0];
3492 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3494 if (found_key
.objectid
!= inode
->i_ino
||
3495 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3496 BTRFS_I(inode
)->index_cnt
= 2;
3500 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3502 btrfs_free_path(path
);
3507 * helper to find a free sequence number in a given directory. This current
3508 * code is very simple, later versions will do smarter things in the btree
3510 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3514 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3515 ret
= btrfs_set_inode_index_count(dir
);
3520 *index
= BTRFS_I(dir
)->index_cnt
;
3521 BTRFS_I(dir
)->index_cnt
++;
3526 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3527 struct btrfs_root
*root
,
3529 const char *name
, int name_len
,
3530 u64 ref_objectid
, u64 objectid
,
3531 u64 alloc_hint
, int mode
, u64
*index
)
3533 struct inode
*inode
;
3534 struct btrfs_inode_item
*inode_item
;
3535 struct btrfs_key
*location
;
3536 struct btrfs_path
*path
;
3537 struct btrfs_inode_ref
*ref
;
3538 struct btrfs_key key
[2];
3544 path
= btrfs_alloc_path();
3547 inode
= new_inode(root
->fs_info
->sb
);
3549 return ERR_PTR(-ENOMEM
);
3552 ret
= btrfs_set_inode_index(dir
, index
);
3555 return ERR_PTR(ret
);
3559 * index_cnt is ignored for everything but a dir,
3560 * btrfs_get_inode_index_count has an explanation for the magic
3563 init_btrfs_i(inode
);
3564 BTRFS_I(inode
)->index_cnt
= 2;
3565 BTRFS_I(inode
)->root
= root
;
3566 BTRFS_I(inode
)->generation
= trans
->transid
;
3567 btrfs_set_inode_space_info(root
, inode
);
3573 BTRFS_I(inode
)->block_group
=
3574 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
3575 if ((mode
& S_IFREG
)) {
3576 if (btrfs_test_opt(root
, NODATASUM
))
3577 btrfs_set_flag(inode
, NODATASUM
);
3578 if (btrfs_test_opt(root
, NODATACOW
))
3579 btrfs_set_flag(inode
, NODATACOW
);
3582 key
[0].objectid
= objectid
;
3583 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
3586 key
[1].objectid
= objectid
;
3587 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
3588 key
[1].offset
= ref_objectid
;
3590 sizes
[0] = sizeof(struct btrfs_inode_item
);
3591 sizes
[1] = name_len
+ sizeof(*ref
);
3593 path
->leave_spinning
= 1;
3594 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
3598 if (objectid
> root
->highest_inode
)
3599 root
->highest_inode
= objectid
;
3601 inode
->i_uid
= current_fsuid();
3603 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
3604 inode
->i_gid
= dir
->i_gid
;
3608 inode
->i_gid
= current_fsgid();
3610 inode
->i_mode
= mode
;
3611 inode
->i_ino
= objectid
;
3612 inode_set_bytes(inode
, 0);
3613 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3614 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3615 struct btrfs_inode_item
);
3616 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
3618 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
3619 struct btrfs_inode_ref
);
3620 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
3621 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
3622 ptr
= (unsigned long)(ref
+ 1);
3623 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
3625 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3626 btrfs_free_path(path
);
3628 location
= &BTRFS_I(inode
)->location
;
3629 location
->objectid
= objectid
;
3630 location
->offset
= 0;
3631 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3633 insert_inode_hash(inode
);
3637 BTRFS_I(dir
)->index_cnt
--;
3638 btrfs_free_path(path
);
3640 return ERR_PTR(ret
);
3643 static inline u8
btrfs_inode_type(struct inode
*inode
)
3645 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
3649 * utility function to add 'inode' into 'parent_inode' with
3650 * a give name and a given sequence number.
3651 * if 'add_backref' is true, also insert a backref from the
3652 * inode to the parent directory.
3654 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
3655 struct inode
*parent_inode
, struct inode
*inode
,
3656 const char *name
, int name_len
, int add_backref
, u64 index
)
3659 struct btrfs_key key
;
3660 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
3662 key
.objectid
= inode
->i_ino
;
3663 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
3666 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
3667 parent_inode
->i_ino
,
3668 &key
, btrfs_inode_type(inode
),
3672 ret
= btrfs_insert_inode_ref(trans
, root
,
3675 parent_inode
->i_ino
,
3678 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
3680 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
3681 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
3686 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
3687 struct dentry
*dentry
, struct inode
*inode
,
3688 int backref
, u64 index
)
3690 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3691 inode
, dentry
->d_name
.name
,
3692 dentry
->d_name
.len
, backref
, index
);
3694 d_instantiate(dentry
, inode
);
3702 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
3703 int mode
, dev_t rdev
)
3705 struct btrfs_trans_handle
*trans
;
3706 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3707 struct inode
*inode
= NULL
;
3711 unsigned long nr
= 0;
3714 if (!new_valid_dev(rdev
))
3717 err
= btrfs_check_metadata_free_space(root
);
3721 trans
= btrfs_start_transaction(root
, 1);
3722 btrfs_set_trans_block_group(trans
, dir
);
3724 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3730 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3732 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3733 BTRFS_I(dir
)->block_group
, mode
, &index
);
3734 err
= PTR_ERR(inode
);
3738 err
= btrfs_init_inode_security(inode
, dir
);
3744 btrfs_set_trans_block_group(trans
, inode
);
3745 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3749 inode
->i_op
= &btrfs_special_inode_operations
;
3750 init_special_inode(inode
, inode
->i_mode
, rdev
);
3751 btrfs_update_inode(trans
, root
, inode
);
3753 dir
->i_sb
->s_dirt
= 1;
3754 btrfs_update_inode_block_group(trans
, inode
);
3755 btrfs_update_inode_block_group(trans
, dir
);
3757 nr
= trans
->blocks_used
;
3758 btrfs_end_transaction_throttle(trans
, root
);
3761 inode_dec_link_count(inode
);
3764 btrfs_btree_balance_dirty(root
, nr
);
3768 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
3769 int mode
, struct nameidata
*nd
)
3771 struct btrfs_trans_handle
*trans
;
3772 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3773 struct inode
*inode
= NULL
;
3776 unsigned long nr
= 0;
3780 err
= btrfs_check_metadata_free_space(root
);
3783 trans
= btrfs_start_transaction(root
, 1);
3784 btrfs_set_trans_block_group(trans
, dir
);
3786 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3792 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3794 dentry
->d_parent
->d_inode
->i_ino
,
3795 objectid
, BTRFS_I(dir
)->block_group
, mode
,
3797 err
= PTR_ERR(inode
);
3801 err
= btrfs_init_inode_security(inode
, dir
);
3807 btrfs_set_trans_block_group(trans
, inode
);
3808 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3812 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3813 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3814 inode
->i_fop
= &btrfs_file_operations
;
3815 inode
->i_op
= &btrfs_file_inode_operations
;
3816 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3818 dir
->i_sb
->s_dirt
= 1;
3819 btrfs_update_inode_block_group(trans
, inode
);
3820 btrfs_update_inode_block_group(trans
, dir
);
3822 nr
= trans
->blocks_used
;
3823 btrfs_end_transaction_throttle(trans
, root
);
3826 inode_dec_link_count(inode
);
3829 btrfs_btree_balance_dirty(root
, nr
);
3833 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
3834 struct dentry
*dentry
)
3836 struct btrfs_trans_handle
*trans
;
3837 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3838 struct inode
*inode
= old_dentry
->d_inode
;
3840 unsigned long nr
= 0;
3844 if (inode
->i_nlink
== 0)
3847 btrfs_inc_nlink(inode
);
3848 err
= btrfs_check_metadata_free_space(root
);
3851 err
= btrfs_set_inode_index(dir
, &index
);
3855 trans
= btrfs_start_transaction(root
, 1);
3857 btrfs_set_trans_block_group(trans
, dir
);
3858 atomic_inc(&inode
->i_count
);
3860 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
3865 dir
->i_sb
->s_dirt
= 1;
3866 btrfs_update_inode_block_group(trans
, dir
);
3867 err
= btrfs_update_inode(trans
, root
, inode
);
3872 nr
= trans
->blocks_used
;
3874 btrfs_log_new_name(trans
, inode
, NULL
, dentry
->d_parent
);
3875 btrfs_end_transaction_throttle(trans
, root
);
3878 inode_dec_link_count(inode
);
3881 btrfs_btree_balance_dirty(root
, nr
);
3885 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3887 struct inode
*inode
= NULL
;
3888 struct btrfs_trans_handle
*trans
;
3889 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3891 int drop_on_err
= 0;
3894 unsigned long nr
= 1;
3896 err
= btrfs_check_metadata_free_space(root
);
3900 trans
= btrfs_start_transaction(root
, 1);
3901 btrfs_set_trans_block_group(trans
, dir
);
3903 if (IS_ERR(trans
)) {
3904 err
= PTR_ERR(trans
);
3908 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3914 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3916 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3917 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
3919 if (IS_ERR(inode
)) {
3920 err
= PTR_ERR(inode
);
3926 err
= btrfs_init_inode_security(inode
, dir
);
3930 inode
->i_op
= &btrfs_dir_inode_operations
;
3931 inode
->i_fop
= &btrfs_dir_file_operations
;
3932 btrfs_set_trans_block_group(trans
, inode
);
3934 btrfs_i_size_write(inode
, 0);
3935 err
= btrfs_update_inode(trans
, root
, inode
);
3939 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3940 inode
, dentry
->d_name
.name
,
3941 dentry
->d_name
.len
, 0, index
);
3945 d_instantiate(dentry
, inode
);
3947 dir
->i_sb
->s_dirt
= 1;
3948 btrfs_update_inode_block_group(trans
, inode
);
3949 btrfs_update_inode_block_group(trans
, dir
);
3952 nr
= trans
->blocks_used
;
3953 btrfs_end_transaction_throttle(trans
, root
);
3958 btrfs_btree_balance_dirty(root
, nr
);
3962 /* helper for btfs_get_extent. Given an existing extent in the tree,
3963 * and an extent that you want to insert, deal with overlap and insert
3964 * the new extent into the tree.
3966 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
3967 struct extent_map
*existing
,
3968 struct extent_map
*em
,
3969 u64 map_start
, u64 map_len
)
3973 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
3974 start_diff
= map_start
- em
->start
;
3975 em
->start
= map_start
;
3977 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
3978 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3979 em
->block_start
+= start_diff
;
3980 em
->block_len
-= start_diff
;
3982 return add_extent_mapping(em_tree
, em
);
3985 static noinline
int uncompress_inline(struct btrfs_path
*path
,
3986 struct inode
*inode
, struct page
*page
,
3987 size_t pg_offset
, u64 extent_offset
,
3988 struct btrfs_file_extent_item
*item
)
3991 struct extent_buffer
*leaf
= path
->nodes
[0];
3994 unsigned long inline_size
;
3997 WARN_ON(pg_offset
!= 0);
3998 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
3999 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4000 btrfs_item_nr(leaf
, path
->slots
[0]));
4001 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4002 ptr
= btrfs_file_extent_inline_start(item
);
4004 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4006 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4007 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
4008 inline_size
, max_size
);
4010 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4011 unsigned long copy_size
= min_t(u64
,
4012 PAGE_CACHE_SIZE
- pg_offset
,
4013 max_size
- extent_offset
);
4014 memset(kaddr
+ pg_offset
, 0, copy_size
);
4015 kunmap_atomic(kaddr
, KM_USER0
);
4022 * a bit scary, this does extent mapping from logical file offset to the disk.
4023 * the ugly parts come from merging extents from the disk with the in-ram
4024 * representation. This gets more complex because of the data=ordered code,
4025 * where the in-ram extents might be locked pending data=ordered completion.
4027 * This also copies inline extents directly into the page.
4030 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4031 size_t pg_offset
, u64 start
, u64 len
,
4037 u64 extent_start
= 0;
4039 u64 objectid
= inode
->i_ino
;
4041 struct btrfs_path
*path
= NULL
;
4042 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4043 struct btrfs_file_extent_item
*item
;
4044 struct extent_buffer
*leaf
;
4045 struct btrfs_key found_key
;
4046 struct extent_map
*em
= NULL
;
4047 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4048 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4049 struct btrfs_trans_handle
*trans
= NULL
;
4053 spin_lock(&em_tree
->lock
);
4054 em
= lookup_extent_mapping(em_tree
, start
, len
);
4056 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4057 spin_unlock(&em_tree
->lock
);
4060 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4061 free_extent_map(em
);
4062 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4063 free_extent_map(em
);
4067 em
= alloc_extent_map(GFP_NOFS
);
4072 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4073 em
->start
= EXTENT_MAP_HOLE
;
4074 em
->orig_start
= EXTENT_MAP_HOLE
;
4076 em
->block_len
= (u64
)-1;
4079 path
= btrfs_alloc_path();
4083 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4084 objectid
, start
, trans
!= NULL
);
4091 if (path
->slots
[0] == 0)
4096 leaf
= path
->nodes
[0];
4097 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4098 struct btrfs_file_extent_item
);
4099 /* are we inside the extent that was found? */
4100 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4101 found_type
= btrfs_key_type(&found_key
);
4102 if (found_key
.objectid
!= objectid
||
4103 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4107 found_type
= btrfs_file_extent_type(leaf
, item
);
4108 extent_start
= found_key
.offset
;
4109 compressed
= btrfs_file_extent_compression(leaf
, item
);
4110 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4111 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4112 extent_end
= extent_start
+
4113 btrfs_file_extent_num_bytes(leaf
, item
);
4114 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4116 size
= btrfs_file_extent_inline_len(leaf
, item
);
4117 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4118 ~((u64
)root
->sectorsize
- 1);
4121 if (start
>= extent_end
) {
4123 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4124 ret
= btrfs_next_leaf(root
, path
);
4131 leaf
= path
->nodes
[0];
4133 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4134 if (found_key
.objectid
!= objectid
||
4135 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4137 if (start
+ len
<= found_key
.offset
)
4140 em
->len
= found_key
.offset
- start
;
4144 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4145 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4146 em
->start
= extent_start
;
4147 em
->len
= extent_end
- extent_start
;
4148 em
->orig_start
= extent_start
-
4149 btrfs_file_extent_offset(leaf
, item
);
4150 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4152 em
->block_start
= EXTENT_MAP_HOLE
;
4156 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4157 em
->block_start
= bytenr
;
4158 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4161 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4162 em
->block_start
= bytenr
;
4163 em
->block_len
= em
->len
;
4164 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4165 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4168 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4172 size_t extent_offset
;
4175 em
->block_start
= EXTENT_MAP_INLINE
;
4176 if (!page
|| create
) {
4177 em
->start
= extent_start
;
4178 em
->len
= extent_end
- extent_start
;
4182 size
= btrfs_file_extent_inline_len(leaf
, item
);
4183 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4184 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4185 size
- extent_offset
);
4186 em
->start
= extent_start
+ extent_offset
;
4187 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4188 ~((u64
)root
->sectorsize
- 1);
4189 em
->orig_start
= EXTENT_MAP_INLINE
;
4191 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4192 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4193 if (create
== 0 && !PageUptodate(page
)) {
4194 if (btrfs_file_extent_compression(leaf
, item
) ==
4195 BTRFS_COMPRESS_ZLIB
) {
4196 ret
= uncompress_inline(path
, inode
, page
,
4198 extent_offset
, item
);
4202 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4206 flush_dcache_page(page
);
4207 } else if (create
&& PageUptodate(page
)) {
4210 free_extent_map(em
);
4212 btrfs_release_path(root
, path
);
4213 trans
= btrfs_join_transaction(root
, 1);
4217 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4220 btrfs_mark_buffer_dirty(leaf
);
4222 set_extent_uptodate(io_tree
, em
->start
,
4223 extent_map_end(em
) - 1, GFP_NOFS
);
4226 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4233 em
->block_start
= EXTENT_MAP_HOLE
;
4234 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4236 btrfs_release_path(root
, path
);
4237 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4238 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4239 "[%llu %llu]\n", (unsigned long long)em
->start
,
4240 (unsigned long long)em
->len
,
4241 (unsigned long long)start
,
4242 (unsigned long long)len
);
4248 spin_lock(&em_tree
->lock
);
4249 ret
= add_extent_mapping(em_tree
, em
);
4250 /* it is possible that someone inserted the extent into the tree
4251 * while we had the lock dropped. It is also possible that
4252 * an overlapping map exists in the tree
4254 if (ret
== -EEXIST
) {
4255 struct extent_map
*existing
;
4259 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4260 if (existing
&& (existing
->start
> start
||
4261 existing
->start
+ existing
->len
<= start
)) {
4262 free_extent_map(existing
);
4266 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4269 err
= merge_extent_mapping(em_tree
, existing
,
4272 free_extent_map(existing
);
4274 free_extent_map(em
);
4279 free_extent_map(em
);
4283 free_extent_map(em
);
4288 spin_unlock(&em_tree
->lock
);
4291 btrfs_free_path(path
);
4293 ret
= btrfs_end_transaction(trans
, root
);
4298 free_extent_map(em
);
4299 return ERR_PTR(err
);
4304 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4305 const struct iovec
*iov
, loff_t offset
,
4306 unsigned long nr_segs
)
4311 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4312 __u64 start
, __u64 len
)
4314 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4317 int btrfs_readpage(struct file
*file
, struct page
*page
)
4319 struct extent_io_tree
*tree
;
4320 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4321 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4324 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4326 struct extent_io_tree
*tree
;
4329 if (current
->flags
& PF_MEMALLOC
) {
4330 redirty_page_for_writepage(wbc
, page
);
4334 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4335 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4338 int btrfs_writepages(struct address_space
*mapping
,
4339 struct writeback_control
*wbc
)
4341 struct extent_io_tree
*tree
;
4343 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4344 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4348 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4349 struct list_head
*pages
, unsigned nr_pages
)
4351 struct extent_io_tree
*tree
;
4352 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4353 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4356 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4358 struct extent_io_tree
*tree
;
4359 struct extent_map_tree
*map
;
4362 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4363 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4364 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4366 ClearPagePrivate(page
);
4367 set_page_private(page
, 0);
4368 page_cache_release(page
);
4373 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4375 if (PageWriteback(page
) || PageDirty(page
))
4377 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4380 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4382 struct extent_io_tree
*tree
;
4383 struct btrfs_ordered_extent
*ordered
;
4384 u64 page_start
= page_offset(page
);
4385 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4387 wait_on_page_writeback(page
);
4388 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4390 btrfs_releasepage(page
, GFP_NOFS
);
4394 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4395 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4399 * IO on this page will never be started, so we need
4400 * to account for any ordered extents now
4402 clear_extent_bit(tree
, page_start
, page_end
,
4403 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4404 EXTENT_LOCKED
, 1, 0, GFP_NOFS
);
4405 btrfs_finish_ordered_io(page
->mapping
->host
,
4406 page_start
, page_end
);
4407 btrfs_put_ordered_extent(ordered
);
4408 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4410 clear_extent_bit(tree
, page_start
, page_end
,
4411 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4414 __btrfs_releasepage(page
, GFP_NOFS
);
4416 ClearPageChecked(page
);
4417 if (PagePrivate(page
)) {
4418 ClearPagePrivate(page
);
4419 set_page_private(page
, 0);
4420 page_cache_release(page
);
4425 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4426 * called from a page fault handler when a page is first dirtied. Hence we must
4427 * be careful to check for EOF conditions here. We set the page up correctly
4428 * for a written page which means we get ENOSPC checking when writing into
4429 * holes and correct delalloc and unwritten extent mapping on filesystems that
4430 * support these features.
4432 * We are not allowed to take the i_mutex here so we have to play games to
4433 * protect against truncate races as the page could now be beyond EOF. Because
4434 * vmtruncate() writes the inode size before removing pages, once we have the
4435 * page lock we can determine safely if the page is beyond EOF. If it is not
4436 * beyond EOF, then the page is guaranteed safe against truncation until we
4439 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4441 struct page
*page
= vmf
->page
;
4442 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4443 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4444 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4445 struct btrfs_ordered_extent
*ordered
;
4447 unsigned long zero_start
;
4453 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
4457 else /* -ENOSPC, -EIO, etc */
4458 ret
= VM_FAULT_SIGBUS
;
4462 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
4465 size
= i_size_read(inode
);
4466 page_start
= page_offset(page
);
4467 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4469 if ((page
->mapping
!= inode
->i_mapping
) ||
4470 (page_start
>= size
)) {
4471 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4472 /* page got truncated out from underneath us */
4475 wait_on_page_writeback(page
);
4477 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4478 set_page_extent_mapped(page
);
4481 * we can't set the delalloc bits if there are pending ordered
4482 * extents. Drop our locks and wait for them to finish
4484 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4486 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4488 btrfs_start_ordered_extent(inode
, ordered
, 1);
4489 btrfs_put_ordered_extent(ordered
);
4493 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
4496 /* page is wholly or partially inside EOF */
4497 if (page_start
+ PAGE_CACHE_SIZE
> size
)
4498 zero_start
= size
& ~PAGE_CACHE_MASK
;
4500 zero_start
= PAGE_CACHE_SIZE
;
4502 if (zero_start
!= PAGE_CACHE_SIZE
) {
4504 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
4505 flush_dcache_page(page
);
4508 ClearPageChecked(page
);
4509 set_page_dirty(page
);
4511 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
4512 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4520 static void btrfs_truncate(struct inode
*inode
)
4522 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4524 struct btrfs_trans_handle
*trans
;
4526 u64 mask
= root
->sectorsize
- 1;
4528 if (!S_ISREG(inode
->i_mode
))
4530 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4533 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
4534 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
4536 trans
= btrfs_start_transaction(root
, 1);
4539 * setattr is responsible for setting the ordered_data_close flag,
4540 * but that is only tested during the last file release. That
4541 * could happen well after the next commit, leaving a great big
4542 * window where new writes may get lost if someone chooses to write
4543 * to this file after truncating to zero
4545 * The inode doesn't have any dirty data here, and so if we commit
4546 * this is a noop. If someone immediately starts writing to the inode
4547 * it is very likely we'll catch some of their writes in this
4548 * transaction, and the commit will find this file on the ordered
4549 * data list with good things to send down.
4551 * This is a best effort solution, there is still a window where
4552 * using truncate to replace the contents of the file will
4553 * end up with a zero length file after a crash.
4555 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
4556 btrfs_add_ordered_operation(trans
, root
, inode
);
4558 btrfs_set_trans_block_group(trans
, inode
);
4559 btrfs_i_size_write(inode
, inode
->i_size
);
4561 ret
= btrfs_orphan_add(trans
, inode
);
4564 /* FIXME, add redo link to tree so we don't leak on crash */
4565 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
4566 BTRFS_EXTENT_DATA_KEY
);
4567 btrfs_update_inode(trans
, root
, inode
);
4569 ret
= btrfs_orphan_del(trans
, inode
);
4573 nr
= trans
->blocks_used
;
4574 ret
= btrfs_end_transaction_throttle(trans
, root
);
4576 btrfs_btree_balance_dirty(root
, nr
);
4580 * create a new subvolume directory/inode (helper for the ioctl).
4582 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
4583 struct btrfs_root
*new_root
, struct dentry
*dentry
,
4584 u64 new_dirid
, u64 alloc_hint
)
4586 struct inode
*inode
;
4590 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
4591 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
4593 return PTR_ERR(inode
);
4594 inode
->i_op
= &btrfs_dir_inode_operations
;
4595 inode
->i_fop
= &btrfs_dir_file_operations
;
4598 btrfs_i_size_write(inode
, 0);
4600 error
= btrfs_update_inode(trans
, new_root
, inode
);
4604 d_instantiate(dentry
, inode
);
4608 /* helper function for file defrag and space balancing. This
4609 * forces readahead on a given range of bytes in an inode
4611 unsigned long btrfs_force_ra(struct address_space
*mapping
,
4612 struct file_ra_state
*ra
, struct file
*file
,
4613 pgoff_t offset
, pgoff_t last_index
)
4615 pgoff_t req_size
= last_index
- offset
+ 1;
4617 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
4618 return offset
+ req_size
;
4621 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
4623 struct btrfs_inode
*ei
;
4625 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
4629 ei
->logged_trans
= 0;
4630 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
4631 ei
->i_acl
= BTRFS_ACL_NOT_CACHED
;
4632 ei
->i_default_acl
= BTRFS_ACL_NOT_CACHED
;
4633 INIT_LIST_HEAD(&ei
->i_orphan
);
4634 INIT_LIST_HEAD(&ei
->ordered_operations
);
4635 return &ei
->vfs_inode
;
4638 void btrfs_destroy_inode(struct inode
*inode
)
4640 struct btrfs_ordered_extent
*ordered
;
4641 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4643 WARN_ON(!list_empty(&inode
->i_dentry
));
4644 WARN_ON(inode
->i_data
.nrpages
);
4646 if (BTRFS_I(inode
)->i_acl
&&
4647 BTRFS_I(inode
)->i_acl
!= BTRFS_ACL_NOT_CACHED
)
4648 posix_acl_release(BTRFS_I(inode
)->i_acl
);
4649 if (BTRFS_I(inode
)->i_default_acl
&&
4650 BTRFS_I(inode
)->i_default_acl
!= BTRFS_ACL_NOT_CACHED
)
4651 posix_acl_release(BTRFS_I(inode
)->i_default_acl
);
4654 * Make sure we're properly removed from the ordered operation
4658 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
4659 spin_lock(&root
->fs_info
->ordered_extent_lock
);
4660 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
4661 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
4664 spin_lock(&root
->list_lock
);
4665 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
4666 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
4667 " list\n", inode
->i_ino
);
4670 spin_unlock(&root
->list_lock
);
4673 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
4677 printk(KERN_ERR
"btrfs found ordered "
4678 "extent %llu %llu on inode cleanup\n",
4679 (unsigned long long)ordered
->file_offset
,
4680 (unsigned long long)ordered
->len
);
4681 btrfs_remove_ordered_extent(inode
, ordered
);
4682 btrfs_put_ordered_extent(ordered
);
4683 btrfs_put_ordered_extent(ordered
);
4686 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
4687 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
4690 static void init_once(void *foo
)
4692 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
4694 inode_init_once(&ei
->vfs_inode
);
4697 void btrfs_destroy_cachep(void)
4699 if (btrfs_inode_cachep
)
4700 kmem_cache_destroy(btrfs_inode_cachep
);
4701 if (btrfs_trans_handle_cachep
)
4702 kmem_cache_destroy(btrfs_trans_handle_cachep
);
4703 if (btrfs_transaction_cachep
)
4704 kmem_cache_destroy(btrfs_transaction_cachep
);
4705 if (btrfs_path_cachep
)
4706 kmem_cache_destroy(btrfs_path_cachep
);
4709 int btrfs_init_cachep(void)
4711 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
4712 sizeof(struct btrfs_inode
), 0,
4713 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
4714 if (!btrfs_inode_cachep
)
4717 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
4718 sizeof(struct btrfs_trans_handle
), 0,
4719 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4720 if (!btrfs_trans_handle_cachep
)
4723 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
4724 sizeof(struct btrfs_transaction
), 0,
4725 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4726 if (!btrfs_transaction_cachep
)
4729 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
4730 sizeof(struct btrfs_path
), 0,
4731 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4732 if (!btrfs_path_cachep
)
4737 btrfs_destroy_cachep();
4741 static int btrfs_getattr(struct vfsmount
*mnt
,
4742 struct dentry
*dentry
, struct kstat
*stat
)
4744 struct inode
*inode
= dentry
->d_inode
;
4745 generic_fillattr(inode
, stat
);
4746 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
4747 stat
->blksize
= PAGE_CACHE_SIZE
;
4748 stat
->blocks
= (inode_get_bytes(inode
) +
4749 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
4753 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
4754 struct inode
*new_dir
, struct dentry
*new_dentry
)
4756 struct btrfs_trans_handle
*trans
;
4757 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
4758 struct inode
*new_inode
= new_dentry
->d_inode
;
4759 struct inode
*old_inode
= old_dentry
->d_inode
;
4760 struct timespec ctime
= CURRENT_TIME
;
4764 /* we're not allowed to rename between subvolumes */
4765 if (BTRFS_I(old_inode
)->root
->root_key
.objectid
!=
4766 BTRFS_I(new_dir
)->root
->root_key
.objectid
)
4769 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
4770 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
) {
4774 /* to rename a snapshot or subvolume, we need to juggle the
4775 * backrefs. This isn't coded yet
4777 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
4780 ret
= btrfs_check_metadata_free_space(root
);
4785 * we're using rename to replace one file with another.
4786 * and the replacement file is large. Start IO on it now so
4787 * we don't add too much work to the end of the transaction
4789 if (new_inode
&& old_inode
&& S_ISREG(old_inode
->i_mode
) &&
4790 new_inode
->i_size
&&
4791 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
4792 filemap_flush(old_inode
->i_mapping
);
4794 trans
= btrfs_start_transaction(root
, 1);
4797 * make sure the inode gets flushed if it is replacing
4800 if (new_inode
&& new_inode
->i_size
&&
4801 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
4802 btrfs_add_ordered_operation(trans
, root
, old_inode
);
4806 * this is an ugly little race, but the rename is required to make
4807 * sure that if we crash, the inode is either at the old name
4808 * or the new one. pinning the log transaction lets us make sure
4809 * we don't allow a log commit to come in after we unlink the
4810 * name but before we add the new name back in.
4812 btrfs_pin_log_trans(root
);
4814 btrfs_set_trans_block_group(trans
, new_dir
);
4816 btrfs_inc_nlink(old_dentry
->d_inode
);
4817 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
4818 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
4819 old_inode
->i_ctime
= ctime
;
4821 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
4822 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
4824 ret
= btrfs_unlink_inode(trans
, root
, old_dir
, old_dentry
->d_inode
,
4825 old_dentry
->d_name
.name
,
4826 old_dentry
->d_name
.len
);
4831 new_inode
->i_ctime
= CURRENT_TIME
;
4832 ret
= btrfs_unlink_inode(trans
, root
, new_dir
,
4833 new_dentry
->d_inode
,
4834 new_dentry
->d_name
.name
,
4835 new_dentry
->d_name
.len
);
4838 if (new_inode
->i_nlink
== 0) {
4839 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
4845 ret
= btrfs_set_inode_index(new_dir
, &index
);
4849 ret
= btrfs_add_link(trans
, new_dentry
->d_parent
->d_inode
,
4850 old_inode
, new_dentry
->d_name
.name
,
4851 new_dentry
->d_name
.len
, 1, index
);
4855 btrfs_log_new_name(trans
, old_inode
, old_dir
,
4856 new_dentry
->d_parent
);
4859 /* this btrfs_end_log_trans just allows the current
4860 * log-sub transaction to complete
4862 btrfs_end_log_trans(root
);
4863 btrfs_end_transaction_throttle(trans
, root
);
4869 * some fairly slow code that needs optimization. This walks the list
4870 * of all the inodes with pending delalloc and forces them to disk.
4872 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
4874 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
4875 struct btrfs_inode
*binode
;
4876 struct inode
*inode
;
4878 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
4881 spin_lock(&root
->fs_info
->delalloc_lock
);
4882 while (!list_empty(head
)) {
4883 binode
= list_entry(head
->next
, struct btrfs_inode
,
4885 inode
= igrab(&binode
->vfs_inode
);
4887 list_del_init(&binode
->delalloc_inodes
);
4888 spin_unlock(&root
->fs_info
->delalloc_lock
);
4890 filemap_flush(inode
->i_mapping
);
4894 spin_lock(&root
->fs_info
->delalloc_lock
);
4896 spin_unlock(&root
->fs_info
->delalloc_lock
);
4898 /* the filemap_flush will queue IO into the worker threads, but
4899 * we have to make sure the IO is actually started and that
4900 * ordered extents get created before we return
4902 atomic_inc(&root
->fs_info
->async_submit_draining
);
4903 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
4904 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
4905 wait_event(root
->fs_info
->async_submit_wait
,
4906 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
4907 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
4909 atomic_dec(&root
->fs_info
->async_submit_draining
);
4913 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
4914 const char *symname
)
4916 struct btrfs_trans_handle
*trans
;
4917 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4918 struct btrfs_path
*path
;
4919 struct btrfs_key key
;
4920 struct inode
*inode
= NULL
;
4928 struct btrfs_file_extent_item
*ei
;
4929 struct extent_buffer
*leaf
;
4930 unsigned long nr
= 0;
4932 name_len
= strlen(symname
) + 1;
4933 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
4934 return -ENAMETOOLONG
;
4936 err
= btrfs_check_metadata_free_space(root
);
4940 trans
= btrfs_start_transaction(root
, 1);
4941 btrfs_set_trans_block_group(trans
, dir
);
4943 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4949 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4951 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4952 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
4954 err
= PTR_ERR(inode
);
4958 err
= btrfs_init_inode_security(inode
, dir
);
4964 btrfs_set_trans_block_group(trans
, inode
);
4965 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4969 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4970 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4971 inode
->i_fop
= &btrfs_file_operations
;
4972 inode
->i_op
= &btrfs_file_inode_operations
;
4973 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4975 dir
->i_sb
->s_dirt
= 1;
4976 btrfs_update_inode_block_group(trans
, inode
);
4977 btrfs_update_inode_block_group(trans
, dir
);
4981 path
= btrfs_alloc_path();
4983 key
.objectid
= inode
->i_ino
;
4985 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
4986 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
4987 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
4993 leaf
= path
->nodes
[0];
4994 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
4995 struct btrfs_file_extent_item
);
4996 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
4997 btrfs_set_file_extent_type(leaf
, ei
,
4998 BTRFS_FILE_EXTENT_INLINE
);
4999 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
5000 btrfs_set_file_extent_compression(leaf
, ei
, 0);
5001 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
5002 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
5004 ptr
= btrfs_file_extent_inline_start(ei
);
5005 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
5006 btrfs_mark_buffer_dirty(leaf
);
5007 btrfs_free_path(path
);
5009 inode
->i_op
= &btrfs_symlink_inode_operations
;
5010 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
5011 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5012 inode_set_bytes(inode
, name_len
);
5013 btrfs_i_size_write(inode
, name_len
- 1);
5014 err
= btrfs_update_inode(trans
, root
, inode
);
5019 nr
= trans
->blocks_used
;
5020 btrfs_end_transaction_throttle(trans
, root
);
5023 inode_dec_link_count(inode
);
5026 btrfs_btree_balance_dirty(root
, nr
);
5030 static int prealloc_file_range(struct btrfs_trans_handle
*trans
,
5031 struct inode
*inode
, u64 start
, u64 end
,
5032 u64 locked_end
, u64 alloc_hint
, int mode
)
5034 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5035 struct btrfs_key ins
;
5037 u64 cur_offset
= start
;
5038 u64 num_bytes
= end
- start
;
5041 while (num_bytes
> 0) {
5042 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
5043 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
5044 root
->sectorsize
, 0, alloc_hint
,
5050 ret
= insert_reserved_file_extent(trans
, inode
,
5051 cur_offset
, ins
.objectid
,
5052 ins
.offset
, ins
.offset
,
5053 ins
.offset
, locked_end
,
5055 BTRFS_FILE_EXTENT_PREALLOC
);
5057 num_bytes
-= ins
.offset
;
5058 cur_offset
+= ins
.offset
;
5059 alloc_hint
= ins
.objectid
+ ins
.offset
;
5062 if (cur_offset
> start
) {
5063 inode
->i_ctime
= CURRENT_TIME
;
5064 btrfs_set_flag(inode
, PREALLOC
);
5065 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
5066 cur_offset
> i_size_read(inode
))
5067 btrfs_i_size_write(inode
, cur_offset
);
5068 ret
= btrfs_update_inode(trans
, root
, inode
);
5075 static long btrfs_fallocate(struct inode
*inode
, int mode
,
5076 loff_t offset
, loff_t len
)
5084 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
5085 struct extent_map
*em
;
5086 struct btrfs_trans_handle
*trans
;
5089 alloc_start
= offset
& ~mask
;
5090 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
5093 * wait for ordered IO before we have any locks. We'll loop again
5094 * below with the locks held.
5096 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
5098 mutex_lock(&inode
->i_mutex
);
5099 if (alloc_start
> inode
->i_size
) {
5100 ret
= btrfs_cont_expand(inode
, alloc_start
);
5105 locked_end
= alloc_end
- 1;
5107 struct btrfs_ordered_extent
*ordered
;
5109 trans
= btrfs_start_transaction(BTRFS_I(inode
)->root
, 1);
5115 /* the extent lock is ordered inside the running
5118 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5120 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5123 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
5124 ordered
->file_offset
< alloc_end
) {
5125 btrfs_put_ordered_extent(ordered
);
5126 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5127 alloc_start
, locked_end
, GFP_NOFS
);
5128 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5131 * we can't wait on the range with the transaction
5132 * running or with the extent lock held
5134 btrfs_wait_ordered_range(inode
, alloc_start
,
5135 alloc_end
- alloc_start
);
5138 btrfs_put_ordered_extent(ordered
);
5143 cur_offset
= alloc_start
;
5145 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
5146 alloc_end
- cur_offset
, 0);
5147 BUG_ON(IS_ERR(em
) || !em
);
5148 last_byte
= min(extent_map_end(em
), alloc_end
);
5149 last_byte
= (last_byte
+ mask
) & ~mask
;
5150 if (em
->block_start
== EXTENT_MAP_HOLE
) {
5151 ret
= prealloc_file_range(trans
, inode
, cur_offset
,
5152 last_byte
, locked_end
+ 1,
5155 free_extent_map(em
);
5159 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
5160 alloc_hint
= em
->block_start
;
5161 free_extent_map(em
);
5163 cur_offset
= last_byte
;
5164 if (cur_offset
>= alloc_end
) {
5169 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5172 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5174 mutex_unlock(&inode
->i_mutex
);
5178 static int btrfs_set_page_dirty(struct page
*page
)
5180 return __set_page_dirty_nobuffers(page
);
5183 static int btrfs_permission(struct inode
*inode
, int mask
)
5185 if (btrfs_test_flag(inode
, READONLY
) && (mask
& MAY_WRITE
))
5187 return generic_permission(inode
, mask
, btrfs_check_acl
);
5190 static struct inode_operations btrfs_dir_inode_operations
= {
5191 .getattr
= btrfs_getattr
,
5192 .lookup
= btrfs_lookup
,
5193 .create
= btrfs_create
,
5194 .unlink
= btrfs_unlink
,
5196 .mkdir
= btrfs_mkdir
,
5197 .rmdir
= btrfs_rmdir
,
5198 .rename
= btrfs_rename
,
5199 .symlink
= btrfs_symlink
,
5200 .setattr
= btrfs_setattr
,
5201 .mknod
= btrfs_mknod
,
5202 .setxattr
= btrfs_setxattr
,
5203 .getxattr
= btrfs_getxattr
,
5204 .listxattr
= btrfs_listxattr
,
5205 .removexattr
= btrfs_removexattr
,
5206 .permission
= btrfs_permission
,
5208 static struct inode_operations btrfs_dir_ro_inode_operations
= {
5209 .lookup
= btrfs_lookup
,
5210 .permission
= btrfs_permission
,
5212 static struct file_operations btrfs_dir_file_operations
= {
5213 .llseek
= generic_file_llseek
,
5214 .read
= generic_read_dir
,
5215 .readdir
= btrfs_real_readdir
,
5216 .unlocked_ioctl
= btrfs_ioctl
,
5217 #ifdef CONFIG_COMPAT
5218 .compat_ioctl
= btrfs_ioctl
,
5220 .release
= btrfs_release_file
,
5221 .fsync
= btrfs_sync_file
,
5224 static struct extent_io_ops btrfs_extent_io_ops
= {
5225 .fill_delalloc
= run_delalloc_range
,
5226 .submit_bio_hook
= btrfs_submit_bio_hook
,
5227 .merge_bio_hook
= btrfs_merge_bio_hook
,
5228 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
5229 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
5230 .writepage_start_hook
= btrfs_writepage_start_hook
,
5231 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
5232 .set_bit_hook
= btrfs_set_bit_hook
,
5233 .clear_bit_hook
= btrfs_clear_bit_hook
,
5237 * btrfs doesn't support the bmap operation because swapfiles
5238 * use bmap to make a mapping of extents in the file. They assume
5239 * these extents won't change over the life of the file and they
5240 * use the bmap result to do IO directly to the drive.
5242 * the btrfs bmap call would return logical addresses that aren't
5243 * suitable for IO and they also will change frequently as COW
5244 * operations happen. So, swapfile + btrfs == corruption.
5246 * For now we're avoiding this by dropping bmap.
5248 static struct address_space_operations btrfs_aops
= {
5249 .readpage
= btrfs_readpage
,
5250 .writepage
= btrfs_writepage
,
5251 .writepages
= btrfs_writepages
,
5252 .readpages
= btrfs_readpages
,
5253 .sync_page
= block_sync_page
,
5254 .direct_IO
= btrfs_direct_IO
,
5255 .invalidatepage
= btrfs_invalidatepage
,
5256 .releasepage
= btrfs_releasepage
,
5257 .set_page_dirty
= btrfs_set_page_dirty
,
5260 static struct address_space_operations btrfs_symlink_aops
= {
5261 .readpage
= btrfs_readpage
,
5262 .writepage
= btrfs_writepage
,
5263 .invalidatepage
= btrfs_invalidatepage
,
5264 .releasepage
= btrfs_releasepage
,
5267 static struct inode_operations btrfs_file_inode_operations
= {
5268 .truncate
= btrfs_truncate
,
5269 .getattr
= btrfs_getattr
,
5270 .setattr
= btrfs_setattr
,
5271 .setxattr
= btrfs_setxattr
,
5272 .getxattr
= btrfs_getxattr
,
5273 .listxattr
= btrfs_listxattr
,
5274 .removexattr
= btrfs_removexattr
,
5275 .permission
= btrfs_permission
,
5276 .fallocate
= btrfs_fallocate
,
5277 .fiemap
= btrfs_fiemap
,
5279 static struct inode_operations btrfs_special_inode_operations
= {
5280 .getattr
= btrfs_getattr
,
5281 .setattr
= btrfs_setattr
,
5282 .permission
= btrfs_permission
,
5283 .setxattr
= btrfs_setxattr
,
5284 .getxattr
= btrfs_getxattr
,
5285 .listxattr
= btrfs_listxattr
,
5286 .removexattr
= btrfs_removexattr
,
5288 static struct inode_operations btrfs_symlink_inode_operations
= {
5289 .readlink
= generic_readlink
,
5290 .follow_link
= page_follow_link_light
,
5291 .put_link
= page_put_link
,
5292 .permission
= btrfs_permission
,
5293 .setxattr
= btrfs_setxattr
,
5294 .getxattr
= btrfs_getxattr
,
5295 .listxattr
= btrfs_listxattr
,
5296 .removexattr
= btrfs_removexattr
,