2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/i2c.h>
29 #include "intel_drv.h"
33 #include "drm_crtc_helper.h"
35 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
58 #define INTEL_P2_NUM 2
59 typedef struct intel_limit intel_limit_t
;
61 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
63 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
64 int, int, intel_clock_t
*);
67 #define I8XX_DOT_MIN 25000
68 #define I8XX_DOT_MAX 350000
69 #define I8XX_VCO_MIN 930000
70 #define I8XX_VCO_MAX 1400000
74 #define I8XX_M_MAX 140
75 #define I8XX_M1_MIN 18
76 #define I8XX_M1_MAX 26
78 #define I8XX_M2_MAX 16
80 #define I8XX_P_MAX 128
82 #define I8XX_P1_MAX 33
83 #define I8XX_P1_LVDS_MIN 1
84 #define I8XX_P1_LVDS_MAX 6
85 #define I8XX_P2_SLOW 4
86 #define I8XX_P2_FAST 2
87 #define I8XX_P2_LVDS_SLOW 14
88 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
89 #define I8XX_P2_SLOW_LIMIT 165000
91 #define I9XX_DOT_MIN 20000
92 #define I9XX_DOT_MAX 400000
93 #define I9XX_VCO_MIN 1400000
94 #define I9XX_VCO_MAX 2800000
95 #define IGD_VCO_MIN 1700000
96 #define IGD_VCO_MAX 3500000
99 /* IGD's Ncounter is a ring counter */
102 #define I9XX_M_MIN 70
103 #define I9XX_M_MAX 120
105 #define IGD_M_MAX 256
106 #define I9XX_M1_MIN 10
107 #define I9XX_M1_MAX 22
108 #define I9XX_M2_MIN 5
109 #define I9XX_M2_MAX 9
110 /* IGD M1 is reserved, and must be 0 */
114 #define IGD_M2_MAX 254
115 #define I9XX_P_SDVO_DAC_MIN 5
116 #define I9XX_P_SDVO_DAC_MAX 80
117 #define I9XX_P_LVDS_MIN 7
118 #define I9XX_P_LVDS_MAX 98
119 #define IGD_P_LVDS_MIN 7
120 #define IGD_P_LVDS_MAX 112
121 #define I9XX_P1_MIN 1
122 #define I9XX_P1_MAX 8
123 #define I9XX_P2_SDVO_DAC_SLOW 10
124 #define I9XX_P2_SDVO_DAC_FAST 5
125 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
126 #define I9XX_P2_LVDS_SLOW 14
127 #define I9XX_P2_LVDS_FAST 7
128 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
130 #define INTEL_LIMIT_I8XX_DVO_DAC 0
131 #define INTEL_LIMIT_I8XX_LVDS 1
132 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
133 #define INTEL_LIMIT_I9XX_LVDS 3
134 #define INTEL_LIMIT_G4X_SDVO 4
135 #define INTEL_LIMIT_G4X_HDMI_DAC 5
136 #define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS 6
137 #define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS 7
138 #define INTEL_LIMIT_IGD_SDVO_DAC 8
139 #define INTEL_LIMIT_IGD_LVDS 9
141 /*The parameter is for SDVO on G4x platform*/
142 #define G4X_DOT_SDVO_MIN 25000
143 #define G4X_DOT_SDVO_MAX 270000
144 #define G4X_VCO_MIN 1750000
145 #define G4X_VCO_MAX 3500000
146 #define G4X_N_SDVO_MIN 1
147 #define G4X_N_SDVO_MAX 4
148 #define G4X_M_SDVO_MIN 104
149 #define G4X_M_SDVO_MAX 138
150 #define G4X_M1_SDVO_MIN 17
151 #define G4X_M1_SDVO_MAX 23
152 #define G4X_M2_SDVO_MIN 5
153 #define G4X_M2_SDVO_MAX 11
154 #define G4X_P_SDVO_MIN 10
155 #define G4X_P_SDVO_MAX 30
156 #define G4X_P1_SDVO_MIN 1
157 #define G4X_P1_SDVO_MAX 3
158 #define G4X_P2_SDVO_SLOW 10
159 #define G4X_P2_SDVO_FAST 10
160 #define G4X_P2_SDVO_LIMIT 270000
162 /*The parameter is for HDMI_DAC on G4x platform*/
163 #define G4X_DOT_HDMI_DAC_MIN 22000
164 #define G4X_DOT_HDMI_DAC_MAX 400000
165 #define G4X_N_HDMI_DAC_MIN 1
166 #define G4X_N_HDMI_DAC_MAX 4
167 #define G4X_M_HDMI_DAC_MIN 104
168 #define G4X_M_HDMI_DAC_MAX 138
169 #define G4X_M1_HDMI_DAC_MIN 16
170 #define G4X_M1_HDMI_DAC_MAX 23
171 #define G4X_M2_HDMI_DAC_MIN 5
172 #define G4X_M2_HDMI_DAC_MAX 11
173 #define G4X_P_HDMI_DAC_MIN 5
174 #define G4X_P_HDMI_DAC_MAX 80
175 #define G4X_P1_HDMI_DAC_MIN 1
176 #define G4X_P1_HDMI_DAC_MAX 8
177 #define G4X_P2_HDMI_DAC_SLOW 10
178 #define G4X_P2_HDMI_DAC_FAST 5
179 #define G4X_P2_HDMI_DAC_LIMIT 165000
181 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
200 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
203 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
204 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
205 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
206 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
211 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
212 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
215 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
221 int target
, int refclk
, intel_clock_t
*best_clock
);
223 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
224 int target
, int refclk
, intel_clock_t
*best_clock
);
226 static const intel_limit_t intel_limits
[] = {
227 { /* INTEL_LIMIT_I8XX_DVO_DAC */
228 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
229 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
230 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
231 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
232 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
233 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
234 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
235 .p1
= { .min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
236 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
237 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
238 .find_pll
= intel_find_best_PLL
,
240 { /* INTEL_LIMIT_I8XX_LVDS */
241 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
242 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
243 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
244 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
245 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
246 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
247 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
248 .p1
= { .min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
249 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
250 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
251 .find_pll
= intel_find_best_PLL
,
253 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
254 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
255 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
256 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
257 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
258 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
259 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
260 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
261 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
262 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
263 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
264 .find_pll
= intel_find_best_PLL
,
266 { /* INTEL_LIMIT_I9XX_LVDS */
267 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
268 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
269 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
270 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
271 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
272 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
273 .p
= { .min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
274 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
275 /* The single-channel range is 25-112Mhz, and dual-channel
276 * is 80-224Mhz. Prefer single channel as much as possible.
278 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
279 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
280 .find_pll
= intel_find_best_PLL
,
282 /* below parameter and function is for G4X Chipset Family*/
283 { /* INTEL_LIMIT_G4X_SDVO */
284 .dot
= { .min
= G4X_DOT_SDVO_MIN
, .max
= G4X_DOT_SDVO_MAX
},
285 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
286 .n
= { .min
= G4X_N_SDVO_MIN
, .max
= G4X_N_SDVO_MAX
},
287 .m
= { .min
= G4X_M_SDVO_MIN
, .max
= G4X_M_SDVO_MAX
},
288 .m1
= { .min
= G4X_M1_SDVO_MIN
, .max
= G4X_M1_SDVO_MAX
},
289 .m2
= { .min
= G4X_M2_SDVO_MIN
, .max
= G4X_M2_SDVO_MAX
},
290 .p
= { .min
= G4X_P_SDVO_MIN
, .max
= G4X_P_SDVO_MAX
},
291 .p1
= { .min
= G4X_P1_SDVO_MIN
, .max
= G4X_P1_SDVO_MAX
},
292 .p2
= { .dot_limit
= G4X_P2_SDVO_LIMIT
,
293 .p2_slow
= G4X_P2_SDVO_SLOW
,
294 .p2_fast
= G4X_P2_SDVO_FAST
296 .find_pll
= intel_g4x_find_best_PLL
,
298 { /* INTEL_LIMIT_G4X_HDMI_DAC */
299 .dot
= { .min
= G4X_DOT_HDMI_DAC_MIN
, .max
= G4X_DOT_HDMI_DAC_MAX
},
300 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
301 .n
= { .min
= G4X_N_HDMI_DAC_MIN
, .max
= G4X_N_HDMI_DAC_MAX
},
302 .m
= { .min
= G4X_M_HDMI_DAC_MIN
, .max
= G4X_M_HDMI_DAC_MAX
},
303 .m1
= { .min
= G4X_M1_HDMI_DAC_MIN
, .max
= G4X_M1_HDMI_DAC_MAX
},
304 .m2
= { .min
= G4X_M2_HDMI_DAC_MIN
, .max
= G4X_M2_HDMI_DAC_MAX
},
305 .p
= { .min
= G4X_P_HDMI_DAC_MIN
, .max
= G4X_P_HDMI_DAC_MAX
},
306 .p1
= { .min
= G4X_P1_HDMI_DAC_MIN
, .max
= G4X_P1_HDMI_DAC_MAX
},
307 .p2
= { .dot_limit
= G4X_P2_HDMI_DAC_LIMIT
,
308 .p2_slow
= G4X_P2_HDMI_DAC_SLOW
,
309 .p2_fast
= G4X_P2_HDMI_DAC_FAST
311 .find_pll
= intel_g4x_find_best_PLL
,
313 { /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
314 .dot
= { .min
= G4X_DOT_SINGLE_CHANNEL_LVDS_MIN
,
315 .max
= G4X_DOT_SINGLE_CHANNEL_LVDS_MAX
},
316 .vco
= { .min
= G4X_VCO_MIN
,
317 .max
= G4X_VCO_MAX
},
318 .n
= { .min
= G4X_N_SINGLE_CHANNEL_LVDS_MIN
,
319 .max
= G4X_N_SINGLE_CHANNEL_LVDS_MAX
},
320 .m
= { .min
= G4X_M_SINGLE_CHANNEL_LVDS_MIN
,
321 .max
= G4X_M_SINGLE_CHANNEL_LVDS_MAX
},
322 .m1
= { .min
= G4X_M1_SINGLE_CHANNEL_LVDS_MIN
,
323 .max
= G4X_M1_SINGLE_CHANNEL_LVDS_MAX
},
324 .m2
= { .min
= G4X_M2_SINGLE_CHANNEL_LVDS_MIN
,
325 .max
= G4X_M2_SINGLE_CHANNEL_LVDS_MAX
},
326 .p
= { .min
= G4X_P_SINGLE_CHANNEL_LVDS_MIN
,
327 .max
= G4X_P_SINGLE_CHANNEL_LVDS_MAX
},
328 .p1
= { .min
= G4X_P1_SINGLE_CHANNEL_LVDS_MIN
,
329 .max
= G4X_P1_SINGLE_CHANNEL_LVDS_MAX
},
330 .p2
= { .dot_limit
= G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT
,
331 .p2_slow
= G4X_P2_SINGLE_CHANNEL_LVDS_SLOW
,
332 .p2_fast
= G4X_P2_SINGLE_CHANNEL_LVDS_FAST
334 .find_pll
= intel_g4x_find_best_PLL
,
336 { /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
337 .dot
= { .min
= G4X_DOT_DUAL_CHANNEL_LVDS_MIN
,
338 .max
= G4X_DOT_DUAL_CHANNEL_LVDS_MAX
},
339 .vco
= { .min
= G4X_VCO_MIN
,
340 .max
= G4X_VCO_MAX
},
341 .n
= { .min
= G4X_N_DUAL_CHANNEL_LVDS_MIN
,
342 .max
= G4X_N_DUAL_CHANNEL_LVDS_MAX
},
343 .m
= { .min
= G4X_M_DUAL_CHANNEL_LVDS_MIN
,
344 .max
= G4X_M_DUAL_CHANNEL_LVDS_MAX
},
345 .m1
= { .min
= G4X_M1_DUAL_CHANNEL_LVDS_MIN
,
346 .max
= G4X_M1_DUAL_CHANNEL_LVDS_MAX
},
347 .m2
= { .min
= G4X_M2_DUAL_CHANNEL_LVDS_MIN
,
348 .max
= G4X_M2_DUAL_CHANNEL_LVDS_MAX
},
349 .p
= { .min
= G4X_P_DUAL_CHANNEL_LVDS_MIN
,
350 .max
= G4X_P_DUAL_CHANNEL_LVDS_MAX
},
351 .p1
= { .min
= G4X_P1_DUAL_CHANNEL_LVDS_MIN
,
352 .max
= G4X_P1_DUAL_CHANNEL_LVDS_MAX
},
353 .p2
= { .dot_limit
= G4X_P2_DUAL_CHANNEL_LVDS_LIMIT
,
354 .p2_slow
= G4X_P2_DUAL_CHANNEL_LVDS_SLOW
,
355 .p2_fast
= G4X_P2_DUAL_CHANNEL_LVDS_FAST
357 .find_pll
= intel_g4x_find_best_PLL
,
359 { /* INTEL_LIMIT_IGD_SDVO */
360 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
361 .vco
= { .min
= IGD_VCO_MIN
, .max
= IGD_VCO_MAX
},
362 .n
= { .min
= IGD_N_MIN
, .max
= IGD_N_MAX
},
363 .m
= { .min
= IGD_M_MIN
, .max
= IGD_M_MAX
},
364 .m1
= { .min
= IGD_M1_MIN
, .max
= IGD_M1_MAX
},
365 .m2
= { .min
= IGD_M2_MIN
, .max
= IGD_M2_MAX
},
366 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
367 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
368 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
369 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
370 .find_pll
= intel_find_best_PLL
,
372 { /* INTEL_LIMIT_IGD_LVDS */
373 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
374 .vco
= { .min
= IGD_VCO_MIN
, .max
= IGD_VCO_MAX
},
375 .n
= { .min
= IGD_N_MIN
, .max
= IGD_N_MAX
},
376 .m
= { .min
= IGD_M_MIN
, .max
= IGD_M_MAX
},
377 .m1
= { .min
= IGD_M1_MIN
, .max
= IGD_M1_MAX
},
378 .m2
= { .min
= IGD_M2_MIN
, .max
= IGD_M2_MAX
},
379 .p
= { .min
= IGD_P_LVDS_MIN
, .max
= IGD_P_LVDS_MAX
},
380 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
381 /* IGD only supports single-channel mode. */
382 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
383 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_SLOW
},
384 .find_pll
= intel_find_best_PLL
,
389 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
391 struct drm_device
*dev
= crtc
->dev
;
392 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
393 const intel_limit_t
*limit
;
395 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
396 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
398 /* LVDS with dual channel */
399 limit
= &intel_limits
400 [INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS
];
402 /* LVDS with dual channel */
403 limit
= &intel_limits
404 [INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS
];
405 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
406 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
407 limit
= &intel_limits
[INTEL_LIMIT_G4X_HDMI_DAC
];
408 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
409 limit
= &intel_limits
[INTEL_LIMIT_G4X_SDVO
];
410 } else /* The option is for other outputs */
411 limit
= &intel_limits
[INTEL_LIMIT_I9XX_SDVO_DAC
];
416 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
)
418 struct drm_device
*dev
= crtc
->dev
;
419 const intel_limit_t
*limit
;
422 limit
= intel_g4x_limit(crtc
);
423 } else if (IS_I9XX(dev
) && !IS_IGD(dev
)) {
424 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
425 limit
= &intel_limits
[INTEL_LIMIT_I9XX_LVDS
];
427 limit
= &intel_limits
[INTEL_LIMIT_I9XX_SDVO_DAC
];
428 } else if (IS_IGD(dev
)) {
429 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
430 limit
= &intel_limits
[INTEL_LIMIT_IGD_LVDS
];
432 limit
= &intel_limits
[INTEL_LIMIT_IGD_SDVO_DAC
];
434 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
435 limit
= &intel_limits
[INTEL_LIMIT_I8XX_LVDS
];
437 limit
= &intel_limits
[INTEL_LIMIT_I8XX_DVO_DAC
];
442 /* m1 is reserved as 0 in IGD, n is a ring counter */
443 static void igd_clock(int refclk
, intel_clock_t
*clock
)
445 clock
->m
= clock
->m2
+ 2;
446 clock
->p
= clock
->p1
* clock
->p2
;
447 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
448 clock
->dot
= clock
->vco
/ clock
->p
;
451 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
454 igd_clock(refclk
, clock
);
457 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
458 clock
->p
= clock
->p1
* clock
->p2
;
459 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
460 clock
->dot
= clock
->vco
/ clock
->p
;
464 * Returns whether any output on the specified pipe is of the specified type
466 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
)
468 struct drm_device
*dev
= crtc
->dev
;
469 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
470 struct drm_connector
*l_entry
;
472 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
473 if (l_entry
->encoder
&&
474 l_entry
->encoder
->crtc
== crtc
) {
475 struct intel_output
*intel_output
= to_intel_output(l_entry
);
476 if (intel_output
->type
== type
)
483 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
485 * Returns whether the given set of divisors are valid for a given refclk with
486 * the given connectors.
489 static bool intel_PLL_is_valid(struct drm_crtc
*crtc
, intel_clock_t
*clock
)
491 const intel_limit_t
*limit
= intel_limit (crtc
);
492 struct drm_device
*dev
= crtc
->dev
;
494 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
495 INTELPllInvalid ("p1 out of range\n");
496 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
497 INTELPllInvalid ("p out of range\n");
498 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
499 INTELPllInvalid ("m2 out of range\n");
500 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
501 INTELPllInvalid ("m1 out of range\n");
502 if (clock
->m1
<= clock
->m2
&& !IS_IGD(dev
))
503 INTELPllInvalid ("m1 <= m2\n");
504 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
505 INTELPllInvalid ("m out of range\n");
506 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
507 INTELPllInvalid ("n out of range\n");
508 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
509 INTELPllInvalid ("vco out of range\n");
510 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
511 * connector, etc., rather than just a single range.
513 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
514 INTELPllInvalid ("dot out of range\n");
520 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
521 int target
, int refclk
, intel_clock_t
*best_clock
)
524 struct drm_device
*dev
= crtc
->dev
;
525 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
529 if (IS_I9XX(dev
) && intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
530 (I915_READ(LVDS
) & LVDS_PORT_EN
) != 0) {
532 * For LVDS, if the panel is on, just rely on its current
533 * settings for dual-channel. We haven't figured out how to
534 * reliably set up different single/dual channel state, if we
537 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
539 clock
.p2
= limit
->p2
.p2_fast
;
541 clock
.p2
= limit
->p2
.p2_slow
;
543 if (target
< limit
->p2
.dot_limit
)
544 clock
.p2
= limit
->p2
.p2_slow
;
546 clock
.p2
= limit
->p2
.p2_fast
;
549 memset (best_clock
, 0, sizeof (*best_clock
));
551 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
; clock
.m1
++) {
552 for (clock
.m2
= limit
->m2
.min
; clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
553 /* m1 is always 0 in IGD */
554 if (clock
.m2
>= clock
.m1
&& !IS_IGD(dev
))
556 for (clock
.n
= limit
->n
.min
; clock
.n
<= limit
->n
.max
;
558 for (clock
.p1
= limit
->p1
.min
;
559 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
562 intel_clock(dev
, refclk
, &clock
);
564 if (!intel_PLL_is_valid(crtc
, &clock
))
567 this_err
= abs(clock
.dot
- target
);
568 if (this_err
< err
) {
577 return (err
!= target
);
581 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
582 int target
, int refclk
, intel_clock_t
*best_clock
)
584 struct drm_device
*dev
= crtc
->dev
;
585 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
589 /* approximately equals target * 0.00488 */
590 int err_most
= (target
>> 8) + (target
>> 10);
593 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
594 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
596 clock
.p2
= limit
->p2
.p2_fast
;
598 clock
.p2
= limit
->p2
.p2_slow
;
600 if (target
< limit
->p2
.dot_limit
)
601 clock
.p2
= limit
->p2
.p2_slow
;
603 clock
.p2
= limit
->p2
.p2_fast
;
606 memset(best_clock
, 0, sizeof(*best_clock
));
607 max_n
= limit
->n
.max
;
608 /* based on hardware requriment prefer smaller n to precision */
609 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
610 /* based on hardware requirment prefere larger m1,m2, p1 */
611 for (clock
.m1
= limit
->m1
.max
;
612 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
613 for (clock
.m2
= limit
->m2
.max
;
614 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
615 for (clock
.p1
= limit
->p1
.max
;
616 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
619 intel_clock(dev
, refclk
, &clock
);
620 if (!intel_PLL_is_valid(crtc
, &clock
))
622 this_err
= abs(clock
.dot
- target
) ;
623 if (this_err
< err_most
) {
638 intel_wait_for_vblank(struct drm_device
*dev
)
640 /* Wait for 20ms, i.e. one cycle at 50hz. */
645 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
646 struct drm_framebuffer
*old_fb
)
648 struct drm_device
*dev
= crtc
->dev
;
649 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
650 struct drm_i915_master_private
*master_priv
;
651 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
652 struct intel_framebuffer
*intel_fb
;
653 struct drm_i915_gem_object
*obj_priv
;
654 struct drm_gem_object
*obj
;
655 int pipe
= intel_crtc
->pipe
;
656 unsigned long Start
, Offset
;
657 int dspbase
= (pipe
== 0 ? DSPAADDR
: DSPBADDR
);
658 int dspsurf
= (pipe
== 0 ? DSPASURF
: DSPBSURF
);
659 int dspstride
= (pipe
== 0) ? DSPASTRIDE
: DSPBSTRIDE
;
660 int dsptileoff
= (pipe
== 0 ? DSPATILEOFF
: DSPBTILEOFF
);
661 int dspcntr_reg
= (pipe
== 0) ? DSPACNTR
: DSPBCNTR
;
662 u32 dspcntr
, alignment
;
667 DRM_DEBUG("No FB bound\n");
676 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
680 intel_fb
= to_intel_framebuffer(crtc
->fb
);
682 obj_priv
= obj
->driver_private
;
684 switch (obj_priv
->tiling_mode
) {
685 case I915_TILING_NONE
:
686 alignment
= 64 * 1024;
689 /* pin() will align the object as required by fence */
693 /* FIXME: Is this true? */
694 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
700 mutex_lock(&dev
->struct_mutex
);
701 ret
= i915_gem_object_pin(intel_fb
->obj
, alignment
);
703 mutex_unlock(&dev
->struct_mutex
);
707 ret
= i915_gem_object_set_to_gtt_domain(intel_fb
->obj
, 1);
709 i915_gem_object_unpin(intel_fb
->obj
);
710 mutex_unlock(&dev
->struct_mutex
);
714 dspcntr
= I915_READ(dspcntr_reg
);
715 /* Mask out pixel format bits in case we change it */
716 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
717 switch (crtc
->fb
->bits_per_pixel
) {
719 dspcntr
|= DISPPLANE_8BPP
;
722 if (crtc
->fb
->depth
== 15)
723 dspcntr
|= DISPPLANE_15_16BPP
;
725 dspcntr
|= DISPPLANE_16BPP
;
729 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
732 DRM_ERROR("Unknown color depth\n");
733 i915_gem_object_unpin(intel_fb
->obj
);
734 mutex_unlock(&dev
->struct_mutex
);
738 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
739 dspcntr
|= DISPPLANE_TILED
;
741 dspcntr
&= ~DISPPLANE_TILED
;
744 I915_WRITE(dspcntr_reg
, dspcntr
);
746 Start
= obj_priv
->gtt_offset
;
747 Offset
= y
* crtc
->fb
->pitch
+ x
* (crtc
->fb
->bits_per_pixel
/ 8);
749 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start
, Offset
, x
, y
);
750 I915_WRITE(dspstride
, crtc
->fb
->pitch
);
752 I915_WRITE(dspbase
, Offset
);
754 I915_WRITE(dspsurf
, Start
);
756 I915_WRITE(dsptileoff
, (y
<< 16) | x
);
758 I915_WRITE(dspbase
, Start
+ Offset
);
762 intel_wait_for_vblank(dev
);
765 intel_fb
= to_intel_framebuffer(old_fb
);
766 i915_gem_object_unpin(intel_fb
->obj
);
768 mutex_unlock(&dev
->struct_mutex
);
770 if (!dev
->primary
->master
)
773 master_priv
= dev
->primary
->master
->driver_priv
;
774 if (!master_priv
->sarea_priv
)
778 master_priv
->sarea_priv
->pipeB_x
= x
;
779 master_priv
->sarea_priv
->pipeB_y
= y
;
781 master_priv
->sarea_priv
->pipeA_x
= x
;
782 master_priv
->sarea_priv
->pipeA_y
= y
;
791 * Sets the power management mode of the pipe and plane.
793 * This code should probably grow support for turning the cursor off and back
794 * on appropriately at the same time as we're turning the pipe off/on.
796 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
798 struct drm_device
*dev
= crtc
->dev
;
799 struct drm_i915_master_private
*master_priv
;
800 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
801 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
802 int pipe
= intel_crtc
->pipe
;
803 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
804 int dspcntr_reg
= (pipe
== 0) ? DSPACNTR
: DSPBCNTR
;
805 int dspbase_reg
= (pipe
== 0) ? DSPAADDR
: DSPBADDR
;
806 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
810 /* XXX: When our outputs are all unaware of DPMS modes other than off
811 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
814 case DRM_MODE_DPMS_ON
:
815 case DRM_MODE_DPMS_STANDBY
:
816 case DRM_MODE_DPMS_SUSPEND
:
817 /* Enable the DPLL */
818 temp
= I915_READ(dpll_reg
);
819 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
820 I915_WRITE(dpll_reg
, temp
);
822 /* Wait for the clocks to stabilize. */
824 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
826 /* Wait for the clocks to stabilize. */
828 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
830 /* Wait for the clocks to stabilize. */
834 /* Enable the pipe */
835 temp
= I915_READ(pipeconf_reg
);
836 if ((temp
& PIPEACONF_ENABLE
) == 0)
837 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
839 /* Enable the plane */
840 temp
= I915_READ(dspcntr_reg
);
841 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
842 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
843 /* Flush the plane changes */
844 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
847 intel_crtc_load_lut(crtc
);
849 /* Give the overlay scaler a chance to enable if it's on this pipe */
850 //intel_crtc_dpms_video(crtc, true); TODO
852 case DRM_MODE_DPMS_OFF
:
853 /* Give the overlay scaler a chance to disable if it's on this pipe */
854 //intel_crtc_dpms_video(crtc, FALSE); TODO
856 /* Disable the VGA plane that we never use */
857 I915_WRITE(VGACNTRL
, VGA_DISP_DISABLE
);
859 /* Disable display plane */
860 temp
= I915_READ(dspcntr_reg
);
861 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
862 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
863 /* Flush the plane changes */
864 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
865 I915_READ(dspbase_reg
);
869 /* Wait for vblank for the disable to take effect */
870 intel_wait_for_vblank(dev
);
873 /* Next, disable display pipes */
874 temp
= I915_READ(pipeconf_reg
);
875 if ((temp
& PIPEACONF_ENABLE
) != 0) {
876 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
877 I915_READ(pipeconf_reg
);
880 /* Wait for vblank for the disable to take effect. */
881 intel_wait_for_vblank(dev
);
883 temp
= I915_READ(dpll_reg
);
884 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
885 I915_WRITE(dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
889 /* Wait for the clocks to turn off. */
894 if (!dev
->primary
->master
)
897 master_priv
= dev
->primary
->master
->driver_priv
;
898 if (!master_priv
->sarea_priv
)
901 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
905 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
906 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
909 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
910 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
913 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
917 intel_crtc
->dpms_mode
= mode
;
920 static void intel_crtc_prepare (struct drm_crtc
*crtc
)
922 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
923 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
926 static void intel_crtc_commit (struct drm_crtc
*crtc
)
928 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
929 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
932 void intel_encoder_prepare (struct drm_encoder
*encoder
)
934 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
935 /* lvds has its own version of prepare see intel_lvds_prepare */
936 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
939 void intel_encoder_commit (struct drm_encoder
*encoder
)
941 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
942 /* lvds has its own version of commit see intel_lvds_commit */
943 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
946 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
947 struct drm_display_mode
*mode
,
948 struct drm_display_mode
*adjusted_mode
)
954 /** Returns the core display clock speed for i830 - i945 */
955 static int intel_get_core_clock_speed(struct drm_device
*dev
)
958 /* Core clock values taken from the published datasheets.
959 * The 830 may go up to 166 Mhz, which we should check.
963 else if (IS_I915G(dev
))
965 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_IGDGM(dev
))
967 else if (IS_I915GM(dev
)) {
970 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
972 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
975 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
976 case GC_DISPLAY_CLOCK_333_MHZ
:
979 case GC_DISPLAY_CLOCK_190_200_MHZ
:
983 } else if (IS_I865G(dev
))
985 else if (IS_I855(dev
)) {
987 /* Assume that the hardware is in the high speed state. This
988 * should be the default.
990 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
991 case GC_CLOCK_133_200
:
992 case GC_CLOCK_100_200
:
994 case GC_CLOCK_166_250
:
996 case GC_CLOCK_100_133
:
999 } else /* 852, 830 */
1002 return 0; /* Silence gcc warning */
1007 * Return the pipe currently connected to the panel fitter,
1008 * or -1 if the panel fitter is not present or not in use
1010 static int intel_panel_fitter_pipe (struct drm_device
*dev
)
1012 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1015 /* i830 doesn't have a panel fitter */
1019 pfit_control
= I915_READ(PFIT_CONTROL
);
1021 /* See if the panel fitter is in use */
1022 if ((pfit_control
& PFIT_ENABLE
) == 0)
1025 /* 965 can place panel fitter on either pipe */
1027 return (pfit_control
>> 29) & 0x3;
1029 /* older chips can only use pipe 1 */
1033 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
1034 struct drm_display_mode
*mode
,
1035 struct drm_display_mode
*adjusted_mode
,
1037 struct drm_framebuffer
*old_fb
)
1039 struct drm_device
*dev
= crtc
->dev
;
1040 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1041 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1042 int pipe
= intel_crtc
->pipe
;
1043 int fp_reg
= (pipe
== 0) ? FPA0
: FPB0
;
1044 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
1045 int dpll_md_reg
= (intel_crtc
->pipe
== 0) ? DPLL_A_MD
: DPLL_B_MD
;
1046 int dspcntr_reg
= (pipe
== 0) ? DSPACNTR
: DSPBCNTR
;
1047 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1048 int htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
1049 int hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
1050 int hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
1051 int vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
1052 int vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
1053 int vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
1054 int dspsize_reg
= (pipe
== 0) ? DSPASIZE
: DSPBSIZE
;
1055 int dsppos_reg
= (pipe
== 0) ? DSPAPOS
: DSPBPOS
;
1056 int pipesrc_reg
= (pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
1057 int refclk
, num_outputs
= 0;
1058 intel_clock_t clock
;
1059 u32 dpll
= 0, fp
= 0, dspcntr
, pipeconf
;
1060 bool ok
, is_sdvo
= false, is_dvo
= false;
1061 bool is_crt
= false, is_lvds
= false, is_tv
= false;
1062 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
1063 struct drm_connector
*connector
;
1064 const intel_limit_t
*limit
;
1067 drm_vblank_pre_modeset(dev
, pipe
);
1069 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
1070 struct intel_output
*intel_output
= to_intel_output(connector
);
1072 if (!connector
->encoder
|| connector
->encoder
->crtc
!= crtc
)
1075 switch (intel_output
->type
) {
1076 case INTEL_OUTPUT_LVDS
:
1079 case INTEL_OUTPUT_SDVO
:
1080 case INTEL_OUTPUT_HDMI
:
1082 if (intel_output
->needs_tv_clock
)
1085 case INTEL_OUTPUT_DVO
:
1088 case INTEL_OUTPUT_TVOUT
:
1091 case INTEL_OUTPUT_ANALOG
:
1099 if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2) {
1100 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
1101 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk
/ 1000);
1102 } else if (IS_I9XX(dev
)) {
1109 * Returns a set of divisors for the desired target clock with the given
1110 * refclk, or FALSE. The returned values represent the clock equation:
1111 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
1113 limit
= intel_limit(crtc
);
1114 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
1116 DRM_ERROR("Couldn't find PLL settings for mode!\n");
1120 /* SDVO TV has fixed PLL values depend on its clock range,
1121 this mirrors vbios setting. */
1122 if (is_sdvo
&& is_tv
) {
1123 if (adjusted_mode
->clock
>= 100000
1124 && adjusted_mode
->clock
< 140500) {
1130 } else if (adjusted_mode
->clock
>= 140500
1131 && adjusted_mode
->clock
<= 200000) {
1141 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
1143 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
1145 dpll
= DPLL_VGA_MODE_DIS
;
1148 dpll
|= DPLLB_MODE_LVDS
;
1150 dpll
|= DPLLB_MODE_DAC_SERIAL
;
1152 dpll
|= DPLL_DVO_HIGH_SPEED
;
1153 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
1154 int sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
1155 dpll
|= (sdvo_pixel_multiply
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
1159 /* compute bitmask from p1 value */
1161 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD
;
1163 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
1166 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
1169 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
1172 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
1175 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
1179 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
1182 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
1185 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
1187 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
1189 dpll
|= PLL_P2_DIVIDE_BY_4
;
1193 if (is_sdvo
&& is_tv
)
1194 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
1196 /* XXX: just matching BIOS for now */
1197 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
1199 else if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2)
1200 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
1202 dpll
|= PLL_REF_INPUT_DREFCLK
;
1204 /* setup pipeconf */
1205 pipeconf
= I915_READ(pipeconf_reg
);
1207 /* Set up the display plane register */
1208 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
1211 dspcntr
|= DISPPLANE_SEL_PIPE_A
;
1213 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
1215 if (pipe
== 0 && !IS_I965G(dev
)) {
1216 /* Enable pixel doubling when the dot clock is > 90% of the (display)
1219 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
1222 if (mode
->clock
> intel_get_core_clock_speed(dev
) * 9 / 10)
1223 pipeconf
|= PIPEACONF_DOUBLE_WIDE
;
1225 pipeconf
&= ~PIPEACONF_DOUBLE_WIDE
;
1228 dspcntr
|= DISPLAY_PLANE_ENABLE
;
1229 pipeconf
|= PIPEACONF_ENABLE
;
1230 dpll
|= DPLL_VCO_ENABLE
;
1233 /* Disable the panel fitter if it was on our pipe */
1234 if (intel_panel_fitter_pipe(dev
) == pipe
)
1235 I915_WRITE(PFIT_CONTROL
, 0);
1237 DRM_DEBUG("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
1238 drm_mode_debug_printmodeline(mode
);
1241 if (dpll
& DPLL_VCO_ENABLE
) {
1242 I915_WRITE(fp_reg
, fp
);
1243 I915_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
1244 I915_READ(dpll_reg
);
1248 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1249 * This is an exception to the general rule that mode_set doesn't turn
1253 u32 lvds
= I915_READ(LVDS
);
1255 lvds
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
| LVDS_PIPEB_SELECT
;
1256 /* Set the B0-B3 data pairs corresponding to whether we're going to
1257 * set the DPLLs for dual-channel mode or not.
1260 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
1262 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
1264 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1265 * appropriately here, but we need to look more thoroughly into how
1266 * panels behave in the two modes.
1269 I915_WRITE(LVDS
, lvds
);
1273 I915_WRITE(fp_reg
, fp
);
1274 I915_WRITE(dpll_reg
, dpll
);
1275 I915_READ(dpll_reg
);
1276 /* Wait for the clocks to stabilize. */
1279 if (IS_I965G(dev
)) {
1280 int sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
1281 I915_WRITE(dpll_md_reg
, (0 << DPLL_MD_UDI_DIVIDER_SHIFT
) |
1282 ((sdvo_pixel_multiply
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
));
1284 /* write it again -- the BIOS does, after all */
1285 I915_WRITE(dpll_reg
, dpll
);
1287 I915_READ(dpll_reg
);
1288 /* Wait for the clocks to stabilize. */
1291 I915_WRITE(htot_reg
, (adjusted_mode
->crtc_hdisplay
- 1) |
1292 ((adjusted_mode
->crtc_htotal
- 1) << 16));
1293 I915_WRITE(hblank_reg
, (adjusted_mode
->crtc_hblank_start
- 1) |
1294 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
1295 I915_WRITE(hsync_reg
, (adjusted_mode
->crtc_hsync_start
- 1) |
1296 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
1297 I915_WRITE(vtot_reg
, (adjusted_mode
->crtc_vdisplay
- 1) |
1298 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
1299 I915_WRITE(vblank_reg
, (adjusted_mode
->crtc_vblank_start
- 1) |
1300 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
1301 I915_WRITE(vsync_reg
, (adjusted_mode
->crtc_vsync_start
- 1) |
1302 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
1303 /* pipesrc and dspsize control the size that is scaled from, which should
1304 * always be the user's requested size.
1306 I915_WRITE(dspsize_reg
, ((mode
->vdisplay
- 1) << 16) | (mode
->hdisplay
- 1));
1307 I915_WRITE(dsppos_reg
, 0);
1308 I915_WRITE(pipesrc_reg
, ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
1309 I915_WRITE(pipeconf_reg
, pipeconf
);
1310 I915_READ(pipeconf_reg
);
1312 intel_wait_for_vblank(dev
);
1314 I915_WRITE(dspcntr_reg
, dspcntr
);
1316 /* Flush the plane changes */
1317 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
1321 drm_vblank_post_modeset(dev
, pipe
);
1326 /** Loads the palette/gamma unit for the CRTC with the prepared values */
1327 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
1329 struct drm_device
*dev
= crtc
->dev
;
1330 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1331 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1332 int palreg
= (intel_crtc
->pipe
== 0) ? PALETTE_A
: PALETTE_B
;
1335 /* The clocks have to be on to load the palette. */
1339 for (i
= 0; i
< 256; i
++) {
1340 I915_WRITE(palreg
+ 4 * i
,
1341 (intel_crtc
->lut_r
[i
] << 16) |
1342 (intel_crtc
->lut_g
[i
] << 8) |
1343 intel_crtc
->lut_b
[i
]);
1347 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
1348 struct drm_file
*file_priv
,
1350 uint32_t width
, uint32_t height
)
1352 struct drm_device
*dev
= crtc
->dev
;
1353 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1354 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1355 struct drm_gem_object
*bo
;
1356 struct drm_i915_gem_object
*obj_priv
;
1357 int pipe
= intel_crtc
->pipe
;
1358 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
1359 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
1360 uint32_t temp
= I915_READ(control
);
1366 /* if we want to turn off the cursor ignore width and height */
1368 DRM_DEBUG("cursor off\n");
1369 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
1370 temp
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
1371 temp
|= CURSOR_MODE_DISABLE
;
1373 temp
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
1377 mutex_lock(&dev
->struct_mutex
);
1381 /* Currently we only support 64x64 cursors */
1382 if (width
!= 64 || height
!= 64) {
1383 DRM_ERROR("we currently only support 64x64 cursors\n");
1387 bo
= drm_gem_object_lookup(dev
, file_priv
, handle
);
1391 obj_priv
= bo
->driver_private
;
1393 if (bo
->size
< width
* height
* 4) {
1394 DRM_ERROR("buffer is to small\n");
1399 /* we only need to pin inside GTT if cursor is non-phy */
1400 mutex_lock(&dev
->struct_mutex
);
1401 if (!dev_priv
->cursor_needs_physical
) {
1402 ret
= i915_gem_object_pin(bo
, PAGE_SIZE
);
1404 DRM_ERROR("failed to pin cursor bo\n");
1407 addr
= obj_priv
->gtt_offset
;
1409 ret
= i915_gem_attach_phys_object(dev
, bo
, (pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
);
1411 DRM_ERROR("failed to attach phys object\n");
1414 addr
= obj_priv
->phys_obj
->handle
->busaddr
;
1418 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
1420 /* Hooray for CUR*CNTR differences */
1421 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
1422 temp
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
1423 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
1424 temp
|= (pipe
<< 28); /* Connect to correct pipe */
1426 temp
&= ~(CURSOR_FORMAT_MASK
);
1427 temp
|= CURSOR_ENABLE
;
1428 temp
|= CURSOR_FORMAT_ARGB
| CURSOR_GAMMA_ENABLE
;
1432 I915_WRITE(control
, temp
);
1433 I915_WRITE(base
, addr
);
1435 if (intel_crtc
->cursor_bo
) {
1436 if (dev_priv
->cursor_needs_physical
) {
1437 if (intel_crtc
->cursor_bo
!= bo
)
1438 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
1440 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
1441 drm_gem_object_unreference(intel_crtc
->cursor_bo
);
1443 mutex_unlock(&dev
->struct_mutex
);
1445 intel_crtc
->cursor_addr
= addr
;
1446 intel_crtc
->cursor_bo
= bo
;
1450 mutex_lock(&dev
->struct_mutex
);
1452 drm_gem_object_unreference(bo
);
1453 mutex_unlock(&dev
->struct_mutex
);
1457 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
1459 struct drm_device
*dev
= crtc
->dev
;
1460 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1461 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1462 int pipe
= intel_crtc
->pipe
;
1467 temp
|= (CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
);
1471 temp
|= (CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
);
1475 temp
|= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
);
1476 temp
|= ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
1478 adder
= intel_crtc
->cursor_addr
;
1479 I915_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
1480 I915_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, adder
);
1485 /** Sets the color ramps on behalf of RandR */
1486 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
1487 u16 blue
, int regno
)
1489 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1491 intel_crtc
->lut_r
[regno
] = red
>> 8;
1492 intel_crtc
->lut_g
[regno
] = green
>> 8;
1493 intel_crtc
->lut_b
[regno
] = blue
>> 8;
1496 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
1497 u16
*blue
, uint32_t size
)
1499 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1505 for (i
= 0; i
< 256; i
++) {
1506 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
1507 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
1508 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
1511 intel_crtc_load_lut(crtc
);
1515 * Get a pipe with a simple mode set on it for doing load-based monitor
1518 * It will be up to the load-detect code to adjust the pipe as appropriate for
1519 * its requirements. The pipe will be connected to no other outputs.
1521 * Currently this code will only succeed if there is a pipe with no outputs
1522 * configured for it. In the future, it could choose to temporarily disable
1523 * some outputs to free up a pipe for its use.
1525 * \return crtc, or NULL if no pipes are available.
1528 /* VESA 640x480x72Hz mode to set on the pipe */
1529 static struct drm_display_mode load_detect_mode
= {
1530 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
1531 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
1534 struct drm_crtc
*intel_get_load_detect_pipe(struct intel_output
*intel_output
,
1535 struct drm_display_mode
*mode
,
1538 struct intel_crtc
*intel_crtc
;
1539 struct drm_crtc
*possible_crtc
;
1540 struct drm_crtc
*supported_crtc
=NULL
;
1541 struct drm_encoder
*encoder
= &intel_output
->enc
;
1542 struct drm_crtc
*crtc
= NULL
;
1543 struct drm_device
*dev
= encoder
->dev
;
1544 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
1545 struct drm_crtc_helper_funcs
*crtc_funcs
;
1549 * Algorithm gets a little messy:
1550 * - if the connector already has an assigned crtc, use it (but make
1551 * sure it's on first)
1552 * - try to find the first unused crtc that can drive this connector,
1553 * and use that if we find one
1554 * - if there are no unused crtcs available, try to use the first
1555 * one we found that supports the connector
1558 /* See if we already have a CRTC for this connector */
1559 if (encoder
->crtc
) {
1560 crtc
= encoder
->crtc
;
1561 /* Make sure the crtc and connector are running */
1562 intel_crtc
= to_intel_crtc(crtc
);
1563 *dpms_mode
= intel_crtc
->dpms_mode
;
1564 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
1565 crtc_funcs
= crtc
->helper_private
;
1566 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
1567 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
1572 /* Find an unused one (if possible) */
1573 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
1575 if (!(encoder
->possible_crtcs
& (1 << i
)))
1577 if (!possible_crtc
->enabled
) {
1578 crtc
= possible_crtc
;
1581 if (!supported_crtc
)
1582 supported_crtc
= possible_crtc
;
1586 * If we didn't find an unused CRTC, don't use any.
1592 encoder
->crtc
= crtc
;
1593 intel_output
->load_detect_temp
= true;
1595 intel_crtc
= to_intel_crtc(crtc
);
1596 *dpms_mode
= intel_crtc
->dpms_mode
;
1598 if (!crtc
->enabled
) {
1600 mode
= &load_detect_mode
;
1601 drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, crtc
->fb
);
1603 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
1604 crtc_funcs
= crtc
->helper_private
;
1605 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
1608 /* Add this connector to the crtc */
1609 encoder_funcs
->mode_set(encoder
, &crtc
->mode
, &crtc
->mode
);
1610 encoder_funcs
->commit(encoder
);
1612 /* let the connector get through one full cycle before testing */
1613 intel_wait_for_vblank(dev
);
1618 void intel_release_load_detect_pipe(struct intel_output
*intel_output
, int dpms_mode
)
1620 struct drm_encoder
*encoder
= &intel_output
->enc
;
1621 struct drm_device
*dev
= encoder
->dev
;
1622 struct drm_crtc
*crtc
= encoder
->crtc
;
1623 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
1624 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
1626 if (intel_output
->load_detect_temp
) {
1627 encoder
->crtc
= NULL
;
1628 intel_output
->load_detect_temp
= false;
1629 crtc
->enabled
= drm_helper_crtc_in_use(crtc
);
1630 drm_helper_disable_unused_functions(dev
);
1633 /* Switch crtc and output back off if necessary */
1634 if (crtc
->enabled
&& dpms_mode
!= DRM_MODE_DPMS_ON
) {
1635 if (encoder
->crtc
== crtc
)
1636 encoder_funcs
->dpms(encoder
, dpms_mode
);
1637 crtc_funcs
->dpms(crtc
, dpms_mode
);
1641 /* Returns the clock of the currently programmed mode of the given pipe. */
1642 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
1644 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1645 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1646 int pipe
= intel_crtc
->pipe
;
1647 u32 dpll
= I915_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
1649 intel_clock_t clock
;
1651 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
1652 fp
= I915_READ((pipe
== 0) ? FPA0
: FPB0
);
1654 fp
= I915_READ((pipe
== 0) ? FPA1
: FPB1
);
1656 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
1658 clock
.n
= ffs((fp
& FP_N_IGD_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
1659 clock
.m2
= (fp
& FP_M2_IGD_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
1661 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
1662 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
1667 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_IGD
) >>
1668 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD
);
1670 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
1671 DPLL_FPA01_P1_POST_DIV_SHIFT
);
1673 switch (dpll
& DPLL_MODE_MASK
) {
1674 case DPLLB_MODE_DAC_SERIAL
:
1675 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
1678 case DPLLB_MODE_LVDS
:
1679 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
1683 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
1684 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
1688 /* XXX: Handle the 100Mhz refclk */
1689 intel_clock(dev
, 96000, &clock
);
1691 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
1694 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
1695 DPLL_FPA01_P1_POST_DIV_SHIFT
);
1698 if ((dpll
& PLL_REF_INPUT_MASK
) ==
1699 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
1700 /* XXX: might not be 66MHz */
1701 intel_clock(dev
, 66000, &clock
);
1703 intel_clock(dev
, 48000, &clock
);
1705 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
1708 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
1709 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
1711 if (dpll
& PLL_P2_DIVIDE_BY_4
)
1716 intel_clock(dev
, 48000, &clock
);
1720 /* XXX: It would be nice to validate the clocks, but we can't reuse
1721 * i830PllIsValid() because it relies on the xf86_config connector
1722 * configuration being accurate, which it isn't necessarily.
1728 /** Returns the currently programmed mode of the given pipe. */
1729 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
1730 struct drm_crtc
*crtc
)
1732 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1733 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1734 int pipe
= intel_crtc
->pipe
;
1735 struct drm_display_mode
*mode
;
1736 int htot
= I915_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
1737 int hsync
= I915_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
1738 int vtot
= I915_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
1739 int vsync
= I915_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
1741 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
1745 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
1746 mode
->hdisplay
= (htot
& 0xffff) + 1;
1747 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
1748 mode
->hsync_start
= (hsync
& 0xffff) + 1;
1749 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
1750 mode
->vdisplay
= (vtot
& 0xffff) + 1;
1751 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
1752 mode
->vsync_start
= (vsync
& 0xffff) + 1;
1753 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
1755 drm_mode_set_name(mode
);
1756 drm_mode_set_crtcinfo(mode
, 0);
1761 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
1763 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1765 drm_crtc_cleanup(crtc
);
1769 static const struct drm_crtc_helper_funcs intel_helper_funcs
= {
1770 .dpms
= intel_crtc_dpms
,
1771 .mode_fixup
= intel_crtc_mode_fixup
,
1772 .mode_set
= intel_crtc_mode_set
,
1773 .mode_set_base
= intel_pipe_set_base
,
1774 .prepare
= intel_crtc_prepare
,
1775 .commit
= intel_crtc_commit
,
1778 static const struct drm_crtc_funcs intel_crtc_funcs
= {
1779 .cursor_set
= intel_crtc_cursor_set
,
1780 .cursor_move
= intel_crtc_cursor_move
,
1781 .gamma_set
= intel_crtc_gamma_set
,
1782 .set_config
= drm_crtc_helper_set_config
,
1783 .destroy
= intel_crtc_destroy
,
1787 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
1789 struct intel_crtc
*intel_crtc
;
1792 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
1793 if (intel_crtc
== NULL
)
1796 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
1798 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
1799 intel_crtc
->pipe
= pipe
;
1800 for (i
= 0; i
< 256; i
++) {
1801 intel_crtc
->lut_r
[i
] = i
;
1802 intel_crtc
->lut_g
[i
] = i
;
1803 intel_crtc
->lut_b
[i
] = i
;
1806 intel_crtc
->cursor_addr
= 0;
1807 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_OFF
;
1808 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
1810 intel_crtc
->mode_set
.crtc
= &intel_crtc
->base
;
1811 intel_crtc
->mode_set
.connectors
= (struct drm_connector
**)(intel_crtc
+ 1);
1812 intel_crtc
->mode_set
.num_connectors
= 0;
1814 if (i915_fbpercrtc
) {
1821 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
1822 struct drm_file
*file_priv
)
1824 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
1825 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
1826 struct drm_crtc
*crtc
= NULL
;
1830 DRM_ERROR("called with no initialization\n");
1834 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
1835 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1836 if (crtc
->base
.id
== pipe_from_crtc_id
->crtc_id
) {
1837 pipe
= intel_crtc
->pipe
;
1843 DRM_ERROR("no such CRTC id\n");
1847 pipe_from_crtc_id
->pipe
= pipe
;
1852 struct drm_crtc
*intel_get_crtc_from_pipe(struct drm_device
*dev
, int pipe
)
1854 struct drm_crtc
*crtc
= NULL
;
1856 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
1857 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1858 if (intel_crtc
->pipe
== pipe
)
1864 static int intel_connector_clones(struct drm_device
*dev
, int type_mask
)
1867 struct drm_connector
*connector
;
1870 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
1871 struct intel_output
*intel_output
= to_intel_output(connector
);
1872 if (type_mask
& (1 << intel_output
->type
))
1873 index_mask
|= (1 << entry
);
1880 static void intel_setup_outputs(struct drm_device
*dev
)
1882 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1883 struct drm_connector
*connector
;
1885 intel_crt_init(dev
);
1887 /* Set up integrated LVDS */
1888 if (IS_MOBILE(dev
) && !IS_I830(dev
))
1889 intel_lvds_init(dev
);
1895 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
1896 found
= intel_sdvo_init(dev
, SDVOB
);
1897 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
))
1898 intel_hdmi_init(dev
, SDVOB
);
1901 /* Before G4X SDVOC doesn't have its own detect register */
1907 if (I915_READ(reg
) & SDVO_DETECTED
) {
1908 found
= intel_sdvo_init(dev
, SDVOC
);
1909 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
))
1910 intel_hdmi_init(dev
, SDVOC
);
1913 intel_dvo_init(dev
);
1915 if (IS_I9XX(dev
) && IS_MOBILE(dev
))
1918 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
1919 struct intel_output
*intel_output
= to_intel_output(connector
);
1920 struct drm_encoder
*encoder
= &intel_output
->enc
;
1921 int crtc_mask
= 0, clone_mask
= 0;
1924 switch(intel_output
->type
) {
1925 case INTEL_OUTPUT_HDMI
:
1926 crtc_mask
= ((1 << 0)|
1928 clone_mask
= ((1 << INTEL_OUTPUT_HDMI
));
1930 case INTEL_OUTPUT_DVO
:
1931 case INTEL_OUTPUT_SDVO
:
1932 crtc_mask
= ((1 << 0)|
1934 clone_mask
= ((1 << INTEL_OUTPUT_ANALOG
) |
1935 (1 << INTEL_OUTPUT_DVO
) |
1936 (1 << INTEL_OUTPUT_SDVO
));
1938 case INTEL_OUTPUT_ANALOG
:
1939 crtc_mask
= ((1 << 0)|
1941 clone_mask
= ((1 << INTEL_OUTPUT_ANALOG
) |
1942 (1 << INTEL_OUTPUT_DVO
) |
1943 (1 << INTEL_OUTPUT_SDVO
));
1945 case INTEL_OUTPUT_LVDS
:
1946 crtc_mask
= (1 << 1);
1947 clone_mask
= (1 << INTEL_OUTPUT_LVDS
);
1949 case INTEL_OUTPUT_TVOUT
:
1950 crtc_mask
= ((1 << 0) |
1952 clone_mask
= (1 << INTEL_OUTPUT_TVOUT
);
1955 encoder
->possible_crtcs
= crtc_mask
;
1956 encoder
->possible_clones
= intel_connector_clones(dev
, clone_mask
);
1960 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
1962 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1963 struct drm_device
*dev
= fb
->dev
;
1966 intelfb_remove(dev
, fb
);
1968 drm_framebuffer_cleanup(fb
);
1969 mutex_lock(&dev
->struct_mutex
);
1970 drm_gem_object_unreference(intel_fb
->obj
);
1971 mutex_unlock(&dev
->struct_mutex
);
1976 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
1977 struct drm_file
*file_priv
,
1978 unsigned int *handle
)
1980 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1981 struct drm_gem_object
*object
= intel_fb
->obj
;
1983 return drm_gem_handle_create(file_priv
, object
, handle
);
1986 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
1987 .destroy
= intel_user_framebuffer_destroy
,
1988 .create_handle
= intel_user_framebuffer_create_handle
,
1991 int intel_framebuffer_create(struct drm_device
*dev
,
1992 struct drm_mode_fb_cmd
*mode_cmd
,
1993 struct drm_framebuffer
**fb
,
1994 struct drm_gem_object
*obj
)
1996 struct intel_framebuffer
*intel_fb
;
1999 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
2003 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
2005 DRM_ERROR("framebuffer init failed %d\n", ret
);
2009 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
2011 intel_fb
->obj
= obj
;
2013 *fb
= &intel_fb
->base
;
2019 static struct drm_framebuffer
*
2020 intel_user_framebuffer_create(struct drm_device
*dev
,
2021 struct drm_file
*filp
,
2022 struct drm_mode_fb_cmd
*mode_cmd
)
2024 struct drm_gem_object
*obj
;
2025 struct drm_framebuffer
*fb
;
2028 obj
= drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
);
2032 ret
= intel_framebuffer_create(dev
, mode_cmd
, &fb
, obj
);
2034 mutex_lock(&dev
->struct_mutex
);
2035 drm_gem_object_unreference(obj
);
2036 mutex_unlock(&dev
->struct_mutex
);
2043 static const struct drm_mode_config_funcs intel_mode_funcs
= {
2044 .fb_create
= intel_user_framebuffer_create
,
2045 .fb_changed
= intelfb_probe
,
2048 void intel_modeset_init(struct drm_device
*dev
)
2053 drm_mode_config_init(dev
);
2055 dev
->mode_config
.min_width
= 0;
2056 dev
->mode_config
.min_height
= 0;
2058 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
2060 if (IS_I965G(dev
)) {
2061 dev
->mode_config
.max_width
= 8192;
2062 dev
->mode_config
.max_height
= 8192;
2064 dev
->mode_config
.max_width
= 2048;
2065 dev
->mode_config
.max_height
= 2048;
2068 /* set memory base */
2070 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 2);
2072 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 0);
2074 if (IS_MOBILE(dev
) || IS_I9XX(dev
))
2078 DRM_DEBUG("%d display pipe%s available.\n",
2079 num_pipe
, num_pipe
> 1 ? "s" : "");
2081 for (i
= 0; i
< num_pipe
; i
++) {
2082 intel_crtc_init(dev
, i
);
2085 intel_setup_outputs(dev
);
2088 void intel_modeset_cleanup(struct drm_device
*dev
)
2090 drm_mode_config_cleanup(dev
);
2094 /* current intel driver doesn't take advantage of encoders
2095 always give back the encoder for the connector
2097 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
2099 struct intel_output
*intel_output
= to_intel_output(connector
);
2101 return &intel_output
->enc
;