2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/mutex.h>
23 #include <linux/math64.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/partitions.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/flash.h>
32 #define FLASH_PAGESIZE 256
35 #define OPCODE_WREN 0x06 /* Write enable */
36 #define OPCODE_RDSR 0x05 /* Read status register */
37 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
38 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
39 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
40 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
41 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
42 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
43 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
44 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
45 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
47 /* Status Register bits. */
48 #define SR_WIP 1 /* Write in progress */
49 #define SR_WEL 2 /* Write enable latch */
50 /* meaning of other SR_* bits may differ between vendors */
51 #define SR_BP0 4 /* Block protect 0 */
52 #define SR_BP1 8 /* Block protect 1 */
53 #define SR_BP2 0x10 /* Block protect 2 */
54 #define SR_SRWD 0x80 /* SR write protect */
56 /* Define max times to check status register before we give up. */
57 #define MAX_READY_WAIT_JIFFIES (10 * HZ) /* eg. M25P128 specs 6s max sector erase */
60 #ifdef CONFIG_M25PXX_USE_FAST_READ
61 #define OPCODE_READ OPCODE_FAST_READ
62 #define FAST_READ_DUMMY_BYTE 1
64 #define OPCODE_READ OPCODE_NORM_READ
65 #define FAST_READ_DUMMY_BYTE 0
68 /****************************************************************************/
71 struct spi_device
*spi
;
74 unsigned partitioned
:1;
76 u8 command
[CMD_SIZE
+ FAST_READ_DUMMY_BYTE
];
79 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
81 return container_of(mtd
, struct m25p
, mtd
);
84 /****************************************************************************/
87 * Internal helper functions
91 * Read the status register, returning its value in the location
92 * Return the status register value.
93 * Returns negative if error occurred.
95 static int read_sr(struct m25p
*flash
)
98 u8 code
= OPCODE_RDSR
;
101 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
104 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
113 * Write status register 1 byte
114 * Returns negative if error occurred.
116 static int write_sr(struct m25p
*flash
, u8 val
)
118 flash
->command
[0] = OPCODE_WRSR
;
119 flash
->command
[1] = val
;
121 return spi_write(flash
->spi
, flash
->command
, 2);
125 * Set write enable latch with Write Enable command.
126 * Returns negative if error occurred.
128 static inline int write_enable(struct m25p
*flash
)
130 u8 code
= OPCODE_WREN
;
132 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
137 * Service routine to read status register until ready, or timeout occurs.
138 * Returns non-zero if error.
140 static int wait_till_ready(struct m25p
*flash
)
142 unsigned long deadline
;
145 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
148 if ((sr
= read_sr(flash
)) < 0)
150 else if (!(sr
& SR_WIP
))
155 } while (!time_after_eq(jiffies
, deadline
));
161 * Erase the whole flash memory
163 * Returns 0 if successful, non-zero otherwise.
165 static int erase_chip(struct m25p
*flash
)
167 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %lldKiB\n",
168 dev_name(&flash
->spi
->dev
), __func__
,
169 (long long)(flash
->mtd
.size
>> 10));
171 /* Wait until finished previous write command. */
172 if (wait_till_ready(flash
))
175 /* Send write enable, then erase commands. */
178 /* Set up command buffer. */
179 flash
->command
[0] = OPCODE_CHIP_ERASE
;
181 spi_write(flash
->spi
, flash
->command
, 1);
187 * Erase one sector of flash memory at offset ``offset'' which is any
188 * address within the sector which should be erased.
190 * Returns 0 if successful, non-zero otherwise.
192 static int erase_sector(struct m25p
*flash
, u32 offset
)
194 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %dKiB at 0x%08x\n",
195 dev_name(&flash
->spi
->dev
), __func__
,
196 flash
->mtd
.erasesize
/ 1024, offset
);
198 /* Wait until finished previous write command. */
199 if (wait_till_ready(flash
))
202 /* Send write enable, then erase commands. */
205 /* Set up command buffer. */
206 flash
->command
[0] = flash
->erase_opcode
;
207 flash
->command
[1] = offset
>> 16;
208 flash
->command
[2] = offset
>> 8;
209 flash
->command
[3] = offset
;
211 spi_write(flash
->spi
, flash
->command
, CMD_SIZE
);
216 /****************************************************************************/
223 * Erase an address range on the flash chip. The address range may extend
224 * one or more erase sectors. Return an error is there is a problem erasing.
226 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
228 struct m25p
*flash
= mtd_to_m25p(mtd
);
232 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%llx, len %lld\n",
233 dev_name(&flash
->spi
->dev
), __func__
, "at",
234 (long long)instr
->addr
, (long long)instr
->len
);
237 if (instr
->addr
+ instr
->len
> flash
->mtd
.size
)
239 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
246 mutex_lock(&flash
->lock
);
248 /* whole-chip erase? */
249 if (len
== flash
->mtd
.size
) {
250 if (erase_chip(flash
)) {
251 instr
->state
= MTD_ERASE_FAILED
;
252 mutex_unlock(&flash
->lock
);
256 /* REVISIT in some cases we could speed up erasing large regions
257 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
258 * to use "small sector erase", but that's not always optimal.
261 /* "sector"-at-a-time erase */
264 if (erase_sector(flash
, addr
)) {
265 instr
->state
= MTD_ERASE_FAILED
;
266 mutex_unlock(&flash
->lock
);
270 addr
+= mtd
->erasesize
;
271 len
-= mtd
->erasesize
;
275 mutex_unlock(&flash
->lock
);
277 instr
->state
= MTD_ERASE_DONE
;
278 mtd_erase_callback(instr
);
284 * Read an address range from the flash chip. The address range
285 * may be any size provided it is within the physical boundaries.
287 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
288 size_t *retlen
, u_char
*buf
)
290 struct m25p
*flash
= mtd_to_m25p(mtd
);
291 struct spi_transfer t
[2];
292 struct spi_message m
;
294 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
295 dev_name(&flash
->spi
->dev
), __func__
, "from",
302 if (from
+ len
> flash
->mtd
.size
)
305 spi_message_init(&m
);
306 memset(t
, 0, (sizeof t
));
309 * OPCODE_FAST_READ (if available) is faster.
310 * Should add 1 byte DUMMY_BYTE.
312 t
[0].tx_buf
= flash
->command
;
313 t
[0].len
= CMD_SIZE
+ FAST_READ_DUMMY_BYTE
;
314 spi_message_add_tail(&t
[0], &m
);
318 spi_message_add_tail(&t
[1], &m
);
320 /* Byte count starts at zero. */
324 mutex_lock(&flash
->lock
);
326 /* Wait till previous write/erase is done. */
327 if (wait_till_ready(flash
)) {
328 /* REVISIT status return?? */
329 mutex_unlock(&flash
->lock
);
333 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
334 * clocks; and at this writing, every chip this driver handles
335 * supports that opcode.
338 /* Set up the write data buffer. */
339 flash
->command
[0] = OPCODE_READ
;
340 flash
->command
[1] = from
>> 16;
341 flash
->command
[2] = from
>> 8;
342 flash
->command
[3] = from
;
344 spi_sync(flash
->spi
, &m
);
346 *retlen
= m
.actual_length
- CMD_SIZE
- FAST_READ_DUMMY_BYTE
;
348 mutex_unlock(&flash
->lock
);
354 * Write an address range to the flash chip. Data must be written in
355 * FLASH_PAGESIZE chunks. The address range may be any size provided
356 * it is within the physical boundaries.
358 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
359 size_t *retlen
, const u_char
*buf
)
361 struct m25p
*flash
= mtd_to_m25p(mtd
);
362 u32 page_offset
, page_size
;
363 struct spi_transfer t
[2];
364 struct spi_message m
;
366 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
367 dev_name(&flash
->spi
->dev
), __func__
, "to",
377 if (to
+ len
> flash
->mtd
.size
)
380 spi_message_init(&m
);
381 memset(t
, 0, (sizeof t
));
383 t
[0].tx_buf
= flash
->command
;
385 spi_message_add_tail(&t
[0], &m
);
388 spi_message_add_tail(&t
[1], &m
);
390 mutex_lock(&flash
->lock
);
392 /* Wait until finished previous write command. */
393 if (wait_till_ready(flash
)) {
394 mutex_unlock(&flash
->lock
);
400 /* Set up the opcode in the write buffer. */
401 flash
->command
[0] = OPCODE_PP
;
402 flash
->command
[1] = to
>> 16;
403 flash
->command
[2] = to
>> 8;
404 flash
->command
[3] = to
;
406 /* what page do we start with? */
407 page_offset
= to
% FLASH_PAGESIZE
;
409 /* do all the bytes fit onto one page? */
410 if (page_offset
+ len
<= FLASH_PAGESIZE
) {
413 spi_sync(flash
->spi
, &m
);
415 *retlen
= m
.actual_length
- CMD_SIZE
;
419 /* the size of data remaining on the first page */
420 page_size
= FLASH_PAGESIZE
- page_offset
;
422 t
[1].len
= page_size
;
423 spi_sync(flash
->spi
, &m
);
425 *retlen
= m
.actual_length
- CMD_SIZE
;
427 /* write everything in PAGESIZE chunks */
428 for (i
= page_size
; i
< len
; i
+= page_size
) {
430 if (page_size
> FLASH_PAGESIZE
)
431 page_size
= FLASH_PAGESIZE
;
433 /* write the next page to flash */
434 flash
->command
[1] = (to
+ i
) >> 16;
435 flash
->command
[2] = (to
+ i
) >> 8;
436 flash
->command
[3] = (to
+ i
);
438 t
[1].tx_buf
= buf
+ i
;
439 t
[1].len
= page_size
;
441 wait_till_ready(flash
);
445 spi_sync(flash
->spi
, &m
);
448 *retlen
+= m
.actual_length
- CMD_SIZE
;
452 mutex_unlock(&flash
->lock
);
458 /****************************************************************************/
461 * SPI device driver setup and teardown
467 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
468 * a high byte of zero plus three data bytes: the manufacturer id,
469 * then a two byte device id.
474 /* The size listed here is what works with OPCODE_SE, which isn't
475 * necessarily called a "sector" by the vendor.
477 unsigned sector_size
;
481 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
485 /* NOTE: double check command sets and memory organization when you add
486 * more flash chips. This current list focusses on newer chips, which
487 * have been converging on command sets which including JEDEC ID.
489 static struct flash_info __devinitdata m25p_data
[] = {
491 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
492 { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K
, },
493 { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K
, },
495 { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K
, },
496 { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K
, },
498 { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K
, },
499 { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K
, },
500 { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K
, },
501 { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K
, },
503 /* Spansion -- single (large) sector size only, at least
504 * for the chips listed here (without boot sectors).
506 { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
507 { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
508 { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
509 { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
510 { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
511 { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
512 { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
514 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
515 { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K
, },
516 { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K
, },
517 { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K
, },
518 { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K
, },
520 /* ST Microelectronics -- newer production may have feature updates */
521 { "m25p05", 0x202010, 0, 32 * 1024, 2, },
522 { "m25p10", 0x202011, 0, 32 * 1024, 4, },
523 { "m25p20", 0x202012, 0, 64 * 1024, 4, },
524 { "m25p40", 0x202013, 0, 64 * 1024, 8, },
525 { "m25p80", 0, 0, 64 * 1024, 16, },
526 { "m25p16", 0x202015, 0, 64 * 1024, 32, },
527 { "m25p32", 0x202016, 0, 64 * 1024, 64, },
528 { "m25p64", 0x202017, 0, 64 * 1024, 128, },
529 { "m25p128", 0x202018, 0, 256 * 1024, 64, },
531 { "m45pe80", 0x204014, 0, 64 * 1024, 16, },
532 { "m45pe16", 0x204015, 0, 64 * 1024, 32, },
534 { "m25pe80", 0x208014, 0, 64 * 1024, 16, },
535 { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K
, },
537 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
538 { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K
, },
539 { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K
, },
540 { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K
, },
541 { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K
, },
542 { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K
, },
543 { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K
, },
544 { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K
, },
547 static struct flash_info
*__devinit
jedec_probe(struct spi_device
*spi
)
550 u8 code
= OPCODE_RDID
;
554 struct flash_info
*info
;
556 /* JEDEC also defines an optional "extended device information"
557 * string for after vendor-specific data, after the three bytes
558 * we use here. Supporting some chips might require using it.
560 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
562 DEBUG(MTD_DEBUG_LEVEL0
, "%s: error %d reading JEDEC ID\n",
563 dev_name(&spi
->dev
), tmp
);
572 ext_jedec
= id
[3] << 8 | id
[4];
574 for (tmp
= 0, info
= m25p_data
;
575 tmp
< ARRAY_SIZE(m25p_data
);
577 if (info
->jedec_id
== jedec
) {
578 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
583 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
589 * board specific setup should have ensured the SPI clock used here
590 * matches what the READ command supports, at least until this driver
591 * understands FAST_READ (for clocks over 25 MHz).
593 static int __devinit
m25p_probe(struct spi_device
*spi
)
595 struct flash_platform_data
*data
;
597 struct flash_info
*info
;
600 /* Platform data helps sort out which chip type we have, as
601 * well as how this board partitions it. If we don't have
602 * a chip ID, try the JEDEC id commands; they'll work for most
603 * newer chips, even if we don't recognize the particular chip.
605 data
= spi
->dev
.platform_data
;
606 if (data
&& data
->type
) {
607 for (i
= 0, info
= m25p_data
;
608 i
< ARRAY_SIZE(m25p_data
);
610 if (strcmp(data
->type
, info
->name
) == 0)
614 /* unrecognized chip? */
615 if (i
== ARRAY_SIZE(m25p_data
)) {
616 DEBUG(MTD_DEBUG_LEVEL0
, "%s: unrecognized id %s\n",
617 dev_name(&spi
->dev
), data
->type
);
620 /* recognized; is that chip really what's there? */
621 } else if (info
->jedec_id
) {
622 struct flash_info
*chip
= jedec_probe(spi
);
624 if (!chip
|| chip
!= info
) {
625 dev_warn(&spi
->dev
, "found %s, expected %s\n",
626 chip
? chip
->name
: "UNKNOWN",
632 info
= jedec_probe(spi
);
637 flash
= kzalloc(sizeof *flash
, GFP_KERNEL
);
642 mutex_init(&flash
->lock
);
643 dev_set_drvdata(&spi
->dev
, flash
);
646 * Atmel serial flash tend to power up
647 * with the software protection bits set
650 if (info
->jedec_id
>> 16 == 0x1f) {
655 if (data
&& data
->name
)
656 flash
->mtd
.name
= data
->name
;
658 flash
->mtd
.name
= dev_name(&spi
->dev
);
660 flash
->mtd
.type
= MTD_NORFLASH
;
661 flash
->mtd
.writesize
= 1;
662 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
663 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
664 flash
->mtd
.erase
= m25p80_erase
;
665 flash
->mtd
.read
= m25p80_read
;
666 flash
->mtd
.write
= m25p80_write
;
668 /* prefer "small sector" erase if possible */
669 if (info
->flags
& SECT_4K
) {
670 flash
->erase_opcode
= OPCODE_BE_4K
;
671 flash
->mtd
.erasesize
= 4096;
673 flash
->erase_opcode
= OPCODE_SE
;
674 flash
->mtd
.erasesize
= info
->sector_size
;
677 flash
->mtd
.dev
.parent
= &spi
->dev
;
679 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", info
->name
,
680 (long long)flash
->mtd
.size
>> 10);
682 DEBUG(MTD_DEBUG_LEVEL2
,
683 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
684 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
686 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
687 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
688 flash
->mtd
.numeraseregions
);
690 if (flash
->mtd
.numeraseregions
)
691 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
692 DEBUG(MTD_DEBUG_LEVEL2
,
693 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
694 ".erasesize = 0x%.8x (%uKiB), "
695 ".numblocks = %d }\n",
696 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
697 flash
->mtd
.eraseregions
[i
].erasesize
,
698 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
699 flash
->mtd
.eraseregions
[i
].numblocks
);
702 /* partitions should match sector boundaries; and it may be good to
703 * use readonly partitions for writeprotected sectors (BP2..BP0).
705 if (mtd_has_partitions()) {
706 struct mtd_partition
*parts
= NULL
;
709 if (mtd_has_cmdlinepart()) {
710 static const char *part_probes
[]
711 = { "cmdlinepart", NULL
, };
713 nr_parts
= parse_mtd_partitions(&flash
->mtd
,
714 part_probes
, &parts
, 0);
717 if (nr_parts
<= 0 && data
&& data
->parts
) {
719 nr_parts
= data
->nr_parts
;
723 for (i
= 0; i
< nr_parts
; i
++) {
724 DEBUG(MTD_DEBUG_LEVEL2
, "partitions[%d] = "
725 "{.name = %s, .offset = 0x%llx, "
726 ".size = 0x%llx (%lldKiB) }\n",
728 (long long)parts
[i
].offset
,
729 (long long)parts
[i
].size
,
730 (long long)(parts
[i
].size
>> 10));
732 flash
->partitioned
= 1;
733 return add_mtd_partitions(&flash
->mtd
, parts
, nr_parts
);
735 } else if (data
->nr_parts
)
736 dev_warn(&spi
->dev
, "ignoring %d default partitions on %s\n",
737 data
->nr_parts
, data
->name
);
739 return add_mtd_device(&flash
->mtd
) == 1 ? -ENODEV
: 0;
743 static int __devexit
m25p_remove(struct spi_device
*spi
)
745 struct m25p
*flash
= dev_get_drvdata(&spi
->dev
);
748 /* Clean up MTD stuff. */
749 if (mtd_has_partitions() && flash
->partitioned
)
750 status
= del_mtd_partitions(&flash
->mtd
);
752 status
= del_mtd_device(&flash
->mtd
);
759 static struct spi_driver m25p80_driver
= {
762 .bus
= &spi_bus_type
,
763 .owner
= THIS_MODULE
,
766 .remove
= __devexit_p(m25p_remove
),
768 /* REVISIT: many of these chips have deep power-down modes, which
769 * should clearly be entered on suspend() to minimize power use.
770 * And also when they're otherwise idle...
775 static int m25p80_init(void)
777 return spi_register_driver(&m25p80_driver
);
781 static void m25p80_exit(void)
783 spi_unregister_driver(&m25p80_driver
);
787 module_init(m25p80_init
);
788 module_exit(m25p80_exit
);
790 MODULE_LICENSE("GPL");
791 MODULE_AUTHOR("Mike Lavender");
792 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");