ACPI: make acpi_pci_bind() static
[linux-2.6/linux-acpi-2.6.git] / drivers / mtd / nand / mxc_nand.c
blob40c26080ecdaab563e8cacfd63e716d7f34f172f
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
34 #include <asm/mach/flash.h>
35 #include <mach/mxc_nand.h>
37 #define DRIVER_NAME "mxc_nand"
39 /* Addresses for NFC registers */
40 #define NFC_BUF_SIZE 0xE00
41 #define NFC_BUF_ADDR 0xE04
42 #define NFC_FLASH_ADDR 0xE06
43 #define NFC_FLASH_CMD 0xE08
44 #define NFC_CONFIG 0xE0A
45 #define NFC_ECC_STATUS_RESULT 0xE0C
46 #define NFC_RSLTMAIN_AREA 0xE0E
47 #define NFC_RSLTSPARE_AREA 0xE10
48 #define NFC_WRPROT 0xE12
49 #define NFC_UNLOCKSTART_BLKADDR 0xE14
50 #define NFC_UNLOCKEND_BLKADDR 0xE16
51 #define NFC_NF_WRPRST 0xE18
52 #define NFC_CONFIG1 0xE1A
53 #define NFC_CONFIG2 0xE1C
55 /* Addresses for NFC RAM BUFFER Main area 0 */
56 #define MAIN_AREA0 0x000
57 #define MAIN_AREA1 0x200
58 #define MAIN_AREA2 0x400
59 #define MAIN_AREA3 0x600
61 /* Addresses for NFC SPARE BUFFER Spare area 0 */
62 #define SPARE_AREA0 0x800
63 #define SPARE_AREA1 0x810
64 #define SPARE_AREA2 0x820
65 #define SPARE_AREA3 0x830
67 /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
68 * for Command operation */
69 #define NFC_CMD 0x1
71 /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
72 * for Address operation */
73 #define NFC_ADDR 0x2
75 /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
76 * for Input operation */
77 #define NFC_INPUT 0x4
79 /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
80 * for Data Output operation */
81 #define NFC_OUTPUT 0x8
83 /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
84 * for Read ID operation */
85 #define NFC_ID 0x10
87 /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
88 * for Read Status operation */
89 #define NFC_STATUS 0x20
91 /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
92 * Status operation */
93 #define NFC_INT 0x8000
95 #define NFC_SP_EN (1 << 2)
96 #define NFC_ECC_EN (1 << 3)
97 #define NFC_INT_MSK (1 << 4)
98 #define NFC_BIG (1 << 5)
99 #define NFC_RST (1 << 6)
100 #define NFC_CE (1 << 7)
101 #define NFC_ONE_CYCLE (1 << 8)
103 struct mxc_nand_host {
104 struct mtd_info mtd;
105 struct nand_chip nand;
106 struct mtd_partition *parts;
107 struct device *dev;
109 void __iomem *regs;
110 int spare_only;
111 int status_request;
112 int pagesize_2k;
113 uint16_t col_addr;
114 struct clk *clk;
115 int clk_act;
116 int irq;
118 wait_queue_head_t irq_waitq;
121 /* Define delays in microsec for NAND device operations */
122 #define TROP_US_DELAY 2000
123 /* Macros to get byte and bit positions of ECC */
124 #define COLPOS(x) ((x) >> 3)
125 #define BITPOS(x) ((x) & 0xf)
127 /* Define single bit Error positions in Main & Spare area */
128 #define MAIN_SINGLEBIT_ERROR 0x4
129 #define SPARE_SINGLEBIT_ERROR 0x1
131 /* OOB placement block for use with hardware ecc generation */
132 static struct nand_ecclayout nand_hw_eccoob_8 = {
133 .eccbytes = 5,
134 .eccpos = {6, 7, 8, 9, 10},
135 .oobfree = {{0, 5}, {11, 5}, }
138 static struct nand_ecclayout nand_hw_eccoob_16 = {
139 .eccbytes = 5,
140 .eccpos = {6, 7, 8, 9, 10},
141 .oobfree = {{0, 6}, {12, 4}, }
144 #ifdef CONFIG_MTD_PARTITIONS
145 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
146 #endif
148 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
150 struct mxc_nand_host *host = dev_id;
152 uint16_t tmp;
154 tmp = readw(host->regs + NFC_CONFIG1);
155 tmp |= NFC_INT_MSK; /* Disable interrupt */
156 writew(tmp, host->regs + NFC_CONFIG1);
158 wake_up(&host->irq_waitq);
160 return IRQ_HANDLED;
163 /* This function polls the NANDFC to wait for the basic operation to
164 * complete by checking the INT bit of config2 register.
166 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
167 uint16_t param, int useirq)
169 uint32_t tmp;
171 if (useirq) {
172 if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
174 tmp = readw(host->regs + NFC_CONFIG1);
175 tmp &= ~NFC_INT_MSK; /* Enable interrupt */
176 writew(tmp, host->regs + NFC_CONFIG1);
178 wait_event(host->irq_waitq,
179 readw(host->regs + NFC_CONFIG2) & NFC_INT);
181 tmp = readw(host->regs + NFC_CONFIG2);
182 tmp &= ~NFC_INT;
183 writew(tmp, host->regs + NFC_CONFIG2);
185 } else {
186 while (max_retries-- > 0) {
187 if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
188 tmp = readw(host->regs + NFC_CONFIG2);
189 tmp &= ~NFC_INT;
190 writew(tmp, host->regs + NFC_CONFIG2);
191 break;
193 udelay(1);
195 if (max_retries <= 0)
196 DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
197 __func__, param);
201 /* This function issues the specified command to the NAND device and
202 * waits for completion. */
203 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
205 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
207 writew(cmd, host->regs + NFC_FLASH_CMD);
208 writew(NFC_CMD, host->regs + NFC_CONFIG2);
210 /* Wait for operation to complete */
211 wait_op_done(host, TROP_US_DELAY, cmd, useirq);
214 /* This function sends an address (or partial address) to the
215 * NAND device. The address is used to select the source/destination for
216 * a NAND command. */
217 static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
219 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
221 writew(addr, host->regs + NFC_FLASH_ADDR);
222 writew(NFC_ADDR, host->regs + NFC_CONFIG2);
224 /* Wait for operation to complete */
225 wait_op_done(host, TROP_US_DELAY, addr, islast);
228 /* This function requests the NANDFC to initate the transfer
229 * of data currently in the NANDFC RAM buffer to the NAND device. */
230 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
231 int spare_only)
233 DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
235 /* NANDFC buffer 0 is used for page read/write */
236 writew(buf_id, host->regs + NFC_BUF_ADDR);
238 /* Configure spare or page+spare access */
239 if (!host->pagesize_2k) {
240 uint16_t config1 = readw(host->regs + NFC_CONFIG1);
241 if (spare_only)
242 config1 |= NFC_SP_EN;
243 else
244 config1 &= ~(NFC_SP_EN);
245 writew(config1, host->regs + NFC_CONFIG1);
248 writew(NFC_INPUT, host->regs + NFC_CONFIG2);
250 /* Wait for operation to complete */
251 wait_op_done(host, TROP_US_DELAY, spare_only, true);
254 /* Requests NANDFC to initated the transfer of data from the
255 * NAND device into in the NANDFC ram buffer. */
256 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
257 int spare_only)
259 DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
261 /* NANDFC buffer 0 is used for page read/write */
262 writew(buf_id, host->regs + NFC_BUF_ADDR);
264 /* Configure spare or page+spare access */
265 if (!host->pagesize_2k) {
266 uint32_t config1 = readw(host->regs + NFC_CONFIG1);
267 if (spare_only)
268 config1 |= NFC_SP_EN;
269 else
270 config1 &= ~NFC_SP_EN;
271 writew(config1, host->regs + NFC_CONFIG1);
274 writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
276 /* Wait for operation to complete */
277 wait_op_done(host, TROP_US_DELAY, spare_only, true);
280 /* Request the NANDFC to perform a read of the NAND device ID. */
281 static void send_read_id(struct mxc_nand_host *host)
283 struct nand_chip *this = &host->nand;
284 uint16_t tmp;
286 /* NANDFC buffer 0 is used for device ID output */
287 writew(0x0, host->regs + NFC_BUF_ADDR);
289 /* Read ID into main buffer */
290 tmp = readw(host->regs + NFC_CONFIG1);
291 tmp &= ~NFC_SP_EN;
292 writew(tmp, host->regs + NFC_CONFIG1);
294 writew(NFC_ID, host->regs + NFC_CONFIG2);
296 /* Wait for operation to complete */
297 wait_op_done(host, TROP_US_DELAY, 0, true);
299 if (this->options & NAND_BUSWIDTH_16) {
300 void __iomem *main_buf = host->regs + MAIN_AREA0;
301 /* compress the ID info */
302 writeb(readb(main_buf + 2), main_buf + 1);
303 writeb(readb(main_buf + 4), main_buf + 2);
304 writeb(readb(main_buf + 6), main_buf + 3);
305 writeb(readb(main_buf + 8), main_buf + 4);
306 writeb(readb(main_buf + 10), main_buf + 5);
310 /* This function requests the NANDFC to perform a read of the
311 * NAND device status and returns the current status. */
312 static uint16_t get_dev_status(struct mxc_nand_host *host)
314 void __iomem *main_buf = host->regs + MAIN_AREA1;
315 uint32_t store;
316 uint16_t ret, tmp;
317 /* Issue status request to NAND device */
319 /* store the main area1 first word, later do recovery */
320 store = readl(main_buf);
321 /* NANDFC buffer 1 is used for device status to prevent
322 * corruption of read/write buffer on status requests. */
323 writew(1, host->regs + NFC_BUF_ADDR);
325 /* Read status into main buffer */
326 tmp = readw(host->regs + NFC_CONFIG1);
327 tmp &= ~NFC_SP_EN;
328 writew(tmp, host->regs + NFC_CONFIG1);
330 writew(NFC_STATUS, host->regs + NFC_CONFIG2);
332 /* Wait for operation to complete */
333 wait_op_done(host, TROP_US_DELAY, 0, true);
335 /* Status is placed in first word of main buffer */
336 /* get status, then recovery area 1 data */
337 ret = readw(main_buf);
338 writel(store, main_buf);
340 return ret;
343 /* This functions is used by upper layer to checks if device is ready */
344 static int mxc_nand_dev_ready(struct mtd_info *mtd)
347 * NFC handles R/B internally. Therefore, this function
348 * always returns status as ready.
350 return 1;
353 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
356 * If HW ECC is enabled, we turn it on during init. There is
357 * no need to enable again here.
361 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
362 u_char *read_ecc, u_char *calc_ecc)
364 struct nand_chip *nand_chip = mtd->priv;
365 struct mxc_nand_host *host = nand_chip->priv;
368 * 1-Bit errors are automatically corrected in HW. No need for
369 * additional correction. 2-Bit errors cannot be corrected by
370 * HW ECC, so we need to return failure
372 uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
374 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
375 DEBUG(MTD_DEBUG_LEVEL0,
376 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
377 return -1;
380 return 0;
383 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
384 u_char *ecc_code)
386 return 0;
389 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
391 struct nand_chip *nand_chip = mtd->priv;
392 struct mxc_nand_host *host = nand_chip->priv;
393 uint8_t ret = 0;
394 uint16_t col, rd_word;
395 uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
396 uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
398 /* Check for status request */
399 if (host->status_request)
400 return get_dev_status(host) & 0xFF;
402 /* Get column for 16-bit access */
403 col = host->col_addr >> 1;
405 /* If we are accessing the spare region */
406 if (host->spare_only)
407 rd_word = readw(&spare_buf[col]);
408 else
409 rd_word = readw(&main_buf[col]);
411 /* Pick upper/lower byte of word from RAM buffer */
412 if (host->col_addr & 0x1)
413 ret = (rd_word >> 8) & 0xFF;
414 else
415 ret = rd_word & 0xFF;
417 /* Update saved column address */
418 host->col_addr++;
420 return ret;
423 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
425 struct nand_chip *nand_chip = mtd->priv;
426 struct mxc_nand_host *host = nand_chip->priv;
427 uint16_t col, rd_word, ret;
428 uint16_t __iomem *p;
430 DEBUG(MTD_DEBUG_LEVEL3,
431 "mxc_nand_read_word(col = %d)\n", host->col_addr);
433 col = host->col_addr;
434 /* Adjust saved column address */
435 if (col < mtd->writesize && host->spare_only)
436 col += mtd->writesize;
438 if (col < mtd->writesize)
439 p = (host->regs + MAIN_AREA0) + (col >> 1);
440 else
441 p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
443 if (col & 1) {
444 rd_word = readw(p);
445 ret = (rd_word >> 8) & 0xff;
446 rd_word = readw(&p[1]);
447 ret |= (rd_word << 8) & 0xff00;
449 } else
450 ret = readw(p);
452 /* Update saved column address */
453 host->col_addr = col + 2;
455 return ret;
458 /* Write data of length len to buffer buf. The data to be
459 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
460 * Operation by the NFC, the data is written to NAND Flash */
461 static void mxc_nand_write_buf(struct mtd_info *mtd,
462 const u_char *buf, int len)
464 struct nand_chip *nand_chip = mtd->priv;
465 struct mxc_nand_host *host = nand_chip->priv;
466 int n, col, i = 0;
468 DEBUG(MTD_DEBUG_LEVEL3,
469 "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
470 len);
472 col = host->col_addr;
474 /* Adjust saved column address */
475 if (col < mtd->writesize && host->spare_only)
476 col += mtd->writesize;
478 n = mtd->writesize + mtd->oobsize - col;
479 n = min(len, n);
481 DEBUG(MTD_DEBUG_LEVEL3,
482 "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
484 while (n) {
485 void __iomem *p;
487 if (col < mtd->writesize)
488 p = host->regs + MAIN_AREA0 + (col & ~3);
489 else
490 p = host->regs + SPARE_AREA0 -
491 mtd->writesize + (col & ~3);
493 DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
494 __LINE__, p);
496 if (((col | (int)&buf[i]) & 3) || n < 16) {
497 uint32_t data = 0;
499 if (col & 3 || n < 4)
500 data = readl(p);
502 switch (col & 3) {
503 case 0:
504 if (n) {
505 data = (data & 0xffffff00) |
506 (buf[i++] << 0);
507 n--;
508 col++;
510 case 1:
511 if (n) {
512 data = (data & 0xffff00ff) |
513 (buf[i++] << 8);
514 n--;
515 col++;
517 case 2:
518 if (n) {
519 data = (data & 0xff00ffff) |
520 (buf[i++] << 16);
521 n--;
522 col++;
524 case 3:
525 if (n) {
526 data = (data & 0x00ffffff) |
527 (buf[i++] << 24);
528 n--;
529 col++;
533 writel(data, p);
534 } else {
535 int m = mtd->writesize - col;
537 if (col >= mtd->writesize)
538 m += mtd->oobsize;
540 m = min(n, m) & ~3;
542 DEBUG(MTD_DEBUG_LEVEL3,
543 "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
544 __func__, __LINE__, n, m, i, col);
546 memcpy(p, &buf[i], m);
547 col += m;
548 i += m;
549 n -= m;
552 /* Update saved column address */
553 host->col_addr = col;
556 /* Read the data buffer from the NAND Flash. To read the data from NAND
557 * Flash first the data output cycle is initiated by the NFC, which copies
558 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
560 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
562 struct nand_chip *nand_chip = mtd->priv;
563 struct mxc_nand_host *host = nand_chip->priv;
564 int n, col, i = 0;
566 DEBUG(MTD_DEBUG_LEVEL3,
567 "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
569 col = host->col_addr;
571 /* Adjust saved column address */
572 if (col < mtd->writesize && host->spare_only)
573 col += mtd->writesize;
575 n = mtd->writesize + mtd->oobsize - col;
576 n = min(len, n);
578 while (n) {
579 void __iomem *p;
581 if (col < mtd->writesize)
582 p = host->regs + MAIN_AREA0 + (col & ~3);
583 else
584 p = host->regs + SPARE_AREA0 -
585 mtd->writesize + (col & ~3);
587 if (((col | (int)&buf[i]) & 3) || n < 16) {
588 uint32_t data;
590 data = readl(p);
591 switch (col & 3) {
592 case 0:
593 if (n) {
594 buf[i++] = (uint8_t) (data);
595 n--;
596 col++;
598 case 1:
599 if (n) {
600 buf[i++] = (uint8_t) (data >> 8);
601 n--;
602 col++;
604 case 2:
605 if (n) {
606 buf[i++] = (uint8_t) (data >> 16);
607 n--;
608 col++;
610 case 3:
611 if (n) {
612 buf[i++] = (uint8_t) (data >> 24);
613 n--;
614 col++;
617 } else {
618 int m = mtd->writesize - col;
620 if (col >= mtd->writesize)
621 m += mtd->oobsize;
623 m = min(n, m) & ~3;
624 memcpy(&buf[i], p, m);
625 col += m;
626 i += m;
627 n -= m;
630 /* Update saved column address */
631 host->col_addr = col;
635 /* Used by the upper layer to verify the data in NAND Flash
636 * with the data in the buf. */
637 static int mxc_nand_verify_buf(struct mtd_info *mtd,
638 const u_char *buf, int len)
640 return -EFAULT;
643 /* This function is used by upper layer for select and
644 * deselect of the NAND chip */
645 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
647 struct nand_chip *nand_chip = mtd->priv;
648 struct mxc_nand_host *host = nand_chip->priv;
650 #ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
651 if (chip > 0) {
652 DEBUG(MTD_DEBUG_LEVEL0,
653 "ERROR: Illegal chip select (chip = %d)\n", chip);
654 return;
657 if (chip == -1) {
658 writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
659 host->regs + NFC_CONFIG1);
660 return;
663 writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
664 host->regs + NFC_CONFIG1);
665 #endif
667 switch (chip) {
668 case -1:
669 /* Disable the NFC clock */
670 if (host->clk_act) {
671 clk_disable(host->clk);
672 host->clk_act = 0;
674 break;
675 case 0:
676 /* Enable the NFC clock */
677 if (!host->clk_act) {
678 clk_enable(host->clk);
679 host->clk_act = 1;
681 break;
683 default:
684 break;
688 /* Used by the upper layer to write command to NAND Flash for
689 * different operations to be carried out on NAND Flash */
690 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
691 int column, int page_addr)
693 struct nand_chip *nand_chip = mtd->priv;
694 struct mxc_nand_host *host = nand_chip->priv;
695 int useirq = true;
697 DEBUG(MTD_DEBUG_LEVEL3,
698 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
699 command, column, page_addr);
701 /* Reset command state information */
702 host->status_request = false;
704 /* Command pre-processing step */
705 switch (command) {
707 case NAND_CMD_STATUS:
708 host->col_addr = 0;
709 host->status_request = true;
710 break;
712 case NAND_CMD_READ0:
713 host->col_addr = column;
714 host->spare_only = false;
715 useirq = false;
716 break;
718 case NAND_CMD_READOOB:
719 host->col_addr = column;
720 host->spare_only = true;
721 useirq = false;
722 if (host->pagesize_2k)
723 command = NAND_CMD_READ0; /* only READ0 is valid */
724 break;
726 case NAND_CMD_SEQIN:
727 if (column >= mtd->writesize) {
729 * FIXME: before send SEQIN command for write OOB,
730 * We must read one page out.
731 * For K9F1GXX has no READ1 command to set current HW
732 * pointer to spare area, we must write the whole page
733 * including OOB together.
735 if (host->pagesize_2k)
736 /* call ourself to read a page */
737 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
738 page_addr);
740 host->col_addr = column - mtd->writesize;
741 host->spare_only = true;
743 /* Set program pointer to spare region */
744 if (!host->pagesize_2k)
745 send_cmd(host, NAND_CMD_READOOB, false);
746 } else {
747 host->spare_only = false;
748 host->col_addr = column;
750 /* Set program pointer to page start */
751 if (!host->pagesize_2k)
752 send_cmd(host, NAND_CMD_READ0, false);
754 useirq = false;
755 break;
757 case NAND_CMD_PAGEPROG:
758 send_prog_page(host, 0, host->spare_only);
760 if (host->pagesize_2k) {
761 /* data in 4 areas datas */
762 send_prog_page(host, 1, host->spare_only);
763 send_prog_page(host, 2, host->spare_only);
764 send_prog_page(host, 3, host->spare_only);
767 break;
769 case NAND_CMD_ERASE1:
770 useirq = false;
771 break;
774 /* Write out the command to the device. */
775 send_cmd(host, command, useirq);
777 /* Write out column address, if necessary */
778 if (column != -1) {
780 * MXC NANDFC can only perform full page+spare or
781 * spare-only read/write. When the upper layers
782 * layers perform a read/write buf operation,
783 * we will used the saved column adress to index into
784 * the full page.
786 send_addr(host, 0, page_addr == -1);
787 if (host->pagesize_2k)
788 /* another col addr cycle for 2k page */
789 send_addr(host, 0, false);
792 /* Write out page address, if necessary */
793 if (page_addr != -1) {
794 /* paddr_0 - p_addr_7 */
795 send_addr(host, (page_addr & 0xff), false);
797 if (host->pagesize_2k) {
798 send_addr(host, (page_addr >> 8) & 0xFF, false);
799 if (mtd->size >= 0x40000000)
800 send_addr(host, (page_addr >> 16) & 0xff, true);
801 } else {
802 /* One more address cycle for higher density devices */
803 if (mtd->size >= 0x4000000) {
804 /* paddr_8 - paddr_15 */
805 send_addr(host, (page_addr >> 8) & 0xff, false);
806 send_addr(host, (page_addr >> 16) & 0xff, true);
807 } else
808 /* paddr_8 - paddr_15 */
809 send_addr(host, (page_addr >> 8) & 0xff, true);
813 /* Command post-processing step */
814 switch (command) {
816 case NAND_CMD_RESET:
817 break;
819 case NAND_CMD_READOOB:
820 case NAND_CMD_READ0:
821 if (host->pagesize_2k) {
822 /* send read confirm command */
823 send_cmd(host, NAND_CMD_READSTART, true);
824 /* read for each AREA */
825 send_read_page(host, 0, host->spare_only);
826 send_read_page(host, 1, host->spare_only);
827 send_read_page(host, 2, host->spare_only);
828 send_read_page(host, 3, host->spare_only);
829 } else
830 send_read_page(host, 0, host->spare_only);
831 break;
833 case NAND_CMD_READID:
834 host->col_addr = 0;
835 send_read_id(host);
836 break;
838 case NAND_CMD_PAGEPROG:
839 break;
841 case NAND_CMD_STATUS:
842 break;
844 case NAND_CMD_ERASE2:
845 break;
849 static int __init mxcnd_probe(struct platform_device *pdev)
851 struct nand_chip *this;
852 struct mtd_info *mtd;
853 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
854 struct mxc_nand_host *host;
855 struct resource *res;
856 uint16_t tmp;
857 int err = 0, nr_parts = 0;
859 /* Allocate memory for MTD device structure and private data */
860 host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
861 if (!host)
862 return -ENOMEM;
864 host->dev = &pdev->dev;
865 /* structures must be linked */
866 this = &host->nand;
867 mtd = &host->mtd;
868 mtd->priv = this;
869 mtd->owner = THIS_MODULE;
870 mtd->dev.parent = &pdev->dev;
871 mtd->name = "mxc_nand";
873 /* 50 us command delay time */
874 this->chip_delay = 5;
876 this->priv = host;
877 this->dev_ready = mxc_nand_dev_ready;
878 this->cmdfunc = mxc_nand_command;
879 this->select_chip = mxc_nand_select_chip;
880 this->read_byte = mxc_nand_read_byte;
881 this->read_word = mxc_nand_read_word;
882 this->write_buf = mxc_nand_write_buf;
883 this->read_buf = mxc_nand_read_buf;
884 this->verify_buf = mxc_nand_verify_buf;
886 host->clk = clk_get(&pdev->dev, "nfc");
887 if (IS_ERR(host->clk)) {
888 err = PTR_ERR(host->clk);
889 goto eclk;
892 clk_enable(host->clk);
893 host->clk_act = 1;
895 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
896 if (!res) {
897 err = -ENODEV;
898 goto eres;
901 host->regs = ioremap(res->start, res->end - res->start + 1);
902 if (!host->regs) {
903 err = -ENOMEM;
904 goto eres;
907 tmp = readw(host->regs + NFC_CONFIG1);
908 tmp |= NFC_INT_MSK;
909 writew(tmp, host->regs + NFC_CONFIG1);
911 init_waitqueue_head(&host->irq_waitq);
913 host->irq = platform_get_irq(pdev, 0);
915 err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
916 if (err)
917 goto eirq;
919 if (pdata->hw_ecc) {
920 this->ecc.calculate = mxc_nand_calculate_ecc;
921 this->ecc.hwctl = mxc_nand_enable_hwecc;
922 this->ecc.correct = mxc_nand_correct_data;
923 this->ecc.mode = NAND_ECC_HW;
924 this->ecc.size = 512;
925 this->ecc.bytes = 3;
926 this->ecc.layout = &nand_hw_eccoob_8;
927 tmp = readw(host->regs + NFC_CONFIG1);
928 tmp |= NFC_ECC_EN;
929 writew(tmp, host->regs + NFC_CONFIG1);
930 } else {
931 this->ecc.size = 512;
932 this->ecc.bytes = 3;
933 this->ecc.layout = &nand_hw_eccoob_8;
934 this->ecc.mode = NAND_ECC_SOFT;
935 tmp = readw(host->regs + NFC_CONFIG1);
936 tmp &= ~NFC_ECC_EN;
937 writew(tmp, host->regs + NFC_CONFIG1);
940 /* Reset NAND */
941 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
943 /* preset operation */
944 /* Unlock the internal RAM Buffer */
945 writew(0x2, host->regs + NFC_CONFIG);
947 /* Blocks to be unlocked */
948 writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
949 writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
951 /* Unlock Block Command for given address range */
952 writew(0x4, host->regs + NFC_WRPROT);
954 /* NAND bus width determines access funtions used by upper layer */
955 if (pdata->width == 2) {
956 this->options |= NAND_BUSWIDTH_16;
957 this->ecc.layout = &nand_hw_eccoob_16;
960 host->pagesize_2k = 0;
962 /* Scan to find existence of the device */
963 if (nand_scan(mtd, 1)) {
964 DEBUG(MTD_DEBUG_LEVEL0,
965 "MXC_ND: Unable to find any NAND device.\n");
966 err = -ENXIO;
967 goto escan;
970 /* Register the partitions */
971 #ifdef CONFIG_MTD_PARTITIONS
972 nr_parts =
973 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
974 if (nr_parts > 0)
975 add_mtd_partitions(mtd, host->parts, nr_parts);
976 else
977 #endif
979 pr_info("Registering %s as whole device\n", mtd->name);
980 add_mtd_device(mtd);
983 platform_set_drvdata(pdev, host);
985 return 0;
987 escan:
988 free_irq(host->irq, NULL);
989 eirq:
990 iounmap(host->regs);
991 eres:
992 clk_put(host->clk);
993 eclk:
994 kfree(host);
996 return err;
999 static int __devexit mxcnd_remove(struct platform_device *pdev)
1001 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1003 clk_put(host->clk);
1005 platform_set_drvdata(pdev, NULL);
1007 nand_release(&host->mtd);
1008 free_irq(host->irq, NULL);
1009 iounmap(host->regs);
1010 kfree(host);
1012 return 0;
1015 #ifdef CONFIG_PM
1016 static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
1018 struct mtd_info *mtd = platform_get_drvdata(pdev);
1019 struct nand_chip *nand_chip = mtd->priv;
1020 struct mxc_nand_host *host = nand_chip->priv;
1021 int ret = 0;
1023 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
1024 if (mtd) {
1025 ret = mtd->suspend(mtd);
1026 /* Disable the NFC clock */
1027 clk_disable(host->clk);
1030 return ret;
1033 static int mxcnd_resume(struct platform_device *pdev)
1035 struct mtd_info *mtd = platform_get_drvdata(pdev);
1036 struct nand_chip *nand_chip = mtd->priv;
1037 struct mxc_nand_host *host = nand_chip->priv;
1038 int ret = 0;
1040 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
1042 if (mtd) {
1043 /* Enable the NFC clock */
1044 clk_enable(host->clk);
1045 mtd->resume(mtd);
1048 return ret;
1051 #else
1052 # define mxcnd_suspend NULL
1053 # define mxcnd_resume NULL
1054 #endif /* CONFIG_PM */
1056 static struct platform_driver mxcnd_driver = {
1057 .driver = {
1058 .name = DRIVER_NAME,
1060 .remove = __exit_p(mxcnd_remove),
1061 .suspend = mxcnd_suspend,
1062 .resume = mxcnd_resume,
1065 static int __init mxc_nd_init(void)
1067 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1070 static void __exit mxc_nd_cleanup(void)
1072 /* Unregister the device structure */
1073 platform_driver_unregister(&mxcnd_driver);
1076 module_init(mxc_nd_init);
1077 module_exit(mxc_nd_cleanup);
1079 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1080 MODULE_DESCRIPTION("MXC NAND MTD driver");
1081 MODULE_LICENSE("GPL");